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Abstract—The problem of similarity learning is relevant to
many data mining applications, such as recommender systems,
classification, and retrieval. This problem is particularly challeng-
ing in the context of networks, which contain different aspects
such as the topological structure, content, and user supervision.
These different aspects need to be combined effectively, in order
to create a holistic similarity function. In particular, while most
similarity learning methods in networks such as SimRank utilize
the topological structure, the user supervision and content are
rarely considered. In this paper, a Factorized Similarity Learning
(FSL) is proposed to integrate the link, node content, and user
supervision into an uniform framework. This is learned by using
matrix factorization, and the final similarities are approximated
by the span of low rank matrices. The proposed framework is
further extended to a noise-tolerant version by adopting a hinge-
loss alternatively. To facilitate efficient computation on large
scale data, a parallel extension is developed. Experiments are
conducted on the DBLP and CoRA datasets. The results show
that FSL is robust, efficient, and outperforms the state-of-the-
art.

I. INTRODUCTION

Networks are ubiquitous in the context of data mining
and information retrieval applications. Social and technical
information systems usually exhibit a wide range of interesting
properties and patterns such as interacting physical, conceptual
and societal entities. Each individual entity interchanges and
influences each other in the context of this interconnected
network. Information networks are usually very large and
information-rich. A significant amount of research has been
done to study various aspects of network analysis, such as
search, community detection and collective classification.

A central tenet of network mining research is the notion
of similarity between pairs of nodes in a network. In many
cases, similarity functions are used as subroutines in different
data mining applications. For instance, information retrieval
queries use the learned similarities [21][23][30][32][33], and
recommender systems model user and item profiles from
collaborative similarities [15][26]. However, similarity learning
in the network environment differs from traditional approaches,
mainly due to the heterogeneous information and sources,
including link information, content, and user behaviors. In
addition, the noisy nature of the underlying network poses
a great challenge to effective learning. For instance, links
are not semantically meaningful, especially in online social
networks such as Facebook. In this context, it is essential
to make the network similarity learning algorithms capable
of dealing with noisy multi-modality scenarios. We illustrate
the problem of similarity learning on networks in Figure 1.
The graph demonstrates a generalized network structure, where

Fig. 1: An example of network structure.

each hexagon indicates a node in the network, and the arrowed
dash lines are directed links between different nodes. The color
of each node reflects its property. Nodes with the same color
indicate that they are similar, or belong to the same group.
The nodes also have content associated with them. In the
context of networks with noisy links, it is generally hard to
learn similarities, with the use of only the linkage structure.
In particularly, the impact of cumulative propagation of errors
can be very significant in such networks. For example, consider
the scientific bibliography networks, in which nodes represent
authors, and edges represent collaborations. In many cases,
edges represent occasional collaborations between different
research domains, in spite of significant differences between
the corresponding nodes. On the other hand, the content pro-
vides complementary information about authors, but ignores
structural relationships among nodes in the network.

In this paper, we propose a Factorized Similarity Learning
(FSL) approach to transfer and fuse knowledge from different
domains. It fuses the information from network structure
(links), content, and user supervision, to achieve stable and
generalized similarity learning on networks. This is achieved
by integrating these heterogeneous facets into an uniform
matrix factorization framework. The addition of content infor-
mation to the network structure resolves the limitation of both
local and global similarity measurements. This issue has been
widely discussed in information retrieval research [21][35].
The major advantage of matrix factorization is that it pro-
vides a seamless way to capture the low rank structure of
different aspects of the data, such as content, structure and
user supervision. The user supervision is specified in terms
of order constraints. The content and order-constraints are
leveraged to regularize and reconstruct the network topology
by identifying noisy links while enhancing important ones.
This provides semantically meaningful similarity functions
and effectively prevents the error propagation through the
topological links. We further extend FSL to distributed settings,
in order to improve the computational efficiency. To verify the
proposed FSL algorithm, we conduct several experiments on
different data sets, including DBLP scientific bibliography [9]
and CoRA [24] citation data set. The experimental results



evaluated on large-scale data sets verify the effectiveness of
our approach.

The remainder of this paper is organized as follows. Section
II reviews related work on both link and content based sim-
ilarity learning, and well-known matrix completion methods.
We present the problem formulation and mathematical model
for FSL in section III and IV. We then show how the model
can handle the case with noisy supervision in section V. We
present extensive experiments on a wide range of data sets in
section VI. The conclusion and future research directions are
presented in section VII.

II. RELATED WORK

In this section, we briefly review existing approaches for
learning similarity functions as well as some off-the-shelf
matrix completion methods. In general, similarity learning can
be done by either using content or network topology.

A. Content-based Similarity Learning

In recent years, there are some emerging research interests
in learning content-based similarity in a low-dimensional space
such that the regular Euclidean metric is more meaningful in
term of reflecting semantic “closeness” [1]. The first category
is supervised metric learning, that is learning a distance metric
from the training data with explicit class labels. The repre-
sentative techniques includes the Neighborhood Component
Analysis (NCA) [11] and the Large Margin Nearest Neighbor
classification (LMNN) [38]. However, the performance of the
supervised approaches rely heavily on the number of labeled
training data examples. This is a problem, because such labels
are usually not available in significant large numbers. Xing et
al. [41] proposed to use side information, instead of class la-
bels. The side information is presented as pairwise constraints
associated with input data, which provides weaker information
than the exact class labels. In particular, each constraint indi-
cates whether a pair of samples is similar or irrelevant to each
other. Subsequently, there were several promising research
directions, such as Relevance Component Analysis (RCA) [2]
and Information Theoretic Metric Learning (ITML) [7].

However, most of the existing metric learning algorithms
do not scale well across various high dimensional learning
paradigms. The reason is the size of the distance matrix scales
with the square of the dimensionality. Sparse Distance Metric
Learning (SDML) [31] works under pairwise relevance con-
straints to produces sparse metrics which significantly reduce
the number of parameters, so that the time required for learning
reduces dramatically. Another issue, that makes metric-based
similarity learning inefficient for real-world applications, is
the positive semi-definite (PSD) constraints imposed on the
distance matrix. In general, it requires nontrivial PSD pro-
gramming [4] techniques, and the computational complexity
is cubic in the dimensionality of the input data. A recent
work proposed by Zhen et al., which is referred to as Locally-
Adaptive Decision Learning (LAD) [19] learns a non-isotropic
similarity function by a joint model of of a distance metric
and a locally adaptive thresholding rule. The LAD algorithm
relaxes the PSD constraint so that the learned similarity can
be negative, if only the relative order is appreciated.

B. Link-based Similarity Learning

In contrast to content-based similarity learning, link-based
methods emphasize network topological structure. The most

popular link-based similarity learning method or ranking sys-
tem is known as the PageRank [28] , which is used by the
Google search engine. The original Brin and Page model for
PageRank uses the hyperlink structure of the web to build
a Markov process with a primitive transition probability. A
lot of link-based similarity learning approaches are motivated
by PageRank including SimFusion [40], Pagesim [20] and the
Relational like-base ranking [10].

An interesting method, known as SimRank [14] which
is a iterative PageRank-like structure similarity measure in
networks. However, SimRank only utilizes the in-link re-
lationships for proximity computation while neglecting the
information conveyed from out-links. Zhao et al. proposed a
P-Rank [43] algorithm which extends SimRank by considering
both in-link and out-link simultaneously. It is worth mentioning
that the most of existing link-based methods rely heavily on
homophily assumptions [25], which are insufficient for fully
capturing the underlying semantics.

C. Matrix Factorization

Matrix factorization is one of the most popular methods
in matrix completion and recommendation. Typically, the
factorization assumes, that there is low rank distributions in
space, and a low rank approximation is utilized to regularize
the factorization process. The fundamental problem is to fill
out the missing entries of the utility matrix with sparse
observations. Traditional approaches include low-rank matrix
fitting (LMaFit) [39], nonnegative matrix factorization (NMF)
[18] and probabilistic matrix factorization (PMF) [26], which
fit a probabilistic distribution for the matrix.

In the domain of collaborative filtering, which learns the
similarities between different entries, the social hints are
also considered in addition to link structures [22][29]. These
approaches are referred to as social matrix factorization. Other
approaches try to incorporate content similarities into the
factorization, and a typical extension is Collaborative Topic
Modes [37]. However, all the approaches are unsupervised,
and also do not work well in noisy content-centric scenarios.

III. PROBLEM FORMULATION

The two fundamental components, which define a network
topology, are nodes and edges. We model any given network
as a directed graph G(V, E), where V represents a set of
nodes/vertices and E represents the edges between these nodes.
We denote the vertices by V = {v1, . . . , vn} and edges by
E = {e1, . . . , em}. Thus, there are a total of n nodes and m
directed edges. The directed assumption is without loss of gen-
erality, because undirected networks can be easily converted
into a directed framework, by simply replacing undirected links
by two directed edges. We further assume, that two additional
types of information are available. One of them corresponds to
link weights and the other one corresponds to content features.
The weight of a link indicates the strength of the connection,
while the content uniquely describes node characteristics. Let
L = {l1, . . . , lm} represent the link weights associated with
the corresponding edges {ei} in the network, where each
li ∈ R, ∀i = {1, . . . ,m}. Similarly, let C = {c1, . . . , cn}
be the set of content features represented by a vector in
some vector space in R

d, so that every vi ∈ V is associated
with a content vector denoted by ci. In addition, supervision
information is available about the relative similarity between



nodes. The user supervision (intentional knowledge) is given
by triplet constraints of the form:

S = {(vi, vj , vk) : (vi and vj) more similar to (vi and vk)}.

The triplet setting is generally preferable to the pairwise
setting, because comparing two objects in terms of absolute
similarity is very abstract and subjective [17]. Unlike the
traditional pairwise settings, triplet constraints are defined by
comparing two pairwise similarities. It is worth mentioning
that, although we only consider the triplet setup in this paper,
our proposed method can be easily extended to other forms
of supervision. In summary, we characterize a network, using
the representation G(V, E , C,L,S), which includes the graph
structure, content and link features, and supervision.

IV. FACTORIZED SIMILARITY LEARNING ON NETWORKS

In this section, we introduce a novel factorization based
scheme for learning node-based similarity measures in net-
works represented as G(V, E , C,L,S) as well as the intuition
behind the mathematical abstraction. Our approach models the
similarity learning as a matrix completion problem, where it
aims at supervised learning the correlation between different
nodes using both link and content information so that the com-
pleted similarity matrix will correctly reflect the homogeneity
between different nodes.

A. Parameterizations and Constraints

In order to model the similarity learning as a matrix
completion problem, we formulate G(V, E , C,L,S) in matrix
forms. Let C ∈ R

n×d and L ∈ R
n×n represent the content

and link matrices, which are defined as follows. Each row Ci·

of the content matrix C is the corresponding feature vector
ci ∈ C. If the link weight lp ∈ L associates with edge ep ∈ E
which connects nodes vi and vj ∈ V , then the Lij entry in the
link matrix L will be lp. A nonzero entry Lij in L indicates
that a link exists from the node vi to vj , with a weight equal
to the strength of the link. It is worth pointing out, that both
C and L are typically very sparse in practice.

The target of our approach is to learn a matrix S ∈ R
n×n,

which reflects the encoded information in both L and C. The
(i, j)th entry of S measures the similarity from node vi to vj .
The similarity matrix S is not necessarily symmetric, because
similarity is usually non-isotropic across the network. Thus,
we do not explicitly constrain the symmetry of S, in order to
make our model more general. On the other hand, the triplet
supervision is modeled as constraints for the space of S, i.e.,
the similarity matrix S has to obey the user-specified supervi-
sion as much as possible. If the supervision suggests that nodes
vi and vj are more similar to each other, than nodes vi and
vk, the learned similarity has to reflect the facts by enforcing
Sij > Sik. However, in term of mathematical abstraction, the
strict order relationship is not a compact set regularizing the
space of S. Almost all existing optimization approaches do not
favor the open set constraints. We leverage the problem by each
constraint as a closed half-space. Specifically, we require that
S has to be in the set T , which is defined as follows:

T
.
= {S : Sij ≥ Sik + c, ∀(vi, vj , vk) ∈ S}. (1)

Here, c is the margin controlling the minimal separability of
the similar entries. The value of c can be chosen arbitrarily,
since the order between candidate nodes is more important
than the actual similarity value at each entry of S. Throughout
this paper, we set c to be equal to 1 for simplicity. Moreover,
it is easy to see that T is a convex set.

B. Information Encoding

As is generally the case for matrix completion problems,
we assume that the rank of S is much less than the number
of nodes n in the given network. This is a very natural
assumption, because the number of latent factors characterizing
different nodes is much smaller than the number of nodes.
However, unlike existing matrix completion problems, S also
satisfies some partial order constraints. The minimum number
of latent topics, that allows S to satisfy all the constraints,
indicates the intrinsic rank of the similarity matrix. Both
content and link data encoded in the network are traded as
side information, to enhance the factorization, followed by
intentional knowledge.

To utilize all available information, let S to be a completed
matrix using both content information C and link weight
matrix L. We factorize S as S ∼= UV , where U ∈ R

n×r

and V ∈ R
r×n are two low-rank matrices such that r ≪ n.

Different terms in the objective function contribute to different
aspects of the similarity function. The term ‖S − UV ‖2F
penalizes the error by approximating S as two low-rank
factors. ‖ · ‖F is the Frobenius norm of a given matrix, where

‖X‖F =
√

tr(XXT ) and tr(·) represents the trace of the
matrix.

The link information contributes to similarity learning
through the following term in the objective function.

‖PΩ(S)− PΩ(L)‖
2
F , (2)

where Ω is the index set for the observed elements and the
projection PΩ is a orthogonal projector defined in [5]: the
(i, j)th element of PΩ(L) is equal to Lij if (i, j) ∈ Ω and zero
otherwise. In other words, we propagate the link information
through its non-zero feature weights. This is done, so that
the model will have consistent values as suggested by the
link features. This term ensures that the similarity matrix S
is influenced by the local topological structure.

Furthermore, to encode the content information in our
model, we assume that the content matrix C can be factorized
as two low-rank matrices that is a shared U and a basis matrix
W , where W ∈ R

r×d. The third term in the objective function
contains the sum of errors of two matrix factorizations, among
which the matrix U is common. This ensures the propagation
of similarity information from C to S.

‖S − UV ‖2F + ‖C − UW‖2F . (3)

Note that S has already encoded the link information through
the objective function term represented by equation (2). The
intuition behind these two terms in equation (3), is that the
projections from link and content to a common latent space
are identical. If we assume that both V and W are orthonormal,
then we multiply V T and WT on both sides of the equations
S = UV and C = UW . We obtain the following: SV T = U
and CWT = U . The similarity matrix S, which encodes the
link information and the content matrix C, are projected into
a common subspace U through projections V T and WT .

Therefore, the content and link information can be bridged
coherently using the aforementioned scheme, so that the
learned similarity matrix S is consistent with both content and
link information globally and locally.



C. Integrated Objective Function

According to the discussion in previous sections, we in-
tegrate all the aforementioned parts into a coherent learning
framework as:

min
U,V,W,S

‖PΩ(S)− PΩ(L)‖
2
F + λ1‖S − UV ‖2F + λ2‖C − UW‖2F

subject to: S ∈ T , V V T = Ir,WWT = Ir.
(4)

However, the objective in Eq. (4) has two problems, which
lead to inefficient optimization algorithms. The first problem
is that the first term in the above objective function contains a
projection of non-zero entries in the link matrix. PΩ(L) can be
viewed as indicator function of all non-zero entries of L, which
is discrete. Integer programming solvers are usually quite slow.
To alleviate these challenges, we introduce a transition variable
T ∈ R

n×n acting as a bridge to transfer knowledge from L
to S. Then, we are able to convert the projection / indicator
term in equation (4) to a new set of constraints on T . Another
issue is the orthonormal constraints on both V and W . Not
only the orthogonal constraints introduce more non-convexity
into the objective, they also make the algorithms more com-
plex [44]. Alternatively, we can relax the orthogonal constraint.
To prevent overfitting, we introduce Frobenius norms on both
V and W . To this end, we reformulate objective function (4)
as follows:

min
U,V,W,T,S

‖S − T‖2F + λ1‖S − UV ‖2F + λ2‖C − UW‖2F

+ λ3(‖V ‖2F + ‖W‖2F )

subject to: PΩ(L) = PΩ(T ), S ∈ T .

(5)

D. Optimization

In this subsection, we demonstrate that the optimization
problem in equation (5) can be solved efficiently and effec-
tively using the block coordinate descent method [4], which
seeks the optimal value for one particular variable, while
fixing others. Though the formulation is non-convex, each
subproblem in block coordinate descent is convex. The key
here is in solving for each of the variable sets U , V , W , T
and S, while keeping the others fixed.

1) Solving for U : Fixing parameters V,W, T, S to optimize
U , the objective function (5) reduces to a standard convex
unconstrained quadratic program as follows:

min
U

λ1‖S − UV ‖2F + λ2‖C − UW‖2F . (6)

By determining the derivative of the aforementioned objective
with respect to U , and setting it to zero, we obtain:

−2λ1(S − UV )V T − 2λ2(C − UW )WT = 0, (7)

We can obtain an analytic solution for the global minimum:

U∗ = (λ1SV
T − λ2CWT )(λ1V V T + λ2WWT )†, (8)

where (·)† indicates the pseudo-inverse for a given matrix.

2) Solving for V : Similar to solving for U , the matrix V
can be solved as a standard unconstrained ridge regression
problem, and the objective function can be written as follows:

min
V

λ1‖S − UV ‖2F + λ3‖V ‖2F . (9)

As in the previous case, we can determine the first order
derivative of the objective function in equation (9) with respect
to V to be zero as follows:

−2λ1U
T (S − UV ) + 2λ3V = 0, (10)

The aforementioned equation can be solved in order to obtain
a global minimum for V .

V ∗ = (UTU + λ3

λ1
Ir)

−1UTS. (11)

where Ir is an identity matrix of size r × r.

3) Solving for W : Solving for W is almost identical to
solving for V . By fixing U , V , T and S, we can write the
objective function and the analytical solution for the optimal
value of W as follows:

min
W

λ2‖C − UW‖2F + λ3‖W‖2F , (12)

The optimal value for W is as follows:

W ∗ = (UTU + λ3

λ1
Ir)

−1UTC. (13)

4) Solving for T : When we solve for T , while keeping
the remaining parameters fixed, we obtain a constrained least
squares minimization problem:

min
T

‖S − T‖2F s.t.: PΩ(L) = PΩ(T ). (14)

The equality constraints ensures that non-zero entries of the
link matrix L are consistent with the corresponding position
on T . Since it is a convex problem, the standard technique
for solving equation (14) is first sets T = S, and then applies
the orthogonal projection on T . In particular, we set the the
entries of T in Ω to be the same, as the corresponding value
of L. The compressed analytical solution for S can be written
as T ∗ = S + (PΩ(L)− PΩ(S)).

5) Solving for S: At this point, we can also solve for S,
so that equation (5) is minimized. To do so, we obtain the
following optimization problem:

min
S

‖S − T‖2F + λ1‖S − UV ‖2F s.t.: S ∈ T . (15)

The objective function can be further compressed by a least
square term as ‖S − 1

1+λ1

(T + λ1UV )‖2F . Since the set T
is a convex set, the problem in Eq. (15) is again a convex
constrained optimization problem, which can be solved using
projected gradient methods [3], [27]. The proximal operator
associated with Eq. (15) is in the form of projecting a point to

the intersection of a set of halfspaces T = ∩
|S|
i=1Ti �= ∅, which

can solved using proximal splitting methods [6]. Moreover, we
observe that our objective is a simple projection problem, and
thus we can use the successive projection algorithm to solve it
efficiently [12]. This has the effect of avoiding expensive line
search procedures. The optimal S is obtained by first set is as

1
1+λ1

(T + λ1UV ) then project it onto the convex set T . We
now provide a closed form solution to the projection into each
set Ti.

Definition 1: A mapping ΠT : Rn×n → T is a projection
associated with convex set T , if it satisfies for any S ∈ R

n×n,
ΠT (S) is the unique matrix in T that is closest to S, i.e.,

‖S −ΠT (S)‖ ≤ ‖S − S′‖, ∀ S′ ∈ T , S ∈ R
n×n

with equality if and only if S′ = ΠT (S).



Theorem 1: Suppose that Tm = {S : Sij ≥ Sik + 1}.
Then, for any S ∈ R

n×n the projection from S to the convex
set Tm is as follows:

ΠTm(S) = S∗ = S if S ∈ Tm,

Furthermore, if S /∈ Tm, then the following is true:

ΠTm(S) = S∗ =

⎧

⎨

⎩

S∗
ij = 1

2
(1 + Sij + Sik)

S∗
ik = 1

2
(−1 + Sij + Sik)

S∗
pq = Spq ∀{p, q} �= {i, j} and {i, k}.

Proof: For any S ∈ Tm, we have the trivial solution
that the projection is itself. For any S /∈ Tm, we are seek-
ing the optimal value of S∗, such that the projection error
‖S − S∗‖2F is minimized. In other words, the solution to the
minimization problem of minS∗∈Tm

‖S − S∗‖2F provides the
projector. Because the Frobenius norm is decoupled for every
element, it follows that Tm only affects the entries of S∗

ij
and S∗

ik. Therefore, by choosing S∗
pq = Spq , we obtain zero

projection error for S∗
pq for all {p, q} �= {i, j} and {i, k}. The

minimization problem is further reduced to the following:

minS∗

ij
≥S∗

ik
+1 (Sij − S∗

ij)
2 + (Sik − S∗

ik)
2.

We observe the following property of the optimal solution:

Lemma 1: For any x, y, x′ and y′ ∈ R such that x′ ≤ y′−c,
where c ∈ R

+, x′ = 1
2 (−c + x + y) and y′ = 1

2 (c + x +
y) provides the minimal value of the least squares function
f(x, y, x′, y′) = (x − x′)2 + (y − y′)2 if x > y + c. For
x ≤ y − c, the minimal f(x, y, x′, y′) is obtained by setting
x′ = x and y′ = y.

Apply the above lemma we obtain the optimal least square
solution for S∗

ij and S∗
ik as

S∗
ij = 1

2
(1 + Sij + Sik) and S∗

ik = 1
2
(−1 + Sij + Sik).

This completes the proof.

The proof of Lemma 1 is provided as the followings:

Proof: The problem can be formulated as a constrained
convex program as

minx′,y′ (x′ − x)2 + (y′ − y)2 subject to: x′ ≤ y′ − c.

The optimal solution can be interpreted as numerically solv-
ing the KKT system of equations [4]. The Lagrangian dual
problem is

maxλ minx′,y′ (x′ − x)2 + (y′ − y)2 + λ(x′ − y′ + c),

where λ is so called the KKT multiplier. The optimal x′∗ and
y′∗ is achieved if satisfies some regularity conditions such as:
the stationarity

{

2(x′ − x) + λ = 0
2(y′ − y)− λ = 0

⇒

{

x′ = − 1
2
λ+ x

y′ = 1
2
λ+ y

,

the primal feasibility x′−y′+c ≤ 0, the dual feasibility λ ≥ 0,
and the complementary slackness λ(x′−y′+c) = 0. By solving
the system of equations we obtain the optimal solution of x′∗

and y′∗ as

if λ = 0 then

{

x′∗ = x
y′∗ = y

, otherwise

{

x′∗ = (−c+ x+ y)/2
y′∗ = (c+ x+ y)/2

This thus completes the proof.

We conclude this subsection by illustrating the optimization
scheme for the proposed FSL method in algorithm 1.

Algorithm 1: Factorized Similarity Learning

Input: Content matrix C, link matrix L and ordered constraint set T
Output: Similarity matrix S

1 Initialize: U , V , W , T and S
2 repeat

3 U = (λ1SV
T − λ2CWT )(λ1V V T + λ2WWT )†;

4 V = (UTU + λ3

λ1
Ir)−1UTS;

5 W = (UTU + λ3

λ1
Ir)−1UTC;

6 T ∗ = S + (PΩ(L)− PΩ(S));
7 S = 1

1+λ1
(T + λ1UV );

8 Slice S in row-wise into {Si·}
n
i=1 to compute parallel;

9 for i = 1 . . . n do

10 repeat

11 if Sij < Sik + 1 ∀(i, j, k) ∈ S then

12 Sij = 1
2
(1 + Sij + Sik)

13 Sik = 1
2
(−1 + Sij + Sik)

14 end

15 until all constraint satisfied;
16 end

17 until converge or maximum iteration exceed;
18 return S
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Fig. 2: Large-scale matrix handling.

E. Large-Scale Networks Handling

For a large-scale network, most of commodity hardware
cannot hold the similarity matrix S in main memory. This
situation is typically arrived at, when the number of nodes
exceeds 30,000. In order to alleviate this issue, we will show
the proposed method can be easily formulated in a divided and
conquer framework.

We first slice the similarity matrix S in row-wise fash-
ion, into different sub-matrices S1, . . . Sm, where each Si ∈
R

(n/m)×n. Then, each Si can be further expressed as Si =
UiV , where each Si corresponds to a (n/m) × r matrix Ui.
From the block-wise matrix multiplication, we know if we
stack each Ui in column-wise fashion, and multiply by V , the
result will be exactly equal to the original n × n similarity
matrix Si. Figure 2 provides a visual perspective of extending
the proposed method into a large-scale framework.

The mathematical abstraction can be directly derived from
equation (5) as follows:

min
Ui,V,W,Ti,Si,∀i

∑m

i=1
‖Si − Ti‖

2
F + λ1

∑m

i=1
‖Si − UiV ‖2F

+ λ2

m
∑

i=1

‖Ci − UiW‖2F + λ3(‖V ‖2F + ‖W‖2F )

subject to: PΩ(Li) = PΩ(Ti), Si ∈ Ti ∀i,
(16)

Here, Ci, Li and Ti are the corresponding sliced content, link
and bridging matrices. The overall result is that neither the
network information, nor the completed similarity matrix S
will be stored in main memory as a whole piece, and the
memory can be managed much more efficiently.

1) Solving for Ui, Ti and Si: The process of solving for
each Ui, Ti and Si uses a similar approach. Here, we provide



a detailed optimization scheme for Ui and the similarly idea
can be easily extended to solve for Ti and Si.

Calculating U can been seen as optimizing m sub-problems
for each Ui (at a smaller scale), which has no interdependency.
Moreover, the solution for Ui is exactly same as before:

U∗
i = (λ1SiV

T − λ2CiW
T )(λ1V V T + λ2WWT )†. (17)

2) Solving for V and W : Solving for V is slightly different
from the case, when we treat matrices S and U as whole. The
corresponding Equation (9) is transformed as follows:

min
V

λ1

∑m

i=1
‖Si − UiV ‖2F + λ3‖V ‖2F , (18)

The optimal analytical solution of V is as follows:

V ∗ =
(

∑m

i
UT
i Ui +

λ3

λ1
Ir

)−1 (∑m

i
UT
i Si

)

. (19)

The optimal value of W can be calculated in a similar manner,
and that is as follows:

W ∗ =
(

∑m

i
UT
i Ui +

λ3

λ1
Ir

)−1 (∑m

i
UT
i Ci

)

. (20)

F. Discussion on Speeding up the Learning

The bottleneck of efficient learning is at the step of
updating S or Si in both conventional and large-scale for-
mulations in equation (15) and (16) respectively. However, the
proposed FSL algorithm is able to decouple the row updates
of the similarity matrix S, involving supervised projection.
Essentially, this can be easily fit into a MapReduce framework
to significantly boost the training efficiency. Moreover, for the
large-scale formulation in equation (16), the low-rank matrices
Ui, bridging matrices Ti and the similarity matrix Si can also
be handled in parallel to reduce the running time. While we
present these ideas as possibilities for future exploration, a
detailed discussion is beyond the scope of this paper. We refer
interested readers to [42], and [8] for background on relevant
big-data frameworks.

V. NOISY SUPERVISION

Real-world data always contain a significant amount of
noise, which could be extremely detrimental to the algorithms.
In this section, we explicitly consider the case, where the
available supervision is noisy. We show how the proposed
method can be integrated with noisy intentional knowledge
to yield reliable predictions.

In section III, we model the user intentional knowledge on
different samples as a set of triplet constraints S , in which
each element in the constraint set is in the form (vi, vj , vk).
Specifically, each triplet supervision provides the similarity
information on two pairs of nodes with the same query node.
When the noise increases, similarity learning could result in
poor quality. We illustrate the problem of noisy supervision
with a toy example.

Suppose that four different nodes a, b, c, d are given,
and the correct underlying similarity order of using a as a
query is that (a, b) > (a, c) > (a, d). If {(a, b, c), (a, c, d)}
is given as the constraint set S , we can order the candi-
date node b, c, d correctly with respect to reference a. With
noisy supervision examples, such as {(a, b, c), (a, d, b)} or
{(a, b, c), (a, d, c), (a, c, d)}, the ranking result will either be
in an incorrect order, or may have no feasible solution. The

inconsistent supervision provides no feasible solution of S ∈ T
in Equation (5).

The aforementioned toy example suggests that the con-
straints should be relaxed with the use of slack variables ξijk.
Intuitively, these slack variables can account for the noise in
the objective function. Therefore, the modified optimization
problem is as follows:

min
U,V,W,T,S,ξijk

‖S − T‖2F + λ1‖S − UV ‖2F + λ2‖C − UW‖2F

+ λ3(‖V ‖2F + ‖W‖2F ) + λ4

∑

(i,j,k)∈S
ξijk

subject to: PΩ(L) = PΩ(T ), ξijk ≥ 0,

Sij − Sik ≥ 1− ξijk ∀(i, j, k) ∈ S.
(21)

It is worth mentioning that the core idea behind such a large-
margin relaxation is similar to the formulation of support
vector machines (SVM) [36]. It can be solved efficiently using
stochastic sub-gradient descent [34] by converting the last two
constraints as a penalty term in the objective.

min
U,V,W,T,S

‖S − T‖2F + λ1‖S − UV ‖2F

+ λ2‖C − UW‖2F + λ3(‖V ‖2F + ‖W‖2F )

+ λ4

∑

(i,j,k)∈S
max {0, 1− Sij + Sik}

subject to: PΩ(L) = PΩ(T ),

(22)

Here, λ4 regulates the noise penalty. The term associated with
λ4 is the hinge loss [36].

To solve the optimization problem in equation (22), we
follow a similar procedure, as illustrated in algorithm 1 by
the block coordinate descent method. The only difference is
that we compute the sub-gradient at the step of solving S
instead of using the projected gradient methods. By fixing
other parameters to compute the optimal value of S, we obtain:

min
S

f(S) = ‖S − T‖2F + λ1‖S − UV ‖2F

+ λ4

∑

(i,j,k)∈S
max {0, 1− Sij + Sik},

(23)

This is an unconstrained quadratic programming problem.
Furthermore, one of the sub-gradient of f(S) is as follows:

∂f(S)
∂S

= 2(S − T ) + 2λ1(S − UV )

+ λ4

∑

(i,j,k)∈S
1{1− Sij + Sik ≥ 0}(Eik − Eij),

(24)

Here, 1(·) is an indicator function, and Eij = eTi ej . Moreover,
ei is the standard unit vector which is a n×1 vector with only
the ith entry set to one, and zero otherwise. We use the line
search strategy in our implementation.

VI. EXPERIMENTAL RESULTS

In this section, several experimental results are presented
on different data sets in order to validate the effectiveness
and efficiency of the proposed FSL method. We also present
robustness results in terms of parameter sensitivity and noise
tolerance. The performance of our FSL approach on two real
data sets and one synthetic data set outperforms other existing
off-the-shelf methods significantly.



TABLE I: The detailed statistics of the data sets.

Data Set Number of node Number of edge Number of node with label Number of class Content dimensionality

DBLP 28,702 133,664 4,057 4 13,214

DBLP-clean 2,760 7,636 2,760 4 13,214

CoRA 15,644 59,062 15,644 10 12,313

A. Data sets

The detailed descriptions of the data sets are as follows:

DBLP-Four-Areas Data set: DBLP is an online collection of
computer science. It is a source of cross-genre information,
including content (e.g., keywords of papers) and links (e.g.,
co-author relationships, and user friendships). In this paper, we
use the DBLP subset from [9], which contains 28,569 research
papers from 28,702 authors, published in 20 conferences. The
content information for each paper is extracted from its ab-
stract, and represented using a bag of words. Moreover, 4,057
authors are labeled by four areas, corresponding to database,
data mining, information retrieval, and artificial intelligence.

Clean DBLP Data set: A cleaned version of the DBLP-Four-
Areas Data set [9] is also extracted from the original data set.
This cleaned data set, removing all the authors who do not
have any connection with others or have any labels, includes
2,760 authors and labeled by four areas. It is utilized to analyze
the performance of the proposed algorithm and verify the
robustness on parameter selection.

CoRA Data set: This data set is comprised of computer science
research papers, and includes full citation graph and the topics
(and sub-, sub-subtopics) of each paper[24], resulting in over
80 labels. Instead of using such a huge label space, we used
the hierarchical structure of the labels provided by the dataset,
and used the higher level labels. In our setting, there are 10
group labels, to identify the class of each paper.

Summary statistics of the data sets are illustrated in Table I.

B. Baseline Methods

We compared our proposed method with a number of state-
of-the-art algorithms including the following:

Euclidean Metric: The standard Euclidean distance between
content vectors measures the inverse of the similarity between
two nodes.

PMF [26]: Probabilistic Matrix Factorization treats the link
matrix L as the utility matrix to complete. PMF only utilizes
the existing linkage information as observed entries. The
stronger a link between a pair of nodes, the greater the
similarity between them.

LAD [19]: Locally-Adaptive Decision function learning uses
both content and supervision information to learn a local non-
isotropic similarity function beyond the traditional generalized
Mahalanobis metric.

CFSL: Content-based Factorized Similarity learning is a spe-
cial case of our FSL algorithm by setting λ4 = 0 in Equation
(22). CFSL is still able to incorporate both link and content
information in a globally factorized manner.

SSMetric [13]: Semi-supervised Metric learning incorporates
knowledge from sparse linkage information and used as neigh-
borhood graph. It is a variant of the originally proposed

method, which is modified to allow it to use the linkage struc-
ture. The intensional knowledge can be propagated through the
link graph L to learn a distance metric on the content vector
space.

In summary, the first two baselines learn a similarity
measure based only on content or linkage information in an
unsupervised manner. LAD utilizes both content and supervised
knowledge. CFSL evaluates the proximity on both contents and
links. SSMetric is similar to our method in term of incorpo-
rating different information sources on content, linkages and
supervision.

C. Experimental Settings

In our experiments, we simulated the real-world scenario
on similarity learning as a retrieval problem [30], [21]. We
start by explaining the experimental settings with an example.
As illustrated in figure 3, we divide all pairwise nodes into
two disjointed group parameterized by two variables pv and
ph indicating the level of supervision. For instance, if ph = 0.5
and pv = 0.6, then it means 0.5 + 0.6 × (1 − 0.5) = 80% of
entries are provided supervised knowledge, and the remaining
20% do not have any information about relative ordering. It
is worth mentioning that, if we divide the training and testing
portions into portions of size 80% and 20%, it does not mean
that the full triplet constraints will be given for the training
region. Anther hyper-parameter s controls the number of triplet
orderings provided for the training region. In our experiments,
s is usually set to the range of 5 to 20.

Since the ground truth provided in both the DBLP and
CoRA data sets are explicit multi-class labels, we need to
convert them into triplet constraints. One way of achieving this
is to generate triplet constraints, is by setting nodes with a same
label as similar pair and a different label as dissimilar one. In
other words, the triplet constraint (i, j, k) ∈ S is generated by
randomly choosing two nodes vi and vj with the same label.
And vk has a different label with vi and vj .

The implementations of LAD and SSMetric methods use
pairwise constraints instead of triplets. Although straightfor-
ward conversions exist from pairwise settings to triplet in the
most of metric learning based algorithm, we obey their original
implementation by converting triplet constraint to pairwise in
the following way: each triplet constraint (i, j, k) is split into
two different sets that is (vi, vj) as a similar pair and (vi, vk)
as a dissimilar pair. Anther issue for these two baseline is that
they are not able to scale-up to a high dimensional setting.
Therefore, we perform Principal Component Analysis (PCA)
to reduce the dimensionality to 1, 000 as a preprocessing step.

For each data set, we initialize our similarity matrix S by
the link matrix L with a small constant value to each entry. The
purpose of adding a small constant value in S, is to prevent
a row or a column of S without any initial value. Adding a
constant value to every entry of the similarity matrix will not
affect the performance, since we only emphasize the ordered



 

 

  

Fig. 3: The experiment settings; yellow region indicates the
training while blue is the testing entries.

information instead of the explicit entrywise values. Similar
initialization is conducted on the bridging matrix T as well.
To initialize the low-rank matrix U , V and W we use a Laplace
distribution [16] with zero mean and a scale parameter value
of one. In addition, the content matrix C and the link matrix
L is normalized to remove the scale variations.

D. Evaluation Measurements

In most recommendation and link prediction applications,
the recommended items or the retrieval results are usually
presented as the top k most similar candidates to the query. In
this case, the accumulated top-k precision and the normalized
discounted cumulative gain (NDCG) [23] evaluate the perfor-
mance effectively among a wide variety of measures. How-
ever, in order to compute the NDCG score, we are required
to provide a completed ordering information as the ground
truth, which is inapplicable to our experimental settings. The
precision for a particular value of k, is computed as follows:

P@k =
|relevant document ∩ retrieved document|

|retrieved document|
@k.

We averaged the precision across different query nodes in
the network, and used it as the evaluation metric for our
experiments.

E. Results

In this section, we present the results from our proposed
FSL approach and the aforementioned baseline methods on
both DBLP and CoRA data set. All experimental results were
averaged over 10 different runs.

1) DBLP: According to our experimental settings, we
provide each node 30 triplet constraints as the intensional
knowledge and report the comparative performance with other
baseline methods in Figure 4. It is evident that the proposed
method achieves the best performance across all ranges of the
ranks tested. On the the other hand, link-based PMF achieved
the poorest performance. The other methods achieved inter-
mediate performance. The LAD method achieves the second
best performance for learning similarity between authors in the
publication network.

An interesting observation is that all methods using linkage
information performed worse than the content-based methods,
except for the proposed FSL scheme. The reason for this is that
the noisy links can often hurt the proximity approximation.
Predictions from PMF methods are based only on the sparse
noisy links without any global content bias. CFSL utilizes
both content and linkage information. However, the noise en-
coded in the linkage structure prevents good prediction results.
SSMetric is similar to the proposed FSL method which uses
linkage, content and supervision simultaneously. However, it

is particularly poor at handling noise, because of its inability
to prevent similarity propagation along noisy links.

The LAD algorithm incorporates the supervised informa-
tion to learn semantic proximities, which outperform unsu-
pervised content methods. However, the useful information
within the linkage structure can not be utilized to enhance
the performance. The proposed FSL approach is able to
identify these unreliable links and eliminate their contributions
by transferring and fusing the knowledge from content and
supervision. In such a way, influential links can be emphasized,
so that FSL achieves the best performance.

2) CoRA: Since the CoRA data set is somewhat smaller
than DBLP in terms of the number of nodes and links, we
only provided 15 supervised examples per node. We reported
the top 50 retrieval results for each baseline method in Figure
5. We obtain similar results to the DBLP data set, on which
the linkage-based method performed poorly. The PMF method
obtains the worst result. Although the performance of CFSL
and SSMetric is comparable with the standard Euclidean
metric, they are still not quite in the same league as the LAD
approach.

The proposed method outperforms LAD by more than 10%,
starting from rank 5, and retains this performance beyond
this point. It shows that the proposed FSL method not only
estimates the proximity of top candidates correctly, but it also
retains a very high recall in the retrieval tasks. Our proposed
method is very robust, in term of the similarity learning across
different data sets.

F. Parameter Sensitivity

The main parameters of the proposed FSL algorithm are the
weight parameters λi, the portion of supervision information
s (the number of constraints provided in training for each
user), and the rank of matrices U and V (denoted as R). To
validate the robustness of parameters and analyze the effect
of each parameter on the final result, a group of experiments
were conducted on the Clean DBLP Dataset. It is a small
dataset, obtained by cleaning all the noise from DBLP, and
contains links, content and four classes. We use the strategy
in Section VI-C to generate supervision information.

1) Control Parameters λi: The performance with varying
λ1 is shown in Figure 6, in which λ2 is fixed at 7, R = 10
and s = 12. λ1 controls the importance of linkage information
considered in factorization. As shown in Figure 6, the per-
formance is stable when λ1 ≥ 1. The results suggest that as
long as sufficient linkage information is provided, the content
similarity and supervision can be robustly propagated along
the topological structure.

Similarly, the effect of λ2 is shown in Figure 7, and the
performance is robust to parameter setting when λ2 > 3. It
validates the importance of global (content) information on
similarity learning, as hypothesized in Section I. The robust-
ness in parameter choice reflects how optimality is achieved
with the help of underlying topological structure spread with
linkage information.

A comparison between Figures 6 and 7, yields some
interesting observations:

• when λ1 increases, the performance drops slightly;
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Fig. 4: P@k curve on the DBLP data set.
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Fig. 5: P@k curve on the CoRA data set.

• when λ2 increases, the performance improves slightly.

This observation is in agreement with our experimental results
in Section VI-E. For this particular task assignment, linkage
information is not as useful as content similarity.

2) Supervision s: Figure 8 shows the effect of supervision
on the FSL algorithm, fixing λ1 = 1.5, λ2 = 7 and R = 10. It
is obvious that given a certain number of constraints for each
user, i.e. s > 10, the performance is fairly stable regardless of
the value of s. These results suggest the following:

s increases: as more supervision is provided, the FSL algo-
rithm, will adjust the topological structure of networks relying
on trustworthy guidance. In this situation, the information
propagation will be more efficient. On the other hand, dimin-
ishing returns are achieved for increasing s beyond a certain
point.

s is small: In this case, the algorithm focuses most of its efforts
on fitting a small portion of supervision. This has a detrimental
impact on the whole structure of the network. As a result, the
performance is not very good in this range.

In this experiment, the percentage of supervision is ps =
s/N(U), which is approximately 4 × 10−4. This is much
smaller than a typical social network, e.g., Facebook, where
there are hundreds of labeled links (i.e., friendships) on average
for each users. Therefore, the algorithm is practical in real-
world scenario.

3) Low Rank Approximation: R: Finally, the effect of ma-
trix rank R is shown in Figure 9. As observed from the figure,
the performance increases stably after R ≥ 8. Considering the
fact that the samples in the DBLP dataset are labeled with 4
classes, it is feasible to assume R > 4. Typically, the value
assignment of rank R is application-dependent.

G. Noise Tolerance

In this section, we present the performance on error toler-
ance using the large-margin formulation proposed in equation
(21) on the DBLP-clean data set. We tested the FSL method
with different levels of noise in the supervision in figure
10. The color of the histogram indicates the level of noise
injection. Furthermore, the different groups in the histogram
show the retrieval result at different ranks. We observe that
when the noise level is small (1% or 5%) the proposed
method maintains very good results, and the retrieval precision
decreases very slowly with increasing rank. However, when
the noise level becomes high, the FSL method obtains a
poor recall. Overall, Figure 10 demonstrates that our proposed
method is robust to a small-level of error tolerance.
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Fig. 10: Error tolerance: different color indicates the percent-
age of supervision randomly flipped.

VII. CONCLUSION

In this paper, we proposed a novel learning approach,
known as FSL, to measure the node-based similarity in net-
works within a matrix factorization framework. We propose a
holistic model, which leverages network topological structure,
node content and user supervision. The proposed method is
able to ameliorate the impact of noisy linkage structures by
fusing and transferring knowledge from other domains. At the
same time, the reliable linkages are used effectively in conjunc-
tion with content and user-supervision. By embedding content
and links into a unified latent space, the supervision can
correctly guide the factorization process. We show extensive
experiments on real-world data sets. The proposed FSL method
significantly outperforms other state-of-the-art approaches in
node-based retrieval, and is highly robust.
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