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ABSTRACT 

 

Rural highways provide connections between developed areas.  In many instances, two-

lane rural highways that pass through undeveloped areas provide high levels of mobility 

that are accompanied by posted speed limits that exceed 45 mph.  However, it is common 

for two-lane rural highways in Pennsylvania to pass through low-speed, developed areas 

(i.e., rural villages) with posted speed limits that are 35 mph or less.  The roadway section 

between the high- and low-speed environments is referred to as a transition zone.  In 

some cases, transition zone design may be accompanied by changes in roadway 

geometric features; however, it is hypothesized that drivers fail to adjust their speeds to 

comply with the change in the regulatory speed at the low-speed end of the transition 

zone.  In other instances, drivers are only informed of the posted speed limit changes by 

regulatory signs with no corresponding changes in the roadway geometry.   

 Speed data were collected at 20 two-lane rural highway transition zones in central 

Pennsylvania.  At each study site, speed data were collected at four locations: 500 feet 

before the transition zone, at the beginning of the transition zone, at the end of the 

transition zone, and 500 feet after the transition zone.  The location of the sensors 

permitted vehicles to be “tracked,” thus the final analysis database included four speed 

observations collected from 2,859 individual drivers for a total of 11,436 speed 

observations.  Highway characteristic data were also collected at each location, including 

geometric design features, roadside elements, and access density, among others.  The 

primary objective of this research was to develop speed prediction models to explain the 

relationship between the roadway features present along a two-lane rural highway 

transition zone and driver operating speeds.  Two general model specifications were 

considered based on the available speed data.  These included point speeds based on the 

“tracked” vehicles, and speed differentials between successive data collection points in a 

transition zone.    

 In the point speed analysis, four repeated speed measurements were collected on 

each of the 2,859 drivers across 20 different sites.  Longitudinal models were used to 

model these data and compared to the more traditional operating speed modeling 

approach, ordinary least squares (OLS) regression.  Use of OLS regression violates the 
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assumption of independent observations.  The longitudinal models considered in this 

research were panel data models using both the fixed and random effects estimator, 

multilevel models, and generalized estimating equations (GEE).  From the results of the 

analyses it was concluded that a three-level model in which speed observations were 

nested in drivers and drivers were nested in sites is more appropriate in explaining the 

influence of highway characteristics on driver speeds along two-lane rural highway 

transition zones.  Key relationships between highway features and mean operating speeds 

in transition zones are as follows: 

- When compared to a posted speed limit of 55 mph, a speed limit of 45 mph is 

associated with a mean operating speed reduction of approximately 3.5 mph.  

A speed limit of 25 mph is associated with a mean operating speed that is 

approximately 10.5 mph lower than the baseline of 55 mph.  Similarly, a 

posted speed limit of 35 or 40 mph is associated with a mean operating speed 

that is approximately 2.4 mph lower than the baseline of 55 mph.  

- Wider travel lanes and lateral clearance distances are associated with higher 

operating speeds along two-lane rural highway transition zones; a mean 

operating speed increase of 2.4 mph is expected per one-foot of lane width 

increase while a one-foot increase in lateral clearance is associated with a 

mean operating speed increase of 0.15 mph. 

- The presence of curb is associated with a mean speed reduction of 

approximately 4 mph while the analysis indicated that a mean speed reduction 

of 1 mph is associated with a one-unit increase in driveway density.  

- The presence of Intersection Ahead and School/Children warning signs were 

associated with 2 and 1 mph mean speed reductions, respectively, while the 

presence of a Curve Ahead warning sign was associated with a mean speed 

increase of almost 1 mph, when compared to the baseline of other warning 

sign types. 

- Finally, the presence of a horizontal curve was associated with a mean speed 

reduction of 1.5 mph; if the horizontal curve is combined with a warning sign, 

a mean speed reduction of almost 3 mph is expected when compared to the 

baseline of a tangent roadway section.  
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 The results from the three-level model also provided the standard deviation 

associated with each level of the model hierarchy.  The standard deviations of the random 

components from the model developed were: 3.1 mph for highest level (site cluster), 2.1 

mph at the second level (driver cluster), and 6.5 mph at the lowest level (speeds).   

 A second data set was created in which the response variable was change in speed 

along the transition zone.  By considering speed change as the response variable, only 

one data point per vehicle (driver) was available; however, a site cluster could still be 

considered in the model specification.  Use of the speed differential as the dependent 

variable in a statistical model eliminated part of the repeated observation issue present in 

the point speed analysis.  As such, two general modeling methods were considered.  

These included OLS regression and multilevel models in which speeds were nested in 

sites.  The variables that were consistently associated with speed reductions across all 

models were changes in the posted speed limit, reduction in paved shoulder width (1 mph 

reduction per one-foot reduction in paved shoulder width), number of driveways (0.36 

mph reduction per one-unit increase in driveway density), school/children related 

warning signs (8 mph mean speed reduction), length of transition zone (0.8 mph average 

speed reduction per 100 foot increase in transition zone length), and presence of 

horizontal curve that warrants a warning sign (3.2 mph mean speed reduction is expected 

with this type of horizontal curve).  The presence of a Curve Ahead warning sign and 

tangent sections were consistently associated with a speed increase along transition zones 

across all models (3.2 mph average and 2 mph average, respectively).    

 Several independent variables were not statistically significant in the multilevel 

speed differential model when compared to the OLS regression model.  These included 

the change in lane width and in lateral clearance, presence of a curb, and Intersection 

Ahead warning sign.  Although the standard errors of the parameter estimates obtained 

using OLS regression were smaller than those obtained using the multilevel models, the 

multilevel model is a better representation of the nesting structure of driver speed 

differential nested within data collection sites.   
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CHAPTER 1                                                                                    

INTRODUCTION 

 

Rural highways provide connections between developed areas, both residential and 

commercial.  Safety issues may arise when traveling from a high-speed undeveloped to a 

low-speed developed environment.  The roadway section between the high- and low-

speed environments is referred to as a transition zone.  In some cases, transition zone 

design may be accompanied by changes in roadway features; however, it is hypothesized 

that drivers fail to adjust their speeds accordingly.  In other instances, drivers are only 

informed of the required speed changes by traffic signs with no corresponding changes in 

the roadway geometry.  There are currently no geometric design guidelines for transition 

zones on two-lane rural highways.  As such, the objective of this research is to collect 

operating speed, geometric design, roadside, and land use data along two-lane rural 

highway transition zones in Pennsylvania.  Operating speed models are then estimated in 

order to obtain information about which roadway, roadside, and land use features are 

associated with changes in speed along transition zones. 

 

1.1  Background 

In 2004, there were more than 4.0 million miles of publicly-owned highways in the 

United States (U. S.), 77 percent of which are rural roadways (FHWA, 2004).   

Two-lane rural highways must balance mobility and access, especially when passing 

through remote or sparsely developed areas.  For the purposes of this research, a 

“transition zone” is defined as the section of a two-lane rural highway where the 

regulatory speed changes as the roadway passes through a developed area, either 

commercial or residential.  

 Speed limits along high-speed two-lane rural highways typically exceed 40 mph.  

When passing through a developed area, the posted speed on two-lane rural highways is 

often reduced.  The posted speed limit change is often accompanied by an increase in 

access density or pedestrian activity in the low-speed section of the two-lane rural 

highway.  Traffic signs are sometimes the only way of communicating to drivers 

concerning the required change in vehicle operating speeds in transition zones.  
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The Manual on Uniform and Traffic Control Devices (MUTCD, 2003) contains 

guidelines on the size, shape, color, and placement of traffic signs.  The “Speed Limit 

Sign” informs drivers about the limit established by law, ordinance, or regulation, and is 

thus classified as a regulatory sign.  The “Reduced Speed Ahead Sign” informs drivers of 

an upcoming speed limit change; it is classified as a warning sign.  Prior to passage of the 

2003 edition of the MUTCD, the “Reduce Speed Ahead Sign” was classified as a 

regulatory sign.  Figure 1 shows the evolution of the Reduced Speed Ahead sign, from 

the 2000 MUTCD edition, R2-5 series, to the 2003 edition, W3-5 series.  The pre-2003 

speed-zone signs are frequently seen along rural roads in central Pennsylvania.  

  

 

 
Figure 1  Evolution of Reduce Speed Ahead Sign 

 

 Since speed changes should not be abrupt, drivers are warned of speed changes in 

advance.  The Pennsylvania Department of Transportation’s (PennDOT) Publication 212 

“Official Traffic Control Devices” (2006) indicates that a “Reduced Speed Ahead” or 

“Speed Reduction” sign must be installed between 500 and 1,000 feet in advance of a 

speed reduction unless the speed reduction is 10 miles per hour or less. 
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1.2  Statement of Problem 

Rural highways do not serve a vast majority of trips; they often serve traffic volumes less 

than 100 vehicles per day (McShane, 1998).  However, fatal crashes are over-represented 

on rural highways in the U. S.; it has been estimated that approximately 60 percent of the 

more than 40,000 annual vehicle-related fatal accidents occurring in the U.S. take place 

on rural highways (FHWA, 2008).  Evans (1991) compared these fatalities by type and 

functional classification of roads.  His research indicated that if all rural and urban non-

Interstates had the same fatality rate as the Interstate system, then a 50 percent reduction 

in fatalities could be achieved.  Evans concluded that these statistics demonstrate the 

influence that roadway characteristics have on traffic safety.  Therefore, it has been 

recommended that highways should be designed in a consistent manner to ensure that 

driver expectancy is not violated.  The Fatal Accident Reporting System (FARS) 

indicates that nearly 15 percent of fatal crashes in 2005 were attributed to drivers 

traveling in excess of the posted speed limit (FARS, 2005).   

The American Association of State Highway and Transportation Officials’ 

(AASHTO) Policy on Geometric Design of Highways and Streets (2004), commonly 

referred to as the Green Book, contains a collection of design controls and criteria for all 

functional classes of highways and streets.  The Green Book design criteria intend to 

provide consistency among design practices nationwide.  

Design speed is one of the primary design controls that influence highway design.  

The design speed is defined as “a selected speed used to determine the various geometric 

design features of the roadway (AASHTO, 2004).”  In highway design, it is desirable to 

use only a single design speed along a corridor with the anticipation that uniform, 

consistent operating speeds will result.  In the case of transition zones, however, a change 

in operating speed is required to be in compliance with the associated regulatory speed 

change, sometimes resulting in speed discord or inconsistencies, particularly in the low-

speed operating environment.  At the same time, the change in driving environment along 

transition zones may be accompanied by a change in the roadway or roadside design 

features.  For example, the undeveloped rural area with a clear roadside at the high-speed 

end of a transition zone may suddenly transform into a developed area with sidewalks, 

curbs, and a high density of driveways at the low-speed end of a transition zone.  While 
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design guidelines are available for both the high- and low-speed environments at either 

end of a transition zone, there are neither existing guidelines that provide designers with 

guidelines to link these environments nor are there design guidelines that have been 

shown to effectively reduce speeds in transition zones. 

 Safety concerns can arise when drivers fail to appropriately adjust their speeds in 

transition zones.  Since the driving environment changes from high-to-low speed, 

roadway design features along transition zones represent a challenge to the engineering 

profession.  Furthermore, the low-speed environment presents possible safety concerns 

due to the presence of pedestrian activity and the increase in turning traffic (TRB, 2007).  

A recent study sponsored by PennDOT explored the effectiveness of dynamic speed 

display signs (DSDS) in reducing vehicle operating speeds along 12 two-lane rural 

highway transition zone sites in central Pennsylvania (Donnell and Cruzado, 2007).  The 

DSDS devices were located 500 feet after the end of the transition zone and speed data 

were collected before, during, and after implementation of the DSDS.  The before data 

indicated that drivers fail to adjust their speeds along the transition zone; mean operating 

speeds were 1.4 to 13.9 mph higher than the speed limit at the DSDS location while 85th 

percentile speeds were 7 to 20 mph higher than the posted speed limit.  During DSDS 

implementation, both mean speeds and 85th percentile speeds next to the DSDS were 

lower by an average of 6 and 7 mph, respectively.  However, after the DSDS was 

removed, speeds increased to levels similar to the before data collection period 

suggesting that DSDS were only effective in reducing speeds along transition zones while 

in place and activated. 

 Several geometric variables can influence driver behavior as reflected in past 

research studies (Yagar and Van Aerde, 1983; Poe and Mason, 2000).  Therefore, 

identifying which geometric design elements are associated with operating speeds along 

transition zones can be the first step in the development of transition zones design 

guidelines. 

 

1.3  Importance of Research to Engineering 

The Transportation Research Board’s Committee on Geometric Design (AFB10) and 

Operational Effects of Geometrics (AHB65) published a strategic research needs 
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document to outline a program to advance geometric design into the 21st century (TRB, 

2007).  One of the 22 high-priority research needs identified in this long-range plan was 

to develop design guidelines for high-to-low speed transition zones.  The objective of 

such a research project is to develop treatments and procedures to design high-to-low 

speed transitions in rural areas.  It was recommended that changes in the alignment, 

vertical profile, and roadway and roadside cross-section be considered as methods to 

slow vehicle speeds in transition zones.  A first step in this process is to estimate speed 

prediction models along rural highway transition zones to determine the roadway, 

roadside, and land use characteristics that are associated with driver operating speeds in 

these areas. 

 

1.4  Research Objectives 

Design guidelines are currently not available for the design of transition zones on two-

lane rural highways.  The development of design criteria for transition zones may 

produce more uniformity in the roadway and roadside features encountered by motorists 

along these highway segments.  Past research studies have indicated that geometric 

design, roadside, and land use features influence driver speed choice (Yagar and Van 

Aerde, 1983; Poe and Mason, 2000; Figueroa and Tarko, 2005), thus changes in these 

features may influence vehicle operating speeds when high-speed rural highways pass 

through rural communities.  By identifying the highway features that are associated with 

speed reductions along transition zones, a contribution can be made to the development 

of design guidelines for high- to low-speed highway sections.  As such, the scope of this 

research is to identify the roadway, roadside, and land use characteristics that are 

associated with reductions in operating speeds along two-lane rural highway transition 

zones.  Point speed and speed differential models are estimated using a variety of 

longitudinal and hierarchical modeling methods. 

 In past operating speed modeling literature, most models have been developed 

using ordinary least squares regression.  Although linear regression models were 

specified in this research, other analysis methods were also explored and compared in an 

effort to determine if these alternative methods provide advantages over conventional 

operating speed modeling methods.  The specification of alternative speed prediction 
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models may be helpful in overcoming the limitations of the ordinary least squares 

regression model in modeling vehicle operating speeds in transition zones.   

 

1.5  Organization of Dissertation 

This dissertation is divided into five subsequent chapters.  The second chapter discusses 

previous research studies that are related to the present study and have helped shape the 

proposed research.  Specifically, those studies that have estimated speed prediction 

models as a function of the roadway environment are critically synthesized for both high-

speed, two-lane rural highways and low-speed urban streets.  The third chapter describes 

the site selection process and data collection methods.  The fourth chapter discusses the 

analysis methods used in this research.  The results of the analyses and the conclusions 

from this research are discussed in the fifth and the sixth chapters, respectively. 
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CHAPTER 2                                                                                    

LITERATURE REVIEW 

 

Rural highways do not serve a vast majority of vehicle trips and often have traffic 

volumes less than 100 vehicles per day (McShane, 1998).  However, approximately 77 

percent of publicly-owned highways in the U.S. are classified as rural (FHWA, 2004).  

More than 50 percent of fatal crashes in the U.S. occur on two-lane rural highways 

(NHTSA, 2006).  Because fatal crashes are overrepresented on two-lane rural roads in the 

U.S., these roadway types were considered the highest priority research need by the 

Transportation Research Board’s Committee on Geometric Design (Choueiri, et al., 

1994).  To address this need, the first version of the Federal Highway Administration’s  

(FHWA) Interactive Highway Safety Design Model (IHSDM) contains safety prediction 

and design consistency modules that can be used to assess the safety and operational 

performance of current and planned two-lane rural highways (Krammes and Hayden, 

2003).   

 Published literature related to speed prediction along rural highway transition 

zones between high- and low-speed operating environments is limited.  As such, this 

literature review focuses primarily on speed prediction models that were developed 

exclusively for both high- and low-speed operating environments.  High-speed roadways 

are considered those with a design speed of 50 mph or greater while low-speed roadways 

are considered those with a design speed of 45 mph or less (AASHTO, 2004).  Much of 

the high-speed operating speed literature is focused on two-lane rural highways and some 

of this literature serves as the basis for the IHSDM design consistency module.  Most of 

the low-speed operating speed literature relates to low-speed urban streets.  In all cases, 

speed prediction literature that contains roadway, roadside, and land use characteristics 

are synthesized in this section of the dissertation.   

 

2.1  High-Speed Rural Highways 

Design speed is a fundamental criterion in roadway design as it is used to establish the 

geometric design features of a highway (AASHTO, 2004).  The design speed concept is 

intended to ensure geometric design consistency.  Several operating speed studies have 
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been published on two-lane rural highways that specifically address the relationship 

between the design speed and operating speed that result from the design process.  

Operating speeds should be in harmony with the roadway’s design speed; discrepancies 

between design and operating speeds are evidence of a lack of design consistency.  

Differences between design and operating speeds led McLean (1979) to develop 

an alternative concept to the design speed.  His research indicated that roadways with 

design speeds of 70 mph (110 km/hr) or greater had operating speeds that were in 

accordance with the design speed concept (i.e. operating speeds were uniform and lower 

than the design speed).  McLean showed that operating speeds along horizontal curves on 

roadways with posted speed limits between 55 and 70 mph (90 and 110 km/hr) were 

lower than the design speed.  On roadways with posted speed limits below 55 mph (90 

km/hr), operating speeds exceeded the design speed on horizontal curves.  McLean 

introduced a new concept which indicated that desired operating speeds can be related to 

the roadway’s terrain classification and alignment.  

McLean’s study considered speed data from 230 sites on two-lane rural highways 

in Australia, collected on both horizontal curves and the upstream approach tangent.  The 

term “desired speed” was used to identify the speed under free-flow conditions when 

drivers are not constrained by alignment features, represented by the speed along tangent 

sections.  The data collected indicated that this desired speed was influenced by road 

function, trip purpose and length, proximity to urban centers, overall design speed, and 

terrain type.  For horizontal curves with design speeds of 60 mph (100 km/hr) and above, 

results showed that 85th percentile speeds tend to be less than the design speed of a 

horizontal curve; however, the reverse is true along horizontal curves with lower design 

speeds.  It was determined that available sight distance was correlated with 85th percentile 

operating speeds, but explained less than one percent of the variability in a statistical 

model.  As such, it was not included in the model specified below: 

4
2

3 1015.810126.3464.08.53)85( ×⎟
⎠
⎞

⎜
⎝
⎛+×⎟

⎠
⎞

⎜
⎝
⎛−+=

RR
VV FC

   (1)
 

where: VC(85) = 85th percentile curve speed (km/hr); 

 VF = desired speed of the 85th percentile car (km/hr); and 

 R = curve radius (m). 
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The parameters included in equation (1) were statistically significant at the 99 

percent confidence level.  The coefficient of determination (R2) was 0.92.  McLean 

concluded that the horizontal alignment influences vehicle operating speeds on two-lane 

rural highways.   

McLean also indicated that in order to achieve a design that meets driver 

expectancies, horizontal curves should be designed in a way that will generate speeds 

which do not differ by more than 5 mph (10 km/hr) along the entire alignment.  It was 

also recommended in the study that changing the speed environment by providing a 

sequence of carefully designed horizontal curves with each having a predicted speed that 

is consistent with design guidelines can also promote design consistency.  McLean 

indicated that “when going from a high- to a low-standard, the predicted speed on 

sequential curves should not differ by more than 10 km/hr (5 mph).” 

Yagar and Van Aerde (1983) studied 10 different environmental and geometric 

design features that were thought to influence operating speeds along two-lane rural 

highways at 35 locations in Ontario, Canada.  The authors theorized that speeds were 

dependent upon upstream design features along a highway rather than the instantaneous 

geometric features of the roadway.  A speed prediction model was developed using a 

multiple linear regression model.  Five variables were statistically significant in the 

model.  These included:  vertical grade, lane width, land use, access, and the posted speed 

limit.  The speed prediction model developed was: 

SLACLULWGY 7.083.87.58.13.93 −−−−−=     (2) 

where: Y = mean speed (km/hr); 

G = grade (percent); 

LW = lane width (m); 

LU = land use factor which is set if the adjoining land has access 

driveways; it represents the fraction of highway on which land use 

was present upstream (decimal value); 

AC = access from other roads; weight value ranging from 0 (no access by 

any roads) to 4 (controlled intersection); and 

SL = posted speed limit (km/hr).  
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The model explained 85 percent of the variability (R2 = 0.85) in the observed 

speed data.  The radius of curve, presence of an auxiliary lane, available sight distance, 

and presence of a centerline were not statistically significant in the model and were 

therefore not included.  A variable that represented the distance to lateral obstructions 

was statistically significant, but it was not included in the final model because its effect 

was in the opposite direction of what was expected.  The results of this study, especially 

the rejection of curvature as potential predictor variable, are not consistent with the 

majority of operating speed studies (Andjus and Maletin, 1998; Lamm, et al.; 2002; and 

Richl and Sayed, 2005).  

Andjus and Maletin (1998) studied operating speeds on horizontal curves along 

two-lane rural highways in Yugoslavia.  It was recognized that the main concern in road 

design is drivers’ response to the geometric features present along a roadway.  Among all 

speed parameters considered, the 85th percentile speed from free-flow passenger cars was 

identified as the speed parameter that best represented driver response to the roadway 

geometry, particularly along horizontal curves.  A total of nine sites were selected for the 

study.  Study sites included horizontal curves with radii ranging from 165 to 2460 feet 

(50 to 750 meters).  To isolate the influence of roadway cross-section elements, sites with 

speed limit signs and intersections were excluded as well as sites with grades steeper than 

4 percent.  Speed data from free-flow passenger vehicles, identified as those with time 

headways greater than 7 seconds, were collected during daylight and dry pavement 

conditions.  Regression models were specified to determine the relationship between 

horizontal curve radius (R) and 50th and 85th percentile operating speeds (V50 and V85, 

respectively).  The resulting models are shown in equations (3) and (4) below: 

 49.14ln92.1650 −= RV  (R2 = 0.975)     (3) 

 69.11ln75.1485 −= RV  (R2 = 0.969)     (4) 

 Although horizontal curve radius was the only variable included in the speed 

prediction model, the authors indicated that there are other factors that influence 

operating speeds.  The authors suggested in their study that vehicle type and driver 

characteristics should be included in speed prediction models. 

 Polus, et al. (2000) developed speed prediction models on tangent sections of two-

lane rural highways with low volumes in order to determine which geometric design 
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features explain the variability in vehicle operating speeds.  A database from 6 states 

(Minnesota, New York, Pennsylvania, Oregon, Washington, and Texas) with traffic 

volumes less than 2,000 vehicles per day included speed data from free-flow vehicles 

(time headway of at least 5 seconds) collected during off-peak hours and during daylight 

and dry pavement conditions.  Speed limits were between 45 and 70 mph (75 and 110 

km/hr).  

 Initially, a single model to predict speed on tangents was developed, which was 

termed a “geometry measure model.”  These models had a low coefficient of 

determination (R2), so a family of models was considered in order to obtain better speed 

predictions; these models were termed “group models.”  The primary variables 

considered in the analysis included tangent length, posted speed limit, enforcement level, 

curvature before and after the tangent, vehicle deceleration and acceleration 

characteristics, grade or general terrain, roadway width, roadside slopes, and presence of 

spiral curves.  Secondary variables considered in the analysis were those related to driver 

workload and speed-choice decisions.  Initially it was concluded that, along short 

tangents, operating speeds are influenced by the geometry of the preceding and 

succeeding curves; additional factors, such as the posted speed limit and enforcement 

level appeared to influence operating speeds on long tangent sections.  

The database was grouped according to several combinations of tangent length 

(small, intermediate, and short) and radii (small, intermediate, and reasonable) and 

different models were developed for these combinations.  The resulting regression 

models are shown in Table 1.  
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Table 1  Models Developed by Polus, et al. (2000) for Several Radius and Tangent 

Combinations 

Radii (R1, R2) Tangent Model R2 Additional Comments 

Less or equal 
than 250m 

Less than 
150 m SGM

SP 324011.101 −=  0.553 

GMS = geometric measure 
equal to the average of the 

radii of previous and 
following curve (m) 

Less or equal 
than 250 m 

Between 150 
m and 1000 

m LGM
SP 3184405.94 −=  0.684 ( )

100

2/1
21 RRTL

GM L
××

=  

Less or equal 
than 250 m 

Between 150 
m and 1000 

m 
( )LGMe

SP 00108.0

107.28105 −=  0.742 

To be used when the 
maximum 85th percentile 
speed is established as 65 

mph (105 km/hr) 

Any reasonable 
radius 

Greater than 
1000 m ( )LGMe

SP 00012.0

953.22105 −=  0.838 
Radius of horizontal curve 

does not violate the 
criterion for design speed 

Legend:   
SP = 85th percentile speed (km/hr) 
TL = tangent length (m) 
R1, R2 = previous and following curve radii (m)

  

 Ottesen and Krammes (2000) evaluated different types of regression models for 

predicting 85th percentile speed on approach tangents and at the midpoint of a horizontal 

curve.  Data from 138 curves and 78 approach tangents on 29 two-lane rural highways in 

5 states were analyzed.  Design speeds ranged between 25 to 60 mph (30 and 95 km/hr) 

and grades were less than 5 percent.  The authors evaluated 4 different regression model 

forms: linear, exponential, inverse, and polynomial.  A prediction model for speed on the 

approach tangent was not successfully developed.  For speeds at the midpoint of a 

horizontal curve, the results of the analyses showed that all regression types had similar 

values for the coefficient of determination, R2, ranging from 0.80 to 0.82.  Therefore, the 

authors chose to recommend the following linear regression because of its simplicity and 

practicality:  

 TVDLLDV 8595.012.00049.029.162.4185 +−+−=    (5) 

where:  V85 = 85th percentile speed at midpoint of curve; 

 D = degree of curvature, degrees; 

 L = length of curve; and 

V85T = speed of approach tangent. 
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The model shown in Equation (5) had a coefficient of determination of 0.90.  The 

goodness-of-fit for the model with only the degree of curve as an explanatory variable 

was 0.80.  Adding length of curve and its interaction with degree of curve only increased 

the R2 value to 0.81.  The authors concluded that a model with only degree of curve is the 

most appropriate and that Equation (5) is “only useful if approach tangent speeds are 

actually measured.”  The authors also concluded that when the degree of curve is less 

than 4, the operating speeds on the curve are the same as those on long tangents.  

Schurr, et al. (2002) studied the relationship between design, operating, and 

posted speeds along horizontal curves on two-lane rural highways in Nebraska.  Various 

geometric design elements were considered, including length of curve, deflection angle, 

radius of curve, and superelevation.  The designated design speed and posted speed limit 

for the study sections were also considered in the analysis.  In order to isolate the 

influence of geometric design features on operating speeds, only sites with fair or better 

pavement surface conditions were considered.  Two sensors were placed at each study 

site; the first was placed along the approach tangent, at least 600 feet (180 m) before the 

PC, and the second sensor was placed at the midpoint of the horizontal curve.  A time 

headway of at least five seconds was used to identify free-flow vehicles.  Only passenger 

cars during daylight and dry pavement conditions were included in the analyses. 

The models developed considered the following operating speeds as dependent 

variables: mean, 85th percentile, and 95th percentile.  The independent variables 

considered in the analysis were radius of curve, length of curve, length of approach 

tangent, intersection angle, direction of curve, superelevation, design speed, posted speed, 

average daily traffic (ADT), roadway width, shoulder width, surfaced shoulder width, 

percent heavy vehicles, approach grade, departure grade, length of vertical curve, and rate 

of change of vertical curve.  

The results of the analyses showed that the statistically significant variables 

influencing mean speeds at the midpoint of the curve were intersection angle, length of 

curve, and posted speed limit.  The independent variables significantly influencing 85th 

percentile operating speeds were approach grade, intersection angle, and length of curve.  

Finally, the variables identified as significant in the 95th percentile operating speed model 

were intersection angle, length of curve, and ADT.  Table 2 shows the regression 
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equations obtained for each of the response variables considered along with their 

respective coefficients of determination (R2).  

 
Table 2  Speed Prediction Models (Schurr, et al., 2002) 

Response Variable Regression Equation R2 

Mean Speed (km/hr) 67.4-0.1126Δ+0.02243L+0.276Vp 0.55 
85th Percentile Speed (km/hr) 103.3-0.1253Δ+0.0238L-1.039G 0.46 
95th Percentile Speed (km/hr) 113.9-0.122Δ+0.0178L-0.00184ADT 0.41 
Legend:  

Δ = deflection angle (decimal degrees) 
L = length of curve (m) 
Vp = posted speed limit (km/hr) 
G = approaching grade (percent) 
ADT = average daily traffic (vpd) 

 

The design speed, which was inferred from the geometric elements of the 

roadway, was less than the 95th percentile operating speeds at 17 of the 40 sites 

considered in the study.  This led to the conclusion that 95th percentile operating speeds 

are somewhat constant when design speed is not considered and that “drivers determine 

their desired speed on the basis of what they perceive to be reasonable for certain 

roadway types.”  

The study performed by Schurr, et al. (2002) also included binomial proportion 

tests for comparisons between predicted 85th percentile operating speeds and observed 

85th percentile operating speeds at horizontal curve midpoint locations.  The results 

indicated that there is a poor fit between these two parameters.  The speeds from curve 

and tangent sections were compared using paired t-tests.  The results showed that few 

sites had statistically similar operating speed parameters between the two locations at the 

95 percent confidence level.  This was true for locations with speed limits of 55 and 60 

mph (90 and 100 km/hr), thus the authors concluded that drivers choose more uniform 

speeds at locations where the speed limit is 65 mph (105 km/hr).  The authors indicated 

that this could be attributed to the fact that sharper curves are located on roadways with 

speed limits of 55 and 60 mph (90 and 100 km/hr).  The only factors found to 

significantly influence operating speed on tangent locations were posted speed (for the 

three speed parameters) and ADT (for 85th and 95th percentile operating speeds).  It was 

then concluded that large changes in direction cause drivers to slow their speeds; long 
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curves cause drivers to increase their speeds since they have more time to adjust the 

vehicle to the radius of the curve.  The authors recommended that speed models should 

include the posted speed limit as an explanatory variable.  

Lamm, et al. (2002) focused on the parameters influencing the frequency and 

location of accident clusters by investigating reports from United States, Germany, 

Greece, and Italy.  Since previous studies suggested that abrupt changes in operating 

speeds, mainly caused by changes in horizontal alignment, are the leading cause of 

accidents on two-lane rural roads, the authors explored highway geometric design 

features that influence the consistency of operating speeds.  Three safety criteria for two-

lane rural highways were used to analyze highway safety; the first two safety criteria 

were related to speed differentials.  The safety criteria were: 

1. The difference between design speed and driving behavior.  This was defined 

as variations in observed 85th percentile speeds which are indicators of design 

consistency.  

2. The difference between observed 85th percentile speeds on successive design 

elements. 

3. The difference between side-friction assumed and side-friction demanded for 

design at 85th percentile speeds on curves. 

 The goals of the safety criteria were: (1) to select a design speed that it is constant 

throughout the entire roadway for design consistency and which should be represented by 

the 85th percentile operating speeds, (2) to achieve constant 85th percentile operating 

speeds, and (3) to obtain a well-balanced driving dynamic sequence of individual design 

elements.  The parameters considered to evaluate the effects on traffic safety were: 

curvature change rate of a single curve, length of curve, superelevation rate, lane width, 

shoulder width, sight distance, percent vertical grade, and traffic volume.  Operating 

speed data were collected on both tangent and curve sections.  The study concluded that 

curvature change rate (CCRS) was the most successful parameter in explaining most of 

the variability in operating speeds as well as accident rates.  All other parameters were 

not statistically significant at the 95 percent confidence level.  

The authors also developed equations for predicting 85th percentile operating 

speeds along horizontal curves for two ranges of vertical grades: one equation was 
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developed for roadway sections with vertical grades equal to or less than 6 percent and a 

second equation for roadway sections with vertical grades greater than 6 percent.  The 

only parameter included in these equations was curvature change rate, CCRS.  The 

equations developed for these two criteria, along with the coefficients of determination 

R2, are shown in Table 3.   

 

Table 3  85th Percentile Speed Prediction Models (Lamm, et al., 2002) 

Grade Equation R2 

≤ 6% SS CCRCCRV ⋅−⋅⋅+= − 071.010231.10585 25  0.98 

> 6% SSS CCRCCRCCRV ⋅−⋅⋅+⋅−= −−− 22539 2610.41061.1241.38685  0.88 
 

Figueroa and Tarko (2005) developed speed prediction models on two-lane rural 

roadways in Indiana to determine which geometric elements influence vehicle operating 

speed.  The study recognized the difference between the mean speed and speed dispersion 

factors, justifying the need for developing a speed prediction model that included both.  

Data were collected at 158 sites during daylight hours under favorable weather 

conditions.  Only free-flow vehicles were considered for the study.  Two speed prediction 

models were developed using ordinary least squares regression: (1) operating speeds 

along tangent sections and (2) operating speeds along horizontal curves.  In the tangent 

model, the speed limit binary variable explained the greatest amount of variability in the 

mean speed and speed variance models.  Other factors that were included in this model 

were available sight distance, cross-section dimensions, presence of intersections, truck 

percentage, and vertical grades.  Equation (6) shows the regression model used to 

estimate operating speeds on tangent roadway sections: 

( )
( ) ( ) ( ) ( )CLRZPAVZINTZGRAZ

PSLZZFCUSWGSW
PAVINTSDSD

RESGRAPSLTRV

PPPP

pp

P

012.0038.0292.0061.0

428.1982.5233.2054.0394.0
04.0422.01067.11038.2

034.1131.0082.3071.0137.57

50

263
50

−−++

++−++
+−×−×+

−−−−=
−−

 

(6) 

 where: VP = operating speed corresponding to a percentile P (mph); 

 TR = percentage of trucks (percent); 
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 PSL50 = equal to 1 if posted speed limit is 50 mph (80 km/hr); equal to 0 if 

 posted speed limit is 55 mph (90 km/hr); 

 GRA = highway grade (percent); 

 RES = equal to 1 if segment has 10 or more residential driveways per mile; 

 0 otherwise; 

 SD = sight distance (ft); 

 INT = equal to 1 if an intersection is located 350 ft (110 m) before or after 

 the spot; 0 otherwise; 

 PAV = pavement width (ft); 

 GSW = total gravel shoulder width (ft); 

 USW = total untreated shoulder width (ft); 

 CLR = clearance distance including total width of shoulder regardless of 

 type (ft); 

 FC = equal to 1 if the spot is located on a curve with a radius of 1700 feet 

 (520 m) or more; 0 otherwise; and 

 Zp = standardized normal variable corresponding to a selected percentile.  

 The model developed to predict operating speeds along horizontal curves included 

the following four explanatory variables: available sight distance, degree of curve, 

maximum superelevation rate, and presence of residential driveways.  Equation (7) shows 

the regression model used to estimate operating speeds on a horizontal curve: 

 
( ) ( )SEZDCZZSE

SEDCRESSDV

PPp

p

199.0236.0158.4624.0

954.7541.2693.21044.3664.47
2

3

−++−

+−−×+= −

  (7) 
 

where:  DC = degree of curvature (degrees); and 

 SE = maximum superelevation rate (percent). 

 The models for predicting operating speeds along tangent sections and horizontal 

curves had coefficients of determination, R2, of 0.844 and 0.932, respectively.  The study 

performed by Figueroa and Tarko (2005) demonstrated that cross-section variables, such 

as pavement width and lateral clearance distance, influence operating speeds along 

tangent sections; an increase in any of the lateral dimensions of the cross-section is 

associated with an increase in operating speeds.  
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 Design consistency is primarily evaluated by calculating the speed differences 

between tangent and curve sections, thus radius of curve is generally the only variable 

included in speed prediction models.  Recognizing that drivers perceive horizontal curves 

differently when combined with vertical curves, Richl and Sayed (2005) evaluated 12 

already developed speed prediction models in order to incorporate the effects of changes 

in vertical alignment.  The speed prediction models were evaluated with speed data from 

two sites: an existing alignment with a posted speed limit of 50 mph (80 km/hr) and 

advisory speed limit signs at some horizontal curve locations ranging from 30 to 45 mph 

(50 to 70 km/hr), and a proposed alignment with design speeds between 55 and 50 mph 

(90 and 80 km/hr). 

The authors hypothesized that the combination of vertical and horizontal curves 

may create an optical illusion causing drivers to perceive the radius of a curve differently 

from its actual radius.  Using linear regression, an equation was then developed that 

explains the relationship between perceived radius (dependent variable) and actual radius, 

vertical curve, and the combination of both (independent variables).  The model 

developed was: 

VRVRR AAP 125.011.132953.028.51 +++−=     (8) 

where: RP = perceived radius (m); 

RA = actual radius (m); and 

V = indicator variable for vertical crest, equal to 1 for crest vertical curves, 

0 for sag vertical curves. 

The coefficient of determination (R2) for the model shown in Equation (8) is 

0.996.  The speed prediction models were then evaluated for both actual and perceived 

radius of horizontal curve.  The results showed that the majority of the speed prediction 

models provide similar speed values among each other.  Using the value of perceived 

radius instead of the actual radius resulted in an increase in speed variability on both 

alignments, the greatest speed differential being the combination of a sharp horizontal 

curve and a short crest vertical curve.  The authors recommended using perceived radius 

for design consistency evaluation.  

 Highway designers use the design speed to determine the geometric elements of a 

roadway.  They assume that the design speed will be equal to or exceed the posted speed 
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limit, and that the posted speed should be equal to or greater than the 85th percentile 

operating speed.  Speed harmony or consistency is achieved when the design, operating, 

and posted speeds are compatible.  Achieving operating speed consistency is desired 

since a “consistent roadway design should ensure that most drivers would be able to 

operate safely at their desired speed along the entire alignment (Schurr, et al., 2005).”  

Many studies have focused on speed differentials as a measure of design consistency.  

Research conducted by McFadden and Elefteriadou (2000) assessed the 

implication of using the 85th percentile operating speed for evaluation of design 

consistency.  The research considered speed data from at least 75 vehicles at 21 sites in 

Pennsylvania (12 sites) and Texas (9 sites).  The criteria for site selection included rural 

highways, in level to rolling terrain, with design and posted speeds of less than 70 mph 

(110 km/hr), and low-traffic volumes (500 – 4,000 vpd).  In order to isolate the effects of 

horizontal curvature on operating speeds, approach tangents were limited to a minimum 

of 200 meters (656 ft) and the vertical alignment was limited to an absolute grade of 5 

percent.  Data collection consisted of information on alignment geometry, cross-section, 

weather, traffic control devices, light conditions, and terrain and environment.  Speed 

data were collected using a lidar gun, starting 200 m (656 ft) before a horizontal curve 

and continuing 200 m (656 ft) after the curve.  The data only included passenger cars 

considered to be free-flow vehicles determined using a minimum time headway of five 

seconds.  

Prediction models were developed to estimate 85th percentile speed reduction due 

to the introduction of a change in alignment (i.e. horizontal curve).  Scatter plots and 

correlation analyses were used to determine if there was a relationship between the speed 

reduction and the geometric design features of the roadway.  The results indicated that 

there is a statistically significant relationship between speed reduction and the length of 

approach tangent, radius of curve, deflection angle, pavement width, shoulder width, and 

posted speed limit.  The OLS regression models developed by McFadden and 

Elefteriadou (2000) are shown in Table 4.  
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Table 4  85th Percentile Speed Reduction Models Due to Introduction of a Horizontal Curve 

(McFadden and Elefteriadou, 2000) 

Model # Model Adj. R2 
1 V85redux=-14.9+0.144V85PC200+0.0153LAPT+(954.55/R) 0.712 

2 V85redux=-0.812+(998.19/R)+0.017LAPT 0.603 
Legend: 

V85redux = estimated 85th percentile speed reduction (km/hr) 
V85PC200 = 85th percentile speed 200 meter prior to point of curvature (km/hr) 
LAPT = length of approaching tangent (m) 
R = radius of curve (m) 

 

 The authors concluded that using operating speed profile models at point 

locations to evaluate design consistency underestimates the actual speed reduction of 

drivers along a tangent-curve combination.  Rather, the use of a single 85th percentile 

speed reduction measure as a design consistency tool contains more detailed information 

about driver performance when approaching horizontal curves.  The authors also 

concluded that using only the midpoint location on the approach tangent and midpoint 

location of the horizontal curve to compute speed reductions does not capture actual 

minimum and maximum operating speeds and, therefore, collecting operating speed data 

at several locations approaching and within horizontal curves should be used to determine 

the speed reduction of drivers.  

 A study by Park and Saccomanno (2005) considered the difference in 85th 

percentile speeds between successive highway elements in order to evaluate design 

consistency.  The authors addressed the issue of using aggregate data (“ecological 

fallacy”) from a speed distribution to model operating speeds.  The authors recommend 

use of disaggregate data to model vehicle operating speeds. 

 Normally, the 85th percentile speed differential, (ΔV85) is calculated as the 

difference between the 85th percentile speed at a point on the approach tangent and the 

85th percentile speed at the midpoint of a horizontal curve (i.e., the difference between 

point 85th percentile speeds on two successive elements).  The authors hypothesized that 

a better approach is the use of disaggregate data, and that 85th percentile speed 

differentials should be the 85th percentile of speed differences of individual drivers (the 

85th percentile of individual speeds differentials).  The authors used linear regression to 

specify models of operating speed using both aggregate and disaggregate data in order to 
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address this issue.  Data from 18 tangent-curve combinations on two-lane rural highway 

sections were considered for this part of the analysis.  When using the speed at the 

midpoint of the following horizontal curve as the dependent variable, the speed on the 

approach tangent was not statistically significant when using the aggregate data but was 

found to be statistically significant when using the disaggregate data.  In addition, radius 

of curve had a higher z-statistic in the disaggregate model, indicating a stronger 

relationship with operating speeds.  Despite these results, the aggregate data model had a 

higher coefficient of determination, R2, than the disaggregate model (0.638 vs. 0.275), 

suggesting that the model using aggregate-level data explained a larger proportion of the 

variability in operating speeds.  The authors concluded that this is evidence that “the 

presence of summary measures in aggregate data introduces a major source of 

uncertainty.”  Additionally, use of aggregate data inflated the coefficient-of-

determination and the regression parameter for the radius of curve variable that was 

included as an explanatory variable in the model.   

 The authors also specified a multilevel model using the disaggregate data, 

inferring that this type of model is appropriate for correlated observations.  A two-level 

model was developed: the first level included information about individual vehicle 

speeds, such as speed on the previous section (tangent), and the second level included the 

geometric features of the highway segment.  The only variable found to be statistically 

significant in the second level was radius of curve.  The results of the two-level model are 

shown in Table 5. 

 



 22

Table 5  Two-level Model developed by Park and Saccomanno (2005) 

Parameter Estimate St. Error Z-value 
First level 

Speed at tangent section 0.328 0.023 14.176 
Within-group Variance, σ2 41.023 2.644 15.516 

Second level 
1/R 1038.046 241.865 4.292 
Between-group Variance, τ00 1.294 0.596 2.173 

Fixed Effect Intercept -18.44 1.742 -10.585 
First level R2 0.242 
Second level R2 0.755 
Overall R2 0.283 

 

 The results of the analysis indicated that 75 percent of the variability in the second 

level is explained by the curvature of the roadway section.  Similarly, 24.2 percent of the 

within section variation was explained by the first level predictor (i.e. approach tangent 

speed).  The authors concluded that the speed differentials of individual vehicles are 

mostly associated with first level characteristics rather than second level characteristics.  

The analysis results also indicated that drivers along sharp curves experienced larger 

speed differentials when compared to mild curves.  Lastly, individual driver speed 

differentials were positively associated with approach speeds, suggesting that faster 

drivers decrease their speed more so than slower drivers to negotiate a horizontal curve.   

 Misaghi and Hassan (2005) specified models for both the 85th percentile operating 

speed at the midpoint of a horizontal curve and the 85th percentile speed differential 

between the approach tangent and midpoint of a horizontal curve along two-lane rural 

roads in Canada.  Similar to Park and Saccomanno (2005), the 85th-percentile speed 

difference was calculated based on individual vehicles, thus the authors considered 

disaggregate data.  The objective of the research was to evaluate design consistency by 

exploring the speed differentials between successive highway elements, specifically from 

tangent to curve.  Speed data were collected at 20 curves, in both directions, along two-

lane rural highways with the use of a radar gun.  Horizontal curve characteristics (radius, 

length, etc) varied, but other roadway characteristics that could influence drivers were 

constant across study sites, such as lane width, traffic signals, and nearby intersections.  
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Data were then reduced in order to only consider data from free-flow passenger vehicles, 

during daylight and dry-pavement conditions.  In addition, 5 sites were excluded due to 

the low number of speed observations collected (less than 100).  

 The predictors considered in the models included the geometric characteristics at 

each study site.  The only variable found to influence operating speeds at the midpoint of 

a horizontal curve was the radius as shown in Equations (9) and (10) below:  

 RV MC
3

85 1081.985.91 −×+=        (9) 

 and 

 26
85 1067.83.94 RV MC

−×+=        (10) 

where: V85MC = 85th percentile speed at middle of curve; and 

 R = radius of curve (m). 

 The models shown in Equations (9) and (10) had coefficients of determination of 

0.464 and 0.524, respectively.  Two additional models were developed to explain the 

association between geometric characteristics and speed differentials from tangent to 

curve.  The first speed differential model considered data from the 35 sites, while the 

second model excluded data from nine sites: three sites were excluded because they were 

considered potential outliers and six sites were excluded for the purpose of model 

validation.  The two models developed are shown in Equations (11) and (12) below: 

 R
T eVV /1.350793.8

85 93.063.83 +−++−=Δ      (11) 

 and  

 
flagdrvG

dircurveSWDFCVV T

.22.43.1
.36.555.411.042.2174.19885

++

−−++−=Δ
  (12) 

where: Δ85V = 85th percentile speed differential (km/hr); 

 VT = approach tangent speed (km/hr); 

 DFC = deflection angle of circular curve (degrees); 

 SW = shoulder width (m); 

 curve.dir = indicator variable for direction of curve (1 if right, 0   

  otherwise); and 

 drv.flag = driveway flag (1 if intersection on curve, 0 otherwise). 
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 The values for the coefficients of determination, R2, for Equations (11) and (12) 

are 0.64 and 0.89, respectively.  The authors inferred that, compared to other studies, the 

relationship between speeds and radius of curve was considered “weak”; they suggested 

that the use of a radar gun to collect data may cause drivers to slow down due to 

perceived law enforcement.  

 Most of the speed prediction models for two-lane rural highways were developed 

using OLS linear regression; only one study – Park and Saccomanno (2005) – considered 

multilevel models.  Changes in horizontal alignment were related to changes in operating 

speeds, thus the majority of the equations developed in these studies considered speed 

along the horizontal curve as the dependent variable; only three studies evaluated 

prediction models for speeds along tangents (Polus, et al., 2000; Figueroa and Tarko, 

2005; and Misaghi and Hassan, 2005).  Similarly, only three studies estimated statistical 

models to predict speed differences due to changes in horizontal alignment (Mc Fadden 

and Elefteriadou, 2000; Park and Saccomanno, 2005; and Misaghi and Hassan, 2005). 

 The presence and radius of a horizontal curve is considered the most significant 

geometric feature influencing operating speeds, therefore the elements of curves, such as 

deflection angle, radius, and intersection angle, among others, were always found to 

significantly influence speed parameters (the dependent variable).  Radius of curve was 

sometimes found to be the only significant factor in the models developed (McLean, 

1979; Andjus and Maletin, 1998; and Misaghi and Hassan, 2005).  

Only one study identified posted speed limit as a factor influencing operating 

speeds (Schurr, et al., 2002), however the inclusion of speed limit as an explanatory 

variable has been questioned since the roadway design elements are selected based on 

speed-related parameters (Wang, et al., 2006).  Only two studies identified the presence 

of roadside geometrics as significant factors influencing operating speeds (Figueroa and 

Tarko, 2005; and Misaghi and Hassan, 2005).  In the study by Figueroa and Tarko 

(2005), highway grade and driveway density were associated with speed reductions while 

pavement and unpaved shoulder widths were associated with an increase in operating 

speeds.  The variables of highway density and shoulder width were also found to have the 

same effect on speed differentials in the study by Misaghi and Hassan (2005).  The use of 

aggregate data is also means for concern since it “introduces a major source of 
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uncertainty”; only two studies (Park and Saccomanno, 2005; and Misaghi and Hassan, 

2005) considered disaggregate data for the models developed.   

 

2.2  Low-Speed Urban Streets  

Most of the studies along two-lane rural highways have been performed at high-speed 

locations with posted speed limits of at least 55 mph (90 km/hr) and the literature for this 

roadway type is vast.  There is also a significant body of published literature related to 

operating speeds on low-speed urban streets.   

 Poe and Mason (2000) investigated the influence of geometric features on 

operating speeds at 27 sites located along urban streets in Pennsylvania.  The geometric 

features at the data collection sites varied.  The horizontal curve radius ranged from 36 to 

679 ft (11 to 207 m) and grades varied from 8.7 to -16.3 percent.  The authors inferred 

that on low-speed highways the geometric features that are associated with operating 

speeds differ from those on high-speed highways.  Speed detectors were placed at several 

points before, after, and within horizontal curves in order to study roadway, cross-section, 

roadside, land use, and traffic engineering variables.  Posted speed limits were either 25 

or 35 mph; only free-flow passenger cars (time headways of at least six seconds) were 

included in the analyses.  A mixed model was used to identify the relationship between 

operating speeds and roadway geometric elements.  A mixed model considers the 

correlations that may result from multiple observations on the same drivers or 

observations on drivers at the same site, thus accounting for both random (data collection 

sites) and fixed (geometric features) effects.  The analysis was divided into single-point 

analysis, where only the detector at the midpoint of a horizontal curve was considered, 

and multipoint analysis (all data collection points on tangents and curves).  Two mixed 

models were specified: one with a single intercept for all sensors and another with 

separate intercepts for each sensor.  For the single-point models, the analysis showed that 

the site variable accounted for one third of the residual variance.  Three geometric 

variables were found to be statistically significant at the 95th percentile level: degree of 

curve, lane width, and roadside hazard rating.  The multipoint analysis considered the 

data from 4 sensors and two models were specified: one with a single intercept and one 

with separate intercepts for each sensor.  The model with a single intercept used a 
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compound symmetry structure for its covariance.  In this model only degree of curve and 

grade were found to be statistically significant at the 95th percentile level.  The authors 

concluded that mixed models were appropriate to model operating speeds on low-speed 

urban streets, but the variability in operating speed could not be adequately explained by 

geometric features for multipoint models with a single intercept.  The model with 

separate intercepts used the first-order autoregressive covariance structure and the authors 

concluded that: (1) vehicles slowed down after entering the curve, (2) as degree of curve 

increased speed decreased, and (3) as grade increased speed decreased.  Other results 

indicated that upon entering the curve, speeds decreased as lane width increased.  This 

result was attributable to low-speed street design where older urban streets have a wider 

lane approaching and within the curve.  Also, as roadside hazard rating increased speed 

decreased, except for the sensor located at the endpoint of the curve (PT).  Table 6 shows 

the coefficients of the models that were considered to best explain the relationship 

between operating speeds and the variables found to be statistically significant for the 

mixed models with fixed effects developed at 4 data collection locations.  

 

Table 6  Coefficients of the Mixed Models with Fixed Effects by Sensor Location (Poe and 

Mason, 2000) 

Sensor  Intercept Degree of curvature Grade Lane Width Hazard Rating 
PC150 49.59 0.50 -0.35 0.74 -0.74 
PC 51.13 -0.10 -0.24 -0.01 -0.57 
MID 48.82 -0.14 -0.75 -0.12 -0.12 
PT 43.41 -0.11 -0.12 1.07 0.30 
Sensor location notes: 

PC150 – 150 ft (45 m) before beginning of horizontal curve 
PC – beginning of horizontal curve 
MID – midpoint of horizontal curve 
PT – end of horizontal curve 

 

Tarris, et al. (1996) performed OLS regression and panel data analyses on the 

same urban street dataset used by Poe and Mason (2000).  Since previous studies utilized 

descriptive statistics obtained through data aggregation, the authors addressed individual 

drivers and vehicle effects in the study.  The analyses included roadway, cross-section, 

roadside, and land use variables.  Other non-highway characteristics were included, such 
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as vehicle type, driver gender and age, and number of passengers in the vehicle.  For the 

panel data models, randomness in the data was attributed to two components: the location 

of the sensors and the individual vehicles traveling through the data collection site.  

Linear regression models were specified using the mean speed (aggregate data) 

and individual driver speed (disaggregate) data at the midpoint of the curve; only the 

degree of curve was considered as an explanatory variable in the models.  The model 

obtained using the disaggregate data was: 

DV 272.08.53 −=   (R2 = 0.63)      (13) 

 where: V = mean speed at midpoint of the curve (km/hr); and 

  D = degree of curvature (degrees). 

 For the aggregate data, the following model was reported: 

 DV 265.05.53 −=  (R2 = 0.82)      (14) 

 The models developed using panel analyses considered data from 4 sensors: 150 

ft (45 m) before the curve, at the beginning of the curve (PC), at the midpoint of the 

curve, and at the end of the curve (PT).  Again, the model only included the degree of 

curve as an explanatory variable.  The resulting model is shown in Equation (15) below: 

 DV 231.018.52 −=  (R2 = 0.487)      (15) 

 By adding group effects (vehicle) and time variables (sensor location) and looking 

at the increase in R2, it was concluded that the group effects variable explained less than 

5 percent of the variability in vehicle operating speeds on low-speed urban streets.  The 

authors concluded that, when modeling speed choice, aggregate speed measures should 

be avoided.  The authors also concluded that regression models may explain the influence 

of geometric features of the roadway, but not the influence of individual driver 

characteristics on operating speed. 

Fitzpatrick, et al. (2005) conducted a study in order to identify the roadway 

features that influence drivers’ speed choice.  The study included data from free-flow 

vehicles collected at 79 tangent sites in suburban/urban areas of six states.  The sites 

considered for the study were mostly flat with straight alignment, good surface 

conditions, and adequate sight distance.  Presence of horizontal curves and traffic control 

were located far away in study sections in order to obtain data from vehicles not 

influenced by these features.  Free-flow vehicles were identified as those vehicles with 
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time headways of five seconds or greater.  Speed data were also collected during the 

middle of the day (daylight conditions), at times when traffic volumes were low. 

Data collected included numerical values of each cross-section feature plus the 

presence of bike lanes, on-street parking, and median type.  Other characteristics, such as 

pedestrian activity, land development, access density, roadside environment (including 

type of fixed objects), posted speed limit, number of signals per mile, were also included 

in the analyses.  Speed data were collected using a laser gun connected to a laptop 

computer.  Speed profile plots showed that the variable with the strongest relationship to 

85th percentile operating speeds was posted speed limit.  This result was expected since 

85th percentile operating speeds are commonly used to set posted speed limits (Fitzpatrick 

and Carlson, 2002).  

When examining the speed profile plots, the authors found a negative relationship 

between access density and pedestrian activity and operating speeds, indicating that 

drivers tend to select lower speeds along roadways with a higher number of driveways 

per mile and in the presence of pedestrians.  The plots also indicated that operating 

speeds tend to be lower at sites with no centerline or edge line markings, medians, and at 

sites where on-street parking is permitted. 

 Regarding the roadway features, the study findings indicated that roadways with 

shoulder widths of 6 feet (1.8 m) or greater resulted in operating speeds of 50 mph (80 

km/hr) and higher; while shoulder widths between zero and 4 feet (1.2 m) resulted in 

operating speeds lower than 50 mph (80 km/hr).  The presence of curb and gutter 

produced a range of operating speed values and the research team concluded that there 

was no evidence that the presence of curb and gutter influenced driver behavior on 

urban/suburban tangents.  Wider pavements resulted in higher speeds but there was no 

indication of a relationship between lane width and operating speeds.  An exploration of 

the relationship between median width and operating speeds indicated that observed 

operating speeds increase as the median width increases.  

A regression model that shows the relationship between posted speed limit and 

85th percentile speeds was developed as shown below in Equation (16).  The coefficient 

of determination was 0.904. 

SLFF 98.04.1285 +=        (16) 
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where:  FF85 = 85th percentile speed from free-flow vehicles (km/hr); and 

 SL = posted speed limit (km/hr).  

 The only variable other than the posted speed limit with a t-statistic greater than 

1.0 was access density (t = -1.31).  The regression equation that included access density 

was:  

 ADSLFF 054.083.09.2585 −+=       (17) 

where:  AD is the access density, defined as the number of access points per 1 

 mile (1.6 km).  

 Equation (17) resulted in a coefficient of determination of 0.923.  Analyses were 

also performed by roadway functional classification.  The linear regression models 

developed for different functional classes showed that there is a strong statistical 

correlation between the posted speed limit and 85th percentile operating speeds on both 

suburban/urban and rural arterials. 

 Recognizing that design speed is correlated with the posted speed limit, and 

subsequently roadway geometrics are correlated with speed limit, Wang, et al. (2006) 

explored the influence of roadway design features on speeds without including the speed 

limit variable in any statistical models.  The study sites were low-speed urban corridors, 

with speed limits less than or equal to 40 mph.  Since a key characteristic of the urban 

street environment is the presence of closely spaced intersections, 35 study corridors 

were selected which had enough distance between intersections in which drivers could 

accelerate to a desired free-flow speed.  Speed data were collected using in-vehicle 

Global Positioning Systems (GPS) during daylight, dry pavement, and non-peak hours.  

Acceleration and deceleration data were removed from the data in order to consider only 

uninterrupted trips (trips not influenced by pedestrians or turning movements).  

 Since the data included observed speeds from the same driver, the authors 

considered the development of a mixed-effects models in order to allow for the 

correlation between observations (within-subject correlation), thus adding a “variable 

(that reflects) the influence from each driver.”  Speed prediction models were developed 

for both the 85th and 95th percentile speeds along the corridors, which are considered 

representative of drivers’ speed choice.  The model developed by Wang, et al. (2006) for 

the prediction of 85th percentile speeds was: 
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 (18) 

  where: V85 = 85th percentile cruising speed (mph); 

 lane.num = number of lanes; 

 roadside = density of roadside objects divided by their average offsets 

 from roadside (ft); 

 driveway = number of driveways per mile; 

 INT = number of T-intersections per mile; 

 curb = indicator variable for presence of curb; 

 sidewalk = indicator variable for presence of sidewalk; 

 parking = indicator variable for the presence of on-street parking; 

 landuseI = 1 if land use is residential, 0 otherwise; and 

 landuseII = 1 if land use in non-commercial and non-residential, i.e. 

 “other”, 0 otherwise. 

 The model developed had an intra-class correlation (ICC) value of 0.35 which 

meant that 35 percent of the unexplained variance of speeds is caused by driver or vehicle 

characteristics.  In addition, the authors also developed a model for the 95th percentile 

speeds; the model was almost identical to the one shown in Equation (18).  The authors 

inferred that adding a speed limit variable would result in many of the explanatory 

variables not being statistically significant.  Although the variable for the presence of a 

curb was found to be associated with higher speeds (positive coefficient), it was not until 

subsequent work (Wang, 2006) that it was suggested that drivers select higher speeds 

because the curb represents a barrier between the through travel lane(s) and roadside 

objects.  

 Although linear regression was considered for many of the studies, other analysis 

methods, such as panel data (Tarris, et al., 1996) and mixed effects (Poe and Mason, 

2000, and Wang, et al., 2006), were applied to model speed relationships on low-speed 

urban streets.  Contrary to high-speed, two-lane rural highways, speed prediction models 

along low-speed urban streets consider a variety of additional roadway features, such as 

driveway density and parking, among others.  Vertical grade and lane width were found 

to be statistically significant in some models (Yagar and Van Aerde, 1983; and Poe and 
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Mason, 2000) while driveway density was also included in several models (Yagar and 

Van Aerde, 1983; Fitzpatrick, et al., 2005; and Wang, et al., 2006).  Similarly to high-

speed rural roads, changes in horizontal alignment were associated with changes in 

operating speeds along urban streets.  Degree of curvature was included in speed 

prediction models in two studies (Poe and Mason, 2000; and Tarris, et al., 1996).  

In one study speed limit was found to be the only significant predictor variable at 

the 95 percent confidence level (Fitzpatrick, et al., 2005).  However, concerns over 

including the posted speed limit as an explanatory variable in speed prediction models 

was addressed by Wang, et al. (2006) which may explain the results from Fitzpatrick, et 

al. (2005).  

Changes in the driving environment are associated with changes in operating 

speeds.  However, speed differentials have been negatively associated with safety 

(Garber and Gadiraju, 1989, and Lamm, et al., 2002).  To achieve design consistency, it 

has been recommended that along entire sections of rural highways operating speeds 

should not differ by more than 5 mph (10 km/hr [McLean, 1979]).  In the case of 

transition zones, a speed difference is indeed desired.  

 

2.3  Rural to Urban Transition Zone Highways 

Based on the design consistency literature, minimum speed differentials are desired along 

sections of roadway with a single design speed.  In the case of transition zones, however, 

speed differentials are desired.  In Germany, design guidelines indicate the use of 

sometimes unnecessary alignment changes in order to obtain desired speed differentials 

(Wooldridge, 1994).  Only one study defined a transition zone as intended in this research 

– a location where changes in operating speeds are required and communicated to drivers 

by the presence of speed limit signs as a result of traveling from a high-speed to a low-

speed area.   

 A two phase study by Rowan and Keese (1962) investigated possible factors that 

influence operating speeds along rural-to-urban transition areas in order to develop new 

criteria for the establishment of speed zones.  More than 150 sites were studied, which 

included several combinations of roadway functional classification, traffic volumes, and 

land use development.  In the first phase of the research, before-and-after studies were 
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conducted in which posted speed limits were either reduced from 60 to 30 mph (95 to 50 

km/hr) or increased from 30 to 55 mph (50 to 90 km/hr) in increments of 5 mph (10 

km/hr).  The results indicated that posted speed limits have little effect on operating 

speeds.  The second phase of the study aimed to identify geometric features that influence 

drivers’ choice of speed in rural-to-urban transition areas by use of two study methods: 

individual vehicle speed (IVS) and the test car methods.  The IVS method, which 

measured individual speeds throughout various sections of the study sites with the use of 

an event recorder combined with road tubes and air switches, concluded that horizontal 

and vertical curves are the two most common elements that influence operating speeds, 

mainly due to sight distance restrictions.  It was also concluded that changes in the cross-

section resulted in traffic speed variations, but these factors could not be isolated in order 

to quantify them.  The study results indicated that vehicles reduced their operating speeds 

when traveling from rural to developed areas.  The study also showed that commercial 

developments have more influence on operating speeds than residential areas, and that 

residential areas with good lateral clearances have less influence than those with trees and 

shrubs near the curbline as indicated by lower operating speeds.  These results suggest 

that appearance, and not density, of developed areas is a factor that influences driver 

behavior.  The test car method was able to study the influence of sight distance on 

operating speeds when sight distances were less than 1000 feet (305 meters) and up to 

1200 feet (365 meters).  The results of this part of the study indicated that research 

participants decelerated more rapidly each time the sight distance became more 

restrictive.  

 The relationship between design consistency and driver error was studied by 

Wooldridge (1994).  One objective of design consistency is to meet driver expectations in 

order to increase safety on highways.  Driver expectancy is defined as those observable 

and measurable roadway features that are able to increase driver awareness for a 

particular task.  One way to examine driver expectancy is to measure the speed 

differential along a section of a roadway.  If driver expectancy is met, then there should 

not be any abrupt changes in operating speeds.  

 Wooldridge studied driver workload on two-lane rural highways with a speed 

limit of 55 mph (90 km/hr) that had a lower advisory speed sign on some sections.  
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Driver workload was measured using Messer’s procedure (1979), a model based on “the 

presumption that the roadway itself provides most of the information that the driver uses 

to control (the) vehicle; hence the roadway imposes a workload on the driver.”  Messer’s 

procedure consists of assigning ratings to roadway features based on their severity and, 

consequently, their contribution to driver workload—lane width reductions and crossroad 

overpasses are considered “more severe” than bridges and lane drops.  Wooldridge’s 

study (1994) included other factors, such as sight distance and driver expectation, in the 

analysis.  A workload value was assigned to each geometric feature along the roadway 

segment being considered.  The conclusions of the study indicated that large changes in 

driver workload over a short distance of roadway are strongly correlated with high 

accident rates.  Roadway segments with high workload values are also correlated with 

high accident rates.  Wooldridge recommended that future studies focus on the 

combination between driver workload and speed variation along a series of roadways, 

and to analyze this relationship using the Messer procedure. 

 Rural roads require adjustment in both cross-section elements and operating 

speeds when passing through a rural community in order to adapt to the upcoming 

developed area.  Therefore, such projects may require the use of flexibility in design: by 

using design values not recommended by the Green Book, an alternative solution may be 

obtained for those situations that would normally be addressed with the conventional 

design philosophy.  One study addressed the need to develop geometric design criteria for 

transition zones, and to provide information about projects where flexibility in design is 

often employed (Stamatiadis et al., 2004 and 2006).  The authors inferred that rural roads, 

when passing through communities, should contain different cross-sections and posted 

speeds, thus there is a need to design transition zones to effectively influence driver 

behavior and to assist drivers in adjusting their speeds accordingly.  The research 

included identification of appropriate case study sites to demonstrate flexibility in design.  

Curb and gutter design in transition zones, instead of a full cross-section with clear zones, 

was identified as one of the possible applications where design flexibility could be used 

along roadways passing through rural communities.  

 A total of 22 sites in 11 states were considered for a before and after study.  Three 

transition zone scenarios were studied: (1) Type A, physical transition from rural area to 
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a built-up section where the transition is a point location; (2) Type B, roadway passing 

through a rural community where the transition is a point location, and (3) Type C, a 

longitudinal transition zone was present, as identified by changes in the posted speed 

limit.  The posted speed limit at both type A and B scenarios remained constant, thus 

changes in roadway environment specified the location of the transition point.  Figure 2 

illustrates the three categories.  

 

 
Figure 2  Study Sites Classification (Stamatiadis et al., 2004) 

 

 The design elements considered in the study were: design speed, horizontal 

alignment, vertical alignment, superelevation, lane width, clear zone, sight distance, 

median/two-way left-turn lane (TWLTL), side slopes, intersection design, and shoulder 

width.  The before period represented the existing roadway condition while the after 

period consisted of a physical change in the roadway.  Examples of design flexibility 

application in the after period included the following: reconstruction of a highway with 

right of way constraints, use of curb and gutter design instead of a full cross-section with 

clear zones in transition zones to a rural community, use of innovative approaches for 

intersection design, modification of design elements to address pedestrian/bicycle access, 

altering (lowering) design elements, altering (lowering) design speed, application of 

traffic calming devices, reduce/retain the footprint of the roadway, and shielding roadside 

obstacles with barriers rather than eliminating obstacles.  

 For each of the 22 sites, simple observational before-after safety analyses were 

performed.  The total number of crashes, crash rate, crash severity, speed, and an overall 



 35

roadway score were computed and compared in the before and after periods.  Surveys 

indicated that the design element most frequently introduced along transition zones in the 

after period was the conversion of a median to a two-way left-turn lane (18 out of 22 

cases), followed by a change in shoulder width (narrower or no shoulder in 17 out of 22 

cases).  By performing an expert panel analysis, the potential contributing factors (driver, 

vehicle, environmental, and roadway) on crash occurrence were determined.  In rural 

sections, although the driver was identified as the major contributing factor, the roadway 

was a contributing factor in all but two cases.   

 The direct safety consequences in the design elements were not able to be isolated 

because more than one element changed.  For almost all of the cases, the operating speed 

was higher than the design speed and posted speed limit, indicating that design speed had 

little influence on operating speeds.  Drivers also disregarded posted speed limits because 

the geometric design elements did were not restrictive.  The presence of curb and gutter 

had a small effect on operating speeds, but these were brief encounters in the study.  The 

use of speed limit signs was found not to be an adequate means for attracting the attention 

of drivers.  The authors concluded that there is a need to focus research on the design of 

transition areas to properly inform the driver of the upcoming posted speed limit changes.  

The authors also concluded that eliminating or reducing the shoulder width reduction did 

not pose major safety consequences, as observed in the after period of sites.  Several sites 

studied had posted speed limits higher than their corresponding design speeds.  

 The research performed by Stamatiadis et al. (2004 and 2006) is evidence that 

there is a lack of design guidance for transition zones between rural and developed areas.  

Several of the study sections had a curb and gutter design in the built-up section, which 

was often the only visual indication of changes in the driving environment.  However, 

curb and gutter appeared to have little effect on operating speeds.  There is a need for 

other forms of design flexibility applications to properly reduce vehicle speeds.  These 

include increased signage, introduction of landscaping features, or more limiting design 

features such as a lower design speed or the introduction of smaller radius or successive 

horizontal curves.  The authors also noted that there is a need to study the relationship 

between design and operating speeds in transition zones.  A recommendation was made 

to add transition zone design guidance to the AASHTO Green Book. 
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2.4  Summary  

Most of the speed prediction models along high-speed two-lane rural highways have been 

developed using data collected at the midpoint of a horizontal curve.  Only two speed 

models were developed to predict operating speeds along tangent sections approaching a 

horizontal curve (Polus, et al., 2000; and Figueroa and Tarko, 2005).  Horizontal curve 

data, such as radius, degree of curvature, or the deflection angle, have been included in 

most operating speed prediction models for two-lane rural highways.  A general 

consensus among past two-lane rural highway operating speed research is that sharper 

horizontal curves (i.e., smaller radius or higher degree of curve) reduce vehicle operating 

speeds.  Other variables that have been shown to be negatively correlated with vehicle 

operating speeds on two-lane rural highways are: 

- Presence of horizontal curve to the left, as compared to a horizontal curve to 

the right 

- Length of approaching tangent before entering a horizontal curve 

- Highway grade  

- Average daily traffic 

- Truck percentage 

- Driveway density 

- Presence of nearby intersections 

 The predictor variables that have been shown to be positively correlated with 

vehicle operating speeds on two-lane rural highways are: 

- Length of horizontal curve 

- Posted speed limit 

- Sight distance 

- Pavement width 

- Shoulder width, either paved or unpaved 

- Maximum superelevation rate 

 Along low-speed urban streets, published operating speed models have generally 

reached consensus that the degree or radius of a horizontal curve is strongly correlated 

with the operating speed.  Increases in the degree of curve have been shown to reduce 
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vehicle operating speeds.  Other variables that have been found to be negatively 

correlated with operating speeds on low-speed urban streets include: 

- Grade 

- Driveways 

- Presence of sidewalk 

- Pedestrian activity 

- On-street parking 

- Density of roadside objects 

- Number of intersections 

 The predictor variables that have been shown to be positively correlated with 

vehicle operating speeds on two-lane rural highways are: 

- Shoulder width 

- Posted speed limit 

- Number of lanes 

- Presence of curb 

- Presence of centerline and edge line pavement markings 

 In the present research, rural highway transition zones include both a high-speed 

and a low-speed segment.  The two-lane rural highway and urban street operating speed 

research provides some important insights regarding the geometric design, roadside, and 

land use characteristics that may be associated with operating speeds along transition 

zones; however, operating speed models for transition zones do not currently exist.  Since 

these highway sections require changes in operating speeds to comply with the change in 

the regulatory speed limit, research is needed to quantify the effects of geometric design, 

roadside, and land use characteristics on operating speeds.  

 The most common method of data analysis as presented in the literature review is 

ordinary least squares (OLS) linear regression.  However, using OLS regression to 

develop speed prediction models along transition zones may result in the violation of the 

independent observations assumption.  When collecting speed data at several point 

locations along a study sites, correlated speed data is expected; the speed at a downstream 

location is dependent on the speed at an upstream location.  Alternatives methods that are 

able to model correlated data have been explored in past studies; a two-level model for 
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speed differences was estimated by Park and Saccomanno (2005) while panel data 

models were explored by Tarris et al. (1996) to model speeds along horizontal curves on 

urban streets.  As such, one of the purposes of this research is to explore longitudinal data 

methods for developing speed prediction models along two-lane rural highway transition 

zones.  

 The inclusion of speed limit as a potential explanatory variable in operating speed 

models is questionable since it may be endogenous with highway design features.  It has 

been recognized that design elements, such as lane and shoulder widths, are selected 

based on a design speed.  Speed limit values are typically posted at levels equal to or less 

than the designated design speed, thus it has been suggested that speed limit should not 

be included when exploring the highway characteristics that are influential on operating 

speeds (Wang, et al., 2005).  However, speed prediction models that have included this 

variable have been on sections of highway with a constant speed limit.  Since transition 

zones have posted speed limit changes and only a single designated design speed, the 

inclusion of speed limit as a potential explanatory variable would not necessarily pose 

concerns related to endogeneity.  
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CHAPTER 3                                                                                    

DESCRIPTION OF DATA 

 

This chapter details the data collection methodology used in the present research.  

Operating speed, roadway and roadside design features, and land use characteristics were 

collected along 20 transition zones in central Pennsylvania to identify which highway 

characteristics are associated with operating speeds.  Study site selection and data 

collection is described in this chapter, followed by summary statistics for all operating 

speed and highway characteristics measured at each study site.  

 

3.1  Site Selection 

As previously noted, transition zones are defined as highway sections in which a change 

in operating speed is required based on changes in the regulatory speed limit.  The study 

focuses on high-to-low speed transition zones on two-lane rural highways.  

 An essential requirement of the study sites was the presence of both a Reduced 

Speed Ahead sign followed by a Speed Limit sign.  The limits of the transition zone were 

then defined by the location of these two signs--the Reduced Speed Ahead sign indicated 

the beginning of the transition zone and the downstream Speed Limit sign indicated the 

end of the transition zone (i.e., beginning of low-speed environment).  Figure 3 shows the 

limits of the transition zone in relation to the static speed signs.  

 

 
Figure 3  Transition Zone Illustration 
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Additionally, only sites with the version of the Reduced Speed Ahead sign 

specified in the 2000 edition of the MUTCD were considered.  As noted previously, the 

Reduced Speed Ahead sign has changed in both size and color in the new edition of the 

MUTCD (see Figure 1).  However, the 2003 MUTCD version of this sign is not 

frequently encountered along two-lane rural highways in central Pennsylvania.  Figure 4 

shows an example of a transition zone with a Reduced Speed Ahead sign. 

 

 
Figure 4  Example of a Transition Zone with a Reduced Speed Ahead Sign 

 

 PennDOT’s online video photolog system was used as a tool to identify potential 

study sites.  Field visits confirmed if the locations were indeed appropriate for the 

research.  In order to minimize the probability that driver behavior will be influenced by 

factors other than the geometric features, sites with the following characteristics were 

then identified as candidates for the present research:  

1. Free of signalized or stop-controlled intersections along the major road in the 

direction of travel within the transition zone.   

2. Less than 10 percent heavy vehicles since trucks and other heavy vehicles 

may influence drivers’ speed choice.  

3. Low-volume highways in order to maximize the probability of collecting free-

flow vehicles.  Past research has identified low-volume highways as those 
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with an ADT less than 4,000 vehicles per day (McFadden and Elefteriadou, 

2000).   

4. Smooth pavement surfaces and visible pavement markings. 

 Additionally, the study sites included a range of roadway, roadside, and land use 

characteristics, such as variable lane and shoulder widths, and vertical grades.  Details on 

the highway features present at each site are discussed later in this chapter.  Using the site 

selection criteria described previously, 20 sites in central Pennsylvania were selected for 

the present study.  Table 7 provides a description of the study sites.  

 

Table 7  Description of Study Sites 

Site 
ID Town County Route  Segment(s) 

Speed 
Limit 

Reduction 
(mph) 

Transition 
Zone  

Length  
(ft) 

1 Alverda Indiana 553WB 0160-0170 55 → 35 535 
2 Brush Valley Indiana 56WB 0420 55 → 35 690 
3 Corsica Jefferson 322 WB 0020-0030 55 → 35 725 
4 Cross Keys Juniata 35 NB 0050-0060 55 → 40 540 
5 Cross Keys Juniata 35 SB 0070-0080 55 → 40 375 
6 Curwensville Clearfield 453 NB 0390-0410 45 → 25 750 
7 Curwensville Clearfield 879 EB 0100-0110 45 → 25 500 
8 Ernest Indiana 110 EB 0070-0080 55 → 35 1065 
9 Fousetown Huntingdon 655 SB 0540-0550 55 → 35 750 
10 Freeport Butler 356 NB 0110 55 → 40 690 
11 Homer City Indiana 3035 NB 0010-0030 55 → 35 1020 
12 Madisonburg Centre 192 EB 0210-0220 55 → 40 800 
13 Mifflintown Juniata 35 NB 0510-0520 45 → 25 570 
14 Orbisonia Huntingdon 522 NB 0210 40 → 25 925 
15 Osceola Mills Clearfield 53 NB 0480-0490 45 → 25 460 
16 Shirleysburg Huntingdon 522 SB 0310-0320 55 → 35 700 
17 Spruce Creek Huntingdon 45WB 0080-0090 55 → 35 675 
18 Unionville Centre 3040 NB 0360-0370 45 → 35 665 
19 Warriors Mark Huntingdon 550SB 0110-0120 55 → 35 410 
20 Zion Centre 550 NB 0520-0540 55 → 40 860 
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3.2  Data Collection 

The data collected for this research consist of speed data (response variable) and the 

roadway, roadside, and land use characteristics (explanatory variables) at each site.  The 

methods used to collect these data are described in this section of the dissertation. 

 

3.2.1  Speed Data 

Speed data were collected using Nu-metrics Hi-Star sensors, which use vehicle magnetic 

imaging technology.  The Hi-Star sensors are non-intrusive, thus eliminating the 

possibility of drivers adjusting their speeds due to visible equipment and data collection 

personnel.  The dimensions of the sensors are 6.5 inches by 5.5 inches with a profile of 

0.625 inches--they were placed in the center of the travel lane.  A rubber cover was used 

to protect them and to reduce their conspicuity.  In addition to speed data, Hi-Star sensors 

time stamp the data and also provide information related to the pavement temperature, 

pavement condition (dry or wet), and vehicle length.  The time stamp can be used to 

identify free-flow vehicles.  

 As previously noted, the limits of the transition zone were defined as related to 

the position of the traffic signs that inform drivers of changes in the regulatory speed.  

The position of the Reduced Speed Ahead sign marked the beginning of the transition 

zone.  The end of the transition zone is marked by the Speed Limit sign that indicates the 

lower posted speed limit.  Since drivers may be influenced by upstream geometric design 

features (Yagar and Van Aerde, 1983), speed data were collected in advance of the 

transition zone.  Additionally, since it was hypothesized that drivers are influenced by the 

highway features instead of the traffic signs, speed data were also collected downstream 

of the transition zone.  Therefore, the Hi-Star sensors were placed at four points along 

each study site in order to collect speed data before, within, and after the transition zone.  

The following four points correspond to the sensor locations where point speed data were 

collected: (1) 500 feet before the beginning of the transition zone; (2) at the beginning of 

the transition zone; (3) at the end of the transition zone; and (4) 500 feet after the end of 

the transition zone.  Figure 5 shows the four locations where the Hi-Star sensors were 

placed at each study site.  

 



 43

Reduced
Speed
Ahead
sign

Speed
Limit
sign

21 3 4

High-Speed Area Low-Speed AreaTransition Zone

500 feet 500 feet

Direction of Travel

Legend:

# Hi Star sensor on its location number
 

Figure 5  Sensor Layout 

 

 Information collected by the Hi-Star sensors was downloaded into a Microsoft 

Excel spreadsheet using the Highway Data Management (HDM) software.  In order to 

isolate the effects of highway features on operating speeds, only data from free-flow 

vehicles were considered for analyses.  Past research has indicated that free-flow vehicles 

should have a minimum time headway of five seconds (McFadden and Elefteriadou, 

2000).  Vehicles with time headways less than five seconds were discarded from the 

database.  In addition, data were collected during daylight, under favorable weather 

conditions (no rain or snow and dry pavement).  Data were also collected during non-

peak travel hours in order to maximize the probability of observing free-flow vehicles.  

 The layout of the sensors permitted a vehicle at a site to be “tracked.”  Only 

vehicles in which speed information was collected at all four sensor locations were 

included in the analysis database.  As such, the number of observations for each sensor 

location at a specific site across all four sensors was the same.   

 A minimum sample size of 100 free-flow passenger vehicles per site was desired 

for data analysis.  This sample size was obtained using the following equation (Institute 

of Transportation Engineers [ed. Robertson], 1994): 

2)(
E
KSN =          (19)  
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where: N = minimum number of measured speeds; 

 S = estimated sample standard deviation (mph); 

 K = constant corresponding to the desired confidence level; and   

 E = permitted error in the average speed estimate (mph). 

A value of 5.3 is representative of the sample standard deviation, S, for two-lane 

rural highways (Robertson, 1994).  By substituting several values for the confidence level 

constant, K, a range of sample sizes can be obtained for a specific value of permitted 

error, E.  Table 8 shows the computed sample sizes for 90, 95, and 99 percent confidence 

levels with a permitted error, E, of ±1 mph and a standard deviation, S, of 5.3.  

 

Table 8  Sample Sizes for Different Levels of Confidence 

K Confidence Level N 
1.64 90% 76 
1.96 95% 108 
2.58 99% 187 

 

 Although a minimum sample size of 100 free-flow vehicles at each site was 

desired, in some instances there were fewer than 100 speeds collected at a study site.  

This was primarily due to low traffic volumes during the four- to six-hour data collection 

period.  There were 2,859 free-flow passenger vehicles included in the analysis database 

for a total of 11,436 individual vehicle point speeds.  Table 9 summarizes the speed data 

collected at each study site, including the sample size, mean speed, and sample speed 

standard deviation at each sensor location for all 20 sites.  Figure 6 shows a graph of 

mean speed at each sensor location for each study site.  
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Table 9  Mean Speed and Speed Deviation at each Study Site 

Site ID Sample 
Size 

Mean Speeds per Sensor, mph (Speed Deviation, mph) 
1 2 3 4 

1 124 47.9 (7.24) 49.6 (7.20) 50.3 (6.07) 47.6 (7.12) 
2 68 52.8 (9.50) 52.4 (7.71) 44.2 (8.47) 43.1 (8.04) 
3 98 51.3 (5.44) 49.9 (5.72) 46.3 (6.17) 43.1 (6.15) 
4 104 57.6 (7.97) 53.9 (7.69) 52.6 (6.67) 48.2 (6.75) 
5 231 58.2 (6.78) 52.3 (7.16) 49.6 (6.79) 45.5 (6.81) 
6 99 42.6 (7.18) 41.6 (6.00) 35.8 (7.37) 28.7 (6.26) 
7 159 52.0 (6.11) 47.0 (5.62) 44.4 (6.91) 37.4 (6.19) 
8 149 57.1 (6.20) 53.0 (7.02) 49.5 (7.50) 46.7 (6.48) 
9 478 58.4 (6.40) 53.1 (5.92) 48.3 (7.02) 47.4 (7.65) 

10 148 51.7 (6.08) 51.0 (5.82) 49.6 (5.90) 49.0 (6.14) 
11 141 43.3 (6.88) 41.4 (6.11) 36.6 (5.30) 36.9 (5.96) 
12 73 54.5 (6.20) 52.6 (5.96) 48.8 (7.09) 38.9 (9.57) 
13 130 43.8 (6.89) 41.7 (5.02) 28.4 (4.08) 30.1 (4.42) 
14 112 53.4 (7.03) 49.2 (6.17) 39.2 (5.81) 36.1 (5.97) 
15 81 46.7 (5.98) 41.7 (5.02) 41.7 (5.42) 36.6 (5.89) 
16 122 54.0 (6.90) 50.8 (5.51) 45.7 (6.20) 36.7 (5.66) 
17 164 58.2 (6.25) 55.5 (6.08) 50.4 (6.04) 46.3 (6.02) 
18 52 58.1 (7.54) 53.3 (7.06) 52.0 (6.31) 50.8 (6.08) 
19 178 50.2 (5.75) 45.5 (5.31) 49.5 (6.44) 42.5 (6.01) 
20 148 53.3 (5.56) 52.0 (6.01) 47.8 (5.58) 43.9 (6.26) 

Total:  2,859  
a High speed zone is located between sensors 1 and 2 
b Low speed zone is located between sensors 3 and 4 
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Figure 6  Mean Speed Plot for each Data Collection Point at each Study Site 

  

 As shown in Figure 6, it can be seen that operating speeds and speed differentials 

vary across sites.  A steep slope is related to a greater speed change, while horizontal 

lines are indicative of no change in mean operating speed between two successive data 

collection points.  The variability in the speed reductions observed at each study site 

location suggests that roadway, roadside, or land use characteristics may be influencing 

observed operating speeds.  Several interesting observations can be noted from both 

Figure 6 and Table 9: 

 Before the transition zone (between sensors 1 and 2): 

1. Mean speed increase only at Site 1 (by 1.7 mph).  

2. Mean speeds reduced by less than 2 mph at 7 sites (Sites 2, 3, 6, 10, 11, 12, 

and 20). 

3. Mean speeds decreased between 2 and 5 mph at 8 sites (Sites 4, 8, 13, 14, 16, 

17, 18, and 19). 

4. Mean speeds reductions of at least 5 mph at 4 sites (Sites 5, 7, 9, and 15). 
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 Within the transition zone (between sensors 2 and 3): 

1. Two sites experienced an increase in mean speed; Site 19 by approximately 4 

mph and Site 1 by 0.7 mph.  

2. Four sites experienced less than a 2 mph mean speed reduction (Sites 4, 10, 

15, and 18). 

3. Sites 3, 5, 7, 8, 9, 11, 12, and 20 experience speed reductions between 2 and 5 

mph. 

4. Sites 2, 6, 16, and 17 experience speed reductions between 5 and 10 mph. 

5. Two sites (Sites 13 and 14) experience speed reductions of at least 10 mph. 

 Beyond the transition zone (between sensors 3 and 4): 

1. Sites 11 and 13 experienced mean speed increases of 0.3 and 1.7 mph, 

respectively. 

2. Four sites experience mean speed reductions of 2 mph or less (Sites 2, 9, 10, 

and 18) 

3. Sites 1, 3, 4, 5, 8, 14, 17, and 20 experienced mean speed reductions between 

2 and 5 mph. 

4. Six sites (Sites 6, 7, 12, 15, 16, and 19) experienced mean speed reductions of 

at least 5 mph. 

 From the variability in speed patterns observed in Figure 6, specifically the speed 

changes that take place beyond the limits of the transition zone (sensor 3 in Figure 6), it 

can be inferred that drivers are traveling at speeds in excess of the posted speed limit at 

the low-speed end of the transition zone.  Since several study sites have the same posted 

speed limit changes, it can also be inferred from the variability in these speed patterns 

that changes in operating speeds are influenced by the different roadway, roadside, or 

land use characteristics. 

 As noted in Chapter 1, safety issues may arise when drivers do not adjust their 

operating speeds along a transition zone.  One method to set posted speed limits is via an 

engineering study.  The 85th percentile operating speed is the most common measure to 

set posted speed limits.  Posted speed limits may also be set based on local statutes which 

apply across specific roadway functional classes or geographic areas (TRB, 1998).  The 
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85th percentile operating speeds were calculated at each sensor location at each study site; 

these data are shown in Table 10 along with the regulatory speed limit.  

 

Table 10  85th Percentile Speeds 

Site ID 

Speed Limit (mph) 85th Percentile Speeds per Sensor (mph) 

High Speed 
Zonea 

Low Speed 
Zoneb 1 2 3 4 

1 55 35 55.40 57.03 56.62 54.95 
2 55 35 62.60 60.43 52.94 51.49 
3 55 35 56.97 55.83 52.70 49.48 
4 55 40 65.86 61.88 59.54 55.21 
5 55 40 65.22 59.73 56.59 52.58 
6 45 25 50.06 47.84 43.40 35.19 
7 45 25 58.30 52.82 51.55 43.77 
8 55 35 63.52 60.29 57.28 53.39 
9 55 35 65.03 59.18 55.54 55.29 
10 55 40 58.01 57.08 55.72 55.36 
11 55 35 50.38 47.72 42.05 43.08 
12 55 40 60.96 58.82 56.14 48.78 
13 45 25 50.92 47.63 32.65 34.64 
14 40 25 60.72 55.63 45.24 42.25 
15 45 25 52.90 46.86 47.31 42.74 
16 55 35 61.20 56.48 52.12 42.57 
17 55 35 64.68 61.77 56.70 52.58 
18 45 35 65.93 60.66 58.54 57.14 
19 55 35 56.13 51.04 56.13 48.77 
20 55 40 59.10 58.20 53.59 50.36 

a High speed zone is located between sensors 1 and 2
b Low speed zone is located between sensors 3 and 4 

 

 By comparing 85th percentile operating speeds to the regulatory speed limit at 

each of the speed sensor locations, the magnitude of speeding vehicles can be 

determined.  At the high-speed zone (sensor 1): 

1. Only one site (Site 11) had observed 85th percentile speeds lower than the 

posted speed limit.  

2. Observed 85th percentile speeds at two sites were 20 mph higher than the 

posted speed limit (Sites 14 and 18). 
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3. Observed 85th percentile speeds at Sites 4, 5, 7, and 9 were between 10 and 20 

mph higher than the posted speed limit.  

4. At the remaining 12 sites (Sites 1, 2, 3, 6, 8, 10, 12, 13, 15, 16, 17, 19, and 

20), the observed 85th percentile speeds were higher than the posted speed 

limit by less than 10 mph.  

At the beginning of the transition zone (sensor 2): 

1. The observed 85th percentile speeds at two sites were at least 10 mph higher 

than the posted speed limit (Sites 14 and 18). 

2. The observed 85th percentile speeds at five sites were between 5 and 10 mph 

higher than the posted speed limit (Sites, 2, 4, 7, 8, and 17) 

3. Sites 11 and 19 had 85th percentile speeds lower than the posted speed limit. 

4. The remaining 11 sites had 85th percentile speeds higher than the posted speed 

limit by an amount of 5 mph or less (Sites 1, 3, 5, 6, 9, 10, 12, 13, 15, 16, and 

20).  

At the end of the transition zone (sensor 3), the following trends were found: 

1. The observed 85th percentile speeds were 20 mph higher than the posted speed 

limit at nine sites (Sites 1, 7, 8, 9, 14, 15, 17, 18, and 19). 

2. The observed 85th percentile speeds were between 10 and 20 mph higher than 

the posted speed limit at nine sites (Sites 2, 3, 4, 5, 6, 10, 12, 16, and 20). 

3. At the remaining two sites (Sites 11 and 13), 85th percentile speeds were 

higher than the posted speed limit by less than 10 mph (approximately 7 mph 

at both sites).  

At the low-speed zone (sensor 4): 

1. Two sites had 85th percentile speeds 20 mph higher than the reduced posted 

speed limit (Sites 9 and 18). 

2. Fourteen sites experienced 85th percentile speeds between 10 and 20 mph 

higher than the speed limit (Sites, 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 17, 19 and 

20). 

3. Four sites (Sites 11, 12, 13, and 16) had 85th percentile speeds between 5 and 

10 mph higher than the posted speed limit.  
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 Table 10 shows that 85th percentile speeds are lower at sensor location 4 when 

compared to those speeds at sensor location 3, thus drivers do not appear to fully adjust 

their speeds within the transition zone.  The observed 85th-percentile speeds in the low-

speed zone provide evidence that, although drivers keep decelerating after the end of the 

transition zone, operating speeds exceed the posted speed limit.  

 The study sites included in this research have different speed limit reductions; the 

posted speed limit changes from 55 to 35 mph at nine sites; from 55 to 40 mph at five 

sites; from 45 to 25 mph at four sites; from 40 to 25 mph at one site; and from 45 to 35 

mph at one site.  The speed changes observed at each site do not provide any consistent 

pattern in relation to the posted speed limit changes.  This underscores the need to 

determine which roadway, roadside, and land use characteristics are associated with 

speed reductions along two-lane rural highway transition zones.   

 

3.2.2  Highway Characteristics 

It has been hypothesized that various roadway, roadside, and land use characteristics are 

associated with drivers’ speed choice along transition zones.  Since speed data were 

collected at four points at each study site, the highway characteristics at each point were 

also collected.  The roadway, roadside, and land use characteristics that were collected at 

each study site include the following: 

- Changes in the posted speed limit 

- Lane width 

- Paved shoulder width 

- Stabilized shoulder width; 

- Paved roadway width 

- Lateral clearance distance 

- Presence of guide rail 

- Vertical curve and grade data 

- Presence of a horizontal curve  

- Type of centerline marking 

- Type and number of both regulatory and warning signs 

- Number of driveways 
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- Presence and/or introduction of curb and gutter 

 Some of the geometric roadway features, such as lane width, shoulder width, 

paved roadway width, and grade, were measured at each of the sensor locations.  Data for 

other highway features, such as type and number of traffic signs and number of 

driveways, were collected and assigned to a sensor location according to their proximity 

to each sensor (i.e., influence zone).  Figure 7 illustrates how some of these features were 

assigned to each sensor (color coded).  

 

21 3 4

 
Figure 7  Area Assigned at each Sensor Location 

 

 The highway characteristics collected to be included in the data analysis as 

predictors for operating speeds can be categorized into groups: continuous (those that 

were measured), count (those that were counted), and categorical (used as indicator 

variables in the analysis).  Table 11 shows the summary statistics for those highway 

characteristics that were either measured or counted at each study site.  

The summary statistics for speed limit are not shown in Table 11 since this 

information is provided in Table 7.  However, the summary statistics for speed limit 

reduction are shown in Table 11.  In addition to these highway characteristics, other 

variables were created.  For example, a variable for “rounded lane width” was created 

since it was hypothesized that, although a lane width of 9.8 feet was measured, it was 

intended to be a 10-foot lane.  Indicator variables were also created for many of the 

highway features shown in Table 11, such as lateral clearance (less than 10 feet, between 

10 and 20 feet, greater than 20 feet), vertical alignment (flat, downgrade, upgrade, sag 

vertical curve, and crest vertical curve), speed limit reduction, and number of driveways.   
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Table 11  Summary Statistics for Quantitative Highway Features 

Measured Highway Feature Mean St Dev Minimum Maximum
Lane Width 10.65 0.570 9.7 13 
Paved Shoulder     3.43 1.911 0 8.6 
Stabilized Shoulder 1.27 1.807 0 12 
Paved Roadway     28.33 4.493 23 41 
Lateral Clearance  8.88 5.244 0 30 
Grade -0.50 2.926 -9.2 5.6 
Speed Limit Reduction 18.39 2.523 10 20 
Counted Highway Feature Minimum Maximum
Number of Driveways - Adjacent Side 0 5 
Number of Driveways - Opposite side 0 5 
Total Number of Driveways 0 7 
Number of Warning Signs 0 3 
Number of Regulatory Signs* 0 1 
Number of Junction Signs 0 2 
* In addition to the speed limit signs that specify the beginning and end of the 
transition zone.   

 

  The following highway features were coded as categorical variables in the 

analysis database:   

- Information on horizontal alignment (tangent, presence of curve and direction, 

locations of PC, MC, and PT) 

- Presence of curb 

- Presence of non-residential buildings (i.e. post office, school, fire station) 

- Type of warning sign (intersection ahead, passing and non-passing zones, 

school zone, etc.) 

- Presence of guide rail 

- Type of centerline marking (no passing, passing on both sides, passing on 

opposite side, passing on adjacent side) 

 The final set of explanatory variables considered for data analyses consisted of 

approximately 50 potential predictors, including indicator variables.  Tables 12, 13, and 

14 lists the frequency, percent, and cumulative percent for the indicator variables 

included in the dataset.  Lastly, different warning signs were included, thus Table 15 lists 

the number of warning signs per study site. 
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Table 12  Summary Statistics for Indicator Variables for Change in Roadway Alignment 

Presence of Horizontal Curve Regardless of Direction 
Variable Freq. Percent Cum. Description / Comments 
HC (0 value)  5,543 48.47 48.47 No Horizontal Curve 
HC (1 value) 5,893 51.53 100 Presence of Horizontal Curve 

Total 11,436 100   
Presence of Horizontal curve Considering Direction 
Variable Freq. Percent Cum. Description / Comments 
HCRight 3,920 34.28 34.28 Curve to the Right 
HCLeft 1,727 15.10 49.38 Curve to the Left 
HCReverse 246 2.15 51.53 Reverse Curve 

Subtotal 5,893    
Tangent 5,543 48.47 100 No Horizontal Curve 

Total 11,436    
Interaction between Horizontal Curve and Curve Ahead Warning Sign 
Variable Freq. Percent Cum. Description / Comments 
Curve_w_ws 2,312 20.22 20.22 Curve with Warning Sign 
Curve_wo_ws 3,335 29.16 49.38 Curve without Warning Sign 
HCReverse 246 2.15 51.53 Reverse Curve (no warning sign) 

Subtotal 5,893    
Tangent 5,543 48.47 100 No Horizontal Curve 

Total 11,436    
Presence of Vertical Grade regardless of direction 
Variable Freq. Percent Cum. Description / Comments 
Grade (0 value) 7,899 69.1 69.1 Grade is less or equal than | 3% | 
Grade (1 value) 3537 30.9 100 Grade is greater than | 3% | 

Total 11,436    
Presence of Vertical Curve Considering Direction 
Variable Freq. Percent Cum. Description Comments 
G_UP 1,518 13.3 13.3 Grade is greater than + 3% 
G_DOWN 2,019 17.7 30.9 Greater is less than - 3% 

Subtotal 3,537    
G_FLAT 7899 69.1 100 Grade is less or equal than +/- 3% 

Total 11,436    
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Table 13  Summary Statistics for Indicator Variables for Speed Limit, Total Number of 

Driveways, Warning Signs, and Centerline 

Speed Limit 
Variable Freq. Percent Cum. Description / Comments 

sl25 1,162 10.2 10.2 Speed Limit 25 mph 
sl35 3,148 27.5 37.7 Speed Limit 35 mph 
sl40 1,632 14.3 52.0 Speed Limit 40 mph 
sl45 1,042 9.1 61.1 Speed Limit 45 mph 
sl55 4,452 38.9 100 Speed Limit 55 mph 

Total 11,436 100   
Total Driveways 

Variable Freq. Percent Cum. Description / Comments 
td0 2,234 19.5 19.5 no driveways 
td1 3,562 31.2 50.7 1 driveway 
td2 1,776 15.5 66.2 2 driveways 
td3 1,632 14.3 80.5 3 driveways 
td4 1,154 10.1 90.6 4 driveways 
td5 271 2.4 92.9 5 driveways 
td6 536 4.7 97.6 6 driveways 
td7 271 2.4 100 7 driveways 

Total 11,436 100   
Warning Signs 

Variable Freq. Percent Cum. Description / Comments 
Intersection 1069 9.3 9.3 Intersection Ahead 
School/Children 1172 10.2 19.6 School Zone / Presence of Children 
Curve  1307 11.4 31.0 Curve Ahead 
Other 831 7.3 38.3 Other Type of Warning Sign 
None 7057 61.7 100 No Presence of Warning Sign 

Total 11436    
Centerline 

Variable Freq. Percent Cum. Description / Comments 
C0 8,978 78.51 78.51 No passing 
C1 648 5.67 84.17 Passing allowed both sides 
C2 228 1.99 86.17 Passing allowed this side 
C3 1,582 13.83 100 Passing allowed other side 

Total 11,436 100   
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Table 14  Summary Statistics for Indicator Variables for Lateral Clearance, Guiderail, 

Curb, Building, and Regulatory Signs 

Lateral Clearance 
Value Freq. Percent Cum. Description / Comments 

0 8,485 74.2 74.2 Lateral Clearance less or equal to 10 ft 
1 2,951 25.8 100 Lateral Clearance greater than 10 ft 

Total 11,436 100   
Guiderail to the Right 

Value Freq. Percent Cum. Description / Comments 
0 8,950 78.3 78.3 No Guiderail to the Right 
1 2,486 21.7 100 Presence of Guiderail to the Right 

Total 11,436 100   
Curb 

Value Freq. Percent Cum. Description / Comments 
0 9,394 82.1 82.1 No Curb 
1 2,042 17.9 100 Presence of Curb 

Total 11,436 100   
Building 

Value Freq. Percent Cum. Description / Comments 
0 10,145 88.7 88.7 No building 
1 1,291 11.3 100 Presence of School, Post Office, etc 

Total 11,436 100   
Regulatory Sign (in addition to the transition zone indicators)  

Value Freq. Percent Cum. Description / Comments 
0 11,001 96.2 96.2 No Regulatory Sign 
1 435 3.8 100 Presence of Regulatory Sign 

Total 11,436 100   
 

 

3.3  Summary 

Twenty study sites were identified in central Pennsylvania to explore the relationship 

between operating speeds and highway characteristics along transition zones.  All study 

sites required both Reduced Speed Ahead and Speed Limit signs to identify the beginning 

and the end of the transition zone, respectively. 

 Speed data were collected using Hi-Star sensors, which are considered to be non-

intrusive.  Speed data were collected during daylight and dry pavement conditions.  Only 

data from free-flow passenger vehicles (those with headways of at least five seconds) and 

those vehicles for which speed information was available at all four sensors were 

included in the data analyses in order to track individual driver speeds. 
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 All potential highway features that were considered to influence drivers’ speed 

choice were included in the database as potential explanatory variables.  The final data 

set included 11,436 individual speed observations from 2,859 vehicles and more than 50 

potential explanatory variables.   
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CHAPTER 4                                                                                    

ANALYSIS METHODOLOGY 

 

This chapter describes the methodology used to determine the association between 

various roadway characteristics and operating speeds along two-lane rural highway 

transition zones.  Statistical models of mean vehicle operating speed were estimated 

using a variety of methods.  The explanatory variables considered in the analysis include 

roadway and roadside design features, traffic control characteristics, and the surrounding 

land use.   

 The statistical analyses can be categorized into two sections: point speed models 

and speed difference models.  In the point speed models, an initial OLS regression model 

was developed so that the results of this traditional speed modeling method could be 

made to the following three longitudinal models considered in this research: panel data 

analysis, multilevel models, and generalized estimating equations (GEE).  In the speed 

difference models, in which the change in speed along the transition zone length was 

used as the response variable, both OLS regression and multilevel models were 

considered.  Use of only a single observation per driver (speed difference) in this dataset 

removed the issue of correlation among observations, thus panel data and GEE models 

were not considered with this dataset.  Figure 8 shows a flowchart of the model 

development process for both point speeds and speed difference scenarios. 

 This section of the dissertation is organized into two sections.  The first describes 

the point speed modeling methodology, and the second describes the speed difference 

modeling methodology.  In both point speed and speed difference models, the general 

functional form of the model specification is provided in the following sections, along 

with a discussion of the key assumptions of the model and model estimation procedures.   
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Figure 8  Flowchart of Model Development and Identification 
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4.1  Point Speed Analysis 

As described in Chapter 3 of this dissertation, speed and roadway data were collected at 

four sensor locations at each study site.  In addition to the operating speed data, the data 

collection equipment provided information concerning the time headway of each vehicle 

passing through the transition zone.  This information permitted each vehicle to be 

“tracked” through the transition zone.  As a result, driver-specific information contained 

in the analysis dataset could be explored.  In the present study, panel data analyses, 

multilevel models, and generalized estimating equations (GEE), an extension of the 

general linear model (GLM), were applied to account for the correlation between 

observations due to driver-specific speed information.  The results obtained from these 

models were compared to the traditional operating speed modeling approach of OLS 

regression.  

 

4.1.1  Ordinary Least Squares    

The method of OLS linear regression is perhaps the most common statistical method used 

to obtain parameter estimates of vehicle operating speeds as described previously in 

Chapter 2.  In this method, it is assumed that a linear relationship exists between the 

dependent variable and the independent variables.  Let yi be the ith observation of the 

response variable (i = 1, 2, …, n), the linear relationship is commonly expressed in the 

following equation: 

 111 ×××× += nppnn XY εβ         (20) 

where: Y = the column vector for dependent variable (speed); 

X = referred to as the design matrix, containing the set of independent 

variables (highway features); 

β = column vector of regression parameters to be estimated; and 

ε = column vector that contains the random errors.  

 The relationship between three terms explains the methodology behind OLS.  

These three terms are: observations ( iy ), overall mean ( y ), and predictors ( iŷ ), also 

viewed as group-specific sample means.  
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 The purpose of OLS is to minimize the total sum of squares, defined as the 

difference between the predicted values and the observed data.  These are explained 

below along with their respective equations: 

1. Total Sum of Squares, TSS, is defined as the sum of squared deviations of 

each observation from their mean, given by:  

 ( )∑
=

−=
n

i
i yyTSS

1

2
       (21) 

2. Sum of Squared Errors, SSE, also known as residual sum of squares, is the 

sum of squared deviation of observations from their respective sample means 

(i.e. predictors), given by: 

 ( )∑
=

−=
n

i
ii yySSE

1

2ˆ        (22) 

3. Mean Sum of Squares, MSS, also referred to as the regression sum of squares, 

is the sum of squared deviations of the sample means (predictors) from the 

overall mean, given by:  

 ( )∑
=

−=
n

i
i yyMSS

1

2
ˆ        (23) 

 The terms MSS and SSE can be interpreted as the between-group sum of squares 

and the within-group sum of squares, respectively.  By minimizing TSS, estimates are 

obtained for the explanatory variables that better explain the response variable.  This can 

be obtained by either minimizing MSS or SSE, as seen in the following equation:  

 SSEMSSTSS +=         (24) 

 There are five assumptions associated with the OLS estimator, which were 

previously listed in Section 4.1.1.  Each assumption is described in more detail below, 

along with methods to assess each: 

1. The dependent variable is linearly associated with the independent variable(s) 

plus an error term.  Violations of this assumption include having the wrong 

regressors (either by being omitted or by being irrelevant), nonlinearity, and 

parameter estimates not being constant.  Scatter plots showing the relationship 

between speed (dependent variable) and each independent variable were used 

to detect any possible non-linear relationships in the data.  The t-test is used to 
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identify if a variable is associated with the response variable; to identify which 

variables should be included in the model, a p-value of 0.05 or less was used.  

In addition, the F-test and the coefficient of determination R2 are used to 

provide information about the fit of the model.   

2. The error term has a zero expected value and is normally distributed and 

uncorrelated with the independent variables.  Plots of residuals against fitted 

values, normal probability plots, and time sequence residual plots are useful in 

determining of this assumption is met.  The graph of residuals should be 

randomly scattered and centered around zero and should not show any 

patterns.  A remedial measure to address the violation of this assumption is to 

transform the variables.  

3. The error terms have equal variances and are not correlated with one 

another.  Two problems are associated with the violation of this assumption: 

heteroskedasticity (non-equal variances) and autocorrelated errors.  The plot 

of residuals against the response variable can be used to check for 

heteroskedasticity; the absolute magnitudes of the residuals should be on 

average the same for all values of the response variable.  In addition, the 

Breusch-Pagan test is used to check for unequal variances.  The null 

hypothesis is that the error term has a constant variance across all 

observations.  The Durbin-Watson statistic, d, can be used to test for lack of 

randomness in least squares residuals.  The null hypothesis is that no 

autocorrelation is present among the residuals: when there is no 

autocorrelation, the d-statistic is approximately 2.0.  

4. The observations on the independent variables are fixed in repeated samples.  

Errors in measuring the independent variables and autoregression are 

problems associated with the violation of this assumption.  To confirm if this 

assumption is met, the independent variables should not be correlated with the 

error term.  The Hausman test is used to test for the equality of the estimates 

produced by the null and alternative estimators.  A p-value of 0.05 or less 

results in rejecting the null hypothesis of no correlation between the error and 

the independent variables.  
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5. The number of observations is greater than the number of independent 

variables and the independent variables are not correlated.  Violating this 

assumption results in multicollinearity.  When this happens, the OLS 

estimates cannot be computed.  A correlation matrix between the independent 

variables can be used to identify which variables have high correlation 

coefficients.  In addition, the diagonal elements of the inverse of the 

correlation matrix are known as the variance inflation factors (VIF).  

Variables with VIF higher than 10 indicate harmful collinearity and should 

not be included in the model. 

  

4.1.2  Panel Data 

Panel data analysis has been used previously to investigate speed relationships (Tarris, et 

al., 1996).  In the present context, panel models offer advantages over traditional ordinary 

least squares (OLS) linear regression models because observations are correlated for the 

same driver along a transition zone.  Past operating speed models that have used a panel 

data analysis approach are limited to roadways classified as low-speed urban streets and 

high-speed, two-lane rural highways.  No operating speed models currently exist for two-

lane rural highway transition zones.   

Panel data is a form of longitudinal data in which observations in a sample are 

collected at two or more points in time.  The sample is viewed as a cross-section of 

drivers where the speed observations are repeated measurements on each driver over 

time.  In this study, driver speeds were observed sequentially at the following four points 

in time: (1) before the beginning of the transition zone (high-speed area), (2) at the 

beginning of the transition zone, (3) at the end of the transition zone, and (4) after the end 

of the transition zone (low-speed area).  Figure 9 illustrates the general two-level cluster 

that represents the panel data structure in this research.  In Figure 9, each speed 

measurement is clustered within an individual driver j.  The number of drivers observed 

varies per data collection site.  For the purposes of this dissertation, a disaggregate 

analysis refers to the instance where all of the individual speed observations are used in 

the model specification. 
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Figure 9  Panel Data Illustration 

 

 As illustrated in Figure 9, information on each driver j is collected at several time 

periods t.  In this particular study, t = 1, 2, …, T where T = 4 corresponding to the four 

sensor locations.  When there are no missing observations, the panel is balanced.  Since 

drivers are the clusters, it is expected that the observations within clusters will be 

correlated (vehicles are tracked, thus the speed data from a specific driver is assumed to 

be dependent on the previous speed).  The advantages of using panel data are as follows 

(Brüderl, 2005): 

- There is more variability, less collinearity, and more degrees of freedom, 

therefore panel data analysis is considered more informative than other 

modeling methods when the data contain both cross-section and time 

elements. 

- The estimates are more efficient than the OLS estimator. 

- Panel data analysis allows one to study individual driver dynamics by 

considering unit-specific clusters (i.e., characteristics on individual drivers). 

- The time-ordering of individual speed observations are explicitly taken into 

consideration. 

- Individual unobserved heterogeneity (the variation of observations due to 

variables not included in the model) is accounted for in the model.  

 It is important to note that, in this study, the study sites k produce a third-level 

cluster as opposed to the two-level cluster represented in Figure 9.  The three-level 

cluster that shows the information on driver j is nested in site k is shown in Figure 10.  

Driver 1 Driver 2 Driver j 

Time 1 Time 2 Time t Time 1 Time t

…

… … …
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Figure 10  Three-Level Hierarchical Data Structure 

  

In Figure 10, speed observations i collected at time t are nested within drivers j, 

which are then nested within the study sites k. Figure 10 also shows that driver speed 

observations are site-specific, meaning that drivers only traveled through one of the study 

sites therefore no speed data are available for other sites for the same driver.  The 

variable for study site cannot be included in the panel model specification because the 

matrix of regressors (explanatory variables) would produce perfect collinearity with the 

study site variable, and would thus eliminate the possibility of exploring the association 

of roadway, roadside, land use, and traffic control characteristics on operating speeds.   

In addition to the disaggregate-level analysis referred to previously, this 

dissertation also considers an aggregate-level panel data model in order to compare the 

coefficient estimates between the two datasets as well as measures of model efficiency 

(coefficient of determination, t-statistics).  Aggregation is done by computing a mean 

operating speed for all drivers at each sensor location within a study site.  Although past 

operating speed research has used aggregate data to determine the statistical association 

between vehicle operating speed and roadway design features, there are several 

limitations associated with aggregating data, thus recent research has considered 

disaggregate-level data (Park and Saccomanno, 2005; and Misaghi and Hassan, 2005).  

First, aggregating speed data may result in an “ecologic fallacy”, a term that is used to 

Site 1 Site 2 Site K

Driver 1 Driver 2 Driver n Driver n+1 Driver n+2 Driver J…

…

…

……

2 3 T N1 …… … …
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imply that, although conclusions are developed for a group, they may not apply to an 

individual (Park and Saccomanno, 2005).  By aggregating data, some information 

belonging to individual drivers is lost.  Although using aggregate data may improve the 

goodness-of-fit of a statistical model (e.g., coefficient of determination), doing so may 

introduce a major source of uncertainty.  Data aggregation may also bias the parameter 

estimates of a statistical model (Garrett, 2003).  Nevertheless, both disaggregate and 

aggregate models of point speed for panel data models were specified in this dissertation 

to compare the results since the ecologic fallacy issue has only be addressed for OLS 

models.  

 Before introducing fixed- and random-effects panel models, consider first the 

following pooled linear regression model: 

jtjtjt xy εβα ++= '           (25) 

where: yjt = speed of driver j at time t, j = 1, 2, …, n; t = 1, 2, …, T; 

 α, β = vector of estimable parameters; 

 x’jt = vector of explanatory variables corresponding to driver j at time t; 

 εjt = disturbance term corresponding to driver j at time t. 

 The ordinary least square (OLS) estimator is appropriate only if the assumptions 

of the classical linear regression model are met.  These include (Greene, 2008):   

1. Relationship between set of explanatory variables and dependent variable is 

linear; 

2. Independence across observations i; 

3. Conditional mean of the disturbances is zero (E[εjt]=0); 

4. Homoskedastic disturbances (Var[εjt] = σ2); and 

5. Strict exogeneity of xjt (Cov[εjt, εls]) = 0 if j ≠ k or t ≠ s. 

These assumptions are discussed in detail below (see Section 4.2).  When 

estimating a pooled regression model, the regression parameters are constant across 

drivers and time.  The disturbance term (εit) accounts for the variation that is not 

explained by the independent variables in the model.  In panel data analysis, the effects of 

omitted variables are collectively significant (Washington et al. 2003).  These effects can 

be absorbed by the intercept for individual drivers, time periods, or both.  In the present 
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research, individual driver heterogeneity is accounted for in the model, but time 

heterogeneity is not considered.  The error term in such a model therefore includes a term 

for the unobserved driver-specific effects.  

To account for individual driver effects in the model, the intercept can differ 

while the slope coefficients (β) are constant across drivers.  Two methods can be used to 

estimate a different intercept for each driver.  The first is to use a dummy variable for 

each driver and use OLS to estimate the model.  In the context of the present study, such 

an approach would require the use of 2,858 dummy variables, which leads to a significant 

loss in degrees of freedom.  Another method is by applying a fixed-effects model to the 

data set which uses the fixed-effects estimator, also known as the within estimator, and 

amounts to using OLS in order to estimate the slope coefficients (β) thus being treated as 

fixed and estimable (STATA Press, 2005).  Furthermore, statistical inference can only be 

made on the drivers included in the sample.  The fixed-effects model takes the following 

general form: 

jtjtjjt xy εβα ++= '         (26) 

where: yjt = speed of driver j at time t, i = 1, 2, …, n; t = 1, 2, …, T; 

 αj = driver-specific constant;  

 β = vector of estimable parameters; 

 x’jt = vector of explanatory variables corresponding driver j at time t; and 

 εjt = disturbance term corresponding to driver j at time t. 

An F-test can be used to test the hypothesis that the individual driver-specific 

effects (αj) are equal.  The null hypothesis is that that pooled model is the efficient 

estimator.  The fixed-effects model allows the unobserved driver-specific effects to be 

correlated with the explanatory variables included in the model specification (Greene 

2008).  If the driver-specific effects are not correlated with the explanatory variables 

included in the model, it is possible to model the individual driver intercepts as 

randomly-distributed from a pool of possible intercepts.  The random-effects model takes 

the following general form: 

jtjtjjt eBxuay +++= ')(        (27) 

where: yjt = speed of driver j at time t, i = 1, 2, …, n; t = 1, 2, …, T; 
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 a = constant; 

 uj = random heterogeneity specific to jth driver that is constant over time; 

 B = vector of estimable parameters; 

 x’jt = vector of explanatory variables corresponding driver j at time t; and 

 ejt = disturbance term corresponding to driver j at time t.  

The following assumptions are associated with the strict exogeneity assumption in 

the random-effects model (Greene, 2008): 

0]|[]|[ == xuExeE jjt        (28) 

22 ]|[ εσ=xeE jt         (29) 

22 ]|[ uj xuE σ=         (30) 

0]|[ =xueE jjt  for all j and t       (31) 

 Let njt = ejt + uj, so the error components in the random-effects model are: 

 
22]|[ ujt xnE σσ ε +=         (32) 

Feasible generalized least squares (FGLS) was used to estimate the regression 

parameters in the random-effects model.  A Breusch-Pagan Lagrange multiplier test can 

be used to test the appropriateness of the random-effects model.  The null hypothesis is 

that the variance component for the driver (σu
2) is zero.  The test is chi-squared-

distributed with one degree of freedom.  Rejecting the null hypothesis suggests that the 

random-effects model is more appropriate than the classical linear regression model.   

The Hausman test is used to determine which model, the random-effects or the 

fixed-effects, is more appropriate.  Under the null hypothesis, both OLS in the fixed-

effects model and GLS in the random-effects model are consistent, but OLS is not 

efficient.  The Hausman test is used to test the assumption that there is no correlation 

between the individual driver effects (αj) and the vector of explanatory variables.  The 

null and alternative hypotheses for the Hausman test, in terms of the covariance for the 

between-subject residual for the fixed-effects model, αj, are defined as follows: 

H0 : Cov(xjt, αj) = 0  

H1 : Cov(xjt, αj) ≠ 0  
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 Failure to reject the null hypothesis indicates that the random-effects model is 

favored over the fixed-effects model.  Rejecting the null hypothesis favors the fixed-

effects model.  

 The STATA software provides in its output the values for the between-subject 

and within-subject standard deviations, ψ  and θ respectively (STATA Press, 2005).  

STATA also provides a value for the within-subjects correlation, ρ, given by the 

equation: 

 
θψ

ψρ
+

=          (33) 

where ψ is the between-subject variance and θ is the within-subject variance (σε in the 

output).  If the value of ρ is close to 1, then there are no differences between observations 

for an individual driver.   

 

4.1.2  Multilevel Models  

Similar to panel data analyses, multilevel models are also used in longitudinal studies 

where the response from an individual are correlated and the data has a clustered 

structure.  In multilevel models, several levels of clusters can be recognized, thus a 

cluster level may be nested in another cluster level, creating a “super cluster.”  Multilevel 

models are able to recognize the data hierarchy while allowing a residual component at 

each level.  The benefits of multilevel models are: 

1. The ability of recognizing the hierarchy of the data structure, therefore the 

estimates and standard errors are more efficient.  Underestimating the 

standard errors can lead to incorrect statistical inferences of the parameters.  

2. They are able to provide information about the level variables (i.e., group 

variables). 

3. They allow for prediction of both group effects and the group variable itself 

simultaneously by adding a dummy variable (i.e. can include the 

characteristics at each sensor plus a dummy variable for sensor).  

4. Each cluster (i.e. group variable) can be treated as a random sample from a 

population.  
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5. Multilevel models can allow for non-nested models; they allow for several 

levels to be “crossed.”  An example could be drivers nested in sites, where 

drivers and county of residence are crossed.  

 Panel data models are only able to accommodate two-level data structures; by 

setting a panel variable (driver) and a time variable (sensor) it is specified that 

longitudinal data (speed observations) are nested in drivers.  In multilevel analysis, this 

structure is represented by two levels: speed observations at the lower level which are 

nested in driver clusters, the higher level.  The two-level model has the following 

functional form: 

 ijj

P

p
pijpij Xy εςββ +++= ∑

=

)2(

1
0       (34) 

where: yij = observation i for driver j; 

 β0 = fixed intercept (slope); 

∑
=

P

p
pijp X

1
β = sum of the explanatory variables (X) and their parameter 

 estimates (β); 

 )2(
jς  = random intercept for level 2 (drivers), with variance ψ(2); and 

 εij = random error term (residual) with variance θ.  

 The maximum likelihood estimator is used to estimate the parameters in 

multilevel models.  The maximum likelihood method is the joint probability density of all 

the observed responses (speeds) as a function of the model parameters β, ψ, and θ.   

 The maximum likelihood estimators are expressed in terms of the model sum of 

squares, MSS, and the sum of squared errors, SSE.  For a two-level model, expressed in 

Equation (34), the MSS is the sum of squared deviations of cluster means (drivers) from 

the overall mean, and is given by: 
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1 which is the population mean, β.  

 The SSE is the sum of squared deviations of responses from their cluster means, 

and is given by the following equation: 
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1  which is the mean for a specific cluster. 

 The maximum likelihood estimators of the within- and between-cluster variances, 

θ and ψ, are then computed in terms of MSS and SSE: 

 SSE
nJ )1(
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 If the model is true, then the estimators for β and θ are unbiased.  The estimator 

for ψ, however, has downward bias.  The unbiased moment of estimator (or ANOVA) of 

ψ is: 
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 As shown in Figure 10, the dataset created for this research specifies that its 

structure consists of three levels.  The higher level, which corresponds to the site 

variable, cannot be taken into account in panel data analyses.  The class diagram that 

illustrates the three-level model, which corresponds to the unit diagram shown in Figure 

10, is shown in Figure 11.   
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Site

Subject

Speed
 

Figure 11  Class Diagram for Multilevel Model Dataset 

 

 The equation that describes the three-level unconditional model is:  

 ijkkjkijky εςςβ +++= )3()2(
1        (40) 

where: yijk = observation i for driver j at site k; 

 β1 = fixed intercept (slope); 

 )2(
jkς = random intercept for level 2 (drivers), with variance ψ(2);  

 )3(
kς = random intercept for level 3 (site), with variance ψ(3); and 

 εijk = random error term (residual) with variance θ.  

 As shown in Equation (40), multilevel models are able to add a random intercept 

at each level of the data structure.  The random part of the three-level model included in 

Equation (40) is shown in the following equation: 

 ijkkjkijky εςς ++= )3()2(         (41) 

 Equation (41) can be represented by the path diagram shown in Figure 12.  
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Figure 12  Random Path Diagram for Unconditional Three-Level Model 

  

 In the dataset created for this research, for a driver j (level 2), nested in site k 

(level 3), there are 4 observations (yij), which are the observed variables (the responses) 

inside the rectangular elements shown in Figure 12.  The presence of clusters creates 

possible correlation within the clusters.  The variance component terms can be explored 

by fitting unconditional models, (i.e. models without explanatory variables).  The 

likelihood-ratio test is used to determine if a specific level of the data hierarchy is indeed 

necessary by fitting the unconditional models, with and without the random intercept for 

the level in question.  A p-value of 0.05 or less indicates that the models fitted are 

significantly different at the 95 percent confidence level and that the level specified is 

indeed necessary. 

 Multilevel models can be classified according to the characteristics of the model 

components, such as type of response variable and type of structure, among others.  The 

data set for this research is then classified as follow: 

1. Type of response variable.  The response variable is speed, which is a 

continuous variable with a normal distribution.   

2. Type of data structure.  Speed observations were collected at four sensor 

locations at twenty study sites.  In addition, vehicles were tracked, thus 

specifying speed observations to specific drivers.  The data structure for this 
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research is then hierarchical in nature with three levels: speeds (level 1) are 

nested in driver clusters (level 2) and drivers are nested in sites (level 3).  

3. Type of variance structure.  For this research, the model is assumed to be a 

variance components model, also known as a random intercept model, since 

only the intercept is assumed to vary randomly across higher levels (drivers 

and sites).  In this model, there is a residual intercept at each level as 

described previously in relation to Equation (40).  

4. Other.  In this classification the options include models with measurement 

error, missing data, and spatial models.  For this research, a spatial model 

seems appropriate since this type of model is able to account for driver 

clusters to be crossed with sites (i.e., there is speed information for a specific 

driver at more than one site).  Besides speed information, no additional driver-

specific data were collected, thus it was assumed that drivers were site-

specific.  

 

4.1.3  Generalized Estimating Equations (GEE) 

Another analysis method used in this dissertation to estimate speeds of individual drivers 

over time is the generalized estimating equations.  Generalized estimating equations 

(GEE) are used in longitudinal models when there is correlation among the sample data.  

GEE is an extension of the generalized linear model (GLM), but instead of using 

maximum likelihood theory for independent observations, GEE is based on quasi-

likelihood estimation which allows for overdispersion of data (greater variability).  Zeger 

and Liang (1986) described the GEE method for discrete and continuous outcomes.  The 

method has been used in transportation research primarily to model crash occurrence 

(Abdel-Aty and Wang, 2006; and Lord and Persaud, 2000); however, it has not been 

applied to speed data which are continuous, normally-distributed data.   

 GEE models are population-averaged (marginal) models rather than conditional 

(cluster-specific) models such as the panel models described previously (Zorn, 2001).  In 

the former, the regression parameters represent the average effect of the explanatory 

variables across the population on the dependent variable.  Alternatively, the regression 

parameters in a conditional model represent the effect of a change in the explanatory 
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variables on the dependent variable for an individual driver.  In GEE, few subpopulations 

are thought to exist and they can be identified as having shared values for the 

independent variables (Ghisletta and Spini, 2004).  This is partially true of drivers on 

two-lane rural highways in central Pennsylvania – there are likely few subpopulations 

and the independent variables across many of the study sites in the present research are 

alike (e.g., lane width, posted speed limits, regulatory speed limit changes, land use 

characteristics, etc.).   

 In generalized linear models (GLM), the probability density of the response Y, 

which is assumed to have exponential form, is expressed as:  

 ⎭
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 for some functions a, b, and c that determine the specific distribution.  The mean 

and the variance of Y are: 
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In GLM, the probability distributions of the response Y are parameterized in terms 

of the mean μ and dispersion parameter φ  as opposed to the natural parameter θ.  Several 

combinations of family and link options are available.  A GEE model with Gaussian 

family and identity link is the basic GLM model.  The probability function for the normal 

(Gaussian) family can be expressed as:  
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 for -∞ < y < ∞. 

 The variance of the response Y is: 

  2)( σφ ==YVar         (46) 

 A link function (g) is used to relate the mean of the ith observation to a linear 

predictor (xi’β) as follows:   

 βμ ')( ii xg =          (47) 

where: xi = vector of explanatory variables; and 
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 β = vector of estimable regression parameters 

 Log-likelihood functions for the distributions are parameterized in terms of means 

μi and the dispersion parameter φ  and are of the form: 

 ( )( )∑=
i

iiyfyL φμφμ ,,log),,(       (48) 

 where the sum is over the observations; each individual contribution is: 

  ( )( )φμ ,,log iii yfl =        (49) 

 For the normal (Gaussian) family, the individual contributions li, which are 

expressed in terms of the mean and dispersion parameters, are: 
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 In the generalized estimating equations framework (GEE), there are repeated 

observations made on the same subject.  As such, let Yjt be the response variable (speed) 

on subject (driver) j during time period t, which corresponds to the sensor locations 

(where j = 1, 2, …, J and t = 1, 2, …, T).  Because the data are correlated, the covariance 

structure of the data is modeled in GEE.  The link function and the linear predictor shown 

in equations (47) and (50) are the same in the GEE framework except that the vector of 

explanatory variables includes both the driver j and time t.  To estimate the vector of 

regression parameters, the following equation is used: 
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 The primary benefit of GEE models is that they can account for the correlation 

within clusters.  In the GEE framework, Ri(α) is a working correlation matrix with ni by 

ni dimensions.  The covariance matrix of the response variable is modeled as: 

 
2/12/1 )( iii ARAV αφ=                 (52) 

 where Ai = ni by ni diagonal matrix with v(μit) as the tth diagonal element.  

 Four working correlation structures can be considered for GEE models: 

1. Independent.  The observations for a cluster (driver) are independent of each 

other, therefore the GEE estimates are the same as the regular GLM but with 

different standard errors.  The working correlation matrix is diagonal in this 
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case.  Letting yjt be the tth observation on the jth driver, the correlation between 

two observations is: 
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2. Exchangeable.  All measurements are equally correlated (the correlations are 

constant within a driver).  In this case the correlation between two 

observations is 
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),(  and the correlation matrix for a 

given cluster, assuming four observations per subject, is 
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3. Autoregressive.  The correlations between observations for each subject 

depend on the distance between measurements; as the distance/time increases 

between the time periods, the correlation decreases.  The correlation for any 

two observations is tnnyyCorr j
n

ntjjt −==+ ,...,2,1,0,),( , α and the correlation 

matrix for a given cluster is
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4. Unstructured.  No assumptions about the correlations, thus the correlation 

between any two observations for a driver are different.  The correlation 

between two observations can be identified as 
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while the correlation matrix can be viewed as 
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 Any multicollinearity issues with the data do not violate any assumptions of the 

GEE models and do not cause biased, inefficient, or inconsistent estimators; only the 

standard errors are affected.  For model verification, a plot of the residuals should not 

show any patterns if the model is specified correctly.  For model (and working correlation 

matrix) selection, the quasi-likelihood under independence model criterion (QIC) 

proposed by Pan (2001) and the marginal coefficient of determination (marginal R-square 

or R2
m) values are used.  

 In GLM, the AIC criterion is used to choose the best model.  The AIC criterion 

cannot be applied to GEE models due to the (possible) violation of normally-distributed 

data and independency.  Instead, the QIC criterion, an alternate method to the AIC 

criterion, can be used in GEE models.  The QIC is a function of the working correlation 

matrix; it is used to identify which is the best correlation structure.  The model with the 

smallest value for QIC is the best GEE model.  

 Another model selection method is the marginal R-square, R2m, which follows the 

theory of coefficient of determination for OLS regression, and can also be applied for 

selection of the best working correlation matrix in GEE models.  In addition to the QIC 

criterion, the marginal R-square, R2m, can provide additional information about the 

fitness of the model (James Cui, 2007).  The marginal R-square, R2m, is given by the 

following equation: 
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 where jtY  is the observation for subject j at time period t, jtY
∧

 is the predicted 

value (obtained from the model developed under consideration), and jtY  is the marginal 

mean across all time periods and given by the following equation: 
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 The R2m value measures the fitness of the model being tested by comparing it to 

the null model.  The marginal R-square then is the defined as the amount of variance in 

the response variable that is explained by the fitted model.  

 

4.2  Speed Differential Analysis 

An alternative method to explore the relationship between operating speeds and roadway, 

roadside, and land use characteristics along transition zones is to consider the change in 

speed between sensors as the dependent variable.  In the following analyses it was 

hypothesized that changes in the driving environment are responsible for changes in 

driving behavior, thus differences in roadway characteristics were included as 

explanatory variables in several operating speed differential models.  Ordinary least 

squares (OLS) linear regression and multilevel model analyses were used to estimate 

speed reductions in transition zones along two-lane rural highways.  

 By developing a speed differential prediction model, the response variable is 

identified as the change in speed between the limits of the transition zone.  The new 

dataset created consists of one observation per vehicle, eliminating driver-specific 

characteristics and correlated observations.  Since the assumption of independent 

observations is no longer expected to be violated, OLS analysis can be applied to the 

dataset.  The methodology for OLS analyses was previously discussed in Section 4.1.1.   

 One observation per vehicle (driver) suggests that longitudinal models such as 

panel data and GEE models are not longer appropriate.  However, the site cluster is still 

present, thus a two-level model in which speed observations are nested in sites can also 

be considered in order to explore the highway characteristics that influence changes in 

operating speeds along transition zones.  The general form of a two-level model was 

previously expressed in Equation (34) in section 4.1.2 of this chapter.  Equation (34), 

however, specified that point speed observations (level 1) were nested in drivers (level 2).  

When considering speed differentials along the transition zone, only one observation per 

driver is available, thus the driver cluster no longer exists.  The two-level model for 

predicting speed differentials along transition zones considers changes in operating 
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speeds for each driver  at the lowest level (level 1), which are nested in sites (level 2).  

The theory of the maximum likelihood estimator for two-level models is also included in 

section 4.1.2 in this chapter (see Equations [35] to [39]).  
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CHAPTER 5                                                                                    

DATA ANALYSIS RESULTS 

 

The data collected from the Hi-Star sensors were carefully examined in order to include 

only information from free-flow passenger vehicles.  Those vehicles with headways less 

than five seconds were excluded from the data set as well as those with vehicle lengths 

greater than 20 feet.  Only vehicles whose speed information was available at all four 

sensor locations were considered for the analyses.  The final dataset consisted of 11,436 

point speed observations from 2,859 identified drivers distributed across 20 study sites.  

In addition, a separate dataset was created that considered only speed changes between 

the limits of the transition zone.  This chapter discusses the results from the data analyses 

performed for both point speeds and speed differentials.  

 

5.1  Point Speed Analysis Results 

This section of the chapter discusses the development of speed prediction models that 

considered point speed observations as the response variable.  The results from OLS 

regression, panel data analysis, multilevel models, and generalized estimating equations 

(GEE) are discussed in this section.  

 

5.1.1  Correlation Analyses 

Correlation analyses were undertaken in order to initially indentify the highway 

characteristics that were associated with speeds in transition zones.  The variable most 

highly correlated with speed observations was posted speed limit (correlation value of 

0.51).  Other variables identified as potential variables in statistical model building, along 

with their correlations values with the response variable (operating speed), were: 

- Total number of driveways (-0.29) 

- Presence of curb (-0.26) 

- Number of warning signs (-0.23) 

- Presence of Intersection Ahead warning sign (-0.26) 

- Presence of school/children related warning sign (-0.19) 

All other variables had correlation values less than an absolute value of 0.2.   
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 In addition, correlations between explanatory variables were explored in order to 

assess potential multicollinearity problems due to the inclusion of two correlated 

explanatory variables.  Any issues related to collinear explanatory variables included in 

the model-building process are described in subsequent sections of this dissertation.  

 

5.1.2  Ordinary Least Squares 

Linear regression has been the most common method used to estimate speed prediction 

models, as previously discussed in Chapter 2.  Since the dataset created for point speed 

observations consists of correlated observations (four observations per driver), the 

independency assumption for linear regression models is expected to be violated.  

Nevertheless, an OLS regression model was estimated in this section for the following 

two reasons:  (1) to obtain initial insights regarding which highway characteristics 

influence operating speeds along transition zones, and (2) to compare the longitudinal 

models estimated in this research to the more traditional OLS regression model.  An 

initial OLS regression model was estimated using a backward elimination procedure.  A 

correlation matrix was computed to verify that any two independent variables were not 

significantly correlated.  In addition, variance inflation factors (VIF) were calculated to 

detect multicollinearity.  The correlation matrix indicated low correlation levels among 

the independent variables included in the OLS regression model (less than an absolute 

value of 0.4) and the VIF values were all less than 10.  Both methods indicated that no 

collinear variables were present in the model specification.  The results of the OLS 

regression model are summarized in Table 15.  
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Table 15  Linear Regression Model Results 

Parameter Estimate SE t p-value VIF 
Speed Limit 25 mph -12.62 0.327 -38.62 <0.001 2.1 
Speed Limit 35/40 mph -2.71 0.210 -12.93 <0.001 2.3 
Speed Limit 45 mph -5.76 0.283 -20.37 <0.001 1.4 
Lane Width Addition 2.03 0.138 14.68 <0.001 1.3 
Lateral Clearance 0.02 0.014 1.43 0.152 1.1 
Total Driveways -1.10 0.044 -24.87 <0.001 1.3 
Curb -4.48 0.238 -18.79 <0.001 1.8 
Intersection WS -1.76 0.272 -6.48 <0.001 1.3 
School/Children WS -2.82 0.266 -10.61 <0.001 1.4 
Curve WS 2.38 0.237 10.00 <0.001 1.2 
Curve with WS -0.73 0.224 -3.27 0.001 1.7 
Curve without WS -0.67 0.186 -3.63 <0.001 1.5 
Constant 50.91 0.269 189.59 <0.001 - 
Analysis of Variance 
Source df SS MS F  
Model 12 351936.4 29328.0 540.62  
Residual 11423 619683.9 54.2   
Total 11435 971620.4 85.0   

 

 The coefficient of determination, R2, for the OLS model shown in Table 15 is 

0.3622, indicating that 36 percent of the variance in speed observations can be explained 

by the model.  The result of the F-test shown in the Analysis of Variance table indicates 

that the null hypothesis that the parameter estimates, including the constant, are zero is 

rejected, thus there is an association between the independent variables and the response 

variable.  All except one highway feature are statistically significant at the 95 percent 

confidence level; lateral clearance is statistically significant at the 80 percent confidence 

level as indicated by its p-value.  As shown in Table 15, the variables that are associated 

with higher operating speeds are: 

- Lane Width Addition: a one-foot increase in lane width is associated with a 

mean operating increase of 2 mph. 

- Lateral Clearance: for each one-foot increase in lateral clearance, a 0.02 mph 

mean operating speed increase is expected. 

- Curve Ahead Warning Sign: the presence of this warning sign is associated 

with a mean speed increase of 2.4 mph when compared to the baseline of no 
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warning sign or the presence of a warning sign that does not indicate a change 

in highway alignment, a change in access density, or presence of children.  

 The parameter estimate for the presence of a Curve Ahead warning sign (“Curve 

WS” variable in Table 15) is not consistent with engineering intuition since it is 

associated with a mean speed increase.  However, it was observed that these warning 

signs are located before the beginning of a horizontal curve (i.e., along the approach 

tangent) where vehicle operating speeds tend to be higher relative to speeds within a 

horizontal curve. 

 The highway features associated with mean speed reductions are: 

- Speed Limit 25 mph: a posted speed limit of 25 mph is associated with a mean 

speed reduction of 12.6 mph when compared to the baseline of 55 mph. 

- Speed Limit 35/40 mph: a posted speed limit of either 35 or 40 mph reduces 

the mean operating speed by 2.7 mph when compared to the baseline of 55 

mph. 

- Speed Limit 45 mph: a posted speed limit of 45 mph is associated with a mean 

speed decrease of 5.8 mph when compared to the baseline of 55 mph. 

- Total Driveways: a mean speed reduction of 1.1 mph is expected per one-unit 

increase in driveway density. 

- Curb : the presence of a curve is associated with a mean speed reduction of 

4.5 mph when compared to the baseline of no curb. 

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of 1.8 mph when compared to the baseline of no 

warning sign or the presence of a warning sign that does not indicate a change 

in highway alignment, a change in access density, or presence of children.  

- School/Children Warning Sign: the presence of this sign is associated with a 

mean speed reduction of 2.8 mph when compared to the baseline of no 

warning sign or the presence of a warning sign that does not indicate a change 

in highway alignment, a change in access density, or presence of children. 

- Curve with Warning Sign: the presence of a horizontal curve that warrants a 

warning sign is associated with a mean speed reduction of 0.7 mph when 

compared to the baseline of a tangent roadway section. 
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- Curve without Warning Sign: the presence of a horizontal curve that does not 

warrant a warning sign is associated with a mean speed reduction of 0.7 mph 

when compared to the baseline of a tangent roadway section. 

 The parameter estimates for the speed limit variables may appear to be 

counterintuitive since a speed limit of 35 or 40 mph should be associated with lower 

operating speeds when compared to a speed limit of 45 mph.  However, it is important to 

note that speed limits of 35 and 40 mph were, with exception of one site (Site ID 14 in 

Table 10), encountered in the low-speed section (sensor locations 3 and 4).  Highway 

features that were only encountered in the low speed zone, such as the presence of a curb, 

may be associated with the lower operating speeds estimated by the 35 and 40 mph 

posted speed limit variable in the model.  This may be an indication that the interaction 

between highway features and the posted speed limit variables should be explored.  

However, the purpose of this investigation was to explore the main effects that are 

influential on operating speeds along transition zones.   

 The inclusion of indicator variables for speed limit was preferred over the speed 

limit as a continuous variable.  Use of the indicator variables resulted in a higher value 

for the coefficient of determination (0.3622 as compared to 0.3168 when including speed 

limit as a continuous variable).  Also, the root mean square error is lower when 

considering indicator variables for speed limit when compared to the root mean square 

error when considering speed limit as a continuous variable (7. 36 as opposed to 7.62).    

These are indications that the use of indicator variables for speed limit results in a better 

model fit.   

 Linear regression assumes that the speed observations are independent; since 

driver-specific data are included in the dataset, this assumption is violated.  It is expected 

that the speed from a particular driver at a downstream location is dependent on the speed 

at an upstream location for the same driver.  Therefore, speed prediction models that are 

able to account for correlation among observations are preferred.  

 To test for the assumption of equal variances among the errors in the OLS 

regression model, the Breusch-Pagan test was used.  A χ2 value of 1.09, corresponding to 

a p-value of 0.2968, was obtained.  Therefore, the null hypothesis of equal variances is 
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not rejected and it can be concluded that the data are of homoskedastic nature and no 

transformations are necessary.  

 To test for the assumption of no autocorrelation among the residuals, the Durbin-

Watson test was performed resulting in a value, d, of 1.077.  This was indicative that 

positive autocorrelation was present in the model.  In order to correct for this problem, 

the Prais-Winsten approach was performed.  In the Prais-Winsten procedure, the error 

term for a particular period is assumed to be linearly associated with the error term at a 

previous period.  However, the lag variable cannot be calculated for the first observation, 

resulting in loss of observations.  Prais-Winsten regression generates values for the lost 

observations and recalculates the Durbin-Watson statistic.  The model developed using 

Prais-Winsten regression is shown in Table 16.  

 

Table 16  Prais-Winsten Speed Prediction Model 

Parameter Estimate SE t p-value 
Speed Limit 25 mph -11.48 0.368 -31.22 <0.001 
Speed Limit 35/40 mph -2.21 0.177 -12.49 <0.001 
Speed Limit 45 mph -4.62 0.325 -14.23 <0.001 
Lane Width Addition 2.33 0.198 11.77 <0.001 
Lateral Clearance 0.15 0.010 14.95 <0.001 
Total Driveways -1.07 0.034 -31.48 <0.001 
Curb -4.00 0.227 -17.60 <0.001 
Intersection WS -2.40 0.226 -10.63 <0.001 
School/Children WS -1.31 0.199 -6.56 <0.001 
Curve WS 1.28 0.180 7.11 <0.001 
Curve with WS -2.64 0.196 -13.46 <0.001 
Curve without WS -1.25 0.155 -8.08 <0.001 
Constant 49.22 0.358 137.34 <0.001 
Analysis of Variance 
Source df SS MS F 
Model 12 304530.6 25377.6 610.74 
Residual 11423 474650.6 41.6  
Total 11435 779181.2 68.1  

 

 The model developed using the Prais-Winsten procedure had a coefficient of 

determination, R2, of 0.3908 indicating that almost 40 percent of the variation in speeds is 

explained by the model.  The Durbin-Watson statistic, d, for the corrected model was 
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2.20, a value close to 2.0 which is indicative of no autocorrelation.  The values for the 

parameter estimates were very similar to those obtained using the OLS estimator as 

indicated by the consistency in signs and by the small differences in magnitudes.  The 

interpretations of the parameters obtained using the Prais-Winsten regression procedure 

are: 

- Speed Limit 25 mph: a posted speed limit of 25 mph is associated with a mean 

speed decrease of 11.5 mph when compared to the baseline of 55 mph. 

- Speed Limit 35/40 mph: a posted speed limit of either 35 or 40 mph reduces 

mean speed by 2.2 mph when compared to the baseline of 55 mph. 

- Speed Limit 45 mph: a posted speed limit of 45 mph is associated with a mean 

speed decrease of 4.6 mph when compared to the baseline of 55 mph.  

- Lane Width Addition: a one-foot increase in the lane width at a study segment 

is associated with a 2.3 mph increase in the mean operating speed. 

- Lateral Clearance: the mean speed increases by 0.15 mph for each one-foot 

increase in lateral clearance. 

- Total Driveways: the mean speed decreases by 1.1 mph for each one-unit 

increase in the number of driveways within a study segment.  

- Curb: the presence of a curb is associated with a mean speed reduction of 4 

mph when compared to the baseline of no curb. 

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of 2.4 mph when compared to the baseline.  The 

baseline in this case is no warning sign or the presence of a warning sign that 

does not indicate a change in highway alignment, a change in access density, 

or presence of children.  

- School/Children Warning Sign: the presence of a sign related to the presence 

of a school or children is associated with a mean speed reduction of 1.3 mph 

when compared to the baseline of no warning sign or the presence of a 

warning sign that does not indicate a change in highway alignment, a change 

in access density, or presence of children. 

- Curve Ahead Warning Sign: the presence of this sign is associated with a 

mean speed increase of 1.3 mph when compared to the baseline of no warning 
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sign or presence of a warning sign that does not indicate a change in highway 

alignment, a change in access density, or indicates presence of children.  

- Curve with Warning Sign: a horizontal curve that warrants a Curve Ahead 

warning sign is associated with a mean speed reduction of 2.6 mph when 

compared to the baseline of a tangent section. 

- Curve without Warning Sign: a horizontal curve without a warning sign is 

associated with a mean speed reduction of approximately 1.3 mph when 

compared to the baseline of a tangent section. 

 The Prais-Winsten procedure is able to produce a regression model that corrects 

for autocorrelated error terms.  Because individual driver speeds were tracked through 

each data collection site, the OLS regression assumption of independent observations is 

violated.  Longitudinal models consider this issue and are the focus of the remainder of 

this section on point speeds.   

 

5.1.3  Panel Data Analysis Results 

As previously noted, panel data are repeated measures on one or more subjects.  The 

sensor locations permitted vehicles to be “tracked”, thus speed data were available for 

each driver at each of the sensor locations.  Therefore, the variable “driver,” which 

corresponds to subject j mentioned in the analysis methodology, was set as the panel 

variable while the time variable was the “sensor” data collection point.   

 An initial investigation of the explanatory variables that were correlated with 

vehicle operating speeds was performed in order to examine the variables that should be 

considered in the model when performing panel data analysis.  An iterative process in 

which various predictors (explanatory variables) were considered was performed, while 

examining the consistency of their coefficients in estimating various panel models.  The 

variables found to be statistically significant were: speed limit (indicator), lateral 

clearance (continuous) , total number of driveways (continuous), presence of curb 

(indicator), presence of intersection ahead warning sign (indicator), presence of 

school/children related warning sign (indicator), presence of curve ahead warning sign 

(indicator), and presence of horizontal curve with and without a warning sign (indicator).  
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 A fixed-effects model was initially used in the present analysis.  For this analysis, 

drivers were nested in sites.  The STATA software was used to estimate the fixed-effects 

panel data model.  In addition to the parameter estimates, STATA also provides the 

results of an F-test that can be used to test the null hypothesis that the constant terms are 

equal across units, as well as information on the between- and within-subject variances.  

The results of the fixed-effects panel data model and the comparison between this model 

and the OLS linear regression model developed previously with the Prais-Winsten 

approach are shown in Table 17.  

 

Table 17  Fixed-Effects Panel Data Model 

Parameter 
Fixed-Effects Panel Data OLS Model 

Estimate St. Error t Estimate St. Error 
Speed Limit 25 mph -10.46 0.537 -19.49 -11.48 0.368 
Speed Limit 35/40 mph -2.20 0.173 -12.71 -2.21 0.177 
Speed Limit 45 mph -3.41 0.481 -7.09 -4.62 0.325 
Lane Width Addition 3.49 0.354 9.85 2.33 0.198 
Lateral Clearance 0.16 0.011 15.33 0.15 0.010 
Total Driveways -0.95 0.034 -27.69 -1.07 0.034 
Curb -4.01 0.235 -17.09 -4.00 0.227 
Intersection WS -1.91 0.228 -8.36 -2.40 0.226 
School/Children WS -1.08 0.199 -5.43 -1.31 0.199 
Curve WS 0.84 0.186 4.51 1.28 0.180 
Curve with WS -3.46 0.197 -17.51 -2.64 0.196 
Curve without WS -1.68 0.164 -10.25 -1.25 0.155 
Constant 47.05 0.604 77.95 49.22 0.358 

Sigma_u ( ψ ) 6.2022 - 

Sigma_e ( θ ) 5.007 - 
Rho (ρ) 0.6054 - 
R2 within 0.4723 - 
R2 between 0.2220 - 
R2 overall 0.3266 0.3908 
F-test F(2858, 8565) = 5.65 F(12, 11423) = 360.68 

 

 All of the parameter estimates for the fixed-effects panel data model shown in 

Table 17 have p-values less than 0.05, indicating that each explanatory variable is 

statistically significant at the 95-percent confidence level.  The signs for these estimates 
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are consistent across both models.  The variables with the highest differences in their 

magnitudes as well as the values for the standard error were the indicators variables for a 

posted speed limit of 25 mph, a posted speed of 45 mph, and lane width addition 

(absolute differences of 1.02, 1.21, and 1.16, respectively).  The variables for both speed 

limits (25 mph and 45 mph) indicate greater speed reductions for the Prais-Winsten 

regression approach while the variable for lane width addition indicates a greater speed 

increase when estimating the fixed-effects panel data model.  All other parameter 

estimates differed by an absolute value less than 0.82 and had almost identical values for 

the standard errors.  Interpretation of the parameter estimates for the fixed-effects panel 

data model are: 

- Speed Limit 25 mph: a posted speed limit of 25 mph is associated with a mean 

speed decrease of 10.5 mph when compared to the baseline of 55 mph. 

- Speed Limit 35/40 mph: a posted speed limit of either 35 or 40 mph reduces 

mean speed by 2.2 mph when compared to the baseline of 55 mph. 

- Speed Limit 45 mph: a posted speed limit of 45 mph is associated with a mean 

speed decrease of 3.4 mph when compared to the baseline of 55 mph.  

- Lane Width Addition: a one-foot increase in the lane width at a study segment 

is associated with a 3.5 mph increase in the mean operating speed. 

- Lateral Clearance: mean speed increases by 0.16 mph for each one-foot 

increase in lateral clearance. 

- Total Driveways: mean speed decreases by nearly 1 mph for a one-unit 

increase in the number of driveways within a study segment.  

- Curb: the presence of curb is associated with a mean speed reduction of 4 mph 

when compared to the baseline of no curb. 

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of 1.9 mph when compared to the baseline.  The 

baseline in this case is no warning sign or the presence of a warning sign that 

does not indicate a change in highway alignment, a change in access density, 

or presence of children.  

- School/Children Warning Sign: the presence of a sign related to the presence 

of a school or children is associated with a mean speed reduction of 1 mph 
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when compared to the baseline of no warning sign or the presence of a 

warning sign that does not indicate a change in highway alignment, a change 

in access density, or presence of children. 

- Curve Ahead Warning Sign: the presence of this sign is associated with a 

mean speed increase of 0.84 mph when compared to the baseline of no 

warning sign or presence of a warning sign that does not indicate a change in 

highway alignment, a change in access density, or indicates presence of 

children.  

- Curve with Warning Sign: a horizontal curve that warrants a Curve Ahead 

warning sign is associated with a mean speed reduction of 3.4 mph when 

compared to the baseline of a tangent section. 

- Curve without Warning Sign: a horizontal curve without a warning sign is 

associated with a mean speed reduction of approximately 1.7 mph when 

compared to the baseline of a tangent section. 

 The overall coefficient of determination, R2, for the fixed-effects panel data 

model is lower than the selected OLS linear regression model (0.33 as compared to 0.39).  

This was expected since the OLS linear regression model had smaller values for the 

standard errors, thus suggesting a better fit which is reflected in the R2 value.  The panel 

data model also produces R2 values for the variance within and between drivers: 0.47 and 

0.22, respectively.  This indicates that the panel data model developed explains 47 

percent of the variance associated with the driver cluster while explaining 22 percent of 

the variance associated with different drivers (from driver to driver).  

 For the fixed-effects panel data model, the F-test statistic results in a value of 

5.65, thus the null hypothesis is rejected indicating that there are differences between 

individuals (drivers j) and there is individual-specific heterogeneity.  Therefore, a pooled 

model would produce inconsistent estimates suggesting that use of a panel data model is 

favored over a pooled model.  

 The output from STATA for panel data models also provides the value of 

Sigma_u and Sigma_e, which correspond to between-subject standard deviation ( ψ ) 

and the within-subject standard deviation ( θ ), respectively.  A standard deviation of 

6.2 mph is associated with different drivers while a standard deviation of 5 mph is 
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associated with the presence of the driver cluster.  The intraclass correlation, ρ (rho in the 

output) represents the within-cluster correlation.  If the intraclass correlation is close to 1, 

it indicates that there are no differences between observations for each subject (i.e., speed 

at sensor locations are the same).  The value for the intraclass correlation of the fixed-

effects panel data model was 0.6054, indicating that observations for a specific driver are 

not similar, which it was expected since it was hypothesized that speeds vary along the 

studied transition zones.  The intraclass correlation value is then interpreted as 60 percent 

of the variance in speed that is not explained by the covariates is due to time-invariant 

driver-specific characteristics.  

 In order to confirm if the fixed-effects model was indeed appropriate, the random-

effects model was also estimated using the same variables as the fixed-effects 

specification and a Hausman test was performed.  A comparison between both fixed- and 

random-effects models and the selected OLS model is shown in Table 18.  

 

Table 18  Fixed-Effects and Random-Effects Comparison 

Parameter 
Random-effects Fixed-effects OLS 

Estimate St. Error Estimate St. Error Estimate St. Error 
Speed Limit 25 mph -12.04 0.333 -10.46 0.537 -11.48 0.368 
Speed Limit 35/40 mph -2.52 0.164 -2.2 0.173 -2.21 0.177 
Speed Limit 45 mph -4.85 0.290 -3.41 0.481 -4.62 0.325 
Lane Width Addition 2.14 0.178 3.49 0.354 2.33 0.198 
Lateral Clearance 0.12 0.010 0.16 0.011 0.15 0.010 
Total Driveways  -0.97 0.034 -0.95 0.034 -1.07 0.034 
Curb -3.79 0.211 -4.01 0.235 -4.00 0.227 
Intersection WS -2.05 0.218 -1.91 0.228 -2.40 0.226 
School/Children WS -1.49 0.200 -1.08 0.199 -1.31 0.199 
Curve WS 1.42 0.179 0.84 0.186 1.28 0.180 
Curve with WS -2.41 0.184 -3.46 0.197 -2.64 0.196 
Curve without WS -1.41 0.153 -1.68 0.164 -1.25 0.155 
Constant 49.77 0.325 47.05 0.604 49.22 0.358 

Sigma_u ( ψ ) 4.8348 6.2022 - 

Sigma_e ( θ ) 5.007 5.007 - 
Rho (ρ) 0.4825 0.6054 - 
R2 within 0.4684 0.4723 - 
R2 between 0.2692 0.2220 - 
R2 overall 0.3522 0.3266 0.3908 
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 The standard errors for the random-effects panel data model are smaller when 

compared to those obtained using the fixed effects and OLS regression models.  The 

variables for speed limit indicate greater speed reductions associated with this highway 

characteristic while the variable for lane width addition is associated with a lower speed 

increase for the random-effects panel data model.   

 When comparing the panel data models, the differences in standard errors of the 

explanatory variables for both models are, for the most part, less than 0.03 mph.  For 

three of the explanatory variables – speed limit 25, speed limit 45, and lane width 

addition – the difference in standard errors range from 0.18 to 0.2 mph.  Similarly, for all 

except four variables, the parameter estimates between fixed and random effects panel 

data models are similar, differing by less than a value of 0.6.  The variables of speed limit 

25, speed limit 45, lane width addition, and presence of horizontal curve with warning 

sign, differ between the models by a value of 1.58, 1.44, 1.35, and 1.05, respectively.  

These differences may be evidence that the posted speed limit and lane width addition 

variables in the random-effects model are picking-up site-specific effects that were not 

detected using the fixed-effects estimator.   

 The values of the within-subject standard deviation ( θ ) are exactly the same for 

both the random-effects and the fixed-effects models; a standard deviation of 

approximately 5 mph is attributed to the residual term.  This was expected since the 

residual term includes the variation not explained by the explanatory variables and both 

models have the same variables included in the model.  The between-subject standard 

deviation ( ψ ), however, is higher for the fixed-effects model: a between-driver 

standard deviation of 6.2 mph was estimated in the fixed-effects models as compared to 

4.8 mph variation between drivers in the random-effects model, thus the random-effects 

model is associated with less variability between drivers.  The standard deviation values 

for the variance components in the between- coefficient of determination for the random-

effects model is higher than the one for the fixed-effects model (0.27 as compared to 

0.22).  Additionally, the overall coefficient of determination in the random-effects models 

is higher than in the fixed-effects model.  This suggests that the random-effects model 

provides a better fit to the operating speed data collected along the 20 rural highway 

transition zones. 
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 The random-effects model assumes that the correlation between the predictors and 

the between-subject error term is zero.  In the fixed-effects model, this correlation was 

found to be 0.0187, indicating very little correlation between the explanatory variables 

and the variance between drivers.  The Hausman test was then performed in order to 

determine which model specification is preferred.  The test resulted in a chi-square 

statistic (χ2) of 10,211.31 with a p-value less than 0.0001.  As such, the null hypothesis 

that the random-effects model estimator is consistent is rejected, favoring the fixed-

effects model.  Because the independent observations assumption of the OLS regression 

model is violated, and the Hausman test suggests that the parameter estimates from 

random-effects panel data model are inconsistent, it is recommended that a fixed-effects 

panel data model is more appropriate to represent the point speed data in the present 

research.   

 Some researchers have addressed the implications of including the effects of 

speed limit when modeling operating speeds that consider the effects of highway 

geometrics (Wang et al, 2006).  In highway design, one of the primary design controls is 

design speed.  Highway design criteria are selected based on the design speed while the 

posted speed limit may be set at a level that is equal to or less than the designated design 

speed.  Therefore it is expected that highway geometrics may be correlated with the 

speed limit.  Past researchers (Wang et al., 2006) found that including the posted speed 

limit variable in a regression model significantly changes the statistical inferences that 

can be made on other explanatory variables in the model.  A panel data model was 

performed without considering the speed limit variable.  The results for the fixed-effects 

model and the comparison with the fixed-effects model including the speed limit variable 

are shown in Table 19.  
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Table 19  Fixed-Effects Panel Data Models with and without Speed Limit 

Parameter 
Without Speed Limit With Speed Limit 

Estimate St. Error Estimate St. Error 
Speed Limit 25 mph - - -10.64 0.543 
Speed Limit 35/40 mph - - -2.19 0.173 
Speed Limit 45 mph - - -3.47 0.481 
Lane Width Addition 4.08 0.366 3.42 0.355 
Paved Shoulder 0.13 0.046 -0.10 0.046 
Lateral Clearance 0.16 0.011 0.17 0.011 
Total Driveways -1.13 0.032 -0.96 0.034 
Curb -7.80 0.18 -3.99 0.235 
Intersection WS -3.71 0.228 -2.00 0.232 
School/Children WS -2.71 0.194 -1.05 0.199 
Curve WS -0.39 0.184 0.85 0.186 
Curve with WS -4.01 0.185 -3.37 0.202 
Curve without WS -0.68 0.164 -1.66 0.164 
Constant 44.70 0.636 47.43 0.630 

Sigma_u ( ψ ) 7.0329 6.1515 

Sigma_e ( θ ) 5.1979 5.0060 
Rho (ρ) 0.6467 0.6016 
R2 within 0.4312 0.4726 

R2 between 0.0329 0.2354 

R2 overall 0.1858 0.3342 
F Test F(2858, 8567) = 6.08 F(2858, 8564) = 5.52 

 

 All variables shown in Table 19 are statistically significant at the 95 percent 

confidence level (p-values less than 0.05).  When excluding the posted speed limit 

variables from the model, the variable for paved shoulder width is statistically significant 

with a positive coefficient, indicating that the mean speed is expected to increase by 0.14 

mph for each additional foot of paved shoulder width provided along the transition zone 

segment included in the sample dataset.  The magnitude of the paved shoulder width 

variable in the model that includes the posted speed limit indicator variables suggests that 

a one-foot increase in the paved shoulder width is associated with a 0.1 mph speed 

decrease, which is not consistent with engineering intuition.  

 The difference between the parameter estimates for the lane width addition 

variable is less than 0.7 mph; the model without the speed limit variable indicates a speed 



 95

increase of 4 mph per foot of lane width addition within the transition zone as compared 

to 3.4 mph with the model that includes the speed limit indicator variables.  When 

comparing the estimates for the lateral clearance variable, the parameter estimate was 

almost the same for both models (0.16 versus 0.17).  The influence of number of 

driveways on operating speeds is also very similar between the two models: a 1.1 mph 

speed reduction per driveway in the model without the posted speed limit as compared to 

a speed reduction of 1 mph in the model with speed limit variables included.  

 The indicator variable for the presence of curb had the highest difference between 

the parameter estimates when comparing the models with and without the posted speed 

limit variables.  When not considering speed limit, the speed reduction associated with 

this variable is almost 8 mph as compared to a 4 mph speed reduction indicated by the 

model with the speed limit indicator variables.  The speed reduction associated with the 

presence of an Intersection Ahead warning sign increased from 2 mph (model with speed 

limit) to 3.7 mph (model without speed limit).  Similarly, the speed reduction indicated 

by the School/Children warning sign increased from 1 mph (model with speed limit) to 

2.7 mph (model without speed limit).   

 Similar to the paved shoulder variable, the variable for presence of Curve Ahead 

warning sign also resulted in a contradictory interpretation when compared to the 

previous model developed.  In the model without the posted speed limit indicator 

variables, an expected mean speed reduction of 0.4 mph was estimated for the presence 

of this sign while in the previous model with the posted speed limit this variable was 

associated with an expected mean speed increase of approximately 0.8 mph.  

 The estimate for the presence of curve without a warning sign variable indicated 

an expected mean speed reduction of 0.6 mph, compared to a mean speed reduction of 

1.7 mph for the model that included speed limit indicator variables.  For a curve that 

warranted a warning sign, the mean speed reductions associated with this variable 

increased from 3.4 mph (model with speed limit) to 4 mph (new model without speed 

limit variable).  

 Although most of the parameter estimates are similar when comparing the models 

with and without the posted speed limit shown in Table 19, the values for the coefficient 

of determination as well as the between- and within- subject standard deviations differ 
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between the two models.  Both between- and within- subject standard deviations are 

greater for the model that does not include the speed limit (7.03 and 5.2 as compared to 

6.2 and 5.0, respectively), indicating that the within- and between-standard deviations are 

higher in the model without the posted speed limit indicator variables.  The higher values 

for the random component standard deviations for the model without speed limit result in 

lower values for both between- and within- coefficients of determination (0.03 and 0.43 

as compared to 0.22 and 0.47, respectively) and consequently a lower overall coefficient 

of determination (0.19 as compared to 0.33).  This is an indication that the speed limit 

variable is able to explain more of the variance in the observed speeds, thus the model 

that includes this variable provides a better fit to the data.  However, the model without 

the posted speed limit indicators produces parameter estimates for all independent 

variables that are consistent with engineering intuition (i.e., paved shoulder width and 

Curve Ahead warning sign variables). 

 It is important to note that, in this study, the study sites create a three-level cluster 

dataset as opposed to the general two-level cluster in which speed observations per sensor 

location are nested within subjects.  Since a random sample was collected at the study 

sites, it is assumed that drivers are site-specific (a driver only drives through one of the 

study sites) thus creating a higher level cluster in which individual drivers are nested 

within sites.  This hierarchy was previously shown in Figure 10 of Chapter 4.   

 A variable for site cannot be included in any model because then the matrix of the 

predictors, ΣβXjt, would create perfect collinearity with the study site variable.  By 

eliminating the subject variable (driver) and calculating a mean speed for each of the 

sensors at each study site, the data can be aggregated into a two-level cluster with 

observations nested in sites, as shown in Figure 13.  The driver-specific information is 

aggregated and the panel variable is site k with values 1 to 20; the time variable would 

still be occasion (sensor) t with values 1 to 4.  However, several authors have explained 

the importance of considering disaggregate data and the problems associated with 

modeling aggregate data (Park and Saccomanno, 2005; Misaghi and Hassan, 2005).  
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Figure 13  Model hierarchy for Aggregate Data 

 

 Regression analyses performed using aggregate data may result in an “ecologic 

fallacy,” a term that is used to indicate that, although conclusions are developed for a 

group, they may not apply to an individual (Park and Saccomanno, 2005).  By 

aggregating data, some information belonging to the individuals is lost.  Although using 

aggregate data may produce higher values for the coefficient of determination, the use of 

summarized data introduces a major source of uncertainty.  It also may cause higher 

values of the parameter estimates when, in reality, they should be lower.   

 While the use of aggregate data is not recommended, the studies that have 

addressed this issue are related only to OLS regression models; the ecologic fallacy issue 

has not been explored in longitudinal data analysis, although it is expected that the same 

recommendation will result.  As such, the complications that may arise from the use of 

aggregate data are further explored using a panel data analysis framework. The dataset 

was aggregated by calculating mean speeds at each sensor location for each study site.  

This aggregate dataset consisted of a total of 80 observations corresponding to the four 

mean speeds collected at each of the four sensor locations for each of the 20 study sites.   

 Correlation analyses were performed to determine the association between the 

explanatory variables and the response.  These correlation values are shown in Table 20 

for both the aggregate and disaggregate data.   

 

Site 1 Site 2 Site k 

Occasion 1 Occasion 2 Occasion t Occasion 1 Occasion t 

…

… … …
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Table 20  Correlation Values with Response Variable Mean Speed 

 

   

 As shown in Table 20, the estimates for the correlations are higher for the 

aggregate data when compared to the disaggregate data indicating that there is a stronger 

correlation between the explanatory variables and response in the aggregate dataset.  The 

sign of the coefficients are consistent between the aggregate and disaggregate datasets 

with the exception of the sign for the Curve Ahead warning sign variable.  As noted 

earlier in this chapter, the parameter estimate for the Curve Ahead warning sign (see 

Table 17) was positive and counterintuitive.  This finding resulted from the use of 

disaggregate data.  Based on the correlations shown in Table 20, the correlation between 

the Curve Ahead warning sign and operating speed is negative, which is consistent with 

engineering intuition.  A fixed-effects panel data was specified using the aggregate data 

and compared to the results from the disaggregate data.  For comparative purposes, both 

models are shown in Table 21. 

 

 

Explanatory Variables Aggregate  
Data 

Disaggregate 
Data 

Speed Limit 0.6960 0.5050 
Lateral Clearance 0.2351 0.1334 
Total Driveways -0.4831 -0.2936 
Curb -0.4075 -0.2684 
Intersection Warning Sign -0.3836 -0.2636 
School/Children Warning Sign -0.2592 -0.1922 
Curve Ahead Warning Sign -0.0101 0.0819 
Curve with Warning Sign -0.1096 -0.1059 
Curve without Warning Sign -0.0733 -0.0752 
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Table 21  Fixed-Effects Panel Data Models for Aggregate and Disaggregate Data 

Parameter Aggregate Disaggregate 
Estimate St. Error  Estimate St. Error 

Speed Limit 25 mph -10.29 2.635 -10.46 0.537 
Speed Limit 35/40 mph -2.52 0.958 -2.20 0.173 
Speed Limit 45 mph -3.47 * 2.166 -3.41 0.481 
Lane Width Addition 4.12 1.873 3.49 0.354 
Lateral Clearance 0.17 0.059 0.16 0.011 
Total Driveways -0.89 0.195 -0.95 0.034 
Curb -3.96 1.456 -4.01 0.235 
Intersection WS -2.14 * 1.253 -1.91 0.228 
School/Children WS -0.14 * 1.125 -1.08 0.199 
Curve Ahead WS -0.20 * 1.174 0.84 0.186 
Curve with WS -3.19 1.130 -3.46 0.197 
Curve without WS -1.53 * 0.937 -1.68 0.164 
Constant 45.21 3.231 47.05 0.604 
Total number of observations, N 80 11436 
Sigma_u ( ψ ) 3.8196 6.2022 

Sigma_e ( θ ) 2.4295 5.0070 
Rho (ρ) 0.7120 0.6054 
R2 within  0.8263 0.4723 
R2 between  0.4556 0.2220 
R2 overall  0.6204 0.3266 
F Test F(19, 48) = 6.96 F(2858, 8565) = 5.65 
*Not statistically significant at the 0.05 alpha level 
  

 As shown in Table 21, the coefficients for the variables are very similar for the 

aggregate and disaggregate models indicating that the predictors are associated with 

operating speeds in a similar manner.  The only variable that has an opposite parameter 

estimate when comparing the aggregate to disaggregate data is the Curve Ahead warning 

sign variable.  As noted previously, the change in sign resulting from the aggregate-level 

data analysis produces results that are more consistent with engineering intuition.  

However, three of the explanatory variables (School/Children warning sign, Curve Ahead 

warning sign, and presence of horizontal curve without a warning sign) were found not to 

be statistically significant in the aggregate-level model when compared to the 

disaggregate-level model. 
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 As expected, the coefficients of determination (overall, within- and between-), are 

greater for the aggregate model when compared to the disaggregate-level model.  The 

values for the between- and within-subject standard deviations (Sigma_u and Sigma_e in 

the output, respectively) are greater for the disaggregate model than for the aggregate 

model, indicating that the aggregate model explains is associated with less variability.  

Therefore the values for the coefficient of determination are greater, an indication that the 

aggregate model is a better fit to the data even if this model includes variables that were 

not statistically significant (speed limit 45 mph, Intersection and Curve Ahead warning 

signs as well as a School/Children warning sign, and presence of horizontal curve that 

does not warrant a warning sign).  

 The majority of the parameter estimates for the explanatory variables are very 

similar when comparing the two models; however, the standard errors of these estimates 

are greater for the aggregate model.  Therefore, although the coefficient of determination 

indicates that the aggregate model is a better fit, the estimates obtained are more precise 

for the disaggregate model as indicted by the small values of standard errors.  

 Since relying solely on the coefficient of determination for selection of a model 

that best fits the data may result in an ecologic fallacy, three additional measures of 

model validation were explored in order to provide a better comparison between the 

aggregate and disaggregate speed prediction models.  These model validation measures 

are: mean prediction bias (MPB), mean square error (MSE), and mean absolute deviation 

(MAD).  The results of the model validation measures are shown in Table 22.   
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Table 22  Measures of Fit for the Aggregate and Disaggregate Fixed-effects Panel Data 

Models 

Measure of Fit Equation Aggregate 
Model 

Disaggregate 
Model 

Mean Prediction Bias ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

∧

ii YY
n

MPB 1
 -0.667 -0.019 

Mean Squared Error ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

∧ 21
ii YY

n
MSE 59.260 57.221 

Mean Absolute Deviation ∑ −=
∧

ii YY
n

MAD 1
 6.116 6.007 

where:  Ŷi = predicted value;  
Yi = observed value; and  
n = total number of observations. 

 

 As shown in Table 22, all values for the model validation measures are greater for 

the aggregate model when compared to the disaggregate model.  A mean prediction bias 

of approximately -0.7 mph is associated with the aggregate model while the disaggregate 

model is associated with a mean prediction bias of -0.02 mph.  The variance associated 

with the aggregate model is 59.3 mph2 as compared to 57.2 mph2 for the disaggregate 

model.  Finally, a mean absolute deviation of 6.1 mph is expected with the use of the 

aggregate model as compared to a mean absolute deviation of 6 mph when using the 

disaggregate data.  Although the coefficient of determination indicated that the aggregate 

model was a better fit than the disaggregate model, the additional model validation 

measures indicate that there is less variability associated with the disaggregate model, 

thus contradicting the implications given by the coefficient of determination.  Based on 

the findings from the panel data analysis, it is therefore recommended that operating 

speeds along two-lane rural highway transition zones be modeled using a fixed-effects 

estimator with disaggregate-level data. 

  

5.1.4  Multilevel Model Analysis Results 

Panel data analyses are only able to accommodate two-level data structures while 

multilevel models can recognize additional hierarchical levels.  The two-level variance 

components model in which speed observations i are nested in drivers j was previously 

shown in Equation (34).  The two-level variance components model was estimated with 
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the multilevel model (xtmixed) and the maximum likelihood (mle) options in Stata, 

including only the variables found to be statistically significant from the panel data 

analysis.  A comparison between the two-level model and both fixed- and random-effects 

panel data models is shown in Table 23.  

 

Table 23  Comparison between Two-Level and Panel Data Models 

Parameter 

Two-Level Models 
(MLE) 

Panel Data 
Fixed-effects Random-effects 

Estimate St. 
Error Estimate St. 

Error Estimate St. 
Error 

Speed Limit 25 mph -11.95 0.340 -10.46 0.537 -12.04 0.333 
Speed Limit 35/40 mph -2.49 0.161 -2.20 0.173 -2.52 0.164 
Speed Limit 45 mph -4.76 0.296 -3.41 0.481 -4.85 0.290 
Lane Width Addition 2.19 0.186 3.49 0.354 2.14 0.178 
Lateral Clearance 0.13 0.010 0.16 0.011 0.12 0.010 
Total driveways -0.97 0.033 -0.95 0.034 -0.97 0.034 
Curb -3.77 0.208 -4.01 0.235 -3.79 0.211 
Intersection WS -2.05 0.214 -1.91 0.228 -2.05 0.218 
School/Children WS -1.41 0.195 -1.08 0.199 -1.49 0.200 
Curve Ahead WS 1.35 0.176 0.84 0.186 1.42 0.179 
Curve with WS -2.54 0.182 -3.46 0.197 -2.41 0.184 
Curve without WS -1.45 0.151 -1.68 0.164 -1.41 0.153 
Constant 49.63 0.339 47.05 0.604 49.77 0.325 
Random Components 

Driver ( ψ ) 5.4774 6.2022 4.8348 

Residual ( θ ) 5.018 5.007 5.0071 
 

 As shown in Table 23 the estimates obtained using maximum likelihood for the 

two-level model, as well as their respective standard errors, are very similar to the ones 

obtained with the random-effects panel data model.  When comparing the two-level 

model with the fixed-effects panel data model, the differences in magnitude of the 

parameter estimates are greater because the fixed-effects model estimator was used for 

panel data while the maximum likelihood estimator was used for the multilevel model.  

However, these estimates are similar for both options and all the parameter estimates are 

similar in sign and magnitude between the two models.  The coefficients for the 

multilevel model can be interpreted as: 
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- Speed Limit 25 mph: a posted speed limit of 25 mph is associated with a mean 

speed decrease of approximately 12 mph when compared to the baseline of 55 

mph. 

- Speed Limit 35/40 mph: a posted speed limit of either 35 or 40 mph reduces 

mean speed by 2.5 mph when compared to the baseline of 55 mph. 

- Speed Limit 45 mph: a posted speed limit of 45 mph is associated with a mean 

speed decrease of almost 5 mph when compared to the baseline of 55 mph. 

- Lane Width Addition: for a minimum lane width of 9 feet, a mean speed 

increase of 2.2 mph is associated with per every one-foot increase in the lane 

width. 

- Lateral Clearance: mean speed increases by 0.13 mph per every 1 ft increase 

in lateral clearance. 

- Total Driveways: mean speed decreases by nearly 1 mph for each additional 

driveway in a transition zone.  

- Curb: the presence of curb is associated with mean speed reduction of almost 

4 mph when compared to the baseline of no curb. 

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of approximately 2 mph when compared to the 

baseline of no warning sign or the presence of a warning sign that does not 

indicate a change in highway alignment, a change in access density, or 

indicates presence of children. 

- School/Children Warning Sign: the presence of a sign related to the presence 

of school or children is associated with a mean speed reduction of 1.4 mph 

when compared to the baseline of no warning sign or the presence of a 

warning sign that does not indicate a change in highway alignment, a change 

in access density, or indicates presence of children. 

- Curve Ahead Warning Sign: the presence of this sign is associated with a 

mean speed increase of 1.4 mph when compared to the baseline of no warning 

sign or the presence of a warning sign that does not indicate a change in 

highway alignment, a change in access density, or indicates presence of 

children. 
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- Curve with Warning Sign: a horizontal curve that warrants a Curve Ahead 

warning sign is associated with a mean speed reduction of 2.5 mph when 

compared to the baseline of a tangent section. 

- Curve without Warning Sign: a horizontal curve without a warning sign is 

associated with a mean speed reduction of approximately 1.4 mph when 

compared to the baseline of a tangent section. 

 The values for the within-subject standard deviation ( θ ) are also similar across 

all models.  The between-subject standard deviation ( ψ ) is lower for the two-level 

model (5.5 mph) when compared to the between-subject standard deviation in the fixed-

effects panel model (6.2 mph) but higher when compared to the random-effects panel 

data model (4.83).  This indicates that, when comparing the two-level model that uses the 

maximum likelihood estimator with the fixed-effects panel data model, the two-level 

model explains more of the variability between drivers, an indication of a better fit to the 

observed data.  

 In addition to the two-level hierarchy presented in Table 23, a three-level 

multilevel model was developed in order to include one additional hierarchy that 

corresponds to the site variable.  The unit and class diagrams that represent the three-

level data structure in which the higher level for sites is accounted for are shown in 

Figures 10 and 11, respectively (see Chapter 4).  The equation that describes the three-

level unconditional model, which includes a random intercept at each level of the data 

structure, was previously shown in Equation (40).   

  A likelihood-ratio test is used to determine if a specific level of the data hierarchy 

is indeed necessary.  The unconditional models with and without the random intercept for 

the second-level group, driver ( )2(
jkς ), were estimated.  These models are: 

 ijkkjkijky εςςβ +++= )3()2(
1        (55) 

 ijkkijky εςβ ++= )3(
1         (56) 

 Equation (55) shows the three-level unconditional model in which speed data are 

nested in drivers which are nested in sites, while Equation (56) shows the two-level 

unconditional model in which speed data are nested in sites.  The likelihood-ratio test was 

used to determine if the combination of site and driver would produce better estimates 
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than the model that does not include the driver cluster (i.e., if the driver level in the 

hierarchy is necessary).  The results of the likelihood-ratio test between the models 

shown in Equations (55) and (56) resulted in a test-statistic of χ2 = 745.20 which 

corresponds to a p-value of zero.  Therefore, the null hypothesis that the variance 

component for drivers is zero is rejected, thus the thee-level model that includes the 

driver cluster will produce more accurate estimates than the two-level model that does 

not take into account the driver level.  

 Similarly, in order to verify that the higher level component (random intercept for 

sites) is needed, a likelihood-ratio test was performed between the unconditional models, 

with and without the random effect for site ( )3(
kς ).  The two-level unconditional model in 

which speed data are nested in drivers is shown in Equation (57): 

 ijkjijky εςβ ++= )2(
1         (57) 

 The value of the likelihood-ratio test (χ2) between the models shown in Equations 

(57) and (55) was 1724.01 corresponding to a p-value less than 0.0001, indicating that the 

three-level model in which speed observations are nested in drivers which are nested in 

sites is favored when compared to a two-level model in which the site level is not taken 

into account.  

 In order to investigate if the class variable “sensor” should be added as an 

additional level, the unconditional models with and without this level term were fitted.  A 

four-level unconditional model in which speed observations are nested in sensors, sensors 

are nested in drivers, and drivers are nested in sites, was compared to the three-level 

unconditional model shown in Equation (55).  The likelihood-ratio test revealed a value 

of zero, corresponding to a p-value of 1.0.  This indicates that a random intercept for 

sensor is not required.  The p-value of 1.0 indicates perfect multicollinearity – this is 

because there are no repeated measurements; there are 4 speed observations which 

correspond to the four sensors.  However, the group variable sensor may replace the 

driver level; this option will later be explored in this section.  

 Table 24 shows the estimates for three unconditional models developed:  

- Model 1: two-level model in which speed observations are nested in sites 

(Equation [56]) 
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- Model 2: two-level model with speed observations nested in drivers (Equation 

[57]) 

- Model 3: three-level model with speed observations nested in drivers which 

are nested in sites (Equation [55]) 

 

Table 24  Maximum Likelihood Estimates for Multilevel Unconditional Models Fitted 

  
 Parameter 

Two-Level Three-Level 
Model 1 Model 2 Model 3 

Estimate (SE) Estimate (SE) Estimate (SE) 
Fixed Part 
β1 47.2 (1.13) 47.9 (0.13) 47.2 (1.13) 

Random Part 

Site ( ψ ) 5.032 (0.80) - 5.022 (0.80) 

Driver ( ψ ) - 6.125 (0.11) 3.777 (0.09) 

Residual ( θ ) 7.851 (0.05) 6.888 (0.05) 6.888 (0.05) 
Log Likelihood -39,845.2 -40,334.6 -39,472.6 

 

 The random terms shown in Table 24 can be interpreted as follow: 

- Model 1: only considers the sites and ignores the fact that there are drivers 

nested within sites.  A standard deviation of approximately 5 mph is 

associated with the presence of a site cluster while a standard deviation of 

7.85 mph is associated with the residual term, θ, i.e. the overall variance that 

cannot be explained by the explanatory variables.   

- Model 2: does not take into account the higher level (sites); speed data are 

nested in drivers.  The standard deviation for the residual term, θ , is lower 

when compared to Model 1 (6.89 as compared to 7.85) indicating less 

variability with this model.  However, the standard deviation for the random 

intercept for the second level (driver) is higher for Model 2 when compared to 

Model 1 (6.125 as compared to 5.032, respectively).  This is an indication 

that, when considering only two levels, the site cluster is able to explain more 

of the variance than the driver cluster.  

- Model 3: by specifying the variance component term for the combination of 

driver and site, another level to the hierarchy is added and between-driver 
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within-site heterogeneity is accommodated.  The random effect for subject is 

nested within sites in the sense that it does not take on the same value for a 

given subject across all sites, but takes on a different value for each 

combination of site and driver.  The standard deviation for the site component 

term is basically the same as Model 1 above (only decreased from 5.03 to 

5.02).  A standard deviation of approximately 3.8 mph is associated with the 

combination of driver and site.  By adding higher levels that better represent 

the data structure, the variability associated with these levels can be specified.  

 The results of the likelihood ratio tests, performed for Models 1, 2, and 3, indicate 

that a three-level model was appropriate for the dataset developed in this research.  

Therefore, an initial model was developed in order to find the relationship between the 

driving environment (explanatory variables) and the operating speed (response variable) 

along the transition zones.  The hierarchy of this model is as follows:  

- Level 3 – Sites (20) 

- Level 2 – Subjects (i.e., drivers) [2859 total] 

- Level 1 – Speeds (response variable) [4 per subject]  

 A three-level model was estimated with the same variables found to be 

statistically significant in previous models.  Table 25 shows the comparison of the 

estimates between the three-level model including the site level, the two-level model 

without the site cluster, and both the fixed- and random-effects panel data models.  
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Table 25  Comparison between Three-level, Two-level and Fixed-Effects Panel Data Models 

Parameter 
Multilevel Models (MLE) Panel Data 

Three-Level Two-Level Fixed-effects Random-effects 
Est. SE Est. SE Est. SE Est. SE 

Speed Limit 25 mph -10.54 0.524 -11.95 0.340 -10.46 0.537 -12.04 0.333 
Speed Limit 35/40 mph -2.21 0.173 -2.49 0.161 -2.20 0.173 -2.52 0.164 
Speed Limit 45 mph -3.48 0.469 -4.76 0.296 -3.41 0.481 -4.85 0.290 
Lane width addition 3.34 0.342 2.19 0.186 3.49 0.354 2.14 0.178 
Lateral Clearance 0.16 0.011 0.13 0.010 0.16 0.011 0.12 0.010 
Total driveways -0.95 0.034 -0.97 0.033 -0.95 0.034 -0.97 0.034 
Curb -4.00 0.233 -3.77 0.208 -4.01 0.235 -3.79 0.211 
Intersection WS -1.93 0.227 -2.05 0.214 -1.91 0.228 -2.05 0.218 
School/Children WS -1.09 0.199 -1.41 0.195 -1.08 0.199 -1.49 0.200 
Curve Ahead WS 0.85 0.186 1.35 0.176 0.84 0.186 1.42 0.179 
Curve with WS -3.42 0.197 -2.54 0.182 -3.46 0.197 -2.41 0.184 
Curve without WS -1.67 0.163 -1.45 0.151 -1.68 0.164 -1.41 0.153 
Constant 46.70 0.976 49.63 0.339 47.05 0.604 49.77 0.325 
Random Components 
Site  3.4316 N/A N/A N/A 
Driver 4.457 5.4774 6.2022 4.8348 
Residual 5.0036 5.018 5.007 5.0071 

 

 A comparison across all models shows that the three-level model and the fixed-

effects panel data model produce both parameter estimates and standard errors (SE in the 

Table 25) that are almost identical to each other.  Similarly, the parameter estimates and 

their standard errors for the two-level and the random-effects panel data models are also 

almost identical.  

 The residual terms between the four models compared in Table 25 are also very 

similar, which was expected since the models all include the same explanatory variables.  

The three-level model indicates that a standard deviation of 3.4 mph is associated with 

the site cluster, information that cannot be obtained with the two-level and the fixed-

effects panel data models.  When comparing the standard deviation values associated 

with the driver cluster, the three-level model indicates that this model explains more of 

the driver variance (lowest standard deviation value [4.46 mph]).  

 Although the estimates obtained with both the fixed-effects panel data model and 

the three-level model using the maximum likelihood estimator (mle) are almost identical, 

and the standard errors of these estimates are higher when compared to the two-level and 

random-effects panel data models, the three-level model provides additional information 
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when compared to all other models.  The three-level model provides information about 

the variance that is not explained by the explanatory variables included in the model 

specification when compared to either the two-level or the panel data models.  By 

including random components at each level of the hierarchy, the variance associated with 

each level can be obtained.  Consequently, although the three-level model produces 

estimates with higher standard errors, this model is a better representation of the data that 

includes the site cluster. 

 As previously indicated, the data structure can be altered by replacing the level 

variable driver with the level variable sensor, since speed data were collected at four 

sensor locations at each site.  Therefore the data hierarchy is observations (speed data) 

nested in sensors which are nested in sites.  Figure 14 represents the class diagram for the 

alternative hierarchy and the unit diagram is presented in Figure 15.  

 

Site

Sensor

Speed
 

Figure 14  Class Diagram for Alternative Hierarchy 
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Site 1

Sensor 1
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1 2 … n  
Figure 15  Unit Diagram for the Alternative Data Hierarchy 

 

 The same methodology for the initial data hierarchy was applied to the alternative 

hierarchy by replacing the level variable driver with the level variable sensor.  For the 

model that specifies that operating speeds (response variable) are a function of the 

driving environment (explanatory variables), the hierarchy description is as follows: 

- Level 3 – sites k = 1, 2, …, 20 

- Level 2 – sensors j = 1, 2, 3, 4  

- Level 1 – speed i = 1, 2, …, 2859  

 The total number of observations is the same as the initial three-level model with 

the different hierarchy: 2859 vehicles each passing through 4 sensors for a total of 11,436 

observations.  For this alternative hierarchy, instead of having 4 speed measurements per 

driver that are nested in the driver cluster, there is one observation per driver in the sensor 

cluster.  

 Similarly to the previous hierarchy, in which the variance component for driver 

was explored, the presence of the sensor cluster was explored by comparing the 

unconditional models with and without the variance component for sensor and 

performing a likelihood-ratio test.  The value for the likelihood-ratio test was 4155.43 (p-

value < 0.0001), rejecting the null hypothesis that the variance component for sensor is 

zero.  This indicates that the three-level model that includes the sensor level is preferred 
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over the two-level model that only considers speed observations nested in sites.  

However, there is one disadvantage when considering the sensor cluster instead of the 

driver cluster: there is no driver-specific information (driver behavior).   

 A three-level model with the alternative data hierarchy was developed for 

predicting speeds along transition zone sections.  In addition, a two-level model that did 

not take into account the level for sensors (sensor cluster) was also developed in order to 

investigate any changes in parameter estimates due to the sensor cluster.  A comparison 

between the two- and three-level models is shown in Table 26.  

 

Table 26 Two- and Three-Level Variance Components Models for the Alternative 

Hierarchy 

Variable Three-level Two-level 
Estimate St. Error Z Estimate St. Error Z 

Speed Limit 25 mph -10.95 1.701 -6.44 -10.44 0.639 -16.33 
Speed Limit 35/40 mph -2.45 0.811 -3.02 -2.29 0.220 -10.42 
Speed Limit 45 mph -3.85 1.457 -2.64 -3.11 0.600 -5.19 
Lane Width Addition 2.43 1.051 2.31 3.36 0.447 7.51 
Lateral Clearance 0.15 0.051 3.01 0.16 0.014 11.17 
Total Driveways -0.95 0.171 -5.56 -0.98 0.045 -21.69 
Curb -3.87 1.108 -3.49 -3.99 0.277 -14.43 
Intersection WS -2.44 1.075 -2.27 -1.99 0.304 -6.55 
Curve with WS -2.80 0.968 -2.89 -3.60 0.259 -13.88 
Curve without WS -1.46 0.767 -1.91 * -1.90 0.211 -8.99 
Constant 48.33 1.968 24.56 46.83 1.105 42.38 
Random Components 
Site 3.1473 0.580  3.5046 0.566  
Sensor 2.1118 0.211  N/A N/A  
Residual 6.4688 0.043  6.7002 0.044  
* Not significant at the 0.05 alpha value (p-value = 0.056)  

  

 A likelihood-ratio test was performed between these two models; the value of the 

test was 643.62 (p-value less than 0.001).  The result from the likelihood-ratio test 

provides evidence that the specification of a cluster for sensors (a three-level model) is 

preferred over the two-level model.  However, the standard errors of the parameter 

estimates obtained with the three-level model are considerably higher than those obtained 

with the two-level model (more than twice their values). 

 In contrast to previous models, the variables for presence of both Curve Ahead 

and School/Children warning signs were found not to be statistically significant for the 
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three-level model, thus they were not included in the model and are not shown in Table 

26.  The estimates for the random effects indicate that there is less variability in the three-

level model when compared to the two-level model.  When adding the sensor cluster, the 

standard deviation associated with the site cluster reduces from 3.5 to 3.1 mph.  

Similarly, the standard deviation of the residual term decreases from 6.7 to 6.5 mph.  

Although the differences between the standard deviations for both site and residual 

random components when comparing the three-level and two-level models are not of 

great magnitude (less than 0.5 mph), the advantage in adding the sensor variance 

component is that information about the variability in the response variable due to the 

extra level is gained.  The standard deviation attributed to the sensor cluster is 

approximately 2 mph. 

 In addition, the estimates obtained with the three-level model that represents the 

site-sensor-speed hierarchy (specified in Figures 14 and 15) were compared to the 

estimates obtained with the original hierarchy of site-driver-speed (specified in Figures 

10 and 11).  The comparison between the three-level models is shown in Table 27.   
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Table 27  Comparison between Three-level Models Hierarchies 

Parameter 
Alternative Hierarchy Original Hierarchy 
Estimate St. Error Estimate St. Error 

Speed Limit 25 mph -10.85 1.821 -10.54 0.524 
Speed Limit 35/40 mph -2.38 0.838 -2.21 0.173 
Speed Limit 45 mph -3.92 1.483 -3.48 0.469 
Lane Width Addition 2.37 1.051 3.34 0.342 
Lateral Clearance 0.15 0.051 0.16 0.011 
Total Driveways -0.95 0.171 -0.95 0.034 
Curb -3.95 1.202 -4.00 0.233 
Intersection WS -2.43 1.075 -1.93 0.227 
School/Children WS -0.47* 1.001 -1.09 0.199 
Curve Ahead WS 0.28* 1.004 0.85 0.186 
Curve with WS -2.78 0.970 -3.42 0.197 
Curve without WS -1.37† 0.789 -1.67 0.163 
Constant 48.40 1.961 46.70 0.976 
Random Components 
Level 3 - Site 3.1160 3.4316 
Level 2 - Sensor/Driver 2.1124 4.4570 
Level 1 - Residual 6.4689 5.0036 
* Not significant (p-values greater than 0.6) 
† Not significant at the 0.05 alpha value (p-value = 0.083)  

 

 As shown in Table 27, the signs for the parameter estimates are generally similar 

between the two models.  For the posted speed limit variables, the estimates for the 

alternative hierarchy indicate greater speed reductions when compared to the original 

hierarchy, but these differences between estimates are modest (additional speed reduction 

of approximately 0.5 mph or less).  The lane width addition variable is associated with 

speed increase of 2.4 mph for the hierarchy that considers the sensor cluster as opposed to 

an increase in speed of 3.3 mph for the original hierarchy.  The parameter estimates for 

the variables of lateral clearance and presence of curb are almost identical when 

comparing the two models, differing by an absolute value of 0.01 and 0.05, respectively, 

while the estimates for number of driveways are identical between the two models.  The 

presence of an Intersection Ahead warning sign is associated with speed reduction of 2.4 

mph for the alternative hierarchy, 0.5 mph greater than the speed reduction predicted by 

the original hierarchy.  The presence of a horizontal curve that warrants a warning sign is 
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associated with a speed reduction of 2.8 mph when considering the sensor cluster; 

however, the original hierarchy indicated a greater speed reduction (3.4 mph) associated 

with this variable.  The variables for the presence of School/Children and Curve Ahead 

warning signs were not statistically significant for the alternative hierarchy (p-values of 

0.64 and 0.78, respectively). 

 The standard errors of the estimates obtained with the alternative hierarchy are 

greater when compared to the original hierarchy, indicating that the estimates obtained 

with the model that consider the driver cluster are more consistent.  The variance 

associated with the site cluster is less for the alternative hierarchy when compared to the 

original hierarchy (standard deviation of 3.12 mph as compared to 3.43 mph, 

respectively) indicating that including the sensor cluster reduces the variance associated 

with the site cluster.  At the second level, specifying a sensor cluster indicates a standard 

deviation of 2.1 mph while the variability when considering a driver cluster at this level is 

greater (4.5 mph).  At the lower level, however, the original hierarchy explains more of 

the variance as indicated by the standard deviation of the residual term (5 mph as 

compared to 6.5 mph).  The values for the standard errors of the estimates and the 

variance associated with the residual term indicate that the original hierarchy is a better 

fit for modeling speeds along transition zones.  

  Specifying a three-level model in which the sensor cluster replaces the driver 

cluster results in the loss of driver-specific information.  And although this hierarchy 

results in greater standard errors for the estimates as well as greater variance at the lower 

level (speeds), an advantage is that additional driver-specific information can be included 

in the model.  By considering the previous speed of each driver j, this information can be 

included in the three-level model with the alternative hierarchy.  

 The information on previous speed can be included in the three-level model as a 

random intercept which is independent across subjects.  This model is referred to as the 

random intercept model and is shown below: 

 ijkjkjkjkijk Xy εςςςββ +++++= ∑ )3()2(
1      (58)  

 where:  jς  = random intercept for previous speed of driver j.  
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 Besides the random intercept model, a random coefficient model can be specified 

in which a random coefficient is included for any of the time-varying variables.  By 

including previous speed and its random coefficient allows for the effect of this variable 

to vary between-subjects.  The model for the random coefficient model is shown in 

Equation (59).  

 ijkjjkjkijkjkijk LLXy εςςςβββ ++++++= ∑ )3()2(
1     (59) 

 where: Lj = is the time-varying variable (previous speed) for driver j.  

 In order to include the speed at the previous sensor location, a new data set was 

created since only the previous speed was known at sensor locations 2, 3, and 4 (previous 

speed information was not available for sensor location 1).  The higher levels remained 

the same with the lower level having fewer observations in each cluster, for a total of 

8,577 observations in the dataset.  The hierarchy of this model is provided below:  

- Level 3 – site k = 1, 2, …., 20 

- Level 2 – sensor j = 1, 2, 3  

- Level 1 – speed, i = 1, 2, …, 2859 

 The new dataset consisted of a total of 8,577 speed observations for the response 

variable.  Both random intercept and random coefficient models were developed for the 

new data set.  Table 28 shows the estimates obtained with both options.  

 

Table 28  Three-Level Models with Previous Speed for Alternative Hierarchy 

Model Random Intercept Random Coefficient 
 Parameter Estimate St. Error Z-value Estimate St. Error Z-value 
Fixed Components 
Total Driveways -0.44 0.411 -1.07* -0.64 0.281 -2.28 
Intersection WS -4.69 2.499 -1.88†  -4.97 1.704 -2.92 
Previous Speed - - - 0.59 0.014 41.89 
Constant 18.56 1.444 12.85 18.77 1.048 17.91 
Random Components 
Site 2.83 1.250  2.10 0.818  
Sensor 4.93 0.799  3.18 0.621  
Previous Speed 0.59 0.055  0.08 0.012  
Residual 5.16 0.040  5.17 0.040  
* Not significant at the 0.05 alpha-level (p-value of 0.286) 
† Not significant at the 0.05 alpha level (p-value of 0.060) 
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 A likelihood-ratio test was performed between these two models; a χ2 value of 

206.76 (p-value of zero) resulted, which indicates that the random coefficient model is 

preferred over the random intercept model (previous speed should be included as an 

explanatory variable and the model should include its random coefficient).  This can also 

be seen in the Z-statistic values for the coefficient estimates; these indicate significance at 

the 0.05 alpha level only for the random coefficient model. 

 As shown in Table 28, only the variables for total number of driveways, 

Intersection Ahead warning sign, and previous speed were found to be significant for the 

model selected.  This can be interpreted as: 

- Total Driveways: mean speed decreases by nearly 0.6 mph per unit increase in 

the total number of driveways in a study segment.  

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of approximately 5 mph when compared to the 

baseline of no warning sign or the presence of a warning sign that does not 

indicate a change in highway alignment, a change in access density, or 

indicates presence of children. 

- Previous Speed: for every 1 mph speed increase at a sensor location, there is a 

0.6 mph speed increase at the next sensor location.  

 The standard deviation values for the random components are for the most part 

lower for the random coefficient model, indicating less variability associated with this 

model when compared to the random intercept model.  However, including previous 

speed as an explanatory variable results in loss of information on highway characteristics 

that influence operating speeds.  It is assumed that the previous speed of a vehicle 

depends on highway characteristics, therefore including previous speed in the model 

results in several highway-related variables not being statistically significant.  In addition, 

the presence of a sensor cluster also results in some explanatory variables not being 

statistically significant, even without considering the previous speed variable.  

 Based on the findings from the multilevel models analyses, it is recommended 

that a three-level model, in which speed observations are nested in drivers and drivers are 

nested in sites, should be used when modeling speeds along transition zones.  This 
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hierarchy uses information about the highway characteristics that influence operating 

speeds along transition zones as well as information on driver-specific variability.  

 

5.1.5  Generalized Estimating Equations (GEE) Analysis Results 

The transition zone speed dataset was also analyzed using generalized estimated 

equations (GEE).  As discussed in Chapter 4, GEE are longitudinal models that allow for 

correlation within clusters in the sample data.  The hierarchy of the dataset indicates the 

presence of driver clusters; therefore, the speed data are correlated for the same driver.  

The correlation within clusters is accounted for by exploring different correlation matrix 

structures.  

 GEE models for each of the four working correlation matrices (independent, 

exchangeable, autoregressive, and unstructured) were applied to the disaggregate data in 

this study, exploring the same variables that were initially identified as significantly 

influential on operating speeds along transition zones.  The QIC criterion and the 

marginal coefficient of determination (R2m) values were also evaluated in order to 

identify which model, and consequently which correlation matrix, best fit the data.  Table 

29 shows the estimates for the coefficients for each of the variables considered as well as 

their standard errors and the QIC criterion and the marginal R-square values for each of 

the working correlation matrices.  
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Table 29  Variable Coefficients for each of the GEE Models According to Working 

Correlation Structures 

Variable 
Coefficients (Semi-Robust Standard Error) 

Independent Exchangeable AR 1 Unstructured 
Speed Limit 25 mph -12.62 (0.388) -11.95 (0.355) -11.17 (0.366) -12.49 (0.352) 
Speed Limit 35/40 mph -2.71 (0.196) -2.49 (0.166) -1.87 (0.167) -2.58 (0.168) 
Speed Limit 45 mph -5.76 (0.350) -4.76 (0.308) -5.39 (0.305) -4.94 (0.305) 
Lane Width Addition 2.03 (0.210) 2.19 (0.180) 2.38 (0.188) 2.02 (0.177) 
Lateral Clearance 0.02* (0.013) 0.13 (0.009) 0.15 (0.009) 0.15 (0.009) 
Total Driveways -1.10 (0.040) -0.97 (0.031) -1.03 (0.031) -1.03 (0.031) 
Curb -4.48 (0.296) -3.77 (0.222) -3.56 (0.224) -3.41 (0.222) 
Intersection WS -1.76 (0.274) -2.05 (0.215) -2.11 (0.216) -1.59 (0.209) 
School/Children WS -2.82 (0.238) -1.41 (0.178) -0.57 (0.174) -0.96 (0.171) 
Curve Ahead WS 2.38 (0.188) 1.35 (0.153) 1.03 (0.152) 1.24 (0.145) 
Curve with WS -0.73 (0.236) -2.54 (0.181) -2.41 (0.184) -2.54 (0.180) 
Curve without WS -0.67 (0.201) -1.45 (0.141) -0.96 (0.146) -1.20 (0.137) 
Constant 50.91 (0.383) 49.63 (0.331) 48.81 (0.341) 49.67 (0.328) 
R2m 0.3622 0.3505 0.2876 0.3488 
QIC 619718.1 631086.0 637993.9 632716.9 
* Not significant at the 0.05 alpha level (p-value = 0.138) 

 

 The signs of the parameters for all of the explanatory variables were consistent 

across the correlation matrices considered.  This is one of the advantages of the GEE 

modeling procedure; the estimates of the parameters are consistent even if the correlation 

structure chosen is incorrect (i.e. the estimates are robust to misspecifications of 

correlations [Zorn, 2001]).  The magnitude of these coefficients does, however, vary 

across GEE models since the correlation matrix is included in the variance term of the 

speed prediction model (see Equations [46] and [47]).  However, the differences in the 

majority of the parameter estimates is less than one in magnitude, indicating that the 

efficiency gains in estimates obtained by selecting the appropriate correlation matrix is 

modest (Zorn, 2001).   

 For speed limit variables, the estimates obtained across the GEE models differed 

by a value of 1.45 or less.  The estimates obtained for the 25 mph speed limit indicator 

variable ranged from -12.6 for the independent model to -11.2 for the autoregressive (AR 

1) model.  For the speed limit 35 and 40 mph indicator variable, these parameter 
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estimates ranged from -2.71 (Independent model) to -1.87 (AR 1 model).  The range of 

the estimates obtained for 45 mph speed limit indicator variable varied from -5.76 

(Independent model) to -4.76 (Exchangeable model).  

 For the lane width addition and lateral clearance explanatory variables, the 

difference between parameter estimates across GEE models was less than 0.4.  The 

parameter estimates for the lane width variable ranged from 2.38 (AR 1 model) to 2.02 

(Unstructured model).  The lateral clearance variable was not statistically significant in 

the Independent model (an estimate value of 0.02); across the other GEE models it 

ranged from 0.15 (both AR 1 and Unstructured models) to 0.13 (Exchangeable model).  

 The estimates obtained for the number of driveways variable indicated that this 

variable is associated with an approximate 1 mph speed reduction for each additional 

driveway present along a two-lane rural highway transition zone; the parameter estimates 

ranged from -1.1 (Independent model) to -0.97 (Exchangeable model).  The highest speed 

reduction associated with the presence of curb was for the Independent model (-4.5 mph); 

the lowest speed reduction associated with the curb present indicator variable was for the 

Unstructured model (-3.4 mph).  

 Both the Intersection Ahead and School/Children warning signs were associated 

with lower operating speeds along two-lane rural highway transition zones as indicated 

by the negative signs of the parameter estimates.  The Intersection Ahead warning sign 

was associated with speed reductions between 2.1 and 1.6 mph (AR 1 and Unstructured 

models, respectively).  The estimates obtained for the School/Children warning sign 

variable differed by the greatest magnitude across models when compared to the rest of 

explanatory variables.  These parameter estimates ranged from -2.82 (Independent 

model) to -0.57 (AR 1 model).  The parameter estimates obtained for the variable for 

Curve Ahead warning sign were positive; these ranged from 2.4 for the Independent 

model to 1.0 for the AR 1 model.   

 Finally, changes in horizontal alignment, with or without a sign that warns drivers 

of upcoming curves, were associated with lower operating speeds.  The variable for a 

horizontal curve sign that warrants a warning sign had parameter estimates between -2.54 

and -0.73 (Unstructured and Independent models, respectively).  For curves that are not 
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combined with a related warning sign, the speed reductions ranged from -1.45 

(Exchangeable model) to -0.67 (Independent model).  

 All z-values for the parameter estimates in all GEE models indicated that the 

explanatory variables were statistically significant at the 0.05 alpha-level, with the 

exception of the variable for lateral clearance in the independent correlation structure (z-

value of 1.48 corresponding to a p-value of 0.138).  The statistical software package 

STATA also produces the working correlation matrix for each GEE model.  Since all 

working correlation matrices are symmetric, and the correlations between individuals 

have a value of zero for the independent GEE model, the lower triangles of the 

correlation matrix for the exchangeable, autoregressive, and unstructured GEE models 

are: 
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 The working correlation matrix for the Exchangeable model indicates that the 

correlation between speed observations is 0.544, regardless of the time (or in this case, 

distance) between sensor locations.  The working correlation matrix for the AR 1 model 

specifies that between any two consecutive sensors, the correlation between speed 

observations is approximately 0.6.  For speed observations between sensors 1 and 3 and 

sensors 2 and 4, the correlation is 0.358, while between sensors 1 and 4 this correlation is 

0.214, indicating that speed observations between sensor locations are less correlated as 

sensor locations become further apart.  For the Unstructured model, the working 

correlation matrix indicates different correlation values, regardless of the position of the 
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sensors.  For adjacent sensors, the correlations between speed observations are 0.7, 0.5, 

and 0.56 for sensors 1 and 2, 2 and 3, and 3 and 4, respectively.  The speeds at sensors 3 

and 4 are correlated to speeds at sensor 1 by a value of 0.56 and 0.47, respectively.  

Finally, the correlation in speed observations between sensors 2 and 4 is 0.467.  

 In order to identify which GEE model best describes the data, the QIC criterion 

and the marginal coefficient of determination, R2m, were used.  Both the QIC criterion 

and the R2m favored the independent correlation structure (highest R2
m and lowest QIC).  

However, Ballinger (2004) recommends selecting the model with the correlation 

structure that makes more sense theoretically and to use the QIC criterion when 

undecided between two correlation structures.  The identification of the independent 

correlation matrix as the best model is counterintuitive since it specifies that speed 

observations within the driver cluster are independent.  The autoregressive structure is 

selected when data within a cluster is correlated over time; however, the location of the 

sensors is not identical for all study sites since transition zone lengths vary over study 

sites.  Based on these statements, the exchangeable and the unstructured correlation 

matrices are the most representative of the nature of how the data were collected.  Both 

the QIC criterion and the marginal coefficient of determination values favor the 

exchangeable GEE model, thus this model was selected as the most appropriate to model 

operating speeds along transition zone among all GEE models.  The parameter estimates 

for the explanatory variables of the exchangeable model can be interpreted as: 

- Speed Limit 25 mph: a posted speed limit of 25 mph is associated with a mean 

speed decrease of almost 12 mph when compared to the baseline of a 55 mph 

posted speed limit. 

- Speed Limit 35/40 mph: a posted speed limit of either 35 or 40 mph reduces 

mean speed by 2.5 mph when compared to the baseline of a 55 mph posted 

speed limit. 

- Speed Limit 45 mph: a posted speed limit of 45 mph is associated with a mean 

speed decrease of almost 5 mph when compared to the baseline of a 55 mph 

posted speed limit.  
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- Lane Width Addition: for a minimum lane width of 9 feet, a mean speed 

increase of approximately 2.2 mph is associated per one-foot increase in the 

lane width addition variable. 

- Lateral Clearance: a mean speed increase of 0.13 mph is associated with a 

one-foot increase in lateral clearance.  

- Total Driveways: mean speed decreases by 1 mph per one-unit increase in the 

total number of driveways present in a two-lane rural highway transition zone.  

- Curb: presence of curb is associated with mean speed reductions of 3.8 mph 

when compared to the baseline of no curb presence. 

- Intersection Ahead Warning Sign: the presence of this sign is associated with 

a mean speed reduction of approximately 2 mph when compared to the 

baseline of no warning sign or the presence of a warning sign that does not 

indicate a change in highway alignment, a change in access density, or 

indicates presence of children. 

- School / Children Warning Sign: the presence of a sign related to the presence 

of school or children is associated with an additional mean speed reduction of 

1.4 mph when compared to the baseline of no warning sign or the presence of 

a warning sign that does not indicate a change in highway alignment, a change 

in access density, or indicates presence of children. 

- Curve Ahead Warning Sign: the presence of this sign is associated with a 

mean speed increase of 1.4 mph when compared to the baseline of no warning 

sign or the presence of a warning sign that does not indicate a change in 

highway alignment, a change in access density, or indicates presence of 

children.  

- Curve with Warning Sign: a horizontal curve that warrants a Curve Ahead 

warning sign is associated with an additional mean speed reduction of 

approximately 2.5 mph when compared to the baseline of no change in 

horizontal alignment. 

- Curve without Warning Sign: a horizontal curve without a warning sign is 

associated with a mean speed reduction of 1.5 mph when compared to the 

baseline of no change in horizontal alignment. 
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5.1.6  Point Speed Analyses Summary 

The speed data collected at each of the four sensor locations permitted the vehicles to be 

“tracked;” therefore, individual driver-speed information was available.  Panel data and 

GEE methodologies were applied to the data since they are longitudinal models that 

allow for correlation among the observations, specifying that speed observations were 

nested in drivers.  In order to incorporate a higher level, several three-level models were 

developed which specified a site cluster at the highest level.   

 For panel data analyses, a fixed-effects model that includes the posted speed limit 

with disaggregate data produced a better goodness-of-fit to the data when compared to 

the model without the posted speed limit indicators.  As noted previously, however, the 

fixed-effects panel model without the posted speed limit indicators resulted in the signs 

for two parameters changing and becoming more consistent with engineering intuition 

(i.e., paved shoulder width and Curve Ahead warning sign).  For multilevel models, the 

model that best fit the data was a three-level model with a data structure that specified 

speeds nested in drivers and drivers nested in sites.  Among the GEE models, the 

Exchangeable working correlation matrix was selected as the most appropriate to model 

the data.  A comparison of the recommended models selected as appropriate among the 

point speed analysis methods described in this section of the dissertation is shown in 

Table 30.  
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Table 30  Comparison Between all Model Selected as Appropriate 

Parameter 
Panel Data (FE) Three Level (MLE) GEE 

(Exchangeable) 

Estimate St. Error Estimate St. Error Estimate St. Error 

SL 25 mph -10.46 0.537 -10.54 0.524 -11.95 0.355 
SL 35/40 mph -2.20 0.173 -2.21 0.173 -2.49 0.167 
SL 45 mph -3.41 0.481 -3.48 0.469 -4.76 0.308 
Lane Width Addition 3.49 0.354 3.34 0.342 2.19 0.180 
Lateral Clearance 0.16 0.011 0.16 0.011 0.13 0.009 
Total Driveways -0.95 0.034 -0.95 0.034 -0.97 0.031 
Curb -4.01 0.235 -4.00 0.233 -3.77 0.222 
Intersection WS -1.91 0.228 -1.93 0.227 -2.05 0.215 
School/Children WS -1.08 0.199 -1.09 0.199 -1.41 0.178 
Curve Ahead WS 0.84 0.186 0.85 0.186 1.35 0.154 
Curve with WS -3.46 0.197 -3.42 0.197 -2.54 0.181 
Curve without WS -1.68 0.164 -1.67 0.163 -1.45 0.141 
Constant 47.05 0.604 46.70 0.976 49.63 0.331 
Random Components 
Site - 3.4316  
Driver 6.2022 4.457 - 
Residual 5.007 5.0036 - 
R2 R2overall = 0.3266 - R2marginal = 0.3505 
 

The variables found to significantly influence operating speeds were consistent 

across all models specified in this section of the dissertation.  The highway characteristics 

found to be associated with speed reductions, regardless of the modeling methodology, 

were changes in posted speed limit, number of driveways, presence of a curb, presence of 

Intersection Ahead and School/Children warning signs, and presence of a horizontal 

curve, either with or without a Curve Ahead warning sign.  Only the variables related to 

lane width and lateral clearance distance were found to be associated with higher 

operating speeds.  The magnitude of the parameter estimates for all the variables were 

generally consistent across all models.  

 The parameter estimates obtained from the fixed-effects panel data model and the 

three-level model are nearly identical; they all differed by an absolute value of 0.15 or 

less.  When compared to the GEE parameter estimates obtained with the Exchangeable 

correlation matrix, the magnitudes of these differences are higher.  The posted speed limit 
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25 mph indicator and the posted speed limit 45 mph indicator were associated with 

approximately 1.5 mph greater speed reductions for the GEE exchangeable model when 

compared to the panel and multilevel models.  The variable for presence of a horizontal 

curve that warrants a warning sign was associated with a speed reduction of 2.5 mph for 

the GEE model when compared to a speed reduction of approximately 3.4 mph for both 

the panel data and multilevel models.  The estimates obtained for the lane width addition 

variable indicated only a speed increase of 2.2 mph per one-foot increase in lane width 

for the GEE model, a lower value than those obtained with the panel data and multilevel 

models (3.5 and 3.3 mph, respectively).  All other variables had similar estimates across 

all models, differing by approximately an absolute value of 0.5 or less.   

 When comparing the values for the standard errors of the estimates, these were 

also almost identical for the panel data and the multilevel models (differences less than an 

absolute value of 0.02).  The standard errors obtained from the Exchangeable GEE model 

are smaller when compared to the ones obtained using the panel data and multilevel 

models; however, the differences in standard errors for most of the variables were less 

than an absolute value of 0.04.  The greatest differences between standard errors were for 

the indicator variables for both speed limits of 25 and 45 mph and for the continuous 

variable of lane width addition; still, these differences were less than an absolute value of 

0.2.   

 The coefficient of determination, R2, is available for panel data and GEE model 

analyses; multilevel models do not provide this information.  The overall coefficient of 

determination for the fixed-effects panel data model was approximately 0.33.  However, 

the marginal coefficient of determination computed for the Exchangeable GEE model 

was 0.35, indicating that the exchangeable GEE model provides a better fit to the data.  

Although the GEE model indicated less variance, as indicated by the smaller standard 

errors and the coefficient of determination, the advantage of the panel data and multilevel 

models is that estimates for the random components can be obtained, which is not 

available when specifying GEE models.   

 The parameter estimates obtained with the panel data and the multilevel models 

were almost identical, but the three-level model is able to provide additional information 

about the variability associated with the site cluster.  The use of multilevel models 
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enabled the addition of study sites to the data structure hierarchy.  Therefore, the 

variability associated with the higher level (sites) can be obtained with the use of a three-

level model, information that panel data analyses fail to provide.  In addition, the results 

of the multilevel model analyses indicated that a three-level model was preferred over a 

two-level model.  Therefore a three-level model that specifies a data hierarchy in which 

speed observations are nested in drivers and drivers are nested in sites is preferred over 

the other models considered in this dissertation.  

  

5.2  Speed Differential Analysis Results 

The previous models developed – panel data, multilevel models, and GEE – considered 

the study section in its entirety by treating each data collection location as a point speed.  

Additional models were developed using ordinary least squares regression (OLS) and 

multilevel models that only considered the transition zone sections.  

 As discussed in Chapter 3, speed data were collected at 4 sensor locations along 

20 two-lane rural highway transition zones in Central Pennsylvania.  The sensor locations 

permitted vehicles to be tracked along each of the study areas; therefore, it was possible 

to obtain driver-specific speed differentials.  Several authors have indicated the 

importance of considering individual speed differentials when developing prediction 

models (Park and Saccomanno, 2005; and Misaghi and Hassan, 2005).  Since sensor 

locations 2 and 3 defined the beginning and the end of the transition zone, respectively, 

the response variable for the speed differential model was defined as:  

 ΔY2-3 = Y2 – Y3         (60) 

where: ΔY2-3 = change in speed between limits of the transition zone (mph);  

 Y2 = speed at sensor location 2 (mph); and  

 Y3 = speed at sensor location 3 (mph).  

 Table 31 shows the summary statistics for the response variable for each study 

site included in this research.  
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Table 31  Speed Differential along Transition Zone Descriptive Statistics 

Site ID N 
Response Variable: ΔY2-3 (mph) 

Mean  St Dev  Minimum  Maximum 
1 124 -0.758 5.808 -20 19 
2 68 8.28 8.49 -11 31 
3 98 3.592 5.447 -13 15 
4 104 1.288 5.298 -12 14 
5 231 2.762 5.006 -13 26 
6 99 5.859 7.387 -15 21 
7 159 2.616 5.77 -19 19 
8 149 3.503 6.372 -12 25 
9 478 4.793 7.495 -17 29 
10 148 1.439 5.506 -16 19 
11 141 4.83 5.877 -9 23 
12 73 3.849 5.338 -12 18 
13 130 13.315 5.452 -3 33 
14 112 10.018 6.416 -10 27 
15 81 -0.0247 4.552 -10 11 
16 122 5.074 5.702 -12 25 
17 164 5.03 5.069 -9 19 
18 52 1.346 6.426 -11 18 
19 178 -3.916 4.608 -17 10 
20 148 4.169 5.62 -10 22 

 

 In Table 31, a positive value of ΔY2-3 indicates a speed reduction, while a negative 

value for ΔY2-3 indicates a speed increase.  This relationship was helpful in associating 

speed reductions with a desirable outcome (speed reductions are desired along each of the 

transition zones) while associating speed increases with an undesirable outcome.  A 

linear regression model was identified to model mean speed difference; the OLS model is 

then:   

  ε+Σ+=Δ − bXaY 32         (61) 

 In the mean speed differential OLS model, the amount of variation not explained 

by the independent variables is contained in the error term, ε.  

 As previously noted, information on roadway characteristics were also collected 

at each sensor location in order to include them as potential predictors.  In order to 
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develop a speed differential prediction model along transition zones, only roadway 

characteristics between the limits of the transition zone (i.e. sensor locations 2 and 3) 

were included in the set of explanatory variables (see Chapter 3).  However, since it was 

hypothesized that changes in operating speeds were a result of changes in the driving 

environment, additional explanatory variables were created in order to include the 

geometric design feature changes within the limits of the transition zone.  To perform the 

speed differential analysis, the following variables were created in the database: 

1. Change in cross-sectional roadway characteristics.  Variables for the change 

in lane width, shoulder width, paved roadway width and lateral clearance were 

created by subtracting these measurements collected at sensor location 3 from 

their respective measurements collected at sensor location 2.  Therefore a 

positive value for the variable Delta Lane Width would indicate a lane width 

reduction between the beginning and end of the transition zone.  The 

descriptive statistics of these changes in lateral dimensions (cross-sectional) 

are shown in Table 32. 

2. Average of cross sectional roadway characteristics.  Similarly, for the 

variables of lane width, shoulder width, paved roadway width, and lateral 

clearance, the average value of their respective measurements at both sensor 

locations 2 and 3 was calculated and included as potential predictors.  

3. Change in driveways.  Different variables were included that described the 

change in driveway density.  By identifying an area for each sensor, as shown 

in Figure 7 (see Chapter 3), driveways were assigned to that area, thus delta 

driveways was calculated by subtracting the number of driveways assigned to 

sensor location 3 from the number of driveways assigned to sensor location 2.  

A positive value indicated a reduction in driveway density while a negative 

value indicated an increase in driveway density.  The descriptive statistics for 

change in driveways are also shown in Table 32.  In addition, indicator 

variables were created to indicate either a driveway density increase or a 

decrease in driveway density.  

4. Transition zone length.  This variable was not considered in the point speed 

models since it was specific to each study site.  Transition zone lengths for 
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each study site are shown in Table 7 in Chapter 3.  The descriptive statistics 

for length of transition zone are shown in Table 32.  

5. Introduction of Curb.  An indicator variable was created to indicate if a curb 

was introduced within the limits of the transition zone.  

6. Horizontal Alignment.  Three indicator variables were created following the 

procedure in the analyses for point speeds; horizontal curve that warrants a 

warning sign, horizontal curve that does not warrant a warning sign, and a 

tangent roadway section.  

 

Table 32  Descriptive Statistics for Continuous and Indicator Variables 

Continuous Variables Mean St Dev Minimum Maximum 
Delta Speed Limit  18.39 2.523 10 20 
Delta Lane Width, ft -0.09 0.274 -1 0.4 
Delta Paved Shoulder, ft -0.41 2.101 -4.5 6 
Delta Stabilized Shoulder, ft 1.23 3.011 -5.5 12 
Delta Paved Roadway, ft     -0.61 3.731 -10.4 11.5 
Delta Lateral Clearance, ft  -0.45 3.897 -9 6.4 
Delta No. of Driveways - Next Side 0.24 1.414 -3 3 
Delta No. of Driveways - Other side -0.37 1.418 -3 2 
Delta Total No. of Driveways -0.13 2.489 -5 4 
Transition Zone Length (ft) 681.45 190.590 375 1065 
No. Warning Signs  0.27 0.686 0 3 
Indicator Variables Mean St Dev Minimum Maximum 
Curb 0.31 0.464 0 1 
Curve with Warning Sign 0.34 0.485 0 1 
Curve without Warning Sign 0.24 0.429 0 1 
Tangent Section 0.38 0.485 0 1 

 

 In addition, several variables for the reduction in speed limit were created in order 

to be considered as potential explanatory variables, including both continuous and 

indicator variables.  As presented in Chapter 3 in Table 7, the distribution of speed limit 

changes per study site was as followed: 

- Nine sites indicated a posted speed limit reduction from 55 to 35 mph 

- Four sites indicated a posted speed limit reduction from 45 to 25 mph 

- The reduction in speed limit at five sites was from 55 to 40 mph 
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- One site indicated a speed limit reduction from 40 to 25 mph (Site 14) 

- One site indicated a reduction in speed limit from 45 to 35 mph (Site 18) 

 Since the changes in speed limit at two of the study sites were not observed at any 

of the other sites (sites 14 and 18), these two sites were either combined with other sites.  

The categories for the speed limit reduction indicator variables, including the inclusion of 

how sites 14 and 18 were considered, were as follow: 

- Speed Limit 55-35mph.  Speed limit reduction from 55 to 35 mph.  Nine sites 

observed this speed limit reduction.  Since site ID 18 indicated a speed limit 

reduction from 45 to 35 mph, and it was observed that speed limit upstream of 

the study site was 55 mph, this site was included in this category.  

- Speed Limit 55-40 mph.  Speed limit reduction from 55 to 40 mph; this speed 

limit reduction was observed at five sites.  

- Speed Limit 45/40-25 mph.  Speed limit reduction from either 45 or 40 mph to 

25 mph.  Four sites indicated a speed limit reduction from 45 to 25 mph.  Site 

ID 14 was the only site which indicated a speed limit reduction from 40 to 25 

mph, therefore it was included in this category. 

 Data for other roadway characteristics between sensor locations 2 and 3 were 

combined for some of the variables, such as type of warning signs and grade.  Interaction 

terms were not included in the OLS analyses in order to identify the influence of 

individual roadway features on vehicle operating speed changes in a transition zone.  

However, similar to the point speed analyses presented earlier, an indicator variable for 

the presence of a horizontal curve that required a warning sign was included in the 

dataset of potential explanatory variables.  

  The regression model focused only on driver behavior along the transition zone 

and, since driver-specific speed data were available, disaggregate data were used for the 

analysis.  The dataset considered for this analysis included 2,959 observations which 

correspond to the number of vehicles included in the data sample.  The procedure 

followed to develop the OLS model for change in speed along transition zones was: 

1. Determine correlations between response variable and explanatory variables 

to identify potential predictors for the model specification. 
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2. Correlations between explanatory variables to identify presence of possible 

collinearity. 

3. Centralization of continuous variables: Centering a continuous variable entails 

subtracting each value by the mean and is done to reduce the correlation with 

other variables and avoid multicollinearity.  Two continuous variables have 

been identified for centralization: speed difference along the transition zone 

(response variable) and speed before the transition zone at sensor location one 

(explanatory variable). 

4. One-Way Analysis of Variance (ANOVA) for each potential explanatory 

variable to exclude any variables that do not have any statistical influence on 

the response variable.  

 Each step for the modeling procedure is described in detail in the following 

sections.  

 

5.2.1  Correlation Analyses 

Correlation analyses were initially performed to investigate which explanatory variables 

were strongly correlated with the response variable.  Additionally, these correlation 

analyses were also helpful in investigating if there were some explanatory variables that 

were correlated with each other. 

 The correlation analysis showed that reductions in speed limit to 25 mph, 

regardless of the initial speed limit (speed limit at the high-speed zone) were highly 

correlated with the response variable.  When considering the cross-sectional features of 

the roadway, the variables related to lane width and both paved and stabilized shoulder 

width were strongly correlated.  In addition, explanatory variables related to lateral 

clearance distances were also correlated to the response variable.  

 As related to changes in alignment, either horizontally or vertically, the presence 

of horizontal curve, regardless of direction, had the strongest correlation with the 

response variable.  As related to driveway density related variables, the strongest 

correlation to the response variable was total number of driveways.  The presence of 

warning signs, as well as the type of warning sign located along the transition zone, was 

also correlated to the speed reductions.  The length of the transition zone was also found 
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to have a correlation with the response variable.  These correlation values are shown in 

Table 33.  

 

Table 33  Correlations between Potential Explanatory Variables and Response Variable 

Potential Explanatory Variable Correlation 
Speed Limit change from 45/40 to 25 mph 0.204 
Average Lane Width 0.159 
Change in Lane Width -0.134 
Average Paved Shoulder 0.114 
Average Stabilized Shoulder 0.181 
Change in Stabilized Shoulder 0.170 
Average Lateral Clearance 0.242 
Change in Lateral Clearance 0.134 
Total Number of Driveways 0.268 
Presence of Horizontal Curve 0.122 
Number of Warning Signs 0.277 
Presence of Intersection Ahead Warning Sign 0.225 
Presence of School/Children Warning Sign 0.236 
Presence of Curve Ahead Warning Sign 0.201 
Length of Transition Zone 0.208 

 

 The majority of the variables shown in Table 33 are positively correlated with the 

response variable, indicating that these are associated with speed reductions.  The 

variable of change in lane width has a correlation of -0.134, indicating that an increase in 

lane width is associated with a decrease in speed reduction (i.e., speed increase).  The 

variables for average paved and stabilized shoulders and average lateral clearance 

indicated that high values for these lateral distances beyond the travel lane are associated 

with speed reductions.  The presence and number of warning signs were also associated 

with speed reductions along the transition zone.  

 The indictor variables related to speed limit reductions that were correlated to the 

response variable were only those in which the posted speed limit in the low-speed area 

was 25 mph.  Although variables were available for changes in driveway density, the 

only variable related to this highway characteristic that had a high correlation value with 

the response variable was total number of driveways along the transition zone.  The 

correlation for the transition zone length variable indicated that longer distances between 
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the speed limit signs that mark the limits of the transition zone are associated with greater 

speed reductions.  The only variable that had an unexpected correlation value with the 

response variable was average lane width (0.159).  The results indicated that high values 

for lane width are associated with greater speed reductions, which contradicts the results 

obtained previously which suggested that as the travel lane narrows, the speed reductions 

along the transition zone increase.   

  In addition, correlations between explanatory variables were explored in order to 

identify which of these variables had high correlation values among each other.  High 

correlation values between explanatory variables indicate the potential for 

multicollinearity if these are included in the same model.  The variables related to paved 

roadway width were strongly correlated to those related to lane width, and both paved 

and stabilized shoulder widths, therefore paved roadway was not considered in the model.  

Similarly, the variables for the same cross sectional characteristic (i.e. average lane width 

and change in lane width) were strongly correlated, thus indicating that only one variable 

specific to the cross sectional characteristic under consideration should be included in the 

model.  

 

5.2.2  Centralization of Continuous Variables 

The second step in the in the speed differential analysis in the transition zone included the 

centralization of continuous variables in order to reduce multicollinearity.  

Multicollinearity exists when one of the independent variables is highly correlated to one 

or more of the other explanatory variables in a multiple regression model.  It has been 

suggested that, in order to reduce the impact of multicollinearity, to increase the sample 

size or to “center” the variables (Motulsky, 1995).  Centering variables involves 

subtracting the mean from each individual observation.  By subtracting each observation 

by a scalar number (the overall mean), the histogram is “shifted”, and the range between 

the variable values remains the same.  Centering a variable is useful when the variable is 

continuous, and one advantage is that the results are easier to interpret.  The independent 

variable for speed at sensor location one (SpeedS1) was then selected to be centralized 

and the new variable is given by Equation (62) below:  
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 where SpeedS1ctrj = is the speed at sensor 1 centralized for driver j and n=2859.    

 Figure 16 shows the histogram for both SpeedS1 and SpeedS1ctr in which it can 

be seen that the histogram’s shape remains the same.  
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Figure 16  Histograms for Speed at Sensor 1 (Original and Centralized) 

 

5.2.3  One-Way ANOVA 

The third step in the speed differential analysis consisted of applying one-way Analysis 

of Variance (ANOVA) for each of the individual explanatory (categorical) variables in 

order to narrow down the potential predictors to be included in the final model (i.e. in 

order to further explore which variables could be included in the regression model and 

which variables can be excluded).  The following variables were found to have a 

statistically significant influence on the response variable (which indicates that they could 

be in the regression model):  

- All speed limit related variables: speed limit in the low-speed zone, speed 

limit in the high-speed zone, all speed limit indicators, and change in speed 

limit 
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- All cross-sectional characteristics (lane width, paved and stabilized shoulder, 

lateral clearance)  

- Presence of a steep positive grade (greater than 3 percent)  

- All driveway related variables 

- All horizontal alignment variables, including their interaction with a curve-

ahead warning sign. 

- Introduction of curb 

- All warning sign-related variables 

- Transition zone length 

- Speed at sensor 1(centered) 

 Although the correlation analysis did not indicate that the presence of a curb, 

posted speed limits of 35 and 40 mph, and a steep positive grade were associated with 

speed reductions in the transition zone, the ANOVA results did indicate that each was 

statistically significant.  As such, each of these variables was included in the list of 

potential explanatory variables for the speed reduction OLS regression model specified in 

the following section.   

 

5.2.4  Linear Regression Model and Variance Inflation Factors 

Regression models were fitted with those explanatory variables that were identified as 

having an influence on the response variable (those identified either by correlation 

analyses, one-way ANOVA, or a combination of both).  Best subsets analyses were 

performed and both the Mallows Cp and the AIC criterion values were explored: a low 

value for both the Cp and the AIC scores are used to identify the best regression model. 

In addition, the variance inflation factor (VIF) was used to detect multicollinearity.  

Those variables with a VIF value of 10 or higher were excluded since this was an 

indication that the particular variable is associated with an increase in the variance of the 

estimated coefficients.  Based on the coefficient of determination and the VIF values, as 

well as the Cp and AIC criterion values, a model was developed.  The model developed 

had a coefficient of determination, R2, of 0.248 indicating that approximately 25 percent 

of the variation in speed differentials is explained by the explanatory variables.  It also 

had the lowest Cp value (15.0) as well as the lowest AIC criterion score (18,444.2) and 
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the highest coefficient of determination (R2) during the best subsets procedure.  The 

results of the OLS model, including the results for the Analysis of Variance (ANOVA) 

are shown in Table 34.     

   

Table 34  Speed Differential OLS Results 

Predictor Estimate St. Error t p-value VIF 
Speed1 Centered 0.16 0.017 9.20 <0.001 1.6 
Speed Limit 55-40 mph 2.98 0.394 7.56 <0.001 2.2 
Speed Limit 45/40-25 2.94 0.399 7.37 <0.001 2.0 
Delta Lane Width 2.41 0.978 2.47 0.014 5.6 
Delta Paved Shoulder 1.06 0.121 8.71 <0.001 5.0 
Delta Lateral Clearance 0.09 0.040 2.28 0.023 1.9 
Total Driveways 0.38 0.081 4.65 <0.001 1.7 
Curb Intro 1.21 0.547 2.22 0.026 5.0 
Intersection WS 3.11 0.615 5.06 <0.001 2.2 
School/Children WS 7.33 0.644 11.39 <0.001 2.8 
Curve  WS -3.60 0.614 -5.85 <0.001 2.6 
Transition Zone Length 0.68 0.091 7.44 <0.001 2.4 
Curve with WS 4.27 0.448 9.54 <0.001 3.7 
Tangent -1.31 0.348 -3.78 <0.001 2.2 
Constant -4.95 0.648 -7.64 <0.001 - 
Source df SS MS F P 
Regression 14 34628.5 2473.5 67.03 <0.001 
Residual Error 2844 104938.3 36.9     
Total 2858 139566.8       

 

 The influence of each of the explanatory variables on speed differentials along 

transition zones can be interpreted as follows: 

- Speed1 Centered: a mean speed reduction of 0.16 mph is expected per unit 

increase of the speed 500 ft before the beginning of the transition zone. 

- Speed Limit 55-40: a mean speed reduction of approximately 3 mph is 

expected when the speed limit decreases from 55 to 40 mph, as compared to 

the baseline of a change in posted speed limit from 55 to 35 mph. 
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- Speed Limit 45/40-25: a mean speed reduction of 2.9 mph is expected if the 

speed limit changes from 45 or 40 mph to 25 mph when compared to the 

baseline of a posted speed limit reduction from 55 to 35 mph.  

- Delta Lane Width: for each one-foot change in the lane width reduction, a 

mean speed reduction of 2.4 mph is expected. 

- Delta Paved Shoulder: a one-foot paved shoulder width reduction is 

associated with a mean speed reduction of 1mph. 

- Delta Lateral Clearance: a one-foot lateral clearance reduction is associated 

with a mean speed reduction of 0.1 mph. 

- Total Driveways: a mean speed reduction of 0.4 mph is expected for each unit 

increase in the total number of driveways. 

- Curb Intro: the introduction of curb is associated with a mean speed reduction 

of approximately 1.2 mph when compared to the baseline of no curb. 

- Intersection Ahead Warning Sign: the presence of an Intersection Ahead 

warning sign is associated with a mean speed reduction of 3.1 mph when 

compared to the baseline of no warning sign or the presence of a warning sign 

that does not indicate a change in highway alignment, a change in access 

density, or indicates presence of children. 

- School/Children Warning Sign: the presence of a warning sign related to 

school or presence of children is associated with a mean speed reduction of 

7.3 mph when compared to the baseline of no warning sign or the presence of 

a warning sign that does not indicate a change in highway alignment, a change 

in access density, or indicates presence of children. 

- Curve Ahead Warning Sign: the presence of a Curve Ahead warning sign is 

associated with a mean speed increase of 3.6 mph when compared to the 

baseline of no warning sign or the presence of a warning sign that does not 

indicate a change in highway alignment, a change in access density, or 

indicates presence of children. 

- Transition Zone Length: a mean speed reduction of 0.7 mph is associated with 

each 100-foot increase in the transition zone length. 
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- Curve with Warning Sign: the presence of a horizontal curve that warrants a 

warning sign is associated with a mean speed reduction of 4.3 mph when 

compared to the baseline of presence of a curve without a Curve Ahead 

warning sign.  

- Tangent: the presence of a tangent along the transition zone is associated with 

a mean speed increase of 1.3 mph when compared to the baseline of presence 

of a curve without a Curve Ahead warning sign. 

  

5.2.5  Additional Remedial Measures and Linear Regression Assumptions 

The assumptions of OLS were previously discussed in Chapter 4.  The VIF values have 

ensured the absence of multicollinearity.  Several assumptions can be checked using 

residual plots.  Scatterplots of the standardized residual versus the fitted values can be 

used to check the assumption of normality, linearity, and equal variances 

(homoskedasticity).  If the scatterplot is randomly scattered about zero it is a good 

indication that the assumptions of regression are met.  Histograms were also used to 

check for normality.  Figure 17 shows the scatterplot of residuals versus fitted values for 

the linear regression model developed.  A histogram for the residuals is shown in Figure 

18. 
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Figure 17  Scatterplot of Residuals versus Fitted Values 

  

 

 

Figure 18  Histogram of Residuals 
  

 The plot of residuals versus fitted values does not show any pattern and it is 

scattered around zero, thus the assumptions of normality, linearity, and homoskedasticity 

were met.  The histogram of residuals is bell-shaped centering on zero, confirming that 

the normality assumption is indeed met.  
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 In addition, the plot of residuals versus the order of the data can be used to check 

the assumption of homoskedasticity and check for autoregression problems.  This plot is 

shown in Figure 19.  
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Figure 19  Residuals versus the Order of the Data 

 

 The plot shown in Figure 19 is also scattered around zero and does not indicate 

any patterns in the residual data, thus the assumption of equal variances was met.  In 

addition, the Durbin-Watson test was performed resulting in a value, d, of 1.96.  As 

previously indicated in Chapter 4, if the d-statistic is close to a value of two, there is little 

evidence that autocorrelation exists among the residuals.    

 

5.2.6  Multilevel Model for Speed Differential 

In addition to OLS regression, a multilevel model in which vehicle speed differences 

(level 1) were nested in sites (level 2) was developed.  The response variable remained 

the same: change in speed along the transition zone as expressed in Equation (60) in 

Section 5.2.  The two-level model with change in speed as the response variable can be 

expressed as:  

jkkjkjk XY εςββ +++=Δ ∑−
)2(

1032           (63) 

where: ΔY2-3jk = speed difference for driver j at site k; 
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 β0 = fixed intercept (slope); 

 Σβ1Xjk = matrix of independent variables (X) and their coefficients (β); 

 )2(
kς = random intercept for level 2 (sites), with variance ψ(2); and 

 εjk = random error term (residual) with variance θ. 

 An initial two-level model was estimated with the explanatory variables that were 

included in the OLS regression model estimated previously.  Table 35 shows the results 

from both models for comparison purposes.  

 

Table 35  Comparison between Two-Level and OLS Models 

Parameter 
Two-Level OLS 

Estimate St Error Estimate St Error 
Speed Centered 0.17 0.017 0.16 0.017 
Speed Limit 55-40 mph 2.87 1.088 2.98 0.394 
Speed Limit 45/40-25 2.98 1.098 2.94 0.399 
Delta Lane Width 2.22* 2.517 2.41 0.978 
Delta Paved Shoulder 1.09 0.311 1.06 0.121 
Delta Lateral Clearance 0.10* 0.116 0.09 0.040 
Total Driveways 0.38 0.224 0.38 0.081 
Curb Introduction 0.67* 1.673 1.21 0.547 
Intersection WS 2.47 1.728 3.11 0.615 
School/Children WS 7.64 1.900 7.33 0.644 
Curve WS -2.91 1.793 -3.60 0.614 
Transition Zone Length 0.75 0.252 0.68 0.091 
Curve with WS 3.03 1.258 4.27 0.448 
Tangent -1.88 1.026 -1.31 0.348 
Constant -4.75 1.905 -4.95 0.648 
* p-value greater than 0.020 
† p-value less than 0.020 and greater than 0.05 

 

 When compared to the OLS regression model developed previously, several 

variables were not statistically significant at the 80 percent confidence level (p-value 

greater than 0.20) for the multilevel model.  These variables were: change in lane width 

(p-value = 0.377), change in lateral clearance (p-value = 0.410), and introduction of a 

curb (p-value = 0.689).  In addition, four variables that were previously found statistically 

significant at the 95 percent confidence level (p-values less than 0.05) for the OLS model, 

were significant between the 80 and 95 percent confidence levels (p-values between 0.20 
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and 0.05).  These variables were: total number of driveways (p-value = 0.091), 

Intersection Ahead warning sign (p-value = 0.153), Curve Ahead warning sign (p-value = 

0.104), and presence of a tangent roadway section (p-value = 0.067). 

 Those variables that were consistently significant at the 95 percent confidence 

level for both the multilevel and OLS regression models had estimates that were similar 

in both sign and magnitude, differing by an absolute value less than 0.6.  The standard 

errors obtained with the OLS regression model were smaller when compared to those 

obtained with the multilevel model.  However, similar as the analyses for point speeds, 

multilevel models have two advantages: they better represent the data hierarchy and they 

provide information of the variance at each level of the data hierarchy.  Therefore, an 

iterative process was used to develop a multilevel model which included the variables 

found to significantly influence changes in operating speeds.  The results of the 

multilevel model are shown in Table 36 below.  

 

Table 36  Two-Level Model for Speed Differential 

Parameter Estimate SE Z p-value 
Speed1 Centered 0.17 0.017 9.85 <0.001 
Speed Limit 55-40 mph 2.91 1.056 2.75 0.006 
Speed Limit 45/40-25 mph 3.52 0.973 3.62 <0.001 
Delta Paved Shoulder 0.98 0.262 3.76 <0.001 
Total Driveways 0.35* 0.227 1.54 0.123 
Intersection WS 2.03* 1.551 1.31 0.191 
School/Children 7.65 1.817 4.21 <0.001 
Curve WS -3.26* 1.718 -1.90 0.058 
Transition Zone Length 0.71 0.245 2.92 0.004 
Curve with WS 2.91 1.263 2.31 0.021 
Tangent -1.90* 1.017 -1.87 0.061 
Constant -4.45 1.730 -2.57 0.010 
Random-effects 
Site 1.4876 0.2818 - - 
Residual 5.9502 0.0790 - - 
* Not significant the 95 percent confidence level  

 

 Three of the variables shown in Table 36 were not significant at the 0.05 alpha-

level: total number of driveways and both presence of Intersection Ahead and Curve 
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Ahead warning signs.  The results indicated that the variable of Intersection Ahead 

warning sign was significant at the 80 percent confidence level.  Similarly, the variables 

of number of driveways and Curve Ahead warning sign were significant at the 85 and 90 

percent confidence levels, respectively.  The influence on speed reductions along the 

transition zone of the variables shown in Table 36 based on their estimates can be 

interpreted as follow: 

- Speed1 Centered: a mean speed reduction of 0.17 mph is expected for each 

unit increase in vehicle speed 500 ft before the beginning of the transition 

zone. 

- Speed Limit 55-40: a mean speed reduction of 2.9 mph is expected when the 

speed limit decreases from 55 to 40 mph, as compared to the baseline of a 

change in posted speed limit from 55 to 35 mph. 

- Speed Limit 45/40-25: a mean speed reduction of 3.5 mph is expected when 

the speed limit decreases from either 45 or 40 mph to 25 mph when compared 

to the baseline of a posted speed limit reduction from 55 to 35 mph. 

- Delta Paved Shoulder: a one-foot paved shoulder width reduction is 

associated with a mean speed reduction of 1mph. 

- Total Driveways: a mean speed reduction of 0.35 mph is expected for each 

unit increase in the total number of driveways in a transition zone. 

- Intersection Ahead Warning Sign: the presence of an Intersection Ahead 

warning sign is associated with a mean speed reduction of 2 mph when 

compared to the baseline of no warning sign or the presence of a warning sign 

that does not indicate a change in highway alignment, a change in access 

density, or indicates presence of children. 

- School/Children Warning Sign: the presence of a warning sign related to 

school or presence of children is associated with a mean speed reduction of 

7.7 mph when compared to the baseline of no warning sign or the presence of 

a warning sign that does not indicate a change in highway alignment, a change 

in access density, or indicates presence of children. 

- Curve Ahead Warning Sign: the presence of a Curve Ahead warning sign is 

associated with a mean speed increase of 3.3 mph when compared to the 



 144

baseline of no warning sign or the presence of a warning sign that does not 

indicate a change in highway alignment, a change in access density, or 

indicates presence of children. 

- Transition Zone Length: a mean speed reduction of 0.7 mph is associated with 

every 100 ft increase in transition zone length. 

- Curve with Warning Sign: the presence of a horizontal curve that warrants a 

warning sign is associated with a mean speed reduction of 2.9 mph when 

compared to the baseline of presence of a curve without a Curve Ahead 

warning sign. 

- Tangent: the presence of a tangent section is associated with a mean speed 

increase of 1.9 mph when compared to the baseline of presence of a curve 

without a Curve Ahead warning sign. 

 The values for the standard between- and within- standard deviations indicate a 

variability of 1.5 mph associated with the site level and almost 6 mph variability for the 

residual term which cannot be explained by the variables included in the model. 

 In addition, the output provided by Stata includes the results of the likelihood-

ratio test that tests the null hypothesis that the estimates obtained by linear regression are 

more efficient.  The test results indicated a value of χ2 = 66.68 (p-value = <0.001) thus 

rejecting the null hypothesis and favoring the two-level model.  

 Similar to the multilevel models developed for the alternative hierarchy that 

consider the sensor cluster in the point speed analyses (see Section 5.1.2), random 

intercept and random coefficient models were developed for the two-level model that 

considered the difference in speed as the response variable.  Once again, the speed at 

sensor 1 was included in these models as a random intercept and as a time-varying 

variable with a random coefficient.  The random intercept and random coefficient models 

are shown below in Equations (64) and (65), respectively:  

 ijkjkkjk XY εςςββ ++++=Δ ∑−
)2(

132      (64)  

 jkjjkjkkjk LLXY εςςβββ +++++=Δ ∑−
)2(

132     (65) 

 where:  jς  = random intercept for speed at sensor 1 of driver j; and  
  Lj = is the time-varying variable (speed at sensor 1) for driver j.  
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 The models developed that correspond to Equations (64) and (65) are shown in 

Table 37 below.  

 

Table 37  Random Intercept and Random Coefficient Models for Two-Level Speed 

Differential Prediction Model 

Model:  Random Intercept Random Coefficient 
Parameter Estimate St. Error Estimate St. Error 
Speed1 Centered - - 0.14 0.029 
Speed Limit 50-40 mph 3.59 1.121 3.39 1.132 
Speed Limit 45/40-25 mph 3.80 0.989 3.95 0.995 
Delta Paved Shoulder 1.19 0.266 1.17 0.269 
School/Children WS 10.20 1.837 9.95 1.844 
Curve WS -2.70* 1.779 -2.61† 1.793 
Transition Zone Length 0.90 0.230 0.89 0.231 
Curve with WS 2.97 1.344 2.78 1.355 
Tangent -2.88 1.033 -2.73 1.043 
Constant -4.52 1.783 -4.39 1.799 
Random Components 
Site 0.1692 0.0314 0.1009 0.0237 
Speed1 Centered 1.5721 0.3068 1.5941 0.3046 
Residual 5.9064 0.0787 5.9052 0.0786 
* p-value = 0.130 
† p-value = 0.145 

 

 The parameter estimates of the variables obtained from both the random intercept 

and random coefficient models were very similar to each other, differing by an absolute 

value of 0.3 or less.  When compared to the previous model that only considered previous 

speed as an explanatory variable, some of these estimates differed by more than a value 

of one.  In addition, the variables for number of driveways and Intersection Ahead 

warning sign were not significant at the 80 percent confidence level for the random 

models when compared to the two-level models that included speed at sensor 1 as an 

explanatory variable.  The interpretations of the parameter estimates obtained with the 

random intercept and random coefficient models are as follow: 

- Speed1 Centered: the random coefficient model indicated a mean speed 

reduction of 0.14 mph per unit increase in the vehicle speed at sensor 1 
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compared to an initial speed reduction of 0.17 mph in the two-level model 

shown in Table 36.   

- Speed Limit 55-40: an average speed reduction of 3.5 mph was associated 

with this variable in both random models when compared to a speed reduction 

of 2.9 mph indicated by the initial two-level model shown in Table 36.  

- Speed Limit 45/40-25: a mean speed reduction of 3.9 mph is associated with 

this variable for the random models when compared to an initial speed 

reduction of 3.5 mph indicated in the two-level model shown in Table 36.   

- Delta Paved Shoulder: the random models indicated an average speed 

reduction of 1.2 mph per every one-foot of paved shoulder width reduction 

when compared to an initial speed reduction of 1 mph in the two-level model 

shown in Table 36.  

- School/Children Warning Sign: the initial two-level model shown in Table 36 

indicated a mean speed reduction of 7.7 mph associated with this sign while 

the random models estimated an average speed reduction of 10.1 mph for the 

same variable. 

- Curve Ahead Warning Sign: the random models indicated an average speed 

increase of 2.7 mph for the presence of a Curve Ahead warning sign while the 

initial two-level model shown in Table 36 estimated a mean speed increase of 

3.3 mph for this variable.  This variable was significant at the 85 percent 

confidence level for both random intercept and random coefficient models. 

- Transition Zone Length: the initial two-level model shown in Table 36 

estimated a mean speed reduction of 0.7 mph for each 100 ft increase in the 

transition zone length while the random models estimated an average speed 

reduction of 0.9 mph. 

- Curve with Warning Sign: the initial two-level model shown in Table 36 

indicated a mean speed reduction of 2.9 mph due to the presence of a 

horizontal curve that warrants a warning sign and this same value was 

estimated by the random models.  
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- Tangent: the random models estimated an average speed increase of 2.8 mph 

associated with a tangent section when compared to a speed increase of 1.9 

mph for the initial two-level models shown in Table 36.  

 The standard errors for the estimates were also almost identical for the random 

models, with the random intercept model having standard errors slightly greater than the 

ones for the random coefficient model (between 0.001 and 0.014 greater).  The values for 

the between- and within- standard deviations were also similar between the random 

intercept and the random coefficient models.  When adding the time-varying variable of 

speed at sensor 1 (speedS1ctr) and including a random coefficient for it (random 

coefficient model), the variability associated with this decreases from 0.17 to 0.1 mph as 

seen by the values of its standard deviation.  

 The likelihood-ratio tests resulted in χ2 values of 188.69 and 129.84 for the 

random intercept and the random coefficient models, respectively, thus rejecting the null 

hypothesis that estimates obtained with linear regression are more efficient.  Therefore a 

multilevel model for speed differential is preferred over simple linear regression.  

Contrary to multilevel models developed before (See section 5.1.2), since a driver cluster 

is not specified, adding the variable for previous speed (speed at sensor 1) does not 

significantly change the parameter estimates of other variables, thus highway 

characteristics have been found to significantly influence operating speeds in an 

consistent manner.  The random coefficient model explains more of the variability as 

seen in the standard deviation values for the random terms.  This model also provides 

more information due to including a random coefficient for the variable for speed at 

sensor 1.  

 

5.2.7  Speed Differential Analyses Summary 

Contrary to speed point analyses, a new response variable was computed by subtracting 

the speed at the end of the transition zone (sensor 2) from the speed at the beginning of 

the transition zone (sensor 2).  The new dataset included 2859 speed differential 

observations from each of the 2859 vehicles collected in the field.  Two statistical 

methods were explored: ordinary least squares (OLS) linear regression and multilevel 

models.  
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 The assumptions of OLS were met, thus indicating that a linear regression model 

was appropriate to model mean speed reduction between the limits of the transition zone.  

Correlation analyses and one-way ANOVA were performed to initially select the 

explanatory variables that were associated with the response variable.  Besides changes in 

speed limit, lane width, paved shoulder, and lateral clearance differences were associated 

with changes in the expected mean speed along transition zones.  The presence of 

warning signs for the presence of intersection and related to school and children as well 

as an increase in driveway density were associated with mean speed reductions, as was 

the presence of curb.  The presence of a Curve Ahead warning sign was associated with 

mean speed increases.  The results of the linear regression analysis indicated that the 

length of a transition zone was positively associated with mean speed reductions.  

Finally, changes in horizontal alignment are associated with mean speed reductions.  

These speed reductions are greater than if the horizontal curve warrants a warning sign. 

 Two-level models were explored in which speed differential observations were 

nested in sites.  Three multilevel models were developed based on the manner in which 

speed at sensor 1 was incorporated into the model: as an explanatory variable only, as a 

random term only (random intercept model), and as a time-varying variable with a 

random coefficient (random coefficient model).  The highway characteristics found to be 

significant were, for the most part consistent and similar to the ones originally obtained 

with the linear regression model.  Table 38 shows the estimates and their standard errors 

obtained with all models developed for predicting speed differentials along transition 

zones.  Only statistically significant variables at the 80-percent confidence level are 

included in Table 38. 
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Table 38  Speed Differential Models Comparison 

Parameter 

Estimates (Standard Error) 

Linear 
Regression 

Two-Level Models 
Explanatory 

Variable 
Random 
Intercept 

Random  
Coefficient 

Speed1 Centered 0.16 (0.017) 0.17 (0.017) - 0.14 (0.029) 
SL 55-40 mph 2.98 (0.394) 2.91 (1.056) 3.59 (1.121) 3.39 (1.132) 
SL 45/40-25 mph 2.94 (0.399) 3.52 (0.973) 3.80 (0.989) 3.95 (0.995) 
Delta Lane Width 2.41 (0.978) - - - 
Delta Paved Shoulder 1.06 (0.121) 0.98 (0.262) 1.19 (0.266) 1.17 (0.269) 
Delta Lateral Clearance 0.09 (0.040) - - - 
Total Driveways 0.38 (0.081) 0.35† (0.227) - - 
Curb Introduction 1.21 (0.547) - - - 
Intersection WS 3.11 (0.615) 2.03† (1.551) - - 
School/Children WS 7.33 (0.644) 7.65 (1.817) 10.20 (1.837) 9.95 (1.844) 
Curve WS -3.60 (0.614) -3.26* (1.718) -2.70† (1.779) -2.61† (1.793) 
Transition Zone Length  0.68 (0.091) 0.71 (0.245) 0.90 (0.230) 0.89 (0.231) 
Curve with WS 4.27 (0.448) 2.91 (1.263) 2.97 (1.344) 2.78 (1.355) 
Tangent -1.31 (0.348) -1.90 (1.017) -2.88 (1.033) -2.73 (1.043) 
Constant -4.95 (0.648) -4.45 (1.730) 3.59 (1.121) 0.14 (0.029) 
* p-value between 0.05 and 0.1 
† p-value between 0.1 and 0.20 

  

Including the speed at sensor 1 as an explanatory variable in the multilevel 

models resulted in three variables not being statistically significant predictors of mean 

operating speed reductions along two-lane rural highway transition zones (change in lane 

width, change in lateral clearance, and presence of curb).  In addition, when including 

speed at sensor 1 only as a fixed explanatory variable, the variables for total number of 

driveways and both indicator variables for presence of a Curve Ahead and Intersection 

Ahead warnings signs were not statistically significant (p-value greater than 0.05 but less 

than 0.20).  When adding speed sensor 1 as either a random intercept or as a time-varying 

variable with random coefficient (random intercept and random coefficient models, 

respectively) the variables for number of driveways and Intersection Ahead warning sign 

were not statistically significant (p-value greater than 0.20).  The variable for Curve 

Ahead warning sign was significant at the 85 percent confidence level for the random 

models (p-value less than 0.15).  All other geometric design, roadside, and traffic control, 

were found to be statistically significant in the multi-level models. 
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 As shown in Table 38, a speed limit reduction from 55 to 40 mph was associated 

with speed reductions ranging from 2.9 to 3.6 mph, while a speed limit reduction from 

either 45 or 40 mph to 25 mph was associated with speed reductions ranging from 2.9 to 

4 mph.  A one-foot reduction in paved shoulder width was associated with speed 

increases along the transition zones of approximately 1 mph, regardless of which speed 

differential model was applied.  The range of the estimates obtained for the presence of a 

School/Children warning sign indicated speed reductions from 7.3 to 10.2 mph.  The 

presence of a horizontal curve that warrants a warning sign was associated with speed 

reductions from 2.8 to 4.3 mph, while the presence of a tangent section was associated 

with speed increases ranging from 1.3 to 2.9 mph.  Finally, all speed differential models 

indicated that longer transition zones were associated with greater speed reductions; per 

every 100 feet of transition zone length, a mean speed reduction ranging from 0.7 to 0.9 

mph is expected.  

 The standard errors of the estimates obtained by linear regression are smaller than 

those obtained from the multilevel models as shown in Table 38.  This indicates that the 

standard errors obtained by linear regression may be underestimated when compared to 

other modeling methods that account for the hierarchical nature of the data.  In addition, 

the OLS model identified a greater number of highway characteristics as statistically 

significant when compared to those in the multilevel models.  However, when developing 

the multilevel models, the output in Stata provides the result from a likelihood-ratio test 

that tests the efficiency of the estimates as compared to linear regression estimates; these 

always favored the use of multilevel models.  In addition, multilevel models are able 

assign the variability in speed differentials associated with each level, information that 

linear regression models fail to provide.  Thus, it is recommended that a random 

coefficient two-level model is more appropriate to predict speed differentials along 

transition zones.  
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CHAPTER 6                                                                                    

CONCLUSIONS AND RECOMMENDATIONS 

 

Speed data were collected at several transition zone sites in Central Pennsylvania, in 

which a Reduced Speed Ahead sign was present to indicate a regulatory speed reduction 

to drivers.  In order to develop speed prediction models, highway characteristics at each 

site were collected and included in the data analyses as potential explanatory variables.  

Several data analysis methods were explored and the coefficients of the explanatory 

variables found to significantly influence operating speeds were described.  This chapter 

contains conclusions from the research as well as a discussion of how to apply the 

recommended speed prediction models in highway engineering practice.  Lastly, 

recommendations for future research are provided.  

 

6.1  Conclusions  

A total of 11,436 speed observations were included in the dataset which corresponded to 

2859 vehicles as they traveled along the four sensors at each of the 20 study sites.  The 

data were organized and analyzed according to two response variables: (1) point speeds 

at pre-defined data collection locations before, within, and after the transition zone; and 

(2) speed differences between the two sensor locations that defined the limits of the 

transition zone.  

 The point speed analyses considered panel data models, multilevel models, and 

generalized estimating equations (GEE), an extension of the generalized linear model 

(GLM) for continuous and discrete outcomes.  Each method can be used to model 

longitudinal data and are able to account for the correlation between observations due to 

driver-specific information, which cannot be addressed with OLS regression.  Several 

variables were consistently found to significantly influence operating speeds along 

transition zones, regardless of the data analysis method.  A summary of the findings for 

each model is listed below: 

- Panel Data.  Both fixed-effects and random-effects models were explored 

and, although the results from the fixed-effects model indicated low values of 

correlation between the explanatory variables and the between-subject error 
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term, the Hausman test rejected the null hypothesis that this correlation was 

zero, thus favoring the fixed-effects model.  An examination of aggregate 

versus disaggregate data confirmed that using aggregate data results in an 

ecologic fallacy: the estimates obtained for a group do not necessarily apply to 

an individual. 

- Multilevel Model.  Panel data models are only able to accommodate two levels 

of the data, therefore they fail to account for site variability within the data 

structure hierarchy represented by the data collected in the present study.  A 

three-level model was specified in which speeds were nested in drivers which 

were nested in sites.  The parameter estimates were obtained using the 

maximum likelihood estimator and the variance component term for the 

combination of site and driver was obtained from the results.  Multilevel 

models also permitted the addition of a previous speed variable as a random 

component.  An alternative hierarchy was explored in which the driver cluster 

was replaced by the sensor cluster, thus specifying that speeds were nested in 

sensor locations which were nested in sites.  Since the alternative data 

hierarchy did not include driver-specific information, the variable for previous 

speed could be added in the model as an explanatory variable.  In addition, 

this variable could also be considered as both a random term (random 

intercept model) and as a time-varying variable with a random coefficient 

(random coefficient model).  

- GEE Models.  One of the advantages of performing GEE analysis was to 

explore which working correlation matrix best represented the data in the 

present research.  Based on the marginal coefficient of determination (R2m) 

and the quasi-likelihood under independence model criterion (QIC), the 

independent working correlation matrix, which specified that speed 

observations for the same driver are independent from each other, provided 

the best fit for the data.  However, alternative correlation structures, such as 

the exchangeable, unstructured, and autoregressive, are more intuitive based 

on the data collection protocol.  When considering only these three correlation 
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structures, the exchangeable matrix provided the best fit to the data based on 

the R2m and QIC values. 

 The comparison between the random- and fixed-effects panel data models led to 

the notion that the speed limit and lane width variables were picking up site-specific 

effects, as indicated by the differences between the standard errors and parameter 

estimates for these variables.  For some roads, the speed limits are set by local 

jurisdiction while for other roads, the speed limits, as well as the highway geometrics, are 

set according to design guidelines.  The latter can lead to endogeneity issues and future 

studies should explore this matter further.   

 Although panel data is a two-level model, the findings of this study indicated that 

a three-level model in which speeds were nested in drivers and drivers were nested in 

sites was more appropriate to model the data.  An advantage of the alternative site-

sensor-speed data is that it allows for the previous speed variable to be included in the 

model, either as an explanatory variable, a random intercept, or a time-varying variable 

with random coefficient.  However, adding previous speed resulted in some variables 

being excluded from the model because they were not statistically significant; these 

variables were: speed limit reduction from 45 to 25 mph, presence of Curve Ahead 

warning sign, and presence of a tangent section (only when considering previous speed as 

an explanatory variable).  This was expected since it is theorized that speeds are 

influenced by highway characteristics, therefore, including previous speed as an 

explanatory variable in the model results in multicollinearity.  Thus the original hierarchy 

– site-driver-speed – is most appropriate for representing the data structure as compared 

to the hierarchy that considers a sensor cluster.  

 When examining the results from the GEE analyses, these also produced 

coefficient estimates similar to the panel data and multilevel models.  However, concerns 

arose due to the selection of the Independent working correlation matrix as the best 

representative of the correlation within driver clusters (for the same driver).  The 

Independent correlation matrix specifies that, for a specific driver, the correlation 

between the speed observations is zero, which is counterintuitive.  This led to the 

selection of the Exchangeable working correlation matrix across all GEE model although 

the selection criteria did not originally favor this model.  When comparing all 
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longitudinal data models, it was concluded that a three-level model with data hierarchy 

site-driver-speed best represented the data in this research.  

According to the three-level model selected, in which speeds were nested in 

drivers and drivers were nested in sites, the following variables were associated with 

lower speeds along transition zones: posted speed limit, number of driveways, presence 

of curb, warning signs related to presence of intersection and presence of children and 

school, and changes in horizontal alignment.  On the contrary, the highway 

characteristics that were associated with higher speeds were wider lane widths, wider 

lateral clearance distances, and presence of a Curve Ahead warning sign.  The 

development of a three-level model provides an advantage over panel data and GEE 

models: the variance associated at each level of the data hierarchy can be obtained.  The 

results of the three-level model indicated that approximately 3.4 mph of standard 

deviation is associated with the combination of site and drivers while a standard deviation 

of 4.5 mph is associated with the driver cluster (second level).  The standard deviation 

associated with the residual term was 5 mph; this is a measure of the variance that cannot 

be explained by the explanatory variables included in the model.  

 In the second part of the speed analysis, the response variable was change in 

operating speeds along the transition zone (between sensors 2 and 3) as opposed to point 

speeds collected at all four sensor locations.  The speed differences were modeled using 

both linear regression and multilevel models.  By considering speed differential as the 

response variable, only one observation per driver is available.  Therefore for multilevel 

models, only a two-level model in which speeds were nested in sites was applied.  The 

number of variables significant in the OLS model was greater than those found in the 

multilevel models.  However, likelihood-ratio tests always favored the estimates obtained 

with multilevel models when compared to those obtained by linear regression.  The 

variables found to be associated with speed reductions in the multilevel models were 

posted speed limit reductions, reduction in paved shoulder width, presence of warning 

signs related to school and children, longer transition zone lengths, and presence of a 

horizontal curve that may be perceived as “sharp” since it is combined with a Curve 

Ahead warning sign. 
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 The speed at the upstream location (sensor 1, upstream of the transition zone) was 

found to be statistically significant regardless of the methodology.  The results indicated 

that the higher the speeds before the transition zone, the greater the speed reductions 

(drivers that were traveling at low speeds do not reduce their speeds as much as those 

traveling at higher speeds prior to the transition zone).  The only two variables associated 

with speed increases within a transition zone were presence of a Curve Ahead warning 

sign (statistically significant at the 80 percent confidence level for multilevel models) and 

presence of a tangent highway section.  Tangent sections have consistently been found to 

be associated with higher speeds than curved roadway sections, and as a result, speed 

differentials in transition zones that do not have a horizontal alignment change are lower 

than speed differentials in transition zones with horizontal alignment changes (McLean, 

1979; Andjus and Maletin, 1998; and Misaghi and Hassan, 2005).  For the presence of a 

Curve Ahead warning sign, the finding in the present research may be inconsistent with 

engineering intuition.  However, the Curve Ahead warning sign is placed on the approach 

tangent in advance of a horizontal curve.  Based on the findings of this research, tangent 

sections are associated with speed increases (a correlation analysis showed that the 

presence of this warning sign and the tangent section indicator were not strongly 

correlated).   

 The point speed and speed differential models estimated in this research both 

provided consistent results related to the association between mean speed and various 

explanatory variables present along two-lane rural highway transition zones.  Tables 30 

and 38 in Chapter 5 contain a comparison of the parameter estimates obtained using the 

various statistical models estimated in this dissertation.  A brief summary of these 

findings are provided below.   

 In the point speed models, the variables that were associated with speed 

reductions along transition zones, regardless of the statistical analysis methodology used, 

were: 

- Reductions in the posted speed limit 

- Increase in number of driveways 

- Presence of a curb 

- Presence of warning signs related to intersection and school/children 
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- Presence of a horizontal curve, with or without a warning sign 

 The variables that were consistently found to be associated with speed increases 

along two-lane rural highway transition zones in the point speed models were: 

- Increase in lane width 

- Presence of a Curve Ahead warning sign 

 In the speed differential models, the highway characteristics that were associated 

with a speed reduction along two-lane rural highway transition zones were: 

- Posted speed limit reductions from 55 to 40 mph and from either 45 or 40 

mph to 25 mph when compared to the baseline of speed limit reduction from 

55 to 35 mph 

- Decrease in paved shoulder width 

- Presence of warning signs related to intersection and school/children 

- Presence of horizontal curve that warrants a warning sign 

  There are two explanatory variables that were not statistically significant in the 

panel data and GEE model specifications but that should be carefully examined in future 

studies (paved shoulder width and lateral clearance).  In the fixed-effects panel data 

model, when speed limit was not considered in the point speed analysis, paved shoulder 

width was statistically significant (positively correlated with speed) which is consistent 

with the results for the speed differential analysis.  In the GEE model specification, 

lateral clearance was not statistically significant when using the independent working 

correlation matrix.  However, lateral clearance was statistically significant when using all 

other GEE working correlation matrix specifications.  As noted previously, the marginal 

coefficient of determination (R2
m) and QIC criterion indicated that the independent 

working correlation matrix produced the best fit to the data collected in the present 

research; however, the alternative working correlation matrices are intuitively more 

representative of the data.  

 Although the three-level model in which speeds are nested in drivers and drivers 

are nested in sites provides estimates with standard errors higher than other models, these 

standard errors are modestly higher.  In addition, the three-level model is a better 

representation of the data hierarchy, thus it is selected as the most appropriate model for 

point speed predictions along transition zones.  Similarly, the two-level model for 
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predicting speed changes between the limits of the transition zone is also selected as the 

model that best represents the data.    

  

6.2  Application and Relevance to Transportation Engineering 

The mission of the American Association of State Highway and Transportation Officials 

(AASHTO) is to “advocate transportation-related policies”; its Green Book contains 

geometric design criteria for highways and streets in the U.S.  The Green Book contains 

geometric design criteria for all functional class highways, including high-speed two-lane 

rural highways as well as low-speed urban streets.  However, design criteria are not 

available for the transition from a high-speed zone to a low-speed zone and vice versa.  

 Extensive literature exists that focuses on the development of speed prediction 

models as a function of the driving environment for both high- and low-speed roads.  

Limited literature is available for highways in which changes in operating speeds are 

required as indicated by changes in the regulatory speed.  Future studies may benefit 

from the data analysis methodology presented in this research as well as from the results 

described herein.  Although the goal of this research was not to develop design criteria 

for transition zones, the results from this study may be considered as an initial step in the 

process of guidelines development.  By knowing which geometric design, roadside, 

traffic control, and land use variables influence vehicle operating speeds in transition 

zones, future research can be focused on validating the results, expanding the number of 

possible explanatory variables included in statistical model specifications, and then 

developing guidelines for creating “self-enforcing” transition zones.   

 The majority of past operating speed studies used OLS regression to determine 

the statistical association between speed and various explanatory variables.  Recent 

research studies have considered the use of different models to explain the variability in 

operating speeds.  Although linear regression was considered for speed differential 

prediction models, a two-level model was also applied for predicting speed changes along 

transition zones.  For point speeds, several longitudinal data analysis methods were 

considered, including panel data, multilevel models, and GEE models.  The 

appropriateness of a three-level model was established for the point speed analysis, thus 
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demonstrating the importance of selecting a model that best represents the hierarchy of 

the data structure. 

 The data analyses performed in this research included several highway 

characteristics that have not been considered in past studies as potential factors that 

influence operating speeds.  The results indicated that presence of both Intersection 

Ahead and School/Children warning signs are associated with speed reductions; these are 

traffic control devices that have not been explored in previous studies.  In addition, 

although past studies include the value of horizontal curve radii, these studies have not 

considered the effects of a horizontal curve that warrants a warning sign.  The exploration 

of warning signs and the results confirming their effect on speed parameters may inspire 

future researchers to collect information related to the benefits of traffic control devices 

in reducing vehicle operating speeds.  

 As discussed earlier, multilevel models, for both point speed and speed 

differential analyses, were selected as the modeling methodology to best describe the data 

in this research.  In addition, regardless of the methodology, several variables were 

consistently found to influence operating speeds along transition zones.  However, there 

are advantages and disadvantages related to the use of either point speed or speed 

differential models developed in this study.  For the point speed prediction model 

developed, highway site characteristics should be collected at four locations along the 

study site: at the beginning and end of the transition zone (identified by the location of 

the posted speed limit signs) and 500 ft before and after the transition zone.  On the 

contrary, the speed differential model developed requires the collection of highway 

characteristics only at two locations: at both the beginning and at the end of the transition 

zone.  

 Although one advantage of the speed differential model is that it requires less 

highway characteristic data, and consequently less data to be input in the model, this 

model also requires that speed data should be collected 500 ft before the beginning of the 

transition zone (the operating speed at this upstream location is included as an 

explanatory variable in the speed differential models).  The collection of speed data is 

associated with several model application disadvantages: the selection of a non-intrusive 

data collection device so that drivers do not perceive the data collection equipment as 
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enforcement, the possibility of stopping traffic in order to install the data collection 

device, and the need to screen the data in order to identify free-flow passenger cars.  To 

overcome these disadvantages, the following suggestions are recommended: 

- Input the mean speed at sensor 1 obtained in this study for the upstream speed 

explanatory variable in the speed differential models.  The value of the mean 

speed at this location was 53.2 mph (standard deviation = 8.32 mph).  In 

addition, the mean speed value, plus or minus one standard deviation, can also 

be input in the model to explore the changes in speed differentials for the 

majority of the driving population. 

- Input the posted speed limit as the speed at sensor 1.  The posted speed limit 

in the high-speed zone at 14 study sites in the research was 55 mph and the 

posted speed limit at five sites was 45 mph; the remaining site had a posted 

speed limit of 40 mph 500 ft before the beginning of the transition zone.    

- Use of a simulation program to obtain the expected mean speed before the 

beginning of the transition zone and input this value as the speed at sensor 1.  

The FHWA Interactive Highway Safety Design Model’s (IHSDM) Traffic 

Analysis Module contains a two-lane rural highway simulation model that can 

be used for this purpose.  In the program, the highway alignment, vertical 

profile, and cross-section can be entered and vehicle speed at various points 

along the alignment can be output.    

 While the use of the point speed prediction model requires the collection of 

various geometric design, roadside, traffic control, and land use data, such models do not 

require the collection of vehicle operating speed data.  Additionally, the point speed 

models are able to predict mean operating speeds beyond the limits of the transition zone, 

which could be advantageous in determining how drivers adopt their operating speeds 

before entering a two-lane highway transition zone or downstream of the transition zone 

segment.  

 

6.3  Recommendations 

The final dataset for this research consisted of 11,436 speed observations from 2859 

vehicles, across 20 sites.  In some cases, the variability in the highway site characteristic 



 160

data was limited.  Future research should include a larger sample of two-lane rural 

highway transition zones with more variability in the explanatory variables considered in 

this research, particularly the horizontal alignment, vertical profile, and cross-section 

elements. 

 The speed prediction models developed in the present study indicate that the 

presence of a horizontal curve was associated with operating speed reductions in 

transition zones along two-lane rural highways.  Although an indicator variable was used 

to define the presence of horizontal curve, the radius of curve was not available.  This 

was because as-built roadway construction plans were not available for most of the 

selected study sites.  Future operating speed models for two-lane rural highway transition 

zones should include the as-built radius as an explanatory variable rather than an 

indicator variable for the presence of a horizontal curve. 

 Similarly, drivers may perceive the presence of a Curve Ahead warning sign as an 

indication of an upcoming “sharp” curve that requires significant operating speed 

reductions when compared to horizontal curves that are not accompanied by an advance 

warning sign.  Although the advance curve warning sign was found to influence 

operating speeds (positive correlation), the presence of this warning sign does not 

necessarily indicate that the curve requires a significant operating speed change.  This 

underscores the need to include the as-built horizontal curve radius in future operating 

speed prediction models along two-lane rural highway transition zones. 

 Lastly, the statistical models estimated in the present study were for operating 

speeds and not speed variance.  The existing literature indicates that speed variance can 

be used as a surrogate measure of safety; therefore, future operating speed prediction 

models for two-lane rural highway transition zones should consider both mean speed and 

speed variance.  Design consistency is usually measured in terms of speed changes 

between adjacent roadway segments (e.g., tangent-to-curve): low values for speed 

differentials are associated with a good and consistent design (Glennon and Harwood, 

1978; McLean, 1979; McFadden and Elefteriadou, 2000; and Fitzpatrick and Carlson, 

2002).  As such, the principle of design consistency would indicate that large speed 

differentials along a highway alignment are not desirable.  In the case of transition zones, 

however, a speed differential is desired.  Several studies have suggested that large speed 
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differentials are associated with an increase in accident frequency (Garber and Gadiraju, 

1989; and Lamm, et al., 2002).  As such, the goal of transition zone design should be to 

create an alignment, profile, cross-section, and roadside that produces a gradual change in 

the speed profile of drivers when traveling from a high- to low-speed section of highway.  

The following is a list of future research recommendations that should be considered to 

address the issue of speed differentials in transition zones on two-lane rural highways: 

1. Consider using a simulation model as a tool to efficiently develop a variety of 

“test cases” or design scenarios to further explore the association between 

highway design features and vehicle operating speeds along transition zones 

of two-lane rural highways.  This would permit researchers to isolate the 

effects of various geometric elements on vehicle operating speeds and also to 

evaluate the effects of a combination of highway elements on operating 

speeds (e.g., overlapping horizontal/vertical curves, consecutive horizontal 

curves with increased radii, narrowing lane/shoulder widths, etc.).  The goals 

of such an approach would be to create design scenarios that produce a 

gradual decrease in vehicle operating speeds over a pre-determined transition 

zone length.  The IHSDM is an example of a tool that could be used for this 

purpose.  As noted previously, it contains a traffic simulation program in the 

Traffic Analysis Module (TWOPAS) as well as a design consistency 

algorithm.   

2. Perform crash-based safety studies along transition zone highway sections.  

Data on crash frequency and severity of crashes should be collected along 

transition zones and compared to other two-lane rural highways in the absence 

of transition zones.  Although it is perceived that operating speeds in excess of 

the posted speed limit is a safety concern, research is required to investigate 

this claim.  The influence of highway and roadside design features on crash 

parameters can then be explored in a similar manner to the operating speeds in 

the present research.  Crash prediction models could then be utilized to 

identify the highway characteristics that are associated with crash frequency 

and crash severity and compared to the same highway features used in the 

operating speed prediction models.  Together, these models could be used to 
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design transition zones that not only achieve the desired operating speeds, but 

also produce desirable safety outcomes.    

3. Determine a threshold speed differential value over some specified transition 

zone length that can be used to determine if these zones are substantively 

“safe” (no negative safety implications) or “unsafe” (associated with an 

increase in vehicle accidents).  It is then recommended that, when exploring 

the highway characteristics that are associated with speed reductions along 

transition zones, to be certain that these are associated with gradual (and safe) 

speed reductions that will not compromise highway safety.  

4. Future studies should also focus on two-stage speed limit reduction transition 

zones, in which speed limit changes take place along two sections of the 

highway as opposed to a one-stage speed limit reduction.  An example of a 

two-stage speed reduction could be when a speed limit of 55 mph is reduced 

over two adjacent sections to 25 mph; the first section of the highway 

indicates a speed limit reduction from 55 to 40 mph while the second section 

indicates a speed limit reduction from 40 to 25 mph.   

 

 



 163

REFERENCES 

 

Abdel-Aty, M., and X. Wang.  Crash Estimation at Signalized Intersections Along 

Corridors: Analyzing Spatial Effect and Identifying Significant Factors.  In 

Transportation Research Record: Journal of the Transportation Research Board, 

Transportation Research Board, No. 1953, Transportation Research Board of the 

National Academies, Washington, D.C., 2006, pp. 98-111.  

Andjus, V., and M. Maletin.  Speeds of Cars on Horizontal Curves.  In Transportation 

Research Record: Journal of the Transportation Research Board, Transportation 

Research Board, No. 1612, Transportation Research Board of the National 

Academies, Washington, D.C., 1998, pp. 42-47.  

A Policy on Geometric Design of Highway and Streets.  AASHTO, Washington, D.C., 

2004. 

Ballinger, G. A. Using Generalized Estimating Equations for Longitudinal Data Analysis.  

In Organization Research Methods, Sage Publications, 2004.  

Brüderl, J.  Panel Data Analysis.  Manheim; Baden-Württemberg: University of 

Manheim, 2005.  

Choueiri, E. M., R. Lamm, J. H. Kloeckner, and T. Mailaender.  Safety Aspects of 

Individual Design Elements and Their Interactions on Two-Lane Highways: 

International Perspective.  In Transportation Research Record: Journal of the 

Transportation Research Board, Transportation Research Board, No. 1445, 

Transportation Research Board of the National Academies, Washington, D.C., 

1994, pp. 34-46.  

Cui, J. QIC Program and Model Selection in GEE Analyses.  The Stata Journal, Vol. 7, 

No. 2, 2007, pp. 209-220. 

Donnell, E. T. and I. Cruzado.  Effectiveness of Speed Minders in Reducing Driving 

Speeds on Rural Highways in Pennsylvania.  Final Report prepared for the 

Pennsylvania Department of Transportation, 2007. 

Evans, L. Traffic Safety and the Driver.  Van Nostrand Reinhold, a division of 

International Thomson Publishing, Inc., New York, 1991. 



 164

Fatality Analysis Reporting System (FARS).  2005 National Highway Traffic Safety 

Administration.  www.-fars.nhtsa.gov/.  Accessed Nov. 23, 2008.   

FHWA, The U. S. Department of Transportation Rural Safety Initiative.  February 2008.  

www.dot.gov/affairs/ruralsafety/ruralsafetyinitiativeplan.htm.  Accessed Nov. 22, 

2008. 

Figueroa, A. M., and A. P. Tarko.  Speed Factors on Two-Lane Rural Highways in Free-

Flow Conditions.  Presented at 84th Annual Meeting of the Transportation Research 

Board, Washington, D,C, 2005. 

Fitzpatrick, K., and P. Carlson.  Selection of Design Speed Values.  In Transportation 

Research Record: Journal of the Transportation Research Board, Transportation 

Research Board, No. 1796, Transportation Research Board of the National 

Academies, Washington, D.C., 2002, pp. 3-11. 

Fitzpatrick, K., S. Miaou, M. Brewer, P. Carlson, and M. D. Wooldridge.  Exploration of 

the Relationships between Operating Speed and Roadway Features on Tangent 

Sections.  Journal of Transportation Engineering, Vol. 131, No. 4, 2005, pp. 261-

269. 

Garber, N., and R. Gadiraju.  Factors Affecting Speed Variance and its Influence on 

Accidents.  In Transportation Research Record: Journal of the Transportation 

Research Board, Transportation Research Board, No. 1213, Transportation 

Research Board of the National Academies, Washington, D.C., 1989, pp. 64-71.  

Garrett, T. A. Aggregated versus Disaggregated Data in Regression Analysis: 

Implications for Inference.  Economics Letters, Vol. 81, No. 1, 2003, pp. 61-65. 

Geometric Design Strategic Research, Transportation Research Circular E-C110, 

Transportation Research Board of the National Academies, Washington D.C., 2007.  

Ghisletta, P. and D. Spini.  An Introduction to Generalized Estimating Equations and an 

Application to Assess Selectivity Effects in a Longitudinal Study on Very Old 

Individuals.  Journal of Educational and Behavioral Statistics, Vol. 29, No. 4, 

2004, pp. 421-437. 

Glennon, J. C. and D. W. Harwood.  Highway Design Consistency and Systematic 

Design Related to Highway Safety.  In Transportation Research Record: Journal of 

the Transportation Research Board, Transportation Research Board, No. 681, 



 165

Transportation Research Board of the National Academies, Washington, D.C., 

1978, pp. 77-88.   

Greene, W.H. Econometric Analysis, Prentice Hall, New Jersey, 2008.  

Krammes, R.A., and C. Hayden.  Making Two-Lane Roads Safer.  Public Roads, Vol. 66, 

No. 4, 2003, pp. 16-21.  

Lamm, R., B. Psarianos, and S. Cafiso.  Safety Evaluation Process for Two-Lane Rural 

Roads: A 10-Year Review.  In Transportation Research Record: Journal of the 

Transportation Research Board, Transportation Research Board, No. 1796, 

Transportation Research Board of the National Academies, Washington, D.C., 

2002, pp. 51-59.  

Lord, D., and B. N. Persaud.  Accident Prediction Models With and Without Trend: 

Application of the Generalized Estimating Equations Procedure.  In Transportation 

Research Record: Journal of the Transportation Research Board, Transportation 

Research Board, No. 1717, Transportation Research Board of the National 

Academies, Washington, D.C., 2000, pp. 102-108.   

Manual of Transportation Engineering Studies (ed. H. D. Robertson).  Institute of 

Transportation Engineers.  Prentice Hall, New Jersey, 1994. 

Manual on Uniform Traffic Control Devices, FHWA, Washington, DC, 2000 and 2003.   

McFadden, J. and L. Elefteriadou.  Evaluating Horizontal Alignment Design Consistency 

of Two-Lane Rural Highways.  In Transportation Research Record: Journal of the 

Transportation Research Board, Transportation Research Board, No. 1737, 

Transportation Research Board of the National Academies, Washington, D.C., 

2000, pp. 9-17.  

McLean, J.  An Alternative to the Design Speed Concept for Low Speed Alignment 

Design.  In Transportation Research Record: Journal of the Transportation 

Research Board, Transportation Research Board, No. 702, Transportation Research 

Board of the National Academies, Washington, D.C., 1979, pp. 55–63.  

McShane, W. R., R. P. Roess, and E. S. Prassas.  Traffic Engineering.  Prentice Hall, Inc, 

New Jersey, 1998.  



 166

Messer, C. J., Mounce, J. M., and Brackett R.Q. Highway Geometric Design Consistency 

Related to Driver Expectancy. Report FHWA-RD-79-35, Federal Highway 

Administration, Washington, D.C. (1979). 

Misaghi, P., and Y. Hassan.  Modeling Operating Speed and Speed Differential on Two-

Lane Rural Roads.  Journal of Transportation Engineering, Vol. 131, No. 6, 2005, 

pp. 408-418.  

Motulsky, D. Multicollinearity in Multiple Regression.  

www.graphpad.com/articles/Multicollinearity.htm.  Accessed Jan. 17, 2009. 

NHTSA, Traffic Safety Facts 2005: A Compilation of Motor Vehicle Crash Data from the 

Fatality Analysis Reporting System and the General Estimates System, Report US 

DOT HS 810 631, Washington DC, 2006.  

Official Traffic Control Devices, Publication 212, Commonwealth of Pennsylvania, 

Department of Transportation, Pennsylvania, 2006. 

Ottesen, J. L., and R. A. Krammes, Speed-Profile Model for a Design-Consistency 

Evaluation Procedure in the United States.  In Transportation Research Record: 

Journal of the Transportation Research Board, Transportation Research Board, 

No. 1701, Transportation Research Board of the National Academies, Washington, 

D.C., 2000, pp. 76-85.  

Pan, W. Akaike’s Information Criterion in Generalized Estimating Equations.  

Biometrics, Vol. 57, No. 1,  2001, pp. 120-125. 

Park, Y-J., and F. Saccomanno.  Evaluating speed consistency between successive 

elements of a two-lane rural highway.  Transportation Research Part A, Vol. 40, 

2005, pp. 375-385. 

Poe, C. M., and J. M. Mason.  Analyzing Influence of Geometric Design on Operating 

Speeds Along Low-Speed Urban Streets.  In Transportation Research Record: 

Journal of the Transportation Research Board, Transportation Research Board, 

No. 1737, Transportation Research Board of the National Academies, Washington, 

D.C., 2000, pp. 18-25. 

Polus, A., K. Fitzpatrick, and D. Fambro.  Predicting Operating Speeds on Tangent 

Sections of Two-Lane Rural Highways.  In Transportation Research Record: 

Journal of the Transportation Research Board, Transportation Research Board, 



 167

No. 1737, Transportation Research Board of the National Academies, Washington, 

D.C., 2000, pp. 50-57. 

Rabe-Hesketh, S., and A. Skrondal.  Multilevel and Longitudinal Modeling Using Stata.  

Stata Press, Texas, 2005. 

Richl, L., and T. Sayed.  Effect of Speed Prediction Models and Perceived Radius on 

Design Consistency.  Canadian Journal of Civil Engineering, Vol. 32, No. 2, 2005, 

pp. 388-399. 

Rowan, N. J., and C. J. and Keese.  A Study of Factors Influencing Traffic Speeds.  

Accident HRB Bulletin 341, Highway Research Board, Washington, D.C., 1962, pp. 

30-76. 

Schurr, K., P. T. McCoy, G. Pesti, and R. Huff.  Relationship of Design, Operating, and 

Posted Speeds on Horizontal Curves of Rural Two-Lane Highways in Nebraska.  In 

Transportation Research Record: Journal of the Transportation Research Board, 

Transportation Research Board, No. 1796, Transportation Research Board of the 

National Academies, Washington, D.C., 2002, pp. 60-71.  

Schurr, K. S., B.W. Spargo, R. R. Huff, and G. Pesti.  Predicted 95th Percentile Speeds on 

Curved Alignments Approaching a Stop.  Presented at 84th Annual Meeting of the 

Transportation Research Board, Washington, D.C., 2005.  

Special Report 254, Managing Speed: Review of Current Practice for Setting and 

Enforcing Speed Limits, Transportation Research Board, National Academy Press, 

Washington, D.C., 1998. 

Stamatiadis, N., J. G. Pigman, and D. Hartman.  Safety Consequences of Flexibility in 

Highway Design for Rural Communities.  Draft of Final Report prepared for 

National Cooperative Highway Research Program, University of Kentucky, 2004.   

Stamatiadis, N., J. G. Pigman, and D. Hartman.  Safety Consequences from Design 

Flexibility in Rural to Urban Transitions.  Presented at 85th Annual Meeting of the 

Transportation Research Board, Washington D.C., 2006.  

Tarris, J., C. Poe, J. M. Mason, and K. Goulias.  Predicting Operating Speeds on Low-

Speed Urban Streets: Regression and Panel Analysis Approaches.  In 

Transportation Research Record: Journal of the Transportation Research Board, 



 168

Transportation Research Board, No. 1523, Transportation Research Board of the 

National Academies, Washington, D.C., 1996, pp. 46-54.  

Wang, J., K. K. Dixon, H. Li, and M. Hunter.  Operating-Speed Model for Low-Speed 

Urban Tangent Streets Based on In-Vehicle Global Positioning System Data.  In 

Transportation Research Record: Journal of the Transportation Research Board, 

Transportation Research Board, No. 1961, Transportation Research Board of the 

National Academies, Washington, D.C., 2006, pp. 24-33. 

Wang, J. Operating Speed Models for Low Speed Urban Environments Based on In-

Vehicle GPS Data: A Dissertation Presented to the Academic Faculty, Georgia 

Institute of Technology, 2006.  

Washington, S. P., M. G. Karlaftis, and F. L. Mannering.  Statistical and Econometric 

Methods for Transportation Data Analysis.  Chapman & Hall/CRC Press, Florida, 

2003. 

Wooldridge, M. D. Design Consistency and Driver Error.  In Transportation Research 

Record: Journal of the Transportation Research Board, Transportation Research 

Board, No. 1445, Transportation Research Board of the National Academies, 

Washington, D.C., 1994, pp. 148-155. 

Yagar, S. and M. Van Aerde. Geometric and Environmental Effects on Speeds of Two-

Lane Highways.  Transportation Research Part A, Vol. 17A, 1983, pp. 315-325. 

Zeger, S. L. and K. Y. Liang.  Longitudinal Data Analysis for Discrete and Continuous 

Outcomes.  Biometrics, Vol. 42, No.1, 1986, pp. 121-130. 

Zorn, C. W. Generalized Estimating Equation Models for Correlated Data:  A Review 

with Applications.  American Journal of Political Science, Vol. 45, No. 2, 2001, pp. 

470-490.   

 



Curriculum Vitae 
Ivette Cruzado 

 
Education 
Doctor of Philosophy in Civil Engineering, Pennsylvania State University, 2009. 
Master of Science in Civil Engineering, Michigan State University, 2001. 
Bachelor of Science in Civil Engineering, University of Puerto Rico at Mayagüez, 1999. 
 
Work Experience 
Researcher, Pennsylvania State University and the Pennsylvania Department of Transportation: Study of 

Bead Gun Angle when Applying Glass Beads on Waterborne Paint, 2008-2009. 
Project Manager, Pennsylvania State University and the United State Sign Council: The Effects of On-

premise Sign Lighting Level on Nighttime Sign Legibility and Traffic Safety, 2008. 
Researcher, Pennsylvania State University and the Pennsylvania Department of Transportation: 

Effectiveness of Speed Minders on Rural Highways in Pennsylvania, 2007-2008. 
Researcher, Pennsylvania State University and the Pennsylvania Department of Transportation: 

Evaluation of Wide Edge Lines on Horizontal Curves on Two-Lane Rural Highways, 2006. 
Instructor, University of Puerto Rico at Mayagüez, Highway Design, Statistics Applied to Civil 

Engineering, and Civil Engineering Seminar courses, 2001-2004 
Instructor, Polytechnic University of Puerto Rico, Transportation Engineering and Highway Design 

courses, 2001.  
Research and Teaching Assistant, Michigan State University, 1999-2001.  
 
Professional and Student Associations 
Engineering Graduate Student Council (EGSC), 2005-2009. 
Civil and Environmental Engineering Graduate Student Association (CEEGSA), 2006-2008. 
Colegio de Ingenieros y Agrimensores de Puerto Rico (CIAPR), Active member since August, 2001 
Institute of Transportation Engineers (ITE), Active member since August, 1998 
 
Publications  
The Effects of Internally Illuminated On-Premise Sign Brightness on Nighttime Sign Visibility and Traffic 

Safety; M. T. Pietrucha, P. M. Garvey, and I. Cruzado, prepared for the United States Sign 
Council Foundation, 2009.  

Effectiveness of Speed Minders in Reducing Driving Speeds on Rural Highways in Pennsylvania; E.T. 
Donnell and I. Cruzado, Final Report, prepared for the Pennsylvania Department of 
Transportation, June, 2008.  

Operational Effects of Wide Edge Lines Applied to Horizontal Curves on Two-Lane Rural Highways; E. 
T. Donnell, M. D. Gemar, and I. Cruzado, prepared for the Pennsylvania Department of 
Transportation. November, 2006. 

Sustainable Transportation Systems; I. Cruzado, Urban Transport XI: Urban Transport and the 
Environment in the 21st Century, WIT Press 2005.  

Safe Ways to School; V. Sisiopiku and I. Cruzado, The Sustainable City II: Urban Regeneration and 
Sustainability, WIT Press 2002. 

Parking on the State Trunkline System; Final Report, prepared for the Michigan Department of 
Transportation, August 2000. 

    
Fellowships  
International Road Federation (IRF) Executive Leadership Fellowship Grant, 2008 
Sloan Fellowship Recipient, Pennsylvania State University, 2006-2009. 
Carmen E. Turner Graduate Scholarship, WTS Philadelphia, 2005 
Sloan Fellowship Recipient, Michigan State University, 1999-2001.   
 
Licenses   
Engineer in Training (EIT), license #18008, Puerto Rico, 1999. 


