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Abstract

Graph matching plays a central role in solving corre-

spondence problems in computer vision. Graph matching

problems that incorporate pair-wise constraints can be cast

as a quadratic assignment problem (QAP). Unfortunately,

QAP is NP-hard and many algorithms have been proposed

to solve different relaxations. This paper presents factor-

ized graph matching (FGM), a novel framework for inter-

preting and optimizing graph matching problems. In this

work we show that the affinity matrix can be factorized as

a Kronecker product of smaller matrices. There are three

main benefits of using this factorization in graph matching:

(1) There is no need to compute the costly (in space and

time) pair-wise affinity matrix; (2) The factorization pro-

vides a taxonomy for graph matching and reveals the con-

nection among several methods; (3) Using the factoriza-

tion we derive a new approximation of the original problem

that improves state-of-the-art algorithms in graph match-

ing. Experimental results in synthetic and real databases

illustrate the benefits of FGM. The code is available at

http://humansensing.cs.cmu.edu/fgm.

1. Introduction
Graph matching plays a central role in solving many cor-

respondence problems in computer vision such as shape

matching [4], object categorization [15], feature track-

ing [23, 33], symmetry analysis [10, 22] and action recog-

nition [6, 20]. Mathematically, pair-wise graph match-

ing is formulated as the quadratic assignment problem

(QAP) [27]. Unlike the linear assignment problem, which

can be efficiently solved with the Hungarian algorithm [7],

QAP is known to be NP-hard [19] and an exact optimal al-

gorithm can only work for very small graphs. Therefore, the

main body of research in QAP has focused on devising more

accurate and faster algorithms to solve it approximately.

Although extensive research has been done for decades,

graph matching is still a challenging problem mainly due to

two reasons: (1) In general, the objective function is non-

convex and prone to local minima; (2) The constraints that

the solution has to satisfy are combinatorial. While there

Figure 1. Matching two coffee mugs with 5 and 6 features respec-

tively. The original pair-wise affinity matrix is of size 30×30. Our

algorithm exploits the particular structure of the affinity matrix and

is able to factorize it as a Kronecker product of four smaller ma-

trices. The top two matrices of size 5 × 7 and 6 × 8 represent

the structure of the graphs in each image. The lower two matrices

encode the affinities for nodes (5× 6) and edges (7× 8).

are a number of papers [11, 13, 21, 24, 37, 40] addressing

the second issue, fewer papers [25, 39] have investigated the

first issue.

In this paper, we show that for most pair-wise graph

matching problems the affinity matrix can be factorized as a

Kronecker product of smaller matrices. Based on this fact,

we proposed factorized graph matching (FGM), a novel

framework for interpreting and optimizing graph matching

problems. The benefits of our approach are three fold: (1) It

avoids the computation of the cumbersome affinity matrix

and hence potentially allows for a more efficient implemen-

tation, especially for large graphs; (2) Many graph match-

ing methods can be understood as an instance of this fac-

torization. This allows understanding commonalities and

differences among many pair-wise graph matching prob-

lems; (3) The factorization leads to a new approximation

of the graph matching problem that improves state-of-the-

art approaches. Fig. 1 illustrates an example of matching

two coffee mugs using FGM. Note that FGM factorizes the

large 30× 30 affinity matrix into four smaller ones.

2. Previous work
This section reviews the problem formulation of graph

matching and discusses recent advances in solving the QAP

in graph matching.

2.1. Problem formulation of graph matching
We denote (see notation1) a graph by G = {P,Q,G},

where P = [p1, · · · ,pn] ∈ R
dp×n and Q =

1Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x. xi represents the ith column of the matrix X. xij denotes
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[q1, · · · ,qm] ∈ R
dq×m are the feature matrices computed

for nodes and edges2 respectively. The topology of G is

specified by a node-edge incidence matrix G ∈ {0, 1}n×m,

where gic = gjc = 1 if the ith and jth nodes are connected

by the cth edge, and zero otherwise. For instance, Fig. 2a

shows a pair of synthetic graphs and Fig. 2cd illustrate their

incidence matrices.

Suppose that we are given a pair of graphs, G1 =
{P1,Q1,G1} and G2 = {P2,Q2,G2}. We compute two
affinity matrices, Kp ∈ R

n1×n2 and Kq ∈ R
m1×m2 , for

measuring the similarity of each node and edge pair respec-
tively. More specifically, κ

p
i1i2

= φp(p
1
i1
,p2

i2
) measures the

similarity between the ith1 node of G1 and the ith2 node of G2,
and κq

c1c2
= φq(q

1
c1
,q2

c2
) measures the similarity between

the cth1 edge of G1 and the cth2 edge of G2. The problem
of graph matching consists in finding a correspondence be-
tween the nodes of G1 and G2 that maximizes the following
score of global consistency:

Jgm(X) =
∑

i1i2

xi1i2κ
p
i1i2

+
∑

i1 6=i2,j1 6=j2
g1i1c1

g1j1c1
=1

g2i2c2
g2j2c2

=1

xi1i2xj1j2κ
q
c1c2

,

where X ∈ {0, 1}n1×n2 denotes the node correspondence,

i.e., xi1i2 = 1 if the ith1 node of G1 corresponds to the ith2
node of G2. In most cases, X is constrained to be a one-to-

one matching, i.e., X1n2
≤ 1n1

and XT1n1
≤ 1n2

.

It is more convenient to write Jgm(X) in a quadratic

form, xTKx, where x = vec(X) ∈ {0, 1}n1n2 is an indi-
cator vector and K ∈ R

n1n2×n1n2 is computed as follows:

κi1i2j1j2 =















κ
p
i1i2

, if i1 = j1 and i2 = j2,

κq
c1c2

, if i1 6= j1 and i2 6= j2 and
g1i1c1g

1
j1c1

g2i2c2g
2
j2c2

= 1,
0, otherwise.

For instance, Fig. 2e-g illustrates the composition of the
affinity matrices. With these notations, the goal of graph
matching is to optimize the following QAP:

max
x

x
T
Kx, s. t. Ax ≤ b and x ∈ {0, 1}n1n2 , (1)

where A =

[

1
T
n2

⊗ In1

In2
⊗ 1

T
n1

]

and b = 1n1+n2
.

the scalar in the ith row and jth column of the matrix X. All non-bold

letters represent scalars. 1m×n,0m×n ∈ R
m×n are matrices of ones

and zeros. In ∈ R
n×n is an identity matrix. ‖x‖p = p

√
∑

|xi|p de-

notes the p-norm. ‖X‖2
F

= tr(XTX) designates the Frobenious norm.

vec(X) denotes the vectorization of matrix X. diag(x) is a diagonal

matrix whose diagonal elements are x. X ◦ Y and X ⊗ Y are the

Hadamard and Kronecker products of matrices. {i : j} lists the integers,

{i, i+1, · · · , j− 1, j}. eig(X) computes the leading eigen-vector of X.
2In general, the edge feature can be asymmetrical, i.e., the feature used

for edge
−→
ij is different from

−→
ji . However, the symmetrical edge feature

can express a wide range of graph matching problems. For instance, the

pairwise distance and the absolute angle from the horizontal line both be-

long to this class of edge feature.

2.2. Advances in graph matching

Over the past three decades, a myriad of approxima-

tions to solve the QAP in graph matching have been pro-

posed in computer vision and machine learning (see [12, 30]

for a survey). These methods can be broadly catego-

rized in two types based on the objective to be maximized:

tr(A1XA2X
T ) and xTKx.

The first case corresponds to maximizing a trace-form

objective function, tr(A1XA2X
T ), where A1,A2 ∈

R
n×n are the weighted adjacency matrices of the graphs

and X ∈ {0, 1}n×n is a permutation matrix. In the litera-

ture of operation research [27], this is known as Koopmans-

Beckmann’s QAP, which is a particular case of Lawler’s

QAP maximizing xTKx when K = A2 ⊗A1. In the past

two decades, various continuous relaxations have been pro-

posed to solve this type of problems. Umeyama [36] pro-

posed the first spectral algorithm by computing the eigen-

vectors of the adjacency matrices. Almohamad and Duffuaa

[3] proposed to optimize an l1-norm objective function by

linear programming. The most related work to ours is the

one from Zaslavskiy et al. [39], in which a convex-concave

approach was proposed to estimate the correspondence in

an iterative manner. Despite its successfulness for match-

ing characters and other visual objects with relatively sim-

ple structure, the graphs used by these methods still lack

flexibility to match complex structures encountered in real-

istic computer vision problems.

In the more general case, the problem is formulated

as the maximization of a quadratic cost xTKx, where

K ∈ R
n1n2×n1n2 encodes the pair-wise similarity be-

tween nodes and edges. In the past decade, much effort

has been devoted to the development of approximate meth-

ods to solve the more general QAP. Gold and Rangarajan

[21] proposed the graduated assignment algorithm to iter-

atively solve a series of linear approximations of the cost

function using Taylor expansions. Leordeanu and Hebert

[24] proposed an efficient approximation using an spec-

tral relaxation. Cour et al. [13] presented a more general

scheme that incorporates affine constraints in the spectral

relaxation, thereby obtaining better approximation of the

original problem. Van Wyk and van Wyk [37] proposed to

iteratively project the approximate correspondence matrix

onto the convex domain of the desired integer constraints.

Torresani et al. [35] designed a complex objective function

which can be efficiently optimized by dual decomposition.

As a general tool for approximating combinatorial prob-

lems, semi-definite programming [34, 31] was also used to

approximate graph matching. Recently, Leordeanu et al.

[25] proposed an integer projection algorithm to optimize

the objective function in an integer domain. In addition to

optimization-based work, probabilistic frameworks [11, 40]

were shown to be useful for interpreting and solving graph

matching problems. In our work, we concentrate on solv-
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Figure 2. Example of graph matching and related matrices. (a)

Two synthetic graphs. (b) The correspondence matrix X. (c) The

1st graph’s incidence matrix G1. (d) The 2nd graph’s incidence

matrix G2. (e) The node affinity matrix Kp. (f) The edge affinity

matrix Kq . (g) The global affinity matrix K.

ing the most general type of graph matching problem using

optimization techniques.

3. Factorized graph matching (FGM)
It is well known that the QAP (Eq. 1) is one of the most

difficult combinatorial optimization problems. In general,

instances of size n > 20 cannot be exactly solved in prac-

tical time. Many methods have been proposed to compute

an approximate solution. In particular, most efforts focus on

maximizing Jgm(X) by relaxing the binary constraints. For

instance, a popular relaxation is to constrain X as a doubly

stochastic matrix [11, 21, 37, 40], which is the convex hull

of permutation matrices. Though the constraint can be re-

laxed to be convex, we still need to tackle a hard non-convex

quadratic programming since K is not necessarily negative

definite.
To be able to derive a better optimization scheme for

addressing the non-convex issue, this section exploits the
underlying structure of K. In particular, K can be factor-
ized into smaller matrices. With this new factorization of
K, many graph matching methods can be re-interpreted in
a coherent manner. Consider the synthetic graph shown in
Fig. 2. Our main intuition relies on two observations. First,
the large affinity matrix, K ∈ R

n1n2×n1n2 is divided into
n2-by-n2 smaller blocks Kij ∈ R

n1×n1 . Some of Kijs
contain only zero-value elements and their positions are in-
dexed by G2G

T
2 , i.e., Kij = 0n1×n1

if [G2G
T
2 ]ij = 0.

Second, all the non-diagonal elements of Kij can be com-

puted as G1 diag(k
q
c)G

T
1 , where c ∈ {1 : m2} is the index

of the edge connecting the ith and jth nodes of G2 (i.e.,
g2ic = g2jc = 1). Based on these two observations, and after
some linear algebra, it can be shown that K can be factor-
ized as:

K = (H2 ⊗H1) diag(vec(L))(H2 ⊗H1)
T
, (2)

where H1 = [G1, In1
] ∈ {0, 1}n1×(m1+n1),

H2 = [G2, In2
] ∈ {0, 1}n2×(m2+n2),

L =

[

Kq −KqG
T
2

−G1Kq G1KqG
T
2 +Kp

]

∈ R
(m1+n1)×(m2+n2).

Observe that this factorization decouples the graph struc-

ture (H2 ⊗H1) from the pairwise feature (L). To the best
of our knowledge, Eq. 2 is the first time that K is factorized
as products of G1, G2, Kp and Kq . As we will see in the
rest of the paper, this will have important implications for
our graph matching algorithm. This closed-form paves the
way to approaching the graph matching problem by manip-
ulating the smaller and denser L instead of the very large
and sparse K. Plugging the factorization of K into Jgm(X)
leads to an equivalent trace-form objective function:

Jgm(X) = x
T (H2 ⊗H1) diag(vec(L))(H2 ⊗H1)

T
x

= vec(HT
1 XH2)

T diag(vec(L)) vec(HT
1 XH2)

= tr
(

L
T (HT

1 XH2 ◦H
T
1 XH2)

)

. (3)

Observe that L can always be factorized (e.g., SVD) as
L = UVT =

∑c

i=1 uiv
T
i , where U = [u1, · · · ,uc] ∈

R
(n1+m1)×c and V = [v1, · · · ,vc] ∈ R

(n2+m2)×c and c ≤
min(n1 +m1, n2 +m2). Substituting it into Eq. 3 yields3

an equivalent trace form of Jgm(X):

Jgm(X) =

c
∑

i=1

tr
(

diag(ui)H
T
1 XH2 diag(vi)H

T
2 X

T
H1

)

=
c

∑

i=1

tr(A1
iXA

2
iX

T ), (4)

where A1
i = H1 diag(ui)H

T
1 and A

2
i = H2 diag(vi)H

T
2 .

At this point, it is important to notice that Eq. 3 and Eq. 4

can represent many graph matching methods in a unified

manner.

Spectral relaxation: Suppose L has a rank-1 struc-

ture, i.e., c = 1 and L = uvT . Then the kernel ma-

trix K can be factorized as K = A2 ⊗ A1. There-

fore, the solution of spectral matching algorithm using

eigen-decomposition [24] can be efficiently computed as

eig(K) = eig(A2) ⊗ eig(A1). In addition, we can use

Umeyama’s spectral algorithm [36] to find the approxi-

mate solution by maximizing tr(A1XA2X
T ) subject to

XXT = I.

Edge matching: Observe that both HT
1 XH2 and L have

a 2-by-2 block structure and their top-left components are

GT
1 XG2 and Kq respectively. Recall that GT

1 XG2 ∈
{0, 1}m1×m2 encodes the correspondence between edges.

Intuitively, the goal of maximizing Eq. 3 is to seek for

the edge-edge correspondence matrix GT
1 XG2 such that

GT
1 XG2 ◦ GT

1 XG2 is as correlated as possible with

Kq . The idea of matching edges has also been used in

the probabilistic matching algorithm [40], where Zass and

Shashua proposed to maximize the correlation between X

and G1KqG
T
2 .

Unified view: Eq. 4 reveals the connection between

two types of graph matching problems, the less general

3The formula tr
(

(uvT )T (A◦B)
)

= tr
(

diag(u)A diag(v)BT
)

always holds for arbitrary u ∈ R
m, v ∈ R

n and A,B ∈ R
m×n.
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one [3, 36, 39] that maximizes tr(A1XA2X
T ), versus the

more general one [11, 13, 21, 24, 25, 37, 40] that maxi-

mizes xTKx. In particular, maximization of xTKx can be

equivalently cast as the maximization of the sum of c traces

tr(A1
iXA2

iX
T ), where A1

i and A2
i can be interpreted as

adjacency matrices. In the special case when c = 1, the two

types of problems are equivalent.

4. Optimization for factorized graph matching
Due to its combinatorial nature, Eq. 1 is usually ap-

proached by a two-step scheme: (1) solving a contiguously

relaxed problem and (2) rounding the approximate solution

to a binary one. Conventional methods perform these two

steps independently. As mentioned in [25, 39], however,

this kind of separate treatment will inevitably cause accu-

racy loss, especially in the rounding step which is indepen-

dent of the cost function (Eq. 1). Inspired by [29, 39], we

address these two issues in a coherent manner by iteratively

optimizing an interpolation of two relaxations. This new

scheme has three theoretical advantages: (1) The optimiza-

tion performance is initialization-free; (2) The final solution

is guaranteed to converge at an integer one and therefore no

rounding step is needed; (3) The iteratively updating pro-

cedure resembles the idea of numerical continuation meth-

ods [2], which have been successfully used for solving non-

linear systems of equations in decades.

4.1. A convex relaxation
In this section, we introduce a convex relaxation for Eq. 1

assuming X is orthogonal and using the properties of the

new factorization.

Strictly speaking, the X satisfying the constraint in Eq. 1
is not a permutation matrix when n1 6= n2. However, we
can always slightly change the problem setting by intro-
ducing n2 − n1 dummy nodes in4 G1. As a strict permu-
tation matrix, X must also be an orthogonal matrix, i.e.,
XTX = XXT = In2

. This fact motivates the following
relaxation:

Jvex(X) = Jgm(X)−
1

2
C(X) = −

1

2

∑

i

‖A1
iX−XA

2
i ‖

2
F ,

where C(X) =
∑

i

tr(A1
iA

1
iXX

T ) + tr(A2
iA

2
iX

T
X).

Observe that due to the orthogonal constraints, C(X) can be

considered constant. In addition, maximizing Jvex(X) is a

convex problem because its Hessian with respect to vec(X),
−
∑

i(I ⊗ Ai
1 − Ai

2 ⊗ I)T (I ⊗ Ai
1 − Ai

2 ⊗ I), is always

negative semi-definite.

4.2. A concave relaxation
In this section, we introduce a concave relaxation for

Eq. 1 assuming X satisfies the integer constraint.

From Eq. 2, we know that L is composed by four parts

4Without loss of generality, let’s assume n1 ≤ n2.

L = L1 − L2 + L3 + L4, where

L1 =

[

Kq 0

0 0

]

, L2 =

[

0 KqG
T
2

G1Kq 0

]

,

L3 =

[

0 0

0 G1KqG
T
2

]

, L4 =

[

0 0

0 Kp

]

.

Therefore, Jgm(X) can be expanded in the following way:

Jgm(X) = tr
(

K
T
q (G

T
1 XG2 ◦G

T
1 XG2)

)

− tr
(

(KqG
T
2 )

T (GT
1 X ◦GT

1 X)
)

− tr
(

(G1Kq)
T (XG2 ◦XG2)

)

+ tr
(

(G1KqG
T
2 )

T (X ◦X)
)

+ tr
(

K
T
p (X ◦X)

)

.

The integer constraint in Eq. 1 implies X, GT
1 X and XG2

are all binary matrices, from which we know that it is
equivalent [28, 39] to replace the quadratic terms X ◦ X,
GT

1 X◦G
T
1 X and XG2 ◦XG2 by the linear ones X, GT

1 X
and XG2 respectively. This fact leads to the following re-
laxation:

Jcav(X) = tr
(

K
T
q (G

T
1 XG2 ◦G

T
1 XG2)

)

− tr
(

(G1KqG
T
2 )

T
X

)

+ tr
(

K
T
p X

)

.

Maximizing Jcav(X) is a concave problem because its Hes-

sian, (G2 ⊗ G1) diag(vec(Kq))(G2 ⊗ G1)
T , is positive

semi-definite if the edge affinity is positive (i.e., Kq ≥ 0).

4.3. A pathfollowing strategy
In this section, we describe a path-following strategy for

optimizing Eq. 1. Inspired by [39], we approach the non-
convex QP by iteratively optimizing a series of the follow-
ing sub-problems:

max
X

Jα(X) = (1− α)Jvex(X) + αJcav(X), (5)

s. t. X1n2
≤ 1n1

,X
T
1n1

≤ 1n2
,X ≥ 0n1×n2

,

where α ∈ [0, 1] is a tradeoff between the convex relax-

ation Jvex(X) and the concave one Jcav(X). When α = 0,

the problem is a convex optimization problem which has a

global optimal solution no matter the choice of the initial-

ization. When α = 1, the problem is a concave optimization

problem which always leads to an integer solution [5, 28].

The process starts with α = 0 and successively increasing

α until 1. Fig. 3 illustrates the procedure of optimizing a

graph matching problem using this strategy. In Fig. 3a, we

demonstrate the objective functions Jα and Jgm with re-

spect to the change of α. Note that there is a turning point

around α = 0.12 in the curve of Jα. This is because at

this point the two relaxations achieve the same value, i.e.,

Jvex = Jcav . As α → 1, the values of Jgm, Jα and Jcav
are getting closer to each other, and meanwhile, X is turn-

ing into a binary matrix (Fig. 3c).
For a specific α, we optimize Jα(X) taking the Frank-

Wolfe’s algorithm (FW) [17, 25, 39], a simple yet powerful
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method for nonlinear programming. FW successively up-
date the solution as X∗ = X0 + λY given an initial X0.
At each step, it needs to compute two components: (1) the
optimal direction Y ∈ R

n1×n2 and (2) the optimal step size
λ ∈ [0, 1]. To compute Y, we solve the following linear
programming using the Hungarian algorithm:

max
Y

tr
(

∇Jα(X0)
T (Y −X0)

)

,

s. t. Y1n2
≤ 1n1

,Y
T
1n1

≤ 1n2
,Y ≥ 0n1×n2

,

where the gradients can be efficiently computed using ma-
trix operation:

∇Jα(X) = (1− α)∇Jvex(X) + α∇Jcav(X),

∇Jvex(X) = 2H1(H
T
1 XH2 ◦ L)H

T
2 −H1(H

T
1 H1 ◦UU

T )HT
1 X

−XH2(H
T
2 H2 ◦VV

T )HT
2 ,

∇Jcav(X) = 2G1(G
T
1 XG2 ◦Kq)G

T
2 −G1KqG

T
2 +Kp.

And the line search for the optimal λ can be found in
closed form by solving:

max
λ

Jα(X0 + λY), s. t. λ ∈ [0, 1].

4.4. Other implementation details
A similar path-following strategy was proposed in [39]

and its performance over the state-of-the-art methods has

been therein demonstrated for solving a less general graph

matching problem (i.e., tr(A1XA2X
T )). We performed an

extensive study of using this strategy for solving the most

general graph matching problem (i.e., xTKx) and we em-

pirically found that it can be improved with the following

steps:

Convergence: Although the FW algorithm is easy to

implement, it converges sub-linearly. To get faster con-

vergence speed while keeping its advantages in efficiency

and low memory cost, we adopt a modified Frank-Wolfe

(MFW) [18] to find a better searching direction Y by a con-

vex combination of previously obtained solutions. As it is

shown in Fig. 3b, MFW converges much faster than FW.

The concave-convex structure: Jα(X) is naturally di-

vided into a concave part and a convex one. To take the

advantage of this structure, we adopt the concave-convex

procedure (CCCP) [38] that approximates a non-convex ob-

jective function by a series of linearizations of the concave

part given the current solution. In practice, we found that

CCCP outperformed an individual FW in the case when

Jα(X) is close to a convex one, i.e., α is small. How-

ever, the performance of CCCP would downgrade as α gets

larger due to the increasing loss in the approximation of the

concave part. For instance, Fig. 3b compares CCCP with

FW and MFW for optimizing Jα(X). CCCP outperforms

MFW when α = 0.08. However, MFW converges fastest

for α = 0.30. Therefore, we adopt CCCP only in the be-

ginning steps when α is smaller than a manually defined

threshold η.

Local vs global: Although the path-following strategy

returns an integer solution by smoothly tracking the local

optima in a convex space, it does not guarantee to obtain the

global optimal of the non-convex objective function. An im-

portant reason is that at each step, it locally optimizes over

Jα(X) instead of the global one Jgm(X). And it is possi-

ble that Jα(X) gets improved while Jgm(X) gets worse. In

order to escape from this phenomenon, we keep increasing

the global score of Jgm(X) during the optimization by dis-

carding the bad temporary solution that worsens the score of

Jgm(X) and computing an alternative one by applying one

step of FW for optimizing Jgm(X). This refinement is anal-

ogous to the usage of FW in [25]. As shown in Fig. 3a, the

performance of the path-following algorithm can be greatly

improved by only optimizing over Jgm three times.

Algorithm 1: Factorized graph matching

input : Kp, Kq , G1, G2, δ, η

output: X

1 Initialize X to be a doubly stochastic matrix;

2 Factorize L = UVT with SVD;

3 for α = 0 : δ : 1 do Path-following

4 if α ≤ η then

5 Optimize Eq. 5 via CCCP to obtain X∗;

6 else

7 Optimize Eq. 5 via MFW to obtain X∗;

8 if Jgm(X∗) < Jgm(X) then

9 Optimize Eq. 1 via one step of FW to

obtain X∗;

10 Update X← X∗;

Algorithm 1 summarizes the workflow of our algorithm.

The initial X can be an arbitrary doubly stochastic matrix.

The complexity of our algorithm can be roughly calculated

as O
(

T (τhun + τ∇ + τλ) + τL
)

, where T is the number of

iterations for the FW and MFW, and τL = (n1 +m1)(n2 +
m2)

2 is the cost of computing the SVD of L. The Hungar-

ian algorithm can be finished in τhun = max(n3
1, n

3
2). The

gradient of ∇Jα and the line search of λ incur the same

computational cost, τ∇ = τλ = (n1 +m1)(n2 +m2).

5. Experiments
This section reports experimental results on three

datasets (one synthetic and two real) and compares our

method against seven state-of-the-art algorithms:

Graduated assignment (GA): GA [21] performs gradi-

ent ascent on a relaxed Eq. 1 driven by an annealing sched-

ule. At each step, it maximizes a Taylor expansion of the

non-convex QP around the previous approximate solution.

The accuracy of the approximation is controlled by a contin-

uation parameter, βt+1 ← αβt ≤ βmax. In all experiments,

we set α = 1.075, β0 = .5 and βmax = 200.
Spectral matching (SM): SM [24] optimizes a relaxed
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Figure 3. The path-following optimization of the example in

Fig. 6b. (a) The comparison of the objectives optimized by our

algorithm and other state-of-the-art graph matching methods (See

the experiment section for the details of these methods). (b) The

comparison of optimizing Jα(X) for different α’s. (c) The updat-

ing of X, where each curve corresponds a xij .

problem of Eq. 1 that drops the affine constraints and intro-
duces a unit-length constraint on x, that is:

max
X

Jgm(X), s. t. xT
x = 1.

The globally optimal solution of the relaxed problem is the

leading eigenvector of K.
Spectral matching with affine constraints (SMAC):

SMAC [13] adds affine constraints to the SM problem max-
imizing:

max
X

Jgm(X), s. t. Ax = b and x
T
x = 1.

The solution is also an eigenvalue problem.

Integer projected fixed point method (IPFP): IPFP

[25] is based on FW. It can take any continuous or discrete

solution as inputs and iteratively improve the solution. In

our experiments, we implemented two versions: (1) IPFP-

U, that starts from the same initial X as our method; (2)

IPFP-S, that is initialized by SM.
Probabilistic graph matching (PM): Pm [40] designs

the following convex objective function that can be globally
optimized by applying the Sinkhorn’s algorithm [32]:

min
X

D(Y‖X), s. t. X1n2
≤ 1n1

,X
T
1n1

≤ 1n2
,X ≥ 0n1×n2

,

where D(Y‖X) denotes the relative entropy error and Y ∈
R

n1×n2 is calculated by marginalizing K. It is worthwhile

pointing out that with our notation, Y can be computed in a

matrix form as Y = G1KqG
T
2 .

Re-weighted random walk matching (RRWM):

RRWM [11] introduces a random walk view on the problem

and obtains the solution by simulating random walks with

re-weighting jumps enforcing the matching constraints on

the association graph. We fixed its parameters α = 0.2 and

β = 30 in all experiments.

We used existing code from the author’s websites for all

methods. Notice that all methods need a post-processing

step to discretize X. To make a fair comparison, we ap-

plied the Hungarian algorithm to make this discretization in

all methods. The parameters for our method were fixed to

δ = 0.01 and η = 0.1 in all experiments. The code was im-

plemented in Matlab on a laptop platform with 2.4G Intel

Core 2 Duo and 4G memory. FGM was able to obtain the

solution within a minute for graphs with 50 nodes.

We evaluated both the matching accuracy and the objec-

tive score for the comparison of performance. The match-

ing accuracy,
tr(XT

algXtru)

tr(1n2×n1
Xtru)

, is calculated by computing

the consistent matches between the correspondence matrix

Xalg given by algorithm and ground-truth Xtru. The ob-

jective score,
Jgm(Xalg)
Jgm(Xours)

, is computed as the ratio between

the objective values of our method and other algorithms.

5.1. Synthetic dataset
This experiment performed a comparative evaluation of

seven algorithms on randomly synthesized graphs follow-

ing the experimental protocol of [11, 13, 21]. For each

trial, we constructed two identical graphs, G1 and G2, each

of which consists of 20 inlier nodes and later we added

nout outlier nodes (in both graphs). For each pair of nodes,

the edge is randomly generated according to the edge den-

sity parameter ρ ∈ [0, 1]. Each edge in the first graph

was assigned a random edge score distributed uniformly as

q1c ∼ U(0, 1) and the corresponding edge q2c = q1c + ǫ in

the second graph is perturbed by adding a random Gaussian

noise ǫ ∼ N (0, σ2). The edge-affinity matrix Kq was com-

puted as kqc1c2 = exp(−
(q1c1

−q2c2
)2

0.15 ) and the node-affinity

Kp was set to zero.

The experiment tested the performance of GM methods

under three parameter settings. For each setting, we gener-

ated 100 different pairs of graphs and evaluated the average

accuracy and objective score. In the first setting (Fig. 4a),

we increased the number of outliers from 0 to 20 while fix-

ing the noise σ = 0 and considering only fully connected

graphs (i.e., ρ = 1). In the second case (Fig. 4b), we

perturbed the edge weights by changing the noise param-

eter σ from 0 to 0.2, while fixing the other two parameter

nout = 0 and ρ = 1. In the last case (Fig. 4c), we verified

the performance of matching sparse graphs by varying ρ

from 1 to 0.3. Under varying parameters, it can be observed

that in most of cases, our method achieves the best perfor-

mance over all other algorithms in terms of both accuracy

and objective ratio. RRWM is comparable to our method.

In particular, it slightly outperforms ours in the case when

the graph edges contain large deformation (Fig. 4b). This

is because the stochastic scheme adopted by RRWM can

update the correspondence matrix more robustly than other

optimization-based methods.

5.2. CMU house dataset
The CMU house image sequence [1] is commonly used

to test the performance of graph matching algorithms [8,

11, 14, 35]. This dataset consists of 111 frames of a house,

each of which has been manually labeled with 30 land-
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Figure 4. Comparison of graph matching for synthetic datasets. (a) Performance as a function of the outlier number (nout). (b) Performance

as a function of the edge noise (σ). (c) Performance as a function of the density of edges (ρ).

marks. We used Delaunay triangulation to connect the

landmarks. The edge weight qc is computed as the pair-

wise distance between the connected nodes. Given an im-

age pair, the edge-affinity matrix Kq was computed by

kqc1c2 = exp(−
(q1c1

−q2c2
)2

2500 ) and the node-affinity Kp was

set to zero. We tested the performance of all methods as a

function of the separation between frames. We matched all

possible image pairs, spaced exactly by 0 : 10 : 90 frames

and computed the average matching accuracy and objective

ratio per sequence gap. Fig. 5a demonstrates an example

pair of two frames.

We tested the performance of graph matching methods

under two scenarios. In the first case (Fig. 5b) we used all

30 nodes (i.e. landmarks) and in the second one (Fig. 5c)

we matched sub-graphs by randomly picking 25 landmarks.

It can be observed that in the first case (Fig. 5b), RRWM,

IPFP-S and our method almost obtained perfect matching

of the original graphs. As some nodes became invisible and

the graph got corrupted (Fig. 5c), the performance of all

the methods degrades. However, our method consistently

achieved the best performance.

5.3. Pascal image dataset
The third experiment used the dataset from [26]. This

dataset consists of 30 pairs of car images and 20 pairs of

motorbike images selected from Pascal 2007 [16]. Each

pair contains 30 ∼ 60 ground-truth correspondences. We

computed for each node the feature, pi, as its orientation

of the normal vector at that point to the contour where the

point was sampled. We adopted the Delaunay triangula-

tion to build graphs and each edge was represented by a

couple of values, qc = [dc, θc]
T , where dc is the pair-

wise distance between the connected nodes and θc is the

absolute angle between the edge and the horizontal line.

Thus, for each pair of images, we computed the node affin-

ity as k
p
ij = exp(−|pi − pj |) and the edge affinity as

kqc1c2 = exp(− 1
2 |dc1 − dc2 | −

1
2 |θc1 − θc2 |). Fig. 6a and

Fig. 6b demonstrate example pairs of car and motorbike im-

ages respectively.

To test the performance against noise, we randomly se-

lected 0 ∼ 20 outlier nodes from the background. In the

case when no outliers exist, our method achieves above 80%
matching rate in both datasets (Fig. 6bc), which is higher

than 75% presented in [26]. From Fig. 6c, it is interesting

to see that RRWM performs better in terms of accuracy for

particular level of outliers, whereas our method obtains a

higher objectives. This is because the ground-truth corre-

spondence may not be always the optimal solution to the

problem.

6. Conclusions
This paper presents FGM, a new graph matching algo-

rithm that exploits the properties of the factorized affinity

or graph matrix. Three main benefits follow from factor-

izing the affinity matrix. First, there is no need to explic-

itly compute the affinity matrix. Second, it provides a uni-

fied approach to frame several graph matching algorithms.

Third, using the factorization, a new optimization based on

FW and CCCP is proposed. Experimental results on syn-

thetic and real datasets illustrate the performance of the new

method.

In the paper we have illustrated the advantages of factor-

izing the pair-wise affinity matrix of typical graph matching

problems. The most computationally consuming part of the

algorithm is the large number of iterations needed for FW

method to converge when Jα is close to a convex function.

Therefore, more advanced techniques (e.g., conjugate gra-

dient) can be used to speedup FW. In addition, we are cur-

rently exploring the extension of this factorization methods

to other higher-order graph matching problems [9, 14, 40]

as well as learning parameters for graph matching [8, 26].
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techniques for the weighted graph-matching problem in computer vision. In

DAGM-Symposium, 2001.
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