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Abstract

Multi-modal data collections, such as corpora
of paired images and text snippets, require
analysis methods beyond single-view compo-
nent and topic models. For continuous ob-
servations the current dominant approach is
based on extensions of canonical correlation
analysis, factorizing the variation into com-
ponents shared by the different modalities
and those private to each of them. For count
data, multiple variants of topic models at-
tempting to tie the modalities together have
been presented. All of these, however, lack
the ability to learn components private to
one modality, and consequently will try to
force dependencies even between minimally
correlating modalities. In this work we com-
bine the two approaches by presenting a novel
HDP-based topic model that automatically
learns both shared and private topics. The
model is shown to be especially useful for
querying the contents of one domain given
samples of the other.

1 INTRODUCTION

Analysis of objects represented by multiple modalities
has been an active research direction over the past few
years. If the analysis of a single modality is character-
ized as learning some sort of components that describe
the data, the task in analysis of multiple modalities
can be summarized as learning components that de-
scribe both the variation within each modality but also
the variation shared between them (Klami and Kaski,
2008; Jia et al., 2010). The fundamental problem is in
learning how to correctly factorize the variation into
the shared and private components, so that the com-
ponents can be intuitively interpreted. For continuous
vector-valued samples the problem can be solved effi-

ciently by a structural sparsity assumption (Jia et al.,
2010; Virtanen et al., 2011), resulting in an extension
of canonical correlation analysis (CCA) that models
not only the correlations but also components private
to each modality.

One prototypical example of multi-modal analysis is
that of modeling collections of images and associated
text snippets, such as captions or contents of a web
page. When both text and image content can natu-
rally be represented with bag of words -type vectors,
the assumptions made by the above methods fail. In-
stead, such count data calls for topic models such as
latent Dirichlet allocation (LDA): several extensions
of LDA have been presented for multi-modal setups,
including Blei and Jordan (2003); Mimno and McCal-
lum (2008); Salomatin et al. (2009); Yakhnenko and
Hovavar (2009); Rasiwasia et al. (2010) and Puttivid-
hya et al. (2011). However, none of these extensions
are able to find shared and private topics in the same
sense as the CCA-based models do for continuous data.
Instead, the models attempt to enforce strong corre-
lation between the modalities, which is a reasonable
assumption when analyzing e.g. multi-lingual textual
corpora with similar languages but that does not hold
for analysis of images associated with free-flowing text.
In most cases, the images will contain a considerable
amount of information not related to the text snippet,
and it is not even guaranteed that the text is related
at all to the visual content of the image.

In this work, we introduce a novel topic model that
combines the two above lines of work. It builds on the
correlated topic models (CTM) by Blei and Lafferty
(2007) and Paisley et al. (2011), by modeling correla-
tions between topic allocations and by using a hierar-
chical Dirichlet process (HDP) formulation for auto-
matically learning the number of the topics. The pro-
posed factorized multi-modal topic model integrates
the technical improvements of these single-modality
topic models to the multi-modal application, and in
particular automatically learns to make some topics



specific to each of the modalities, implementing the
factorization idea of Klami and Kaski (2008) and Jia
et al. (2010) used for continuous data. The compo-
nent selection plays a crucial role in implementing this
property, implying that the HDP-based technique for
automatically selecting the complexity is even more
important for factorized multi-modal models than it
would be a for a regular topic model.

The primary advantage of the new model is that is
does not enforce correlations between the modalities,
like the earlier multi-modal topic models do, but in-
stead factorizes the variation into interpretable topics
describing shared and private structure. The model
is very flexible and does not enforce any particular
factorization structure, but instead learns it from the
data. For example, the model can completely ignore
the shared topics in case the modalities are indepen-
dent or find almost solely shared topics when they are
strongly correlated. In this work we demonstrate the
model in analyzing modalities that have only weak re-
lationships, a scenario for which the previous models
would not work. In particular, we analyze a collec-
tion of Wikipedia pages that consist of images and the
whole text on the page. Such a collection has rela-
tively low between-modality correlation and in partic-
ular includes considerable amount of text that is not
related to the image at all, necessitating topics private
to the text modality. The proposed model is shown to
clearly outperform alternative HDP-based topic mod-
els as well as correspondence LDA (Blei and Jordan,
2003) in the task of inferring the contents of a missing
modality.

2 BACKGROUND: TOPIC MODELS

To briefly summarize the topic models and to intro-
duce the notation used in the paper, we describe the
standard topic model of Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) through its generative pro-
cess. We assume that words occurring in a document
are drawn from K topics. Each topic specifies a multi-
nomial probability distribution over the vocabulary,
parameterized through 7, drawn from the Dirichlet
distribution Dir(v1), and the topic proportions are
multinomial with parameters 8 ~ Dir(r1). The doc-
uments are generated by repeatedly sampling a topic
indicator z ~ Multi(@) and then drawing a word from
the corresponding topic as x ~ Multi(n,).

We will also heavily depend on the concept of corre-
lated topic models (CTM) (Blei and Lafferty, 2007). In
the standard LDA the topic proportions 8 drawn from
the Dirichlet distribution become independent except
for weak negative correlation stemming from the nor-
malization constraint. CTM replaces this choice by

logistic normal distribution, first drawing an auxiliary
variable from a Gaussian distribution & ~ N(u, 3) and
specifying the topic distribution as 8 o exp(€). The
topics become correlated when 3 is not diagonal, and
empirical experiments show increased predictive accu-
racy.

Finally, our model will be formulated through a hi-
erarchical Dirichlet process (HDP) formulation (Teh
et al., 2006), to enable automatic choice of the num-
ber of topics. As mentioned in the introduction, the
choice is even more critical for multi-modal models,
since we will have several sets of topics instead of
just a single one; specifying the complexity for all of
those in advance would not be feasible. Our model
will use elements from the recently introduced Dis-
crete Infinite Logistic Normal (DILN) model by Pais-
ley et al. (2011), which incorporates HDP into CTM.
The key idea of DILN is that the topic distribu-
tions @ are made sparse by multiplying the exp(€)
by sparse topic-selection terms. The topic distribu-
tion is given by 8 o Gamma(Spg, exp(—&;)), where
both 8 and pi come from a stick-breaking process:
[ is the second level consentration parameter, and
pr = Vi Hi:ll(l — Vi), where Vi, ~ Beta(l,a) with
« as the first level concentration parameter. The ex-
pected value of 6y, is proportional to Spy exp(&;), illus-
trating the way the different parameters influence the
topic weights. For any finite data collection, px > 0
only for a finite subset of topics and hence the model
automatically selects the number of topics.

3 FACTORIZED MULTI-MODAL
TOPIC MODEL

Consider a collection of documents each containing M
weakly correlated modalities, where each modality has
its own vocabulary. In the application of this paper
the two vocabularies are textual and visual words col-
lected from Wikipedia pages with text and a single
image (though the model would directly generalize to
multiple images). We introduce a novel multi-modal
topic model that can be used to learn dependencies
between these modalities, enabling e.g. predicting the
textual content associated with a novel image. The
problem is made particularly challenging by the weak
relationship between the modalities; several of the doc-
uments will contain large amounts of text not related
to the image content.

For modeling the data, we will use M separate vo-
cabularies, so that words (or visual words) for each
modality are drawn from separate dictionaries 1™
specific to each view m. The topic proportions o™
will also be specific to each modality, whereas the ac-
tual words are sampled independently for each modal-



ity given the topic proportions. The essential model-
ing question is then how the topic proportions are tied
with each other, in order to achieve the factorization
into shared and private topics. In brief, we will do
this by (i) modeling dependencies between topics both
within and across modalities and (ii) automatically se-
lecting the number of topics for each type (shared or
private to any of the modalities).

The topic proportions 0™ are made dependent by
introducing auxiliary variables é(m), denoting by & =
(5(1), ...,f(M)) the concatenation of them, and using
the CTM prior £ ~ N(u,X). This part of the model
corresponds to the 'multi-field CTM with different
topic sets’ by Salomatin et al. (2009), and the differ-
ent blocks in 3 describe different types of dependen-
cies between the topic proportions. In particular, the
blocks around the diagonal describe dependencies be-
tween the topic proportions of each modality, whereas
the off-diagonal blocks describe dependencies in topic
proportions between the modalities.

Having a CTM for the joint topic distribution is not
yet sufficient for separating the shared topics from pri-
vate ones, since we can only control the correlation
between the topic proportions. A large correlation
between two topics for different modalities would im-
ply that it is shared, but lack of correlation (that is,
3 = 0) would not make either component private.
Instead, the weights would simply be determined in-
dependently. To create separate sets of shared and pri-
vate topics we need to be able to switch some of the
topics off in one or more of the modalities, similarly to
how Jia et al. (2010) and Virtanen et al. (2011) switch
off components to make the same distinction in con-
tinuous data models. In the case of multi-field CTM
this could only be done by driving g, (the mean of the
Gaussian prior for ;) towards minus infinity, which is
not encouraged by the model and is difficult to achieve
with mean-field updates.

We implement the shared/private choice by separate
HDPs, one for each modality, switching a subset of
topics off for each modality separately by a mech-
anism similar to how the single-view DILN model
(Paisley et al., 2011) selects the topics. We intro-
duce ™ and p(™ for each modality m = 1,..., M,
and draw them from separate HDPs, resulting in
0™ o Gamma(B™p(™ exp(—£™)) as the final
topic proportions. The topic distributions are still
shared through §(m) that were drawn from a single
high-dimensional Gaussian, but for each modality the
stick weights p(™ select different subsets of topics to
be switched off. In the end, a finite number of topics
remain for each modality, and the private topics can
be identified as ones that have non-zero weight for one
modality and are not correlated with topics active in
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Figure 1: A graphical representation of the factorized
multi-modal topic model. The data has D documents
described by M modalities. For each modality, the
words x("™) are drawn from dictionary specific to that
modality, according to topic proportions 0™ also spe-
cific to the modality. The topic proportions are gener-
ated by logistic transformation of latent variables &™)
that model the correlations between the topics both
within and across modalities, followed by topic selec-
tion with a HDP (denoted by V and £ in the plate;
see text for details) for each modality. As a result,
the model learns both topics modeling correlations be-
tween the modalities as well as topics private to each
modality.

M

other modalities.

The final generative model motivated by the above
discussion results in a collection of M correlated BOW
data sets X("™) generated as follows (see Figure 1 for
graphical representation). For the whole collection we:

e create a dictionary of T("™) topics for each modal-
ity by drawing n,(cm) ~ Dir(y™1) for k =
1,.., 7™

e draw the parameters o™ A" V() of the
DILN distribution for each modality from the
stick-breaking formulation and construct p(™.

For each document d we then draw & ~ N(u,X)
and partition it into the different modalities as & =
(E(l), ...,£(M)). For each modality, we then generate
the words independently as follows:

e form the topic proportion by drawing Yk(m) ~
Gamma(ﬂ(m)pgﬂ%exp(—.ﬁ,(cm))) and set Hl(cm) =
v,
ST v

e draw N(™ words by choosing a topic z ~
Multi(6™) and drawing a word z ~ Multi(nim))



3.1 INFERENCE

For learning the model parameters we use a truncated
variational approximation following closely the algo-
rithm given by Paisley et al. (2011), the main differ-
ence being that we have M separate sets of n, 8 and p,
one for each modality. The above generative process
is truncated by setting V:ﬁ(,% = 1, forcing the stick
lengths beyond the truncation level 70" to be zero,
and the resulting factorized approximation is given by

M D Ny

o=111I II qudn D Da(eam™)

m=1d=1n,=1k=1
gV g(m)a(Bm)a(p)a (),

where to simplify notation we assume T,, = T V m.
The algorithm proceeds by updating each factor in
turn while keeping the others fixed, using either gra-
dient ascent or analytic solution for maximizing the
lower bound of the approximation for each of the terms
(see Paisley et al. (2011) for details).

The main difference in the algorithms comes from up-
dating &, since in our case it goes over M sets of top-
ics instead of just one, yet the activities within each
set are governed by separate HDPs. We use a diag-
onal Gaussian factor ¢(¢) = N(&,diag(v)), where v
denotes the variances of the dimensions, and use gra-
dient ascent for jointly updating the parameters. To
simplify notation we use £ and v to denote the expec-
tation and variance of the factorial distribution. The
relevant part of the lower bound is

M
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— diag(2"HTv /2 + log(v)T1/2.
Here X! couples the separate E(m) terms in the par-
tial derivatives as
OLe¢ v
£ = —5p™ + B0 [Blexp(—¢")]
o€
_ (2—1)m m(E(m) _ (m))
_ Z 5(]) (j)),
Jj#mM
with (37!);; denoting a block of X! correspond-

ing to modalities ¢ and j. The inverse of ¥ remains
constant during the gradient descent, and hence only
needs to be evaluated once for every time the factor
q(&) is updated.

We use maximum marginal likelihood to update p and
3 resulting in closed form updates
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3.2 PREDICTION

The model structure is well suited for prediction tasks,
where the task is to infer missing modalities for a new
document given that one of them is observed (e.g. infer
the caption given the image content). This is because
the correlations between the topic proportions provide
a direct link between the modalities, and the private
topics explain away all the variation that is not useful
for predictions.

Here we present the details of the prediction for the
special case with just one observed modality (j) and
one missing modality (). Given the observed data we

first infer the topic proportions ém and then auxiliary

variable é(]) by maximizing a cost similar to (1), but
only using the newly inferred topic proportions of the
observed modality and the corresponding part of X.

As é comes from a Gaussian distribution we can infer
2 . 5 (9)
& " given &

tion as

with the standard conditional expecta-

2@ i —1,20) -
€ =pl+ 335 (E - p) 2)

=@ + WEY — ).

Here W involves the corresponding part of the
between-topic covariance matrix 3 as indicated above,
and can be seen as a projection matrix transforming
the components of one modality to another. Finally,

the newly estimated é’(z) for the missing views is con-
verted back to the expecteed topic proportion 0 by
exponentiation and multiplying with the correspond-
ing stick lengths p(®.

3.3 SHARED AND PRIVATE TOPICS

The key novelty of the model is its capability to learn
both topics that are shared and that are private to each
modality, without needing to specify them in advance.
Since the way these topics appear is by no means trans-
parent in the above formulation, we will here discuss
the property in more detail. In brief, the distinct na-
ture for the topics comes from an interplay of the cor-
relations between the topics of different modalities and
the HDP procedure that turns some of the topics off



for each modality. In particular, neither of these prop-
erties alone would be sufficient.

As mentioned already in Section 3, merely having sep-
arate €™ drawn from a single Gaussian is not suffi-
cient for finding private topics. At best, the correlation
structure can specify that the weights will be indepen-
dent for the modalities. Next we explain how the other
key element of the model, separate selection of active
topics for each modality, is not sufficient alone either.
We do that by considering a special case of the model
that assumes equal & = £ (™) for all views but has sep-
arate stick-breaking processes switching some of the
topics off for each of the views. We call this alterna-
tive model mmDILN, due to the fact how it imple-
mentes multi-modal LDA of Blei and Jordan (2003)
with DILN-style component selection.

Intuitively, mmDILN model could find private topics
simply by setting p;m) to small value for topics that are
not needed in that modality. However, it cannot make
correct predictions from one modality to another, and
hence fails in achieving one of the primary goals for
shared-private factorizations. If pém) is small then the
model has no information for inferring &, from that
view, and hence also all other elements §; that cor-
relate with &, will be incorrect. If £, was an impor-
tant topic for the other view, the predictions will be
severely biased. Our model avoids this issue by hav-
ing the separate £(m) parameters, leading to correct
across-modality predictions as described in the previ-
ous section. In the experimental section we will em-
pirically compare the proposed model with mmDILN,
demonstrating how mmDILN indeed has very poor
predictive accuracy despite modeling the training data
almost as well. Hence, even though the structure is
in principle sufficient for learning private topics, the
model has no practical value as a shared-private fac-
torization.

In order to recognize the nature of each of the topics,
we need to look at both the covariance 3 between the
topic weights and the modality-specific stick weights
p,(cm). Since the topics can be (potentially strongly)
correlated both within and across modalities, we can
identify private topics only by searching for topics that
do not correlate with any topic that would be active
in any other modality. In the experiments we demon-
strate how the topics can be ranked according to how
strongly they are shared with another modality, by in-
specting the elements of 2.

4 RELATED WORK

In this section we relate the model to other approaches
for modeling multi-modal count data.

4.1 MULTI-MODAL TOPIC MODELS

The multi-modal extension of LDA (mmLDA) by Blei
and Jordan (2003) and its non-parametric version
mmHDP by (Yakhnenko and Hovavar, 2009) assume
all modalities to share the same topic proportions, and
essentially extend LDA only by having separate dictio-
naries for each modality and generating the words for
the domains independently. For many real world data
sets the assumption of identical topic proportions is
too strong, and the model tries to enforce correlations
even when they do not exist. While the assumption
may help in picking up topics that would be weak in
either modality alone, it makes identifying the true
correlations almost impossible.

Such models fail especially when modeling data having
strong private topics in one modality. Since the topic
proportions are shared, the topic must be present in
other modalities as well and becomes associated with a
dictionary that merely replicates the overall distribu-
tion of the words. Such topics are particularly harmful
for prediction tasks. When the dictionary of a topic
matches that of the background word distribution, it
will be present in every document in that modality.
For example, when predicting text from images we
could learn to associate politics (a strong topic private
to the text modality) with the overall visual word dis-
tribution, resulting in all of the predictions including
terms from the politics topic.

Salomatin et al. (2009) took a step towards our model
with their multi-field CTM. It extends CTM by in-
troducing separate £(m) for each modality, similarly
to our model. However, as described in the previous
section the separate topic proportions are not yet suf-
ficient for separating the shared topics from private
ones.

4.2 CONDITIONAL TOPIC MODELS

Lots of recent work on multi-modal topic modeling
framework has focused on building conditional mod-
els, largely for image annotation task. Correspondence
LDA (corrLDA) proposed simultaneously to mmLDA
in (Blei and Jordan, 2003) is a prominent example, as-
suming that the image is generated first and the text
depends on the image content. Both modalities are
assumed to share the same topic weights. While such
models are very useful for modeling the conditional re-
lationship, they do not treat the modalities symmet-
rically as in our model. Recently Puttividhya et al.
(2011) proposed an extension of corrLDA, replacing
the identical topic distributions with a regression mod-
ule from image topics to the textual annotation topics.
The added flexibility results in better predictive per-
formance, but the model remains a directional one,



in contrast to our model that generates all modalities
with equal importance. For applications treating only
two modalities and having a specific task that makes
one of them more important (say, image annotation)
the conditional models often work well. However, they
do not easily generalize to multiple modalities and are
not flexible in terms of the eventual application.

Other conditional models focus on conditioning on
meta-data, such as author or link structure (Mimno
and McCallum, 2008; Hennig et al., 2012). Such mod-
els allow integrating data that are not necessarily in
count format, but the same distinction of directional
versus generative applies. However, this family of
models could be integrated with our solution, incorpo-
rating a meta-data link into our multi-modal model.
In essence, the choice of whether meta-data is modeled
or not is independent of the choice of how many count
data modalities the data has.

4.3 CANONICAL CORRELATIONS

As described earlier, the model bears close resemblance
to how CCA models correlations between continuous
data, the similarities being most apparent with the re-
cent re-interpretations of CCA as shared-private fac-
torization (Klami and Kaski, 2008; Jia et al., 2010).
The technical details of the solutions are, however,
very different as the normalization of topic propor-
tions makes the techniques used for continuous data
not feasible for topic models.

Despite the mismatch of data types, CCA can be used
for modeling count data as well. The most promising
direction would be to apply kernel-CCA, but there are
no obvious choices for the kernel function that would
directly match the analysis of image-text pairs. As one
practical remedy, (Rasiwasia et al., 2010) combined
CCA and LDA directly by first estimating a separate
LDA model for each modality and then combining the
resulting topic proportions with CCA. Our approach
does not rely on two separate analysis steps that do
not result in directly interpretable private topics.

5 EXPERIMENTS AND RESULTS

5.1 DATA AND MEASURES

We validate the model on real data collected from
Wikipedial. We constructed a data collection with
D = 20,000 documents, each consisting of a single im-
age represented with 5000 SIFT patches and text (the
contents of the whole Wikipedia page) represented
with a vocabulary of 7500 most frequent terms, after
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stopword removal. We make a random 50/50-split into
test and train data. To demonstrate the ability of the
proposed model to correctly model the relationships
between the two modalities, we evaluate the model
with conditional perplexity of a missing modality for
a new sample:

> X(m)
d€D¢train d

PO _ o ( _ YdeDieas 10gp(><§)|xg)))

test (4)
2 deDuen Xd

where xglm) denotes concatenation of Ném) words.

These quantities measure how well the model can re-
late the visual content to the textual content, corre-
sponding to the document completion task of Wallach
et al. (2009) but computed across modalities.

We compare our model to three alternatives repre-
senting various kinds of multi-modal topic models:
mmDILN (Section 3.3), mmHDP (Section 4.1) and
corrLDA (Section 4.2). Both mmDILN and mmHDP
are comparable to our model in making automatic
topic number selection and modeling both modalities
symmetrically. Consequently, the experiments will fo-
cus on demonstrating the importance of finding the
correct factorization into shared and private topics.
The corrLDA is included as an example of a con-
ditional model that gives an alternative approach to
solving a similar prediction task. Note that we need
to learn two separate corrLDA models, one for predict-
ing text from images and one for the other direction,
whereas the other models can do both types of predic-
tions. For corrLDA we use 100 topics (the threshold
we used for nonparametric models).

5.2 INFERENCE SPEED

First we show that the variational approximation used
for inference is efficient. Figure 2 shows how the al-
gorithm converges for both N = 400 and N = 10000
documents already after some tens of iterations. For
both experiments we used a maximum of T = 100
topics. The convergence of mmHDP and mmDILN is
similar (not shown).

5.3 PREDICTING TEXT FROM IMAGES
AND VISE VERSA

Figure 3 shows the evaluation for training and test sets
for the proposed model and the comparison methods,
measured as the perplexity on training data and the
conditional perplexity of images given the text and
text given the images. The proposed method, which
is more flexible than the alternatives, reaches better
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Figure 2: Training perplexity as function of algorithm
iterations.

(lower) perplexity on the training and testing data due
to being able to describe both variation not shared by
the other modality without needing to introduce noise
topics.

A notable observation is that the baseline meth-
ods perform worse at predicting text from images as
the amount of training data increases. This illus-
trates clearly the fundamental problem in modeling
multi-modal collections without separate private top-
ics. Since the text documents are easier to model than
the images, the alternative models start to focus more
and more on modeling the text when there is large
amount of data. The dominant topics start describ-
ing the text alone, yet they are also active in the im-
age modality but with a topic that does not contain
any information. Given a new image sample, the es-
timated topic proportions will be arbitrary and hence
do not enable meaningful prediction. The proposed
model, however, learns to make those textual topics
private to the text modality, while capturing weaker
correlations between the two modalities with shared
topics. The model still cannot predict textual infor-
mation not correlated with the image content, but it
learns correctly not to even attempt that and manages
to make accurate predictions for the aspects that are
correlated.

5.4 SHARED AND PRIVATE TOPICS

To illustrate how the HDP-formulation chooses the
topics, we visualize the stick parameters p in Figure
4. First, we notice that the last sticks have close to
zero weight, indicating that the chosen truncation level
T = 100 is sufficient. More importantly, we see that
the weights for the text and image topics are different
(the image topics are more spread out), motivating the
choice of separate weights for the modalities.

To further understand how the proposed model is able
to find both shared and private topics, we explore the
nature of the individual topics. Since the SIFT vocab-
ulary is not easily interpretable by visual inspection,
we illustrate the property for the textual topics. For
each textual topic we measure the amount of corre-
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Figure 4: Visualization of stick parameter p of the
proposed model for the text modality (a) and the im-
age modality (b) reveals how they are not identical for
the two modalities. Both figures show the weights for
two models learned with 400 and 10,000 documents,
revealing how the distribution is learned fairly accu-
rately already from a small collection.

lation between the other modality by inspecting the
correlation structure in ¥, and then rank the topics
according to this measure. This results in a ranked
list of the text topics, the first ones being strongly
shared by the two modalities while the last ones are
private to the text modality.

More specifically, denoting the separate blocks in the
covariance matrix as

S X

¥= (zi,t 2) : ®)
we convert it to a correlation matrix, €2, threshold
small values out (we used a threshold of 0.2) and ex-
tract the cross-correlation between textual (rows) and
visual topics (columns), to get €2, ;. Then for each tex-
tual topic we define visual relevance, p;, as row mean
of absolute values of €, ;, written as p = [(£2,)[1 2.
This quantity captures general and rich visual combi-
nations that co-occur with the textual topics, and it
is worth noticing how the measure is very general: It
allows multiple visual topics to correlate with one tex-
tual topic (and vise versa), and includes both positive
and negative correlations that are typically equally rel-
evant (negative correlation can be seen as absence of a
visual component) (See Figure 5 for demonstration).

The textual topics are ranked according to p in Fig-
ure 6 . There are a few very strong shared topics
between text and image modalities, and at the end
of the list we have several topics private to the text
modality, indicated by zero correlation with the im-
age modality. This matches with the intuition that
the full text of a Wikipedia page cannot be mapped
to the image content in all cases. Table 1 summarizes
the six text topics most strongly correlating with the
image modality, as well as six topics that are private

2We also tried using the maximum element instead of
the mean; it results in fairly similar ranking.
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Figure 3: Training and test perplexities (lower is better) for the two modalities. For training data we show the
perplexity of modeling the text (a) and images (b) separately. For test data, we show the conditional perplexity of
predicting text from images (c¢) and predicting images from text (d), corresponding to the document completion
task used for evaluating topic models. The proposed method outperforms the comparison ones in all respects.
The comparison methods mmHDP, mmDILN and corrLDA that are not able to extract topics private to either
modality are not able to learn good predictive models, demonstrated especially by the error increasing as a
function of training samples in (c). The image prediction perplexity for mmDILN is outside the range depicted

in (d), above 5400 for all training set sizes.
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Figure 5: Illustration of part of cross-correlation be-
tween text topics and image topics corresponding to
subset of €, ;), where yellow represents positive cor-
relations, and blue represents negative ones. The size
of the boxes corresponds to the absolute value.

to the text modality, revealing very clear interpreta-
tions. The most strongly correlating topic covers air-
planes, which are known to be easy to recognize from
the images due to the distinct shapes and background.
The second topic is about maps that also have clear vi-
sual correspondence, and the other strongly correlated
topics also cover clearly visual concepts like buildings,
cars and railroads. The topics private to the text do-
main, in turn, are about concepts with no clear visual
counterpart: economy, politics, history and research.
In summary, the model has separated the components
nicely into shared and private ones, and provides ad-
ditional interpretability beyond regular multi-modal
topic models.
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Figure 6: Text topics ordered according to visual rel-
evance p. We see that there are a few strongly cor-
relating topics, and that the model has found roughly
10 topics that are private to the text domain. Note
that such topics may still be important for modeling
the whole multi-modal corpus, whereas they do not
contribute to the cross-modal information transfer.

6 DISCUSSION

Our paper ties together two separate lines of work for
analysis of multi-modal data. In particular, we cre-
ated a novel multi-modal topic model which extends
earlier tools for analysis of multi-modal count data by
incorporating elements found useful in the continuous-
valued case. We explained how learning topics private
to each modality is of crucial importance while model-
ing modalities with potentially weak correlations, and



Table 1: Text topics ranked according to visual relevance, summarized by the words with highest probability.
The topic indices match the ranking in Figure 6. The shared topics have clear visual counterparts, whereas the
private ones do not relate with any kind of visual content.

Shared topics

T1 airport flight airlines air international aircraft aviation terminal passengers airline boeing flights airways service airports passenger accident
T2 format dms latd dm longm latm longs lats launched mi broken mill sold renamed dec captured rapids class feet coordinates built lake located
T3 building house built buildings street hall st century tower houses west designed design castle south north east side main square large end site
T4 car engine cars model models ford engines race rear series front racing wheel year driver speed vehicles vehicle production hp motor drive

T5 retrieved album song music video released single awards number billboard chart top release mtv songs media love show uk jackson hot albums

T6 line railway station rail trains train service lines bus transport services system railways stations built railroad passenger main metro transit

Topics private to the text domain

T95 president washington post united american national states secretary december november september times military dc kennedy press security
T96 ottoman turkish turkey kosovo armenian war greek serbia bulgarian serbian government border bulgaria turks forces croatian albanian republic
T97 research science development institute university management scientific technology design world national engineering work human international
T98 government state national european policy council international states members act union political countries system nations article parliament
T99 nuclear weapons anti power protest bomb people protests united protesters government strike peace states march reactor atomic april test

T100 economic trade economy world production industry oil million growth development government agricultural market agriculture industrial

demonstrated empirically how such a property can
only be obtained by combining two separate elements:
modeling correlations between separate topic weights
for each modality, and learning modality-specific in-
dicators switching unnecessary topics off. For imple-
menting these elements we combined state-of-art tech-
niques in topic models, integrating the DILN distribu-
tion (Paisley et al., 2011) into a model similar to the
multi-field correlated topic model of Salomatin et al.
(2009), to create an efficient learning algorithm readily
applicable for relatively large document collections.
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