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Factorized Variable Metric Methods
for Unconstrained Optimization*

By Donald Goldfarb

Abstract.   Several efficient methods are given for updating the Cholesky factors of a

symmetric positive definite matrix when it is modified by a rank-two correction which

maintains symmetry and positive definiteness. These ideas are applied to variable

metric (quasi-Newton) methods to produce numerically stable algorithms.

1.   Introduction.  This paper is concerned with variable metric (VM) methods,
(sometimes called quasi-Newton methods), for finding a local minimum of a nonlinear
function, f(x), of a vector x = (xx, . . . , xn)' of n variables, where the prime "'" de-
notes transposition.  The fcfh iteration of a VM method, is usually expressed as

(lo        x(*+i> = x(fc>-ik//<fcyk>,   #<*+i> = //w+/?<*>,

where g^ = the gradient, V/(x), evaluated at x^, and rfc is a scalar, usually deter-
mined so that either/(jc(k+1)) = min, f(x{k) - tH^g(k)) or/(jc(fc+1)) </(*<*>).
H^ is a symmetric n x n matrix approximation to the inverse of the Hessian matrix,
G = ffif/dXjdxA, of f(x) atx = x^k\ and E^ is a matrix, typically of rank two,
which is formed from H^ and the vectors

(1.2) y«) =g(k + l) _g(k)

and

(13) S<*)=;t(fc + 1> _*(*),

subject to the condition that H<-k+ '^(fc> = ps^.  (p is almost always required to be 1.)
The corrections E^ used in the most widely known and used VM methods (e.g.,

the Davidon-Fletcher-Powell (DFP), [7], [12], the complementary DFP (comp-DFP), [6],
[10], [18], [25], and the rank-one [5], [8], [23], [26] methods), all belong to the
one-parameter family of correction formulas

0.4) H+=H + ^^+ßrr^s y    y Hy

where r = Hy/y'Hy - s/s'y [5], [18], [25].  To simplify notation, we have suppressed
the superscript (k) and replaced (k + 1) by a "plus".  If a line search is performed at
each step, these methods can all be shown to be superlinearly convergent for f(x) strictly
convex by combining Powell's elegant proof of this for the DFP method [24], with
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FACTORIZED VARIABLE METRIC METHODS 797

Dixon's results for this one-parameter family of methods [9].
If in both the DFP (0 = 0) and comp-DFP (|3 = y'Hy) methods the step length

parameter t is chosen so that y's > 0, and if exact arithmetic is used, then H+ will be
positive definite if H is.  This guarantees that at each step the direction

(1.5) P = -Hg

is downhill as long as the initial H is chosen positive definite.  Unfortunately, if one is
computing on a finite precision machine, then H can become indefinite or even singular
because of rounding errors, leading to failure of the algorithm or premature termination.
Even if the algorithm is designed to handle such eventualities, the nonpositive definite-
ness of H will only be discovered when g'Hg < 0.

Strategies to deal with these difficulties that have been suggested include period-
ically resetting H to the identity /, [1], [22] and rescaling variables [1].  In this paper
the strategy we propose is to use a factorized positive definite approximation, B =
LXDL\ to the Hessian matrix G rather than an approximation H to G~x. L   and D
are, respectively, unit lower triangular and diagonal matrices.   Formula (1) is then re-
placed by formulas for updating L x and D.

Gill and Murray [16] first suggested this approach.  They give two methods for
updating the Cholesky factors L t and D when a symmetric rank-one matrix is added to
LXDL\.  Since the correction terms in (1) can be written as the sum of two symmetric
rank-one terms, their procedures need be perfomed twice when applied to VM methods.
Gill, Golub, Murray and Saunders [15] give further results along these lines for the
factorization LL'.  Modifying LL' by analogs of the methods given below are described
in [20].  Other methods for modifying the Cholesky factors of a positive definite
matrix, when a matrix of rank one is added to it, have also been given by Bennett [2],
Gentleman [14], and Fletcher and Powell [13].

In this paper recurrence formulas are derived for effecting the rank-two modifica-
tion of LXDL\ by expressing it in product form.  Three methods based upon this idea
were first described by the author in [19] and [20].  In the next section, two efficient
methods for orthogonally triangularizing I + zw' are described.  In Section 3, these
methods are applied to VM updating formulas, expressed in product form to give
methods for updating the Cholesky factors of a VM matrix.  The recurrences of Sec-
tion 2, although applied here to a particular problem, are general in nature and may be
useful in other contexts.  A rank-two analog of Gill and Murray's Method B [16], which
is a natural outgrowth of the results of Sections 2 and 3 is presented in Section 4,
while Section 5 outlines a way of coping with negative diagonal elements in this method,
should they arise.  Finally, Section 6 offers some comments and observations on the
methods presented.

2.   Orthogonal Triangularization of / 4- zw'.  Let us consider the problem of
finding an orthogonal matrix Q that will reduce / + zw' to a lower triangular matrix L,
i.e. (/ + zw')Q = L.   Henceforth, the symbols L, Lv D, and Q will always denote lower
triangular, unit lower triangular, diagonal and orthogonal matrices, respectively.

When z = w, Methods 1 and 2 given below reduce to Methods C5 and C2 (called
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798 DONALD GOLDFARB

Method A in [16]) of Gill et al. [15], respectively.  The derivations that follow parallel
those given in [16] and [15] for the symmetric case.  Gill and Murray [16] also give a
method for determining Q so that (L + zw')Q is lower triangular.  When L = I their
method becomes analytically equivalent to Method 1.  However, it does not take ad-
vantage, as does Method 1, of the special nature of the matrices involved.

Method 1:   Using Givens'Plane Rotations.   In this method Q will be formed as a
product of two sequences of Givens' plane rotations ô„_,, . . . , Qx and Qx, . . . ,
Qn_x-  The first sequence of rotations are chosen so that the last n — 1 elements of w
are successively transformed to zeros.  Specially, if we define

(2.1) ß/ = - s,-
"i    "i

ci /+ 1

where

and

then

(2.2)

(1> = w    and    w<»-/+1) = f2/w("-/>,      / = n - 1, . . . , 1,

/•? = W(»-i)    f   win-i)  ,
/ /+1 /    '

w<»-/+1) = (w1,...,w/_1)w/,0, ...,0)'.

Except for the first element w,, all elements of w^ are zero.  Moreover, as pointed
out by Gill et al. [15], the matrices

QU) = QjQj+l ■■•Qn-i>    ;'=l,.--,«-1,

are special upper Hessenberg matrices of the form

(2.3)        ß(/) =
M/   P/9/+1      •"

Sj ^,+ 1^+1   '

»/+!

-s„-i       M„
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FACTORIZED VARIABLE METRIC METHODS 799

Since w("-/+1> = Ö(/)w and ß(/)'ß(/) = /,

w = QUywO-J+D = (vVij . . . , Wf^JfWfqf, ..., Hj^qJ,

where the last equality follows from (2.2) and (2.3).  Therefore, fl.w. = c and qk =
wk/c, k = j, . . . , n.for some arbitrary nonzero constant c.  If wn =£ 0, and we choose
c = 1, then the following recurrence with d • = 1, for all /, can be used to determine
Q}x\  A simple proof of this is given in [20].

Recurrence 1.   1.  Set ßn = l/wn.
2.  For/ = n - 1, . . . , 1, set

rj = 0/+1w/.    s/ = (rf + d//¿/+1 )-'/2
C/   ■   r/S/'

fii = sA+i>   ßj+i=cjßj+i-

The quantities ci- that appear in the recurrences given in this section have been included
so that these recurrences can be used to generate the j3-, 7., and X, that appear in form-
ulas (3.7) and (3.13) of Section 3 for updating the Cholesky factors of a VM matrix.
For the purposes of this section these d- should all be considered to have the value 1.

If wf = 0 for k + 1 < i < n and wk ¥= 0, then all recurrences given in this sec-
tion apply with n replaced by k, and for the purposes of the next section |3. = y, — 0
and X,. = 1 for k + 1 < / < n.  In a computer code any w¿ such that |w.| < e||w||,
should be treated as zero, where e is the machine precision.  Also, one should then not
have problems of overflow since it can be shown that

2<    d»   "i
rf <-'   di^K

It should be clear from the above discussion that

H = (I + zw')Q{x)' = Q(x)' + y1ze'x>

where yx = l/ßx, e\ = (1, 0, . . . , 0), and H is the lower Hessenberg matrix

^iwi + ^izi       -si

H

ßxw2 + yxz2       ß2w2

ßlwn-l +yizn-l   0jW„_i

~ß~lwn + ~ilZn hwn

-s n-2

'ßn-lWn       \wn

By properly choosing a sequence of rotations Qx, . . . , Qn _, to successively reduce the
superdiagonal elements of H to zero, we can transform H into the lower triangular
matrix
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800 DONALD GOLDFARB

ßxw2 + yxz2 X2

ß1w3+71z3 ^a+Va',

• • •

ßiwn + Tiz„ /32w„ + 72z„ • • • ß„_lW„ + 7„_,z„    \,

where the X;-, j3-, and 7- can be computed from

Recurrence 2.   1.  Set 7, = \/(dxßx), Xx - Jxwx + yxzx.
2. For; = 1, ...,«- 1 set

ßf = Cfßf-sfßf+l,     lj = c,yf,

d¡ d-
y,+1 - j— s,t>>   ty+i - t- ^ + *$+,,

/+! "/+1

Vu =/7+iMV+i +T/+iz/+i'

3.  Set X„ = X„.
ß is given by (2.1; with Cy and s;- replaced by c;- and s^ as defined in the above recur-
rence.

This recurrence with d- = 1 for all / follows directly from the identity

\jjwj+1 + T/Z/+1    fy+i w/+1J L- */    9_

[(c$ - ï,^+ ,)W/+ ,   + ^7/2/+ !      (S# + C$+ 1 )W/+ ,   + F/7>/+ j _

and the requirement that cJs~j = X/s-.
Consequently, if ß = Q,, . . . , ß„_,, then (/ 4- zw')Q^'Q =HQ = L.
Method 2:   Using Householder Transformations.  In this method / + zw is re-

duced to lower triangular form by a sequence of n — 1 Householder transformations,
Px, . . . , Pn_x.  The /th step of this method is based upon the use of a Householder
matrix P to transform the first row of a matrix of the form / + (vz — tjw)w' to a
multiple of e,.   In particular,^- has the form

[7 ; o]}/-i
Lo 1 PJU-/+1.

If we partition w and z as
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FACTORIZED VARIABLE METRIC METHODS

w' = [w1 ; w]   and   z — [zx '• l']

and choose P = I - ouu , where
a = vzx-r¡wx,    u = [u • aw'],     X = ± (02 +a2w'w)'A,

(2.5)
0=1+aw,,    p = 9-X   and    a = -l/uX,

then (/ + (^z - r¡w)w')P can be written as

801

0
W^Z — Tjw)

aw
/ + (l>Z~- TJW)w'

1 -op2

-oapw

-oapw

I - aa2ww'

[9 - ou(9p + a2w'w) '. [1 - o(9p + a2w'w)] aw'l

yz + ßw ;        / + (¡>r-f,"vv)vv'    J

where

7= [wx -op(pwx +aw'w)]v,      ß = - {[wx - op(pwl + aw'w)]n + opa},

v — [1 — oa(pwx + aw'w)] v   and    r¡ = [1 - aa(/iWj + úwh>)] r¡ + aa2.

After some algebraic manipulation it can be shown that the top row of the last
partitioned matrix equals [X; 0],

7 = (wx9 + aww)u/X,      ß = - (wx9 + aw'vv)i?/X + a/X,

v~= - v¡X   and    rj = - (r¡ + a2/p)¡X.

Since the submatrix7 + (vz — r¡w)w' has the same form as the original, the entire or-
thogonal triangularization of / + zw' may be specified recursively starting with v = 1 and
■q = 0.  The resulting lower triangular matrix is given by

(/ + zw')Px ■ ■ • Pn_x - L(ß, w, 7, z, X),

where L is defined by (2.4) and the scalars p\-, y-, and X;- are computed from
Recurrence 3.   1.  Set v0 = 1, tj0 = 0.
2.  For/ = 1, ...,«- 1 set

fly = Vf_ , «/ - ï?,_ , W; , 0;. = 1  + fl/ Wf/df,

or   "    w2\Yi

*>m±-w+i&,t)
n     wr

b, = 9,1j»>j + °j    Z    J-,
fc=/+l uk

rf/\f = bfVf.Jtfdf,    ßjiXj = (Ay - bñ_x)¡x2dr

Vf = - Vf_t/\f,    n, = - fo/_i + «//V/)/V

3.  Seta„ = ^_jz„ -i?B_1w„,XB = 1 + anwjdn
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802 DONALD GOLDFARB

with dj = 1 for all /.   Cancellation in the computation of u;. is avoided if the sign of X-
is chosen to be opposite to that of 9 •.

If we define s;- = 2£=/+t w|/dfc, / = 1, . . . , n - 1 and sn = 0, then

s,_l = if - wf/dj,   j = n, n - 1, . . . , 2.

The s-,/ = w — 1, . . . , 1, should be computed and stored prior to using Recurrence 3.
If they are not stored, they can be regenerated in the reverse order in the recurrence
itself, as long as some precaution is taken to prevent any s. from becoming negative
because of rounding errors.

Computing the ß-, y-, and V- either by Method 1 (Recurrences 1 and 2) or by
Method 2 (Recurrence 3) requires just 0(n) operations.  In addition 2(n — 1) and
n — 1 square roots are required, respectively, by these methods.

3.  Updating the Cholesky Factors of a VM matrix.   By replacing H by B, B by
H, y by s, s by y, and ß by ß in formula (1.4), we obtain a one-parameter family of up-
dating formulas for B that are "dual" or "complementary", in the sense of Fletcher
[10], to the family (1.4) for//:

, yy     Bss'B     -   ,
(3.1) B+ = B + ¿f- - -t— + ßrr',y s       s Bs

where

r = Bs/s'Bs - y/y's.

Following Brodlie et al. [3], we can write the above in product form as

(3.2) B+ = (I+vu')B(I + uv),

where

(3.3) u = s + aHy,

t3-4) v = 9xBs + 92y,

aa(c + ab) - ex[(a2d + ab)a + l"|

1 L a2d + 2ab + c J '
02 = a 4

a2d + 2ab + c
and

a = [(a + \)2b2 +(c-b)(b- cx2d)]-1A,

b = y's, c = s'Bs, d — y'Hy and H - B~x.  As in [3], it can be shown that the param-
eters a and ß are related by the equation

-_ bc[a2(b +d) + 2cxb]

(a + \)2b2 +(c- b)(b - a2d)

and that the conditions (a + 1)2¿>2 + (c - b)(b - a2d) > 0, a ± b/d, and y's > 0
guarantee that B+ will be positive definite if B is, assuming exact arithmetic.

Setting a = 0 or - 2b/(b + d) yields the product form of the DFP updating
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FACTORIZED VARIABLE METRIC METHODS 803

formula for B.  As is well known, this corresponds to updating H = B~x by the
comp-DFP formula.  If u and v in (3.3) and (3.4) are multiplied by an appropriate
scalar p and 1/p, respectively, they can be expressed in this case, simply as

y gu = p = - Hg   and   v
((y's)(-p'g)fVz    pg

Similarly, if a = ± \Jb/d, we obtain the comp-DFP updating formula for B and can
write u and i> as

Hy s
u =-;-;—- - ~T    and    v = y.

((y'Hy) (y's))'Á    ^

Let us now consider updating the factorization

(3.5) B = LXDL\.

If we let L = LXD%, then from (3.2) we have that

B+ = (I + vu')LL'(I + uv') = L(I + îw) (I 4- wz')L',

where Lz = v and Lw = LL'u = Bu.
In the previous section, it was shown how to obtain the factorization / + zw =

L Q', where L = L(ß, w, y, z, X) is a special lower triangular matrix of the form (2.4).
Since ß'ß = /, we have that

B+ =LLQ'QL'L' =L+L+',
where

L+ =LL=LXDV2L

is lower triangular.   It should be apparent that

tfhL(ß, w, 7, z, X) = L(ß, w, 7, z, X) = L(ß, w, y, z, e)DV\

where

w = D/2w,      z=Dhî,      X = D1/2X,      e = (l, . . . , 1)',

DA=diag(X1, . . . ,\,),      H=D    0    and     y = D    *y.

Clearly then, B+ = Z,+ Z>+¿+', where

(3-6) L+ =L1L(ß,w,y,z,e),

(3J) /)+=¿ = diag(t/1X2,...,d„X2),

(3-8) Lyw = Bu
and

(3.9) Lxz = v.

If we define w and Tby

(3.10) Lxw = -g
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804 DONALD GOLDFARB

and

(3.11) Lj=y,

then by (1.1)-(1.3), (1.5), (3.7) and (3.8)

w = tw + cíz    and    z = 9xwJr92z.

We also note that we can simultaneously compute the solution w of (3.10) and the
vectors w^.w^ needed in (3.13) below, from

(3.12) £(/+i)+~7(/) = ~(/)

starting with w^ = - g, where ft'^ denotes the ;th column of/,,.  The solution 'z oí
(3.11) and the vectors z ^2\ . . . , 7("^ can also be computed in this way starting with z^1 *
= y.  Finally, we obtain that (3.6) is equivalent to the following updating formulas for
the columns of L x :

/(/)+=/(/)+ t{ ^ +

(3.13)

/=!,...,«-!,

where /?., y-, X-,/ = 1, . . . , n - 1, and X„ can be computed recursively in terms of
w,, Zj and d-, j = 1, . . . , n, by Methods 1 or 2 of Section 2.

ßf and 7- determined by these recurrences and 7., -v., S. and ß- defined above satis-
fy the relations

(3.14)
ßf = ß,idf = ß,\f.

The scalars 9X and 92 can be computed with 0(n) operations and one square root since
the quantities b, c and d, which appear in their definition can be expressed as b =
ty'p = tz'D~xw, c = - t2p'g = tw'D~xw and d =7'D~X7.  Consequently, one full
step of a VM algorithm which updates the factorization (3.5) using (3.7), (3.13) and
either Recurrences 1 and 2 or Recurrence 3 can be done with just 5/2n2 + 0(n)
multiplications and divisions.  This includes the costs of computing the search direction
p from L\p = D~xw and all square roots, since each of the latter require 0(1) oper-
ations.

From (3.6), (3.14) and analogs of (3.12) corresponding to the forward elimina-
tions (3.8) and (3.9) we have that

/(;)+ =,(/) +?LwU+i) +2íz(j+i)
(3.15) *t X'

ß'   w.-lz.],(/)+ ß±wU)+lLzW\
,n- 1.
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FACTORIZED VARIABLE METRIC METHODS 805

As it is possible to show, either from Recurrences 1 and 2 or from Recurrence 3, that
the term in brackets in (3.15) is equal to 1/X?,

(3.16) /(/)+ = (l/\2)/(/) + ± WU) + 1LzW       ; = 1, ...,„-1.' Xy. X;.        '

Fletcher and Powell analyze the growth of rounding errors for formulas analogous
to (3.13) and (3.16) that arise when the Cholesky factors of B are updated to account
for the addition of a symmetric rank-one matrix and show that factors of X- and 1/X-,
respectively, appear in their error bounds [13].  Since use of (3.16) for / = 1, . . . ,
n — 1 entails an additional 1/2«2 operations, Fletcher and Powell follow Gentleman's
idea [14] of only using (3.16) when the term involving X  (i.e., y/df/dj)  in the error
bound for (3.13) becomes dominant. In their case this occurs for X- > 2. It is suggest-
ed that a similar strategy be used with the methods given here.

Fletcher and Powell [13] also report that on the basis of a large number of
applications of their "composite-r" method that X- > 2 on fewer than \/n occasions
on the average.  In our methods, the use of (3.16) should be required even less
frequently, since the values of X- that are computed in our method cannot be greater
than those computed by the composite-r method.  Consequently, the operation counts
(based solely on (3.13)), already given still hold on the average.

It is evident from (3.7) that df > 0,/ = 1, . . . , n.  From Recurrences 1 and
2 one can show that in Method 1

d,                    dj
Xf>-^sf>->0,     ;=1, ...,«-1.

di+i d^d^wf/w2)

If Method 2 is used, then from Recurrence 3 and the assumption that wn i= 0,

X,2 > max   02-f Z     T"   > °>      j=h---,n-l,
1       y d/*=y+i dk)

since if 0- = 0 then a- =£ 0.
Because of rounding errors there is the possibility (with essentially zero proba-

bility), that X„ = 0.  Therefore, one can state, with probability equal to one, that
Methods 1 and 2 preserve the positive definiteness of B.

A. An Alternate Method.  The VM updating formula (3.1) can always be written
in the form

B+ = B + ouu  + tw'.

where

t= ß + us,       o= -7-5
t(u s)

ß(u - u)'s - (us) (u's) ü    ß   u
m's   r u's

and either (i) u = Bs and u = y, or (ii) u = - y and u = - Bs.   If ß = s'Bs or ß =
- y's, then U and u must be defined by (i) and (ii), respectively.  These two special
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806 DONALD GOLDFARB

cases correspond to the variationally derived updates considered by Goldfarb [18].  ß
= (m Y) (u's)/(u~- u)'s, i.e., o = 0, gives the rank-one updating formula.

Hence, given the Cholesky factorization (3.5) for B, we can write

(4-1) B+ =LX(D + oww' + tzz')L'x,

where

Lxw = u    and    /,, z = v.

If ß is chosen so that B+ is positive definite, i.e. ß > cb2l(b2 - dc), then

(4.2) D + oww' +tzz' = LXDL[
r**j    i~*jr**/

must also be positive definite and have a Cholesky factorization L.DL'..  From the
previous section we know that Lx = L(ß, w, y, z, e) is of the special type (2.4).   This
could also be proved by induction; (see [15] for the case z = w). Therefore, the
equations that are usually used for obtaining the factorization (4.2) become
/-> ~ ~
£  dk(ßkwf + ykZf)2 + df = a, + owf + tz)   and

fc=i

£ dk(ßkWf +ykzf) (p></+1) + V(/+1)) + dßfW^+V + 7,^+1))f ,/' = l,...,n,
*:=i

= aw;w(/+,) + 7z;.z<'+1>

where w- and z, are the /th elements of w and z and w*/+ ' ^ and z^/+ ' * are vectors of
the last n — j elements of w and z.  When / = 1, 2j^l11 a- is defined to be zero.

Equating coefficients of w^+x^ and z^'+l^ yields

and

ßj  = h        °Wj  -     Z     <WfcW/   +   TfcZy)^       ,rf,   L        k=x J

, = JLL_ Z  ̂ (^ + 7^)7,],/   ~ L ;  k=x J

If we define

^ = 7/^/,      «f = ßid,

i- 1, ...,«- 1,

/ = 1, . . . , n - 1.

/-i
a/ = CT- Z akßk      K>     /-I.--.,»-1,

t=i

/-»
Tf = T~   £   %?*

fc=l

and
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FACTORIZED VARIABLE METRIC METHODS 807

/-I
*7=- Z   a*Tfc,

k=\

then recurrence relations for ß-, y,, dj and these quantities are given by
Method 3:   Using Cholesky Factorization.
Recurrence A.

1. a, = o,      r, = r,      u, = 0

2. ay. = OjWj + p.fZf,      T}y = Tjzj + ßfWf

df = dj + UfWf + VjZj

ßj =aj/d¡,yj =r\j¡dí

oj+1 =Of-oifßf,      rf+1 =Tf-rif7f
"y+i =My-ay7y,

3-   % = °n»>n + Mil'        *»« = Vn + Wn'

dn=dn+ anWn  + Mir

From (4.1) and (4.2) we have that

¿+ = ¿j + I,¿(ft w, 7, z, 0)    and   D+ = 5.

Since we can derive ananalog of (3.13), the operation count given in the last section
applies to this method as well.  However, no square roots are required.

When z = w this method becomes equivalent to Method B of Gill and Murray [16]
(called Method Cl in [15]).

5.  Special Iterations.  The recurrence of Section 4, although simpler than those of
Section 3, can result in the elements of/) becoming zero or negative because of rounding
errors.  Therefore, it should not be used without some strategy to ensure the positivity
of the df.  If dj becomes < 0, one might use the strategy proposed by Fletcher [11],
that dj be replaced by the smallest J- > 0 in any previous matrix.  A more conserva-
tive strategy would be to replace d. whenever it dropped below some specified e > 0,
by the smallest cf. > e in any previous matrix D.  This could be used with the methods
of Section 3 as well as with the one of Section 4.  Bounding the spectral condition
number of/) has been suggested by Gill, Murray and Pitfield [17].

Strategies of this kind are quite different from those that periodically reset //, and
consequently B, to the identity matrix. These latter approaches can effect drastic changes
in B, since all of the information incorporated in H (and B) is discarded.

In Recurrence 4 if some d¡, say cf., becomes nonpositive, the special iteration given
below can be used to modify the factors Lx and D so that L1DlL\ is positive definite
and, if desired, obtain a new approximation to the optimal solution.  To simplify
matters we will illustrate this special iteration only for the DFP updating formula for
5(0 = 0 in (3.1)).

Special Iteration.   Solve

1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



808 DONALD GOLDFARB

(5.1) L\ p = ef

for p, and let s = tp, x = x + s and y = g ' — g.   The sign and value of t are chosen so
that s'g < 0 and y's > 0 if p'g ¥= 0 and~y's > 0 if p'g = 0.

Update ¿j and D according to the factorized version of the DFP formula for B,
and set x+ = x.

Optional:   if f(x) <f(x), set x+ = 3c.
When ß = 0, the matrix (4.2) becomes

(5.2) D + oww' -dfefe'f,

where Lxw = y and o = \¡y's > 0.
If d¡ > 0,ii= j, u'( D - djCje'j)u > 0.  It is equal to zero if, and only if, u =

aej.  But in that case

u'(oww')u = a2a(w'e)2 = — ( y's)> 0,
r2

since y's = y'(L')~~ xL's = tw'e- > 0.   Therefore, the matrices (5.2) and B+ are positive
definite, and have Cholesky factorizations, even though B may not be positive definite
(i.e. dj < 0).

There are several ways in which this special iteration can be used.  One way is to
apply it directly to the modified factors of B upon first encountering a nonpositive dj
in Recurrence 4.  At this point the first / — 1 column of Lx and / columns of D have
already been updated using Recurrence 4 in conjunction with an analog of (3.13) or
(3.16).  It is interesting to note that when ß = 0 in (3.1), the special iteration only
affects the first / columns of ¿j and D.

An alternate approach is to compute the d¡, ft, and y{, i = 1, . . . , n, from Re-

currence 4 prior to updating Lx and D.   If a nonpositive </• is obtained, a special iter-
ation is performed, computingp from (5.1) with Lx replaced by LXL, where L =
L (ft w, y, z, e) is a special matrix of the form (2.4), ft- = y¡ = 0, ir = /, / + 1, . . . , n,
and ft and y¡, i = 1, . . . , / - 1, are those quantities already computed by Recurrence 4.

One first updates ¿, and D to give /., and D so that B = LXDL\ = LXDL\ +
LXL (oww - djeje'j)LL'x where LxLw = y,o = l/y's > 0 and d¡ < 0. One then adds
the original correction to B and updates ¿, and D. This corresponds to adding to B =
LlDL\ the positive definite rank-two correction term corresponding to the special iter-
ation applied to LXLDL 'L\ before adding the original correction term. Consequently,
the numerical difficulties caused by the closeness of the matrix B + (original correction)
to singularity should be avoided.

This approach can be carried out efficiently if use is made of the fact the Lx = y
and/, x = y can both be solved for* in 0(n) operations when L is special.   However,
an additional 1/2m2 + 0(n) operations are required since computing z and updating Lx
can no longer be done simultaneously.

6.  Comments and Observations.  (1)  All methods presented can be implemented
using only 1/2«2 + 0(n) storage locations since the computation of the vectors w^
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and z"), / = 2, . . . ,«, and the updating of /,, can be incorporated into Recurrences 2,
3 and 4.

The solution w of (3.10) is required to determine the step direction p before the
recurrences are applied.  Computing it using (3.12) or the usual version of forward
elimination would increase the operation count by l/2n2.  The following observation
shows that it can be computed in only 0(n) operations except for the first step.  If
the initial Lx is set to / computing w on the first step is trivial.

Let vv+be the solution of ¿ + vv+ =-g+ =-g~y.  From (3.10), (3.11) and (3.6),
L,Lw+ = /, vv - Lx7.   Therefore,

Lw    = w — z.

Because of the "special" form of/,, this can be solved for w+ in 0(n) operations.
(2) For all members of the one-parameter family of updating formulas (3.2)—

(3.4), except for case of a = 0, the operations count of 5/2n2 + 0(n) aside from
square roots, given for Methods 1 and 2 is valid only if one is willing to approximately
double the storage requirements to n2 + 0(n).  If storage is limited to 1/2«2 + 0(n),
then this count becomes 3n2 + 0(n) since the solution z of Lx7 = y must be compu-
ted before either Recurrence 1 or 3 is applied.

If the DFP updating formula for B (i.e. a = 0) is used, w, 0 x and 02 do not
depend upon z, and Methods 1 and 2 in this special case can be implemented using only
1/2«2 + 0(n) storage locations, 5/2n2 + 0(n) operations per VM step and, respectively,
2« — 1 and n square roots.

Implementation of the traditional formulas (1.4) requires l/2n2 + 0(n) locations
of storage and 3n2 + 0(n) operations per VM step for all cases except the rank-one
formula.

(3) The alternate method given in Section 4 can be implemented for all updating
formulas (3.1) that in theory preserve positive definiteness, using only l/2i?2 + 0(n)
storage locations and 5/2«2 + 0(n) operations.   Unfortunately, one cannot guarantee
for this method that the VM matrix B will not become indefinite on account of round-
ing errors as one can for the methods of Section 3.

(4) Gill and Murray were the first to develop algorithms specifically for updating
the Cholesky factors of a VM matrix.   As presented in their paper [16], their algorithms
require 4w2 + 0(n) operations for a full VM step.   If forward substitutions are carried
out as in (3.12) and use is made of the fact that Lx = y can be solved for x in 0(n)
operations when L is "special", then this count can be reduced to 5/2n2 + 0(n) oper-
ations.

Comments (2) and (3) above apply respectively to Methods A and B of Gill and
Murray [16] with two exceptions.  (These methods are the rank-one counterparts of
Methods 2 and 3.)  Method A (two passes per step) requires twice as many square roots
as does Method 2 and the updating formula requiring the least combined amount of
storage and operations per VM step for Method A is the rank-one formula, rather than
the DFP updating formula for B as it is for Method 2.  A similar statement holds for
Method C5 in [15].  But the rank-one formula does not in general preserve positive
definiteness as does the DFP formula.  Using 1/2«2 + 0(n) storage locations, Method
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A requires approximately 1/2« more operations and n square roots per VM step for
the DFP update than does Method 2. This is worth noting since past computational
experience indicates that this updating formula outperforms all other members of the
one-parameter family of formulas (3.1).

(5) The "composite-f" method of Fletcher and Powell [13] is very closely rela-
ted to Gill and Murray's Method B.  It too requires no square roots and can be imple-
mented using only l/2n2 + 0(n) storage locations and 5/2n2 + 0(n) operations for all
updating formulas (3.1).  It is also guaranteed (by a computationally satisfactory, al-
though somewhat artificial device) to keep the matrix B positive definite.

(6) In their paper [16], Gill and Murray recommend that in quasi-Newton meth-
ods for solving a system of nonlinear equations, g(x) — 0, an orthogonal factorization
of the approximate Jacobian of g(x), B, be used; i.e.

(6.1) B = LQ'.
The factors L and ß are then recurred rather than B or B~x.  Gill and Murray [16]
give one method for doing this.  Typically the modification formula for B has the form
B+ = B + vu' which by (6.1) can be written as L + Q+' = L(I + zw')Q'.

Clearly, the methods of Section 3 can be used to compute the orthogonal factor-
ization / + zw = LQ'.  Hence, L+ = LL and Q+ = ßß.   Because of the special form
of L and Q - Q is the product of a lower and and an upper Hessenberg matrix of the
special type shown in (3.3)—the modification of Z, and Q can be done efficiently.  For
example, if B = LQ', Broyden's first method [4] can be expressed as

\        tww   )     * '

where w, p, and z are defined by Lw = - g, p = Qw, Lz = y = g+ - g, and x+ = x
+ tp.

If Q is stored in product form and some of the ideas of Sections 2 and 3 are
used, it can be shown that one full step of a factorized version of Broyden's method re-
quires approximately 7/2n2 + 0(n) operations and « or 2h - 1 square roots, depend-
ing on which method of Section 2 is used.  This is only slightly more computation than
the standard method requires.

(7) In many applications the Hessian matrix G(x) is sparse.  Since G~l may be
full even if G is sparse, one must work with an approximation B to G rather than an
approximation H to G~x to take advantage of this sparsity.  Sparsity in B can often be
translated into sparsity in L.  Therefore, the methods of this paper may be of some use
in algorithms specifically designed to preserve sparsity.

(8) The methods presented here for updating the factorization L^DL\ can also be
applied to VM methods for linearly constrained optimization problems. Several ways of
doing this are described in [21].
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