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ABSTRACT

Many students who start college intending to major in science or
engineering do not graduate, or decide to switch to a non-science
major. We used the recently developed statistical method of ran-
dom forests to obtain a new perspective of variables that are asso-
ciated with persistence to a science or engineering degree. We
describe classification trees and random forests and contrast the
results from these methods with results from the more commonly
used method of logistic regression. Among the variables available
in Arizona State University data, high school and freshman year
GPAs have highest importance for predicting persistence; other
variables such as number of science and engineering courses taken
freshman year are important for subgroups of the student popula-
tion. The method used in this study could be employed in other
settings to identify faculty practices, teaching methods, and other
factors that are associated with high persistence to a degree.
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I. INTRODUCTION

Many studies have shown a lack of persistence among U.S. stu-

dents who complete a science and engineering degree (Besterfield-

Sacre, Atman, and Shuman, 1997; Brainard and Carlin, 1997;

Burtner, 2005; Grandy, 1998; May and Chubin, 2003; LeBold and

Ward, 1998; Leslie, McClure, and Oaxaca, 1998; Levin and

Wyckoff, 1991; Rayman and Brett, 1995; Seymour and Hewitt,

1997; White, 2005; Zhang, Anderson, Ohland, and Thorndyke,

2004). These studies have identified a number of variables such as

high school GPA that are associated with persistence to a degree.

Most previous work has identified factors related to persistence

using standard statistical methods such as logistic regression. These

methods work well for identifying simple relationships in the data.

However, when predicting whether a student will graduate with an

engineering degree, the relationships are often more complex. For

example, female Hispanic students who participate in a mentorship

program are more likely to persist to a degree, while some other

groups of students in the program are less likely to persist. Such a

relationship is easily missed when techniques such as logistic re-

gression are used.

In this paper we use classification trees (Breiman, Friedman,

Olshen, and Stone, 1984) to produce a new view of variables asso-

ciated with persistence to earn a science, technology, engineering,

or mathematics (STEM) degree. We also use the recently devel-

oped statistical method of random forest (Breiman, 2001), related

to tree-based classification methods, to identify factors that may

be related to persistence but that might not be identified by other

statistical procedures such as logistic regression. The primary goal

of this paper is to show how classification trees and random

forests can be used to identify factors and interactions not found

by other methods.

Zhang et al. (2004) suggested that high school GPA and SAT

math scores predicted engineering student graduation. However,

these two cognitive variables explained only a small fraction of the

overall variability in student graduation persistence rates suggesting

that more predictors are needed to fully understand the nature of

persistence in science and engineering. A recent study by Burtner

(2005) supports the use of non-cognitive variables, such as confi-

dence in college-level math/science ability, in models to predict stu-

dent persistence. Other studies (Besterfield-Sacre, Atman, and

Shuman, 1997; Brainard and Carlin, 1997) have supported Burt-

ner’s assertions by demonstrating associations between graduation

rates and attitudinal and belief factors such as self-confidence and

perceived ability in engineering as well as other factors such as work

status, high school ranking, and SAT scores. Levin and Wyckoff

(1991) also reported that high school GPA, scores on college place-

ment tests in Chemistry, along with grades in Calculus, Chemistry,

and Physics courses were all strong predictors of persistence

through the second year of engineering programs. LeBold and

Ward (LeBold and Ward, 1988) found that first and second se-

mester grades along with cumulative GPA were strong predictors

of persistence for freshmen engineering majors.

The majority of studies investigating persistence in science and

engineering have focused on engineering students. Enrollment and

tracking of engineering majors may be two key factors related to the



restricted scope of these studies. Students enter university engineer-

ing programs early in their tenure (i.e., as freshmen) and their

progress is directly tracked by the engineering school or college.

Tracking students becomes more complicated for students major-

ing in STEM since students in these majors can change their area of

study to another STEM field among and within colleges offering

STEM degrees. While tracking students may differ between

STEM and engineering, both groups of students have similar low

retention rates. Cognitive and non-cognitive variables previously

shown in models predicting graduation persistence in general

STEM fields has been largely unexplored in the research literature

up to this point.

In this article, we use logistic regression, classification trees, and

random forests to study persistence among students who have al-

ready entered the “Freshman STEM Pipeline” (FSP) by either de-

claring a STEM major or by having an “undecided” major while en-

rolling in at least one STEM course as a freshman. Students who

have entered the FSP from Arizona State University’s (ASU)

1999–2000 freshman class served as the population of interest for

this study. While interest is often given to factors related to enroll-

ment in STEM programs, this paper (like Besterfield-Sacre,

Atman, and Shuman, 1997; Levin and Wyckoff, 1991; Zhang,

Anderson, Ohland, and Thorndyke, 2004), focuses on those factors

that may be associated with the persistence of students who have al-

ready entered the pipeline at the university level. Variables in the

data set were retrieved from ASU’s institutional data and included

demographic variables (race, sex, age), cognitive variables (such as

High School GPA, SAT scores, etc.), and non-cognitive variables

(including work-study status, number of courses, and financial aid

support). No attitudinal or belief variables were available for study.

In the next section, we provide additional details of the variables

used in the FSP data set along with the criteria used to identify

freshmen in the STEM pipeline. In section III we describe logistic

regression, classification trees, and the random forest method in

more detail and highlight the advantages and disadvantages of each

for studying persistence. In section IV we derive both a logistic re-

gression model and complementary classification tree model for

predicting persistence in engineering using a subset of the FSP

sample comprised of only engineering students. These models were

formed using only a subset of the variables to compare our results to

those from Zhang et al. (2004). In the second part of section IV, we

investigate the more general STEM persistence classification using

all variables in our study. Here we construct both a logistic regres-

sion model, using stepwise variable selection, and a classification

tree model, using the random forest method as the variable selec-

tion process. We compare the results of selecting the best subset of

predictors using a stepwise logistic regression model to those ob-

tained from random forest. We conclude the paper with a discus-

sion of how researchers and educators may make use of the addi-

tional information available from both classification trees and

random forests.

II. DATA AND DEFINITION OF PERSISTENCE

The data set used for studying STEM persistence consisted of

students who enrolled at ASU as a freshman in the 1999–2000 aca-

demic year and either (1) declared a STEM major or (2) did not de-

clare a major but enrolled in at least one of the introductory courses

described below (n � 1,884). A student is considered to have per-

sisted in STEM if he or she graduates with a degree in a STEM

major in May 2005 or earlier. The student has not persisted if he or

she has not graduated by that time or has graduated with a non-

STEM major. The outcome is recorded after six years as is estab-

lished practice (Zhang, Anderson, Ohland, and Thorndyke, 2004).

The data set used for studying engineering students consisted of

students who enrolled at ASU as freshmen in the 1999–2000 acad-

emic year and declared an engineering major as a freshman (n �
348). A student is considered to have persisted in engineering if he

or she graduates with an engineering degree in May 2005 or earlier.

The student has not persisted if he or she has not graduated by that

time or has graduated with a major in a field other than engineering.

A list of occupational categories from the National Science Foun-

dation Scientists and Engineers Statistical Data System (SESTAT)

(National Science Foundation, 2007) was used to determine whether

a college major should be classified as STEM. All majors related to

science and engineering occupations from SESTAT were included,

as well as the technology/technical fields from non-science and

engineering occupations. A full list of the specific STEM majors,

over 150, is available upon request. College courses that freshmen are

typically required to take in order to graduate with a STEM degree

were labeled as STEM courses and are listed in Table 1.

We were somewhat limited in the data available for analysis by

the variables found in the institutional data warehouse at ASU.

Thus, for this study, we did not have information available on

teaching methods employed by instructors, students’ perception of

the quality of instruction at ASU, interaction of students with other

students or faculty, students’ beliefs or attitudes about science, and

other factors that may be associated with persistence (Astin, 1985;

Haag, Garcia, and Hubele, 2007; Seymour and Hewitt, 1997). In

total, 18 variables were collected from the institutional data ware-

house at ASU for students who were freshmen in 1999–2000 and

are described in Table 2. Only the categorical variables GENDER,

ETHNIC and CITIZEN and the continuous variables HSGPA,

SATQ and SATV were used in the analysis of engineering persis-

tence. All of the variables in Table 2 were used in the analysis of

STEM persistence (descriptive statistics for each variable is avail-

able upon request).

III. STATISTICAL METHODS FOR

STUDYING PERSISTENCE

A. Multiple Logistic Regression
Multiple logistic regression is one technique commonly used to

predict a dichotomous outcome with mutually exclusive categories

such as in this study. For student i, let Yi � 1 if the student persists

to graduation and Yi � 0 if the student does not persist. The re-

sponse of interest is the probability that student i persists or pi �
P(Yi � 1). The predicted values from a multiple logistic regression

model are

logit(p̂i) = �̂0 � �̂1xi1 � … � �̂m xim , (1)

where logit(p̂i), ln[p̂i /(1�p̂i)], xi1,…,xim are explanatory variables for

student i, �̂0 is the estimated intercept, and the estimates �̂1,…, �̂m

(slopes) are maximum likelihood estimates (Neter, Kutner,

Nachtscheim, and Wasserman, 1996). For variable j in the model,
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exp(�̂j ) is the estimated odds ratio; if xi1 � 1 for males and 0 for fe-

males, then

odds of persistence of males

odds of persistance of females

for persons with the same values for all other variables. Estimated

odds ratios along with 95 percent confidence intervals were calculated

using SAS (version 9.1). Odds ratios can be better described as adjusted
odds ratios since they control for all other variables in the model.

Most studies investigating factors related to persistence in engi-

neering have used logistic regression models with stepwise variable

selection (Besterfield-Sacre, Atman, and Shuman, 1997; Levin and

Wyckoff, 1991; White, 2005; Zhang, Anderson, Ohland, and

Thorndyke, 2004), or a classification model such as discriminant

analysis (Burtner, 2005). While these standard statistical techniques

are useful, they have restrictive assumptions about the data structure

including linearity or additivity of factor effects. Furthermore, find-

ing conditional relationships among the factors, for example, taking

a higher number of credit hours may be associated with higher

graduation persistence for some groups of students but not for oth-

ers, may require numerous interaction terms in the logistic regres-

sion model. These terms usually require large amounts of data for

proper estimation. In addition, the odds ratios that are obtained

from logistic regression are useful for understanding the impact of

“unit” changes in the factors on the likelihood of persistence. How-

ever, using the odds ratios alone will not identify important “ranges”

of continuous factors or common clusters for categorical factors for

persistence classification. Finally, important variables can be

masked by other variables in a model, which is typical in all regres-

sion methods. For example, if HSGPA and CUMGPA were both

included as predictors in the model and are highly correlated, each

might mask the effect of the other and it is possible that neither

variable would be statistically significant in the full model.

In our study, we collected values for 18 variables yet many stu-

dents have missing values for some of the covariates. In a logistic re-

gression model with HSGPA as a covariate, if a student’s record

does not contain the value of HSGPA, we cannot use the logistic

regression equation to predict the probability that the student will

persist. That student’s record also cannot be used to build the logis-

tic regression model unless a value is imputed for the missing co-

variate, but imputation requires additional and often unverifiable

modeling assumptions. When many students are missing values for

one or more of the covariates, serious depletion of the data set can

occur especially as the number of variables increases.

B.  Classification Trees
Classification trees take a different approach, compared to logis-

tic regression, to predict categorical responses. A classification tree

is constructed by partitioning the data into separate regions in

which the predicted classification is constant within each region.

An unlimited number of variables can be used to build the tree

model since the tree building process inherently selects the best co-

variates by considering all possible binary splits on the variable’s
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range. The modeling process then selects the best set of branches

that minimizes the misclassification rate. Where a binary split oc-

curs is called an internal node, whereas the end of a branch is a ter-

minal node which contains a predicted category. The predicted re-

sponse in that node is the category with the majority of cases.

Classification trees can be constructed using commercial software

such as SAS Enterprise Miner or CART by Salford Systems; in

this paper, we construct trees using the rpart add-on package in the

R system for statistical computing (version 2.4.0) (Maindonald and

Braun, 2003; The R Project, 2007).

Before we discuss the details of how trees are formed, we first

demonstrate how predictions are made. Given a tree model, a pre-

diction results after answering a series of yes/no questions about an

individual. If the answer is yes, the left path is taken, otherwise the

right path is chosen. This continues down the tree model until a

terminal node is reached and, hence, a prediction is made. For ex-

ample, consider a data set recording CLASS status (1st, 2nd, 3rd,

or Crew), SEX (M � Male or F � Female), and AGE (Child or

Adult) for each person on board of the fateful voyage of the Titanic.

The data are based on information originally collected by the

British Board of Trade (Great Britain Parliament, 1990). Suppose

we wanted to investigate which variables were associated with the

survival status of passengers. In this example, the response of inter-

est is whether a passenger on Titanic survived, “Y”, or did not sur-

vive, “N”. Figure 1 shows the classification tree that is formed from

the data. Now, consider a male child passenger who happened to be

traveling in 1st class. To predict whether he survived or not, we an-

swer each question down the tree. Firstly, since the passenger is

male, the left path is initially chosen; secondly, since he is not an

adult, the right path is chosen; finally, his 1st class status lands him

in terminal node 5 predicting that he survived. If he were traveling

in 3rd class, then the prediction would have been that he did not

survive (terminal node 4). The ease of predicting in this example

demonstrates the advantage of interpretability that tree models

possess.

To build a tree model from a given data set, two criteria are

needed: one to select the best split at a node while building the tree

model and another for “pruning” to find the right-sized tree. These

criteria can be the same but in this study the Gini index was used to

build the trees while the misclassification rate was used to prune

the trees. For a binary response, such as predicting whether a stu-

dent persists or does not persist, the Gini index at node m is
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defined by

Gini index(m) � 2p̂m (1 � p̂m) (2)

where p̂m is the proportion of students in node m who persist. The

Gini index is 0 if all of the students in the node are in one category,

either all persist or all do not persist. Such a node is called homoge-

neous. It attains its highest possible value of one-half if half of the

students in the node are in each category. When building a tree, the

process selects the variable and corresponding split point which

gives the smallest value of the Gini index for each node. We select-

ed the Gini index as the splitting criterion to build the tree because

it is more sensitive to changes in the node probabilities than

misclassification rate (Hastie, Tibshirani, and Friedman, 2001).

Using this criterion, trees are built to maximum depth (e.g., very

large trees where the terminal nodes are as homogeneous as possi-

ble). This process results in a tree with many nodes (split points)

that is too data-specific. This is analogous to a linear model fit with

all main effects and every possible interaction term. To fix this

problem, the trees are “pruned” by using the misclassification rate

and a tuning parameter � � 0 that governs the tradeoff between

tree size and its best fit to the data. The optimal tuning parameter is

found by using a cross validation method (Breiman, Friedman, Ol-

shen, and Stone, 1984; Ripley, 1996). If the data set is sufficiently

large, part of the data may be used to build the tree with the remain-

der used for validating the predictions.

We noted in section III.A that logistic regression requires every

student to have complete data. On the other hand, classification

trees use the whole, possibly incomplete, data set and handle missing

values by constructing surrogates (alternate variables) for each vari-

able in the model. During the tree building process, the best (prima-

ry) variable and split point are selected at each node by using all avail-

able data. Then a list of surrogates and split points is found for each

node. The first surrogate and corresponding split point is the one

that best mimics the split of the data by the primary split. The sec-

ond surrogate and corresponding split point is the second best at

mimicking the action of the primary split on the data, and so on. In

the end, each internal node has a set of t surrogates with sequentially

declining mimicking ability with respect to the primary split. During

prediction of a new observation, if a split depends on a variable

whose value is missing, the best surrogate split is used to determine

the path down the tree. If that value is missing, then the second best

surrogate split is used, and so on. In essence, the surrogates exploit

the correlation between the predictors to reduce the loss of informa-

tion from missing values. The number of surrogates, t, can be set and

should be at least the number of missing values that can be expected

in future observations. Also, even though the surrogates are not the

optimal variables, they should not be ignored. Sometimes they can

detect an important variable which is being masked by the data

structure or suggest an alternate branching of the tree model. Some

evidence of this phenomenon is when a surrogate has a high concor-

dance measure, or percent of agreement between the primary split

and surrogate split. By analyzing the surrogates along with the over-

all tree model, a broader picture of the data structure can be achieved.

Along with handling missing values, classification trees have

other advantages over traditional linear models. As shown in the

Titanic example above, prediction using a tree model involves an-

swering a series of yes/no questions in an intuitive and simple man-

ner. Yet this efficient form makes powerful use of conditional infor-

mation in handling non-homogeneous relationships. In other

words, after the data have been split into two parts based on one

predictor, the optimal split of another predictor, possibly the same,

is searched individually within each part. Hence conditional rela-

tionships can be modeled using a tree. In the Titanic example, note

that female passengers traveling in 3rd class are predicted to have

not survived, whereas females in other classes are predicted to have

survived. Modeling such relationships in logistic regression would

require interaction terms for SEX and CLASS.

Another advantage of the tree model is the ability to estimate the

probability of correct classification. This is done by dividing the num-

ber of correct classified observations at a terminal node m by the total

number of cases at that node. This gives an idea of the accuracy of the

prediction at node m. Note that the correct classification percent will

be greater than or equal to 50 percent for each terminal node since it

corresponds to the majority class for that node. In this paper, the tree

diagrams show the number of observations and percent of correct
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Figure 1. Example of a classification tree using the Titanic data set. Terminal nodes 1 through 5 are labeled by the appropriate encircled
number and a “Y” and “N” in the node refers to whethere a passenger on Titanic survived or not, respectively. The larger number in the node de-
scription refers to the number of passengers who were classified at that point in the tree and the percent value refers to the percentage of those pas-
sengers who were correctly classified by the tree model.



classifications in parentheses under each terminal node. Finally, tree

models are also highly robust with respect to outliers or misclassified

points since one essentially counts how many cases of each class go

left or right. This is similar to the robustness property of median val-

ues (Breiman, Friedman, Olshen, and Stone, 1984).

C.  Random Forest
As stated before, the tree building process inherently selects the

best variables from the full set of covariates using the Gini index cri-

terion. Still, ranking the variables with respect to predictive ability

cannot easily be done. The importance of a variable at one branch is

usually not the same at a different branch down the tree, since the

data are recursively split into subsets at each node. In this paper, we

used importance scores from random forest to help select the best

subset of variables to build the STEM tree model.

A random forest (Breiman, 2001) is a model that consists of

many classification trees. Typically, as many as 500 unpruned trees

are built as described above. Each tree is constructed using a differ-

ent with-replacement bootstrap sample from the data. To reduce

the correlation between trees, only a few of the variables are ran-

domly sampled as candidates at each split, usually the square root of

the number of variables in the data set. From this random construc-

tion of multiple trees, the name is derived. The prediction of the

random forest model is the category with a majority of votes across

all trees in the forest. Because of the large number of trees, the pre-

dictions tend to be more accurate than those from a single classifica-

tion tree, yet the random forest model can be more difficult to inter-

pret than a single tree. Therefore, a random forest model is

sometimes thought of as a “black box” without much to say about

the relationship between the response and the explanatory variables.

In this paper, the random forest method is not directly applied to

model STEM persistence. Instead, a byproduct of the random for-

est model, variable importance scores, is used to help find the opti-

mal subset of variables to build a single classification tree. In this

sense, the random forest method provides an assessment of variable

importance that does not depend on a specified model structure.

In logistic regression, when model selection methods are used to

reduce the number of variables, interactions among the explanatory

variables must be stated explicitly in the model. The random forest

method, however, allows complex subsetting and interactions that

are difficult to express in a traditional regression model. Also, this

technique can list the variables in order of predictive ability or im-

portance. By analyzing the importance scores, a large set of variables

can be reduced to a working subset without making any model as-

sumptions. We used this tree-based technique in a similar fashion

as the stepwise selection procedure is used in logistic regression.

To calculate the importance score of variable m, first the sum of

Gini indices over all nodes of a tree is calculated. Then the values of

variable m are randomly scrambled among the observations and the

sum of Gini indices is again calculated. The mean decrease in Gini

index among all trees is the importance score of variable m. As stated

before, the Gini index is apt to measure the impurity of nodes and

therefore was chosen as the criterion to measure variable importance.

Because multiple trees are used and each tree includes only some of

the explanatory variables, the importance scores detect variables that

are predictive of the response only for some of the subgroups of the

data and variables that are highly correlated with other predictors. A

researcher using logistic regression, by contrast, must include com-

plex interactions in the model to detect such variables.

Figure 2 shows the importance scores for each variable in the

Titanic data set. Note that the variable SEX is the most important

variable with respect to predicting survival status, while CLASS

and AGE are second and third, respectively. The importance rank-

ing for this example roughly matches the order of splits (yes/no

questions) of the Titanic classification tree in Figure 1.

IV. ANALYSIS AND RESULTS

We study two responses using the methods outlined in section

III: persistence of engineering students and persistence of students

in STEM majors. We first look at engineering persistence to see

how the tree models complement logistic regression on variables

that were found important in (Zhang, Anderson, Ohland, and

Thorndyke, 2004). We then compare the logistic regression analy-

sis to tree-based analysis with respect to STEM persistence.

A.  Engineering Persistence
In this section we illustrate how classification trees and the ran-

dom forest method can be used as companion methods to the re-

sults obtained from the more traditional approach of stepwise logis-

tic regression. In particular, we demonstrate how classification trees

can yield information on important ranges of continuous variables

or groups of categories for categorical variables. Moreover, we also

show how classification trees can be useful for visually deciphering

conditional relationships among the variables relating to persistence

classification. This would otherwise be accomplished through a se-

ries of interaction terms in the logistic regression models.

While modeling engineering persistence, list-wise deletion was

used. In other words, whenever a value was missing from any of the

predictors, the student was excluded from the study. This type of

deletion is used because the optimization technique in logistic re-

gression cannot handle missing values. Although classification trees

can handle missing values through the use of surrogates, as was ex-

plained in section III.B, excluding these students from the study al-

lows us to accurately compare results using both methods.

To begin, we apply the approach of Zhang et al. (2004) to 1999

freshmen engineering students from Arizona State University

using the first six variables described in Table 2 in a stepwise logis-

tic regression (with a significance level for entry and retention both

equal to 0.05) to identify variables that effectively predict gradua-

tion persistence in engineering. The exact levels of the categorical

variables used in the models derived by Zhang et al. (2004) match

the descriptions given in Table 2. Two of the categorical variables

were modified for our model to avoid difficulties with estimation

as well as to protect the confidentiality of the students in sparse cat-

egories. In our model ETHNIC has four levels: Asian (A), Black
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(B), Hispanic (H) and White (W) which also includes Native

American. We also reduced the CITIZEN variable from three to

two categories: U.S. Citizen and Non-U.S. Citizen. All other vari-

ables and levels of variables concur with the definitions in Zhang et

al. (2004). Altogether, complete information for the six variables of

interest was available for 348 out of 684 freshmen engineering stu-

dents from ASU in the 1999–2000 school year.

Using the stepwise selection process, only four of the six vari-

ables were chosen in the logistic regression model. The likelihood

ratio test statistic for the test of the global null hypothesis of no de-

pendence between graduation persistence in engineering and the

variables HSGPA, ETHNIC, CITIZEN and SATQ was calcu-

lated to be 61.425 (p-value � 0.0001). The maximum rescaled R-

squared for the model reported in Table 3 was 0.240. The statistics

and odds ratio confidence intervals for the variables presented in our

model along with the model fit indices are fairly consistent with

those presented by Zhang et al. (2004) accounting for the total sam-

ple size. The final model from which the odds ratio estimates in

Table 3 were derived is given by

logit(p̂) � �10.295 � 1.571(HSGPA) � 1.491(ASIAN)

�0.056(BLACK) � 0.120(HISPANIC)

�1.717(CITIZEN) � 0.005(SATQ). (3)

The logistic regression model suggests that Asian engineering

freshmen have about 4.4 times higher odds of persisting compared

to White freshmen engineering students. Both Hispanic and Black

engineering students have lower odds of persistence compared to

White students, but these differences are not statistically significant.

Thus, impact of ethnicity on the likelihood of persistence seems to

be driven in large part by the differences in persistence odds be-

tween Asian and White students. Engineering students having a

high-school GPA of 3.5 have almost five times higher odds of per-

sisting compared to engineering students who have a high-school

GPA of 2.5, for example. The odds of persistence in engineering

increases by a factor of 1.051 � (1.005)10 for every ten point in-

crease in the quantitative SAT score. Finally, students who are non-

U.S. citizens have about 5.6 times higher odds of persistence when

compared to engineering students who are U.S. citizens.

Additional information about the conditional relationships be-

tween these variables and engineering persistence classification may

be explored by using a classification tree. We display one such clas-

sification tree in Figure 3 that was derived using the four variables

that were identified by the stepwise logistic regression model de-

scribed in Table 3 and in model (3).

Recall that the tree building process inherently selects the best pre-

dictors through the recursive splitting of the data. Figure 3 reveals

that the data were initially split on HSGPA which, in part, agrees

with the results of the logistic model in the sense that it is the

strongest predictor of engineering persistence. From the tree model,

we see that there are no additional predictors useful for classifying stu-

dents as persistent in engineering if those students have high school

GPA below 3.595. In fact, according to the tree model, the vast ma-

jority of engineering students with HSGPA � 3.595 (i.e., 158 out of

181 or 87.3 percent) do not persist in engineering (see terminal node

1 in Figure 3). This result suggests that even though students may do

well in high school, the transition into and retention throughout an

engineering program is difficult. The Gini index for terminal node 1

is 0.222 which suggests that the node is close to homogeneous.

If we only focus on students whose HSGPA � 3.595, then we

see that the next split is based on the student’s ethnicity which was

the second best predictor of engineering persistence in the logistic

regression model. Specifically, given a HSGPA that is at least

3.595, Asian students persist with a relatively high estimated proba-

bility (80 percent, given in terminal node 2 in Figure 3) while the

persistence of Blacks, Hispanics, and Whites is based on additional

information about their HSGPA as well as their SATQ scores (see

terminal nodes 3–7). Other than Asian students, the only other

group of students with a large estimated probability of persistence

(i.e., 71.4 percent) are non-Asian engineering students with a
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perfect HSGPA of 4.0 and an SATQ score between 600 and 725 as

illustrated by terminal node 7.

An engineering student’s quantitative SAT score was found to

be a significant predictor of the probability of persistence in both

the logistic regression model and the classification tree, specifically,

terminal nodes 4, 6, and 7. However, the influence of SATQ is not

limited to these nodes in the classification tree. In fact, SATQ was

the best surrogate for HSGPA, with the highest concordance per-

cent between any two splits based on HSGPA being 69.4 percent

and occurring at HSGPA � 3.925. While both citizenship status

and ethnicity were important predictors in the logistic regression

model, only ethnicity appeared in the classification tree. However,

the effect of citizenship was not absent from the classification tree

as CITIZEN � U.S. Citizen was the best surrogate for the

ETHNIC � B, H, W split having a concordance measure of 89.2

percent. In other words, if the ethnicity of a freshman is unknown,

the citizenship status of the student can be used instead to decide

whether to go right or left at this node with a high level of agreement.

The random forest analysis using all six variables gives additional

information through the ranking of their importance scores dis-

played in Figure 4. The logistic regression model (3) did not include

SATV because of its strong correlation with SATQ (r � 0.5220, 

p-value � 0.0001). The masking of the SATV by SATQ,

ETHNIC, and CITIZEN might eliminate it from further investi-

gation in a logistic regression analysis. However, the importance

score for SATV is much higher than the variables ETHNIC and
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Figure 3. Classification tree formed using the variables identified as significant predictors of Engineering persistence based on the
stepwise logistic regression model. Terminal nodes 1 through 7 are labeled by the appropriate encircled number and a “Y” and “N” in the
node refers to persisting and non-persisting engeneering students, respectively. The larger number in the node description refers to the
number of students who were classified at that point in the tree and the percent value refers to the percentage of those students who were
correctly classified by the tree model.



CITIZEN that were selected by the stepwise logistic procedure. If

the ranking of importance scores were used to select a subset of vari-

ables for the construction of a classification tree, only HSGPA,

SATV, SATQ, and possibly ETHNIC would have been chosen.

In general, the results of the classification tree are consistent with

those of logistic regression. However, the information obtained

from the classification tree model and importance scores may fur-

ther illuminate the results of the logistic regression. For example,

while HSGPA is a strong predictor of persistence in the logistic re-

gression model (as demonstrated by the large odds ratio estimate),

little information is obtained about what portion of the range of

HSGPA is most crucial for understanding persistence. It is not ob-

vious from the logistic regression model that HSGPA’s below

3.595, for example, should imply a risk factor for non-persistence.

Moreover, without interaction terms in the logistic regression

model, it is not clear that this range for non-persistence risk would

increase to 3.595 through 3.925 for non-Asian students, for exam-

ple. The classification trees provide a method for pinpointing im-

portant points in the ranges or groups of categories of predictors

outright, conditional on levels of previous predictors.

B.  STEM Persistence
We now turn to investigating general STEM persistence by first

formulating a logistic regression model and then by constructing a

classification tree. Whereas before we constructed a classification

tree based on the variables of the logistic model, in this section we

construct a tree model independent of the logistic regression analy-

sis. We compare the results of (1) the subset of variables each

method selects from those in Table 2, and (2) the information

gained from each type of model.

Since ASU allows both SAT and ACT scores to be used for ad-

missions, about half (47.1 percent) of students in the FSP data set

did not take the SAT test, but many of these students did take the

ACT test. Instead of deleting the cases with missing SAT scores,

we used concordance tables to impute SAT verbal and SAT quanti-

tative scores from ACT English and ACT math scores, respectively.

These concordance tables are based on a study by Dorrans (1999),

using 103,525 students from 14 universities and two states. After

imputing the missing SAT scores, some students still had missing

values for other variables. In the end, 1497 of the 1884 students had

complete records and therefore only these were used to form the

STEM logistic regression model. On the other hand, the STEM

classification tree was constructed using all information from the

FSP data set including the imputed SAT scores.

Using the same stepwise selection procedure as in the previous

section, a logistic model was formulated with likelihood ratio test

statistic of 326.180 (p-value � 0.0001) and maximum rescaled R-

squared value of 0.303. The final model from which the odds ratio

estimates in Table 4 were derived is given by

Logit(p̂) � �5.830 � 1.382(CUMGPA) � 0.421(NUMSTEM)

�1.214(ASIAN) � 0.760(BLACK)

�0.441(HISPANIC)

�0.183(NATIVE AMERICAN)

�0.038(TOTHOURS) � 0.004(SATQ)

�0.003(SATV). (4)

According to this model, the variable most highly associated

with STEM persistence was CUMGPA, the cumulative GPA

after freshman year, with an odds ratio of approximately 4, indicating
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that STEM students with high CUMGPA are more likely to per-

sist. Among the other factors, SATQ and NUMSTEM are posi-

tively associated with persistence, while TOTHOURS and SATV

have a negative association, after adjusting for other variables in the

model. Note that if we fit a logistic regression model with only one

variable, SATV, the odds ratio for SATV in that model is 1.003

(with 95 percent CI [1.002, 1.004]. The predicted model in (4) has

SATV odds ratio less than one because of multicollinearity in the

data, which can change the sign of coefficients (Neter, Kutner,

Nachtscheim, and Wasserman, 1996, Chapter 7), and reflects more

complex relationships in the data. A referee suggested that of two

students with the same SATQ, the one with the higher SATV

score may be more likely to drop out of a STEM field because that

student may have more options in other non-STEM disciplines.

Finally, the significance of ethnicity with respect to STEM persis-

tence is driven primarily by the difference in persistence odds be-

tween Asian and White students, as in the analysis of engineering

persistence. Specifically, Asian students are more likely to persist

than White students while Blacks, Hispanics, and Native American

students have no significant differences compared to White

students.

We then constructed a classification tree modeling STEM per-

sistence as was done in section IV.A except we reduced the number

of variables by analyzing the importance scores from random forest

and not stepwise selection. This step could have been skipped and a

tree model could have been grown using all 18 variables but this

process allowed us to estimate the ranking of the variables with

respect to association with STEM persistence. Also, analyzing

importance scores allowed us to detect variables which may be

masked by other predictors in the final tree model. We note that we

used all 1,884 observations in the FSP data set from now on since

classification trees and random forests can handle missing covariates.

Figure 5 shows the importance scores for all 18 variables with

respect to STEM persistence using the random forest method. The

highest importance score belongs to CUMGPA, which is consis-

tent with the results of stepwise selection for logistic regression. The

other top performers are HSGPA, SATQ, SATV, TOTHOURS

and NUMSTEM listed in decreasing order of importance. While

there is no standard cutoff score or statistical test that we can use to

gauge the importance of a variable compared to noise, we can see

that these six variables should clearly be kept in the model, whereas

the importance of ETHNIC appears to be ambiguous. Since the

importance scores of AGE, FRESHCALC, LOAN, etc. decrease

substantially, we discarded any variable that had an importance

score of 20 or less and kept the top seven variables, which includes

ETHNIC, to construct the STEM classification tree.

With the exception of HSGPA, the variables selected by com-

paring importance scores are the same as those selected using step-

wise selection in Table 4. In the logistic regression analysis,

HSGPA is being masked by other predictors in the model, such as

CUMGPA which is highly correlated with HSGPA (r � 0.4869,

p-value � 0.0001). Therefore HSGPA was not included in model

(4) since it is not statistically significant. By contrast, the random

forest method detects the importance of HSGPA and ranks it sec-

ond with respect to predicting STEM persistence. Although one

often would discard HSGPA in a regression model to avoid multi-

collinearity problems in the data (Neter, Kutner, Nachtscheim, and

Wasserman, 1996), the construction of a tree model is not hindered

by the correlation between these two predictors. Instead the correla-

tion becomes a benefit for prediction with trees, since HSGPA is

likely to become the best surrogate for any splits based on

CUMGPA. Also, any conditional information from HSGPA,

not explained by CUMGPA, may arise further down a tree after

splitting on other variables.

Using the most important seven variables in Figure 5, a classifi-

cation tree was constructed and is displayed in Figure 6. We see

that the only variables used to split the data are CUMGPA,

NUMSTEM, ETHNIC, and SATV. As explained in section

III.B, other variables that were deemed important, HSGPA,

SATQ, and TOTHOURS, are being masked by the primary vari-

ables and are used as surrogates. The fact that CUMGPA is the

first variable at the top of the tree corresponds to it also having the

highest importance score in the random forest analysis. As might

be expected, the best surrogate for this split is HSGPA � 3.785
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with a concordance percent of 71.3 percent. This very high

HSGPA cut off point suggests that many students with cumula-

tive GPAs less than 3.175 also had high school GPAs less than

3.785, and that the HSGPA variable is overshadowed as a

predictor by CUMGPA. We can also see from terminal node 1 that

students with CUMGPA � 3.175 do not persist in STEM with

very high estimated probability (1102 out of 1245 or 88.5 percent).

Terminal node 1 contains 1,245 of the 1,884 students in the data.

Therefore the variables and their split points on the initial right

branch of Figure 6 (terminal nodes 2–8) are based on just 34 percent

of the data (n � 639). As we move down the tree, the subsets of

data become even smaller yet more homogeneous. However, this

recursive subsetting and homogenization of the data is what makes

tree models so effective in detecting interactions.

We now discuss students with a CUMGPA of at least 3.175

who constitute terminal nodes 2–8. We can see that NUMSTEM

� 1.5 is the predictor used to split this subset of students, although

outcomes for Asian students are not dependent on this split. This is

true because regardless of the number of STEM courses taken, the

next split down the tree predicts Asian students will persist in

STEM with estimated probability of 75 percent and 84.6 percent,

in terminal nodes 3 and 4, respectively. Focusing on terminal node

3, among students who take at most one STEM course in freshman

year (NUMSTEM � 1.5), only Asian students are likely to gradu-

ate with a STEM major.

Note from Figure 6 that Asian students with CUMGPA �
3.175 are predicted to persist in a STEM major regardless of their

value of NUMSTEM. For students in other ethnic groups, their

classification depends on other variables including NUMSTEM,

CUMGPA, and SATV. To detect this difference between Asian

students and others using logistic regression, we would have needed

to include four NUMSTEM_ETHNIC interaction terms in the

model, one for each level of ETHNIC excluding White. When this

was done, the interaction effect was not significant at the � � 0.05

level suggesting the interaction may be too complex to be detected in

logistic regression.

Focusing now on terminal nodes 5–8, we see that STEM per-

sistence of non-Asians who enrolled in two or more STEM

courses, is contingent on additional information of their

CUMGPA, SATV scores, and finally the number of STEM

courses. Of these, students with CUMGPA � 3.705 persist in

STEM with estimated probability 60.8 percent (terminal node

5). The last group of students that the tree model suggests will

likely persist in a STEM major are non-Asian students whose

CUMGPA is between 3.175 and 3.705, SATV � 595 and

NUMSTEM � 3 (70.3 percent, terminal node 8).

Conditional relationships among the variables are clear in the tree

model in Figure 6. For example, only the number of STEM courses

taken as a freshman, ethnicity and SAT verbal scores are relevant for

classifying a student as persistent in STEM given that the student’s

cumulative GPA is at least 3.175; students with cumulative GPA’s

less than 3.175 are unlikely to persist to STEM graduation regard-

less of the values of other variables. Also, recall that the coefficient of

SATV in the logistic regression model (4) was negative. The tree

model gives a partial explanation for this anomaly; SATV is used as a

predictor only for students who take at least 2 STEM courses, are

non-Asian, and have CUMGPA between 3.175 and 3.705. For

these students, high SATV leads to a prediction of non-persistence.
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Such students may decide they may have better opportunities or

grades in non-STEM fields, and it would be interesting to interview

such students to identify their reasons for non-persistence.

Although some variables with high importance scores are not

represented in the tree model, they do play a surrogate role. For ex-

ample, TOTHOURS is not used as a primary predictor yet it is the

best surrogate for both NUMSTEM splits and also the CUMGPA

� 3.705 split. Also, SATQ is not shown in the tree model but

SATQ � 645 was the best surrogate for the SATV � 595 split al-

though the surrogate’s concordance percent was only 64.7 percent.

Note that the variable GENDER did not appear in the stepwise

logistic regression model (4) nor was it selected as one of the vari-

ables to construct the STEM classification tree. The relatively low

rank of GENDER in the random forest importance scores provides

additional information, indicating that GENDER is not being

masked by other variables. Xie and Shauman (Xie and Shauman,

2003) also found that rates of persistence for men and women were

similar. Our analysis indicates that the persistence is similar within

subgroups of the data defined by cumulative GPA and number of

STEM courses taken. A recent National Research Council Report

(2006) suggests that many students, particularly women, who could

be successful in STEM fields have already decided not to major in

science or engineering before they enter college. Our analyses using

ASU data support that finding. In fact, the percentage of students

entering the STEM pipeline at ASU has decreased since the early

1990’s. In 1992, about 58 percent of male freshmen and 43 percent

of female freshmen enrolled in at least one STEM course; in 1999,

the year the freshmen in our data set started college, 54 percent of

male freshmen and 45 percent of female freshmen enrolled in at

least one STEM course. By 2005, those percentages had dropped

to 39 percent for men and 34 percent for women. While the gender

gap may be closing for students in the STEM pipeline, it is closing

because the percentage of men in the pipeline has decreased more

than the percentage of women. Clearly, students can not persist if

they are not in the pipeline to begin with.

Adelman (2006), using national longitudinal survey data, re-

ported that students who graduated from college (in any field, not

necessarily in a STEM field) were much more likely to have com-

pleted college-level mathematics before the end of the second year.

While we did not find that taking calculus as a freshman

(FRESHCALC) had a large importance score with respect to

STEM persistence classification, the number of STEM courses

taken as a freshman was significantly associated with persistence

when examined in conjunction with other factors. This finding, in

conjunction with information in interviews with students reported

in Haag et al. (2007), suggests that the freshman year experience is

important for student persistence in STEM fields.

V. CONCLUSIONS

In this paper we presented a new method for studying persis-

tence of students in engineering and STEM fields that can be used

to complement standard methods such as logistic regression or used

as a stand-alone analysis technique. Our analyses do not give pre-

scriptives for increasing the number of students who persist in

STEM majors.  As stated in section II, we did not have information

on student attitudes or perceptions on teaching methods; most of

the variables that emerged as important in our models were demo-

graphic or related to high school or college GPA. If more detailed

information were available, however, classification trees and impor-

tance scores using the random forest method could be used to iden-

tify factors that might be manipulated in an experimental setting to

assess their effect on persistence.

We showed that by using importance scores from a random

forest model, an analyst can distinguish important variables to re-

duce the number of covariates without specifying a model struc-

ture. Therefore, the random forest method allows us to identify

important predictors of persistence that may be deemed not signif-

icant in logistic regression models because of their high correlation

with other predictors. Afterwards, a model can be constructed,

such as a classification tree, using the subset of variables selected as

most important.

Classification trees are able to easily illustrate complex struc-

tures in the data that otherwise would take many interaction terms

to find using traditional regression techniques. This allows us to

look at conditional relationships among the factors much more

simply. Also, meaningful ranges of continuous variables and com-

mon levels of categorical variables are highlighted in a tree model.

Highlighting a particular cut-off level of a variable can help identi-

fy a subpopulation of students that might need attention. Also,

classification trees can handle highly correlated predictors by tak-

ing advantage of the correlation through the creation of surrogates.

Along with prediction using incomplete data, surrogate variables

allow the analyst to get an idea of other possible branchings of the

model. Perhaps more importantly, the full, perhaps incomplete,

data set can be used with trees since they are able to handle missing

values.

In our analyses, we found that classification trees and random

forests identified factors and complex relationships not found by

other statistical methods. We used a binary response, but all of these

methods discussed in this paper can be used with more than two

outcome categories. We believe classification trees and the random

forest method shows great promise as an additional methodology

for studying persistence to graduation for STEM fields.
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