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Factors Causing Unexpected Variations in Ada
Benchmarks

Abstract

Benchmarks are often used to describe the performance of computer systems. This
report considers factors that may cause Ada benchmarks to produce inaccurate
results. Included are examples from the ongoing benchmarking efforts of the Ada
Embedded Systems Testbed (AEST) Project using bare target computers with
several Ada compilers.

1. Introduction

One of the goals of the Ada Embedded Systems Testbed (AEST) Project is to assess the readi-
ness of the Ada programming language and Ada tools for developing embedded systems.  The
benchmarking and instrumentation subgroup within the AEST Project is running various suites of
Ada benchmarks to obtain data on the real-time performance of Ada on a number of different
target systems.  The purpose of this report is to categorize the factors which cause anomalous
results to be produced by the benchmarks.  Some of these factors have been observed, while
others are more speculative in nature.  All these factors should be understood if accurate, com-
parable, and repeatable performance data are to be produced by Ada benchmarks.

1.1. Objectives and Methodology

The benchmarking and instrumentation subgroup has focused its efforts on measures of run-time
performance rather than on the performance of compilers. Our intention is to provide two useful
types of information to the mission-critical computer resource (MCCR) community.  First, the
results of benchmark tests will provide information on the run-time performance of specific in-
stances of Ada compilers, computer hardware, and support software.  Second, the methodology
used to generate the specific results will be disseminated so that other configurations can be
tested in the same way.

Our benchmarking strategy consists of two complementary efforts. First, the work on real-time
benchmarks from outside sources is monitored, and, where appropriate, the benchmarks are
obtained for use by the AEST Project.  The first milestone report of the benchmarking and in-
strumentation subgroup was "A Survey of Real-Time Performance Benchmarks for the Ada Pro-
gramming Language" [5]. Second, we will develop our own methods for benchmarking, which
include use of specialized timing hardware and methods for confirming benchmark accuracy, as
well as more traditional benchmarking programs.  Additional information useful for assessing
real-time Ada systems will be generated by the Ada real-time experiments subgroup of the AEST
Project.
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1.2. Facilities

The benchmarking and instrumentation subgroup uses the AEST Project’s Real-Time Laboratory
to perform its work.  Hardware and software components for this facility are still being acquired,
with an emphasis on computer systems which are likely to be used by MCCR contractors.  At
present, the laboratory uses two host/target configurations.  The host computer is equipped with a
time-sharing operating system and development software. The host is used to enter, compile,
and (sometimes) test Ada programs in a feature-rich, user-friendly environment.  The target com-
puters are bare machines that receive programs from the host via down-line loading and execute
those programs in a dedicated manner. The target computers, having less overhead in systems
software, are a more predictable environment for a real-time Ada program.

In its current configuration, the Real-Time Laboratory uses Digital Equipment Corporation (DEC)
MicroVAX computers running DEC’s VMS operating system for its host systems.  Target systems
include DEC MicroVAX computers and Motorola Computer’s 68020 microprocessors.  The VAX
computer family is frequently used as a host computer, and its use in the Real-Time Laboratory
allows the use of a common set of software tools with a number of Ada compilers.  MCCR use of
the VAX architecture for target systems is less common, but was undertaken as an interim step
because of the availability of the hardware and software and the availability of in-house expertise
with the hardware.  The MC 68020 is more frequently used in MCCR applications.

Two additional target systems are under consideration:  the MIL-STD-1750A microprocessor and
several U.S. Navy standard computers.

Currently, the Real-Time Laboratory uses DEC’s VAXELN Ada for the MicroVAX target and SD-
Ada and VADS Ada for the MC 68020. The TeleSoft TeleGen2 Ada cross compiler is being
procured for use with the MC 68020.

Personal workstations of AEST project members are linked to the Real-Time Laboratory via a
local area network (LAN) and appropriate software.  In addition, dial-up connections allow use of
both host and target computers from off site.

1.3. Progress to Date

The initial work of the benchmarking and instrumentation subgroup was a survey of the available
work in Ada benchmarking [5]. Based on this survey work, we felt that some of the available
benchmarks were sufficiently relevant and should be acquired.  The AEST Project obtained
benchmarks from the University of Michigan and the Performance Issues Working Group (PIWG)
of the Association for Computing Machinery’s Special Interest Group on Ada (ACM-SIGAda).
The University of Michigan benchmarks were selected for initial runs on the available hardware
and software.

The University of Michigan benchmarks were run using the equipment of the Real-Time
Laboratory as it became available.  At first, Ada compilers running under time-sharing operating
systems were tested:  DEC VAX-Ada VMS running under VMS on the MicroVAX, DEC VAX-Ada
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running under ULTRIX on the MicroVAX, and Verdix Ada running under ULTRIX on the
MicroVAX. The next tests used the first cross compiler and target available, DEC VAXELN Ada
running on a bare MicroVAX.  Work has just begun with the Systems Designers Ada compiler and
with a cross compiler version of Verdix Ada, both for the MC 68020 target.  The MC 68020 is still
being installed and tested.

The original plan for this report was to simply enumerate the results of the benchmarks performed
to date.  However, during runs of the University of Michigan benchmarks, unexplained variations
occurred in running benchmarks — variations which gave rise to negative times for certain
benchmarks. Review of previous run tests revealed that negative time values could be found in
other runs of the benchmarks, including those derived independently by the University of
Michigan.

Study of the causes of negative times showed that the problem was related to the structure of the
benchmarks rather than to a simple error in a benchmark.  To time small Ada constructs with the
Ada CLOCK function, benchmarks had to be written which looped, performing the tests many
times. The looping control statements add time to the benchmark, which is factored out by
subtracting the time required by a second control loop that contains the loop control statements
but not the Ada construct being tested.  The assumption is that the times obtained from the two
loops will vary only in the amount of time required by the benchmark test item (the object of
interest). This assumption was unfounded in many instances of real systems.

Not only were the negative time benchmarks wrong, but the problems causing their result were
also affecting the more reasonable results.  As a consequence, increasing amounts of time have
been devoted to examining the assumptions underlying the benchmarks and checking the ac-
curacy of benchmark results.  This report summarizes our work on variability to date. It includes
topics that we have not fully analyzed.  Further investigation will continue, and we plan to provide
additional information from a variety of Ada compilers and targets.
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2. Variability Described

Variability is used in this report to describe distortions in the benchmarks which prevent their
being truly representative of the systems they purport to describe.  In instrumentation, the term
measurement error is used.  Variability here has some of the flavor of measurement error, and
also includes effects of bad conceptualization and poor implementation.  Variability is the dif-
ference between what is intended by a benchmark and what is actually produced.

The usual purpose of benchmarking is to provide a basis for comparison between several
functionally equivalent systems. Systems can be hardware, software, or a combination of both.
Functionally equivalent is used here to mean that two or more systems are considered to be
comparable enough that they can perform the same function.  Of course, benchmarks are often
useful in determining that systems are not functionally equivalent.  For example, benchmarking
can demonstrate that System A cannot perform a task rendezvous as quickly as an application
requires, while System B can.  The two systems are not functionally equivalent for implementing
the application.

Certainly benchmarks, like statistics, can be distorted to form unfair or invalid comparisons.
Sometimes this is done deliberately, to prove a point or to score a commercial advantage.  We
are not interested in benchmarks of this sort.  Benchmarks can also be misleading because they
inadvertently fail to paint a true picture of the system being studied.  It is this kind of inaccuracy
that we describe in this report.

Benchmarks can be distorted in many ways.  A partial list of major causes of variability includes:

• Measurement of the wrong quantity

• Design or implementation errors

• Interference from side effects

This report is primarily interested in interference effects, but each of the other major causes is
briefly discussed below.

2.1. Measurement of the Wrong Quantity

Benchmarking is a purposeful activity which aims to quantify some interesting characteristic of a
computer system.  A benchmark is a measurement tool in the same sense as a ruler or a ther-
mometer. However, many of the interesting characteristics of an information processing system
are not directly measurable because they are not precisely defined.  We may wish to measure
processor power or accuracy, but these useful and general characteristics are, upon close ex-
amination, made up of many small, individual units.

Since there is no universal definition for measuring the larger quantities, benchmarks must act on
a much lower level.  Decisions must be made about which small, presumably discrete, charac-
teristics will be measured.  These "objects of interest" are what the benchmark actually
measures. In many cases, a synthesis of the smaller measurements into larger and more inter-
esting quantities is also attempted.
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Measurements of the wrong quantity can occur during the selection of objects of interest, often
due to a misunderstanding of their relationship to the abstract quantity which is wanted.  For
example, in a system that generates graphic images, the rate at which graphical views can be
generated is, in part, the function of how quickly the computer can perform graphical transfor-
mations. Transformations depend on the rate at which arithmetic operations — typically mul-
tiplications of floating point numbers — can be performed.  A benchmark that measures the rate
of multiplications could be devised to measure graphic generation rate.  However, if the test fails
to consider the required precision of results, benchmark results may predict the image generation
incorrectly by using the wrong internal representation of the floating point numbers.  The
benchmark will have been executed correctly but, through design failure, cannot be used to
predict accurately.

The process of deciding what quantities to measure can be considered in detail.  Here, however,
it is sufficient to mention that a dichotomy exists between the synthetic load benchmark and a
focused test:

• A synthetic load benchmark measures the throughput of a system doing some typi-
cal task (e.g., Whetstone, Dhrystone).  The time taken for individual operations is not
broken out from the total benchmark.  A synthetic load is typical or representative of
some interesting class of operations.

• Focused tests are used to study a specific object of interest.  For Ada, the time
taken to perform a rendezvous is of interest, and a test can be devised to measure
the rendezvous under a set of typical conditions.

Synthetic load benchmarks offer the advantage of providing a built-in synthesis of a series of
small tests into a single measurement, but their results are only typical of a specific range of
applications. Focused test results can be more widely applied, but synthesis of individual tests
into easily comprehended and representative scores is difficult.  Focused test results are useful
for bottleneck analysis in which a score for a given test must exceed a stated threshold if the
system is to be considered suitable for an application.

Both kinds of benchmarks may measure the wrong quantity.  Synthetic load benchmarks provide
some resistance to measurement error of any individual quantity by their size and averaging
effect. However, because synthetic load benchmarks are complex, analyzing them for variability
is difficult.  Focused tests may be stringently checked on a test-by-test basis, but variability that
occurs can have a very large and misleading effect on individual tests.

2.2. Design or Implementation Errors

Design or implementation errors occur when the benchmark fails to measure the desired quantity
because of a failure of planning or incorrect execution of the plan.  After the object of interest for a
benchmark has been identified, the benchmark must be constructed.  In most cases, a
benchmark is a program.  Often, the benchmark is part of a series of similar benchmarks and can
be prepared as part of an existing test harness.  The benchmark represents a translation of a
need for a conceptual quantity to an instrument that will measure the object of interest.  If the
translation is incorrect, the resultant measurement will not reflect the quantity it is expected to.
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As an example, assume that an Ada user has identified the need for a benchmark to measure the
execution speed of the multiplication of a series of floating point numbers contained in an array.
It is known that some of the target systems will be designed for vector operations, and that the
Ada compilers will produce code to facilitate the use of this special hardware (such hardware is to
be found on supercomputers such as those offered by Cray Research and selected smaller sys-
tems). In a vector machine, operations on matrices may be performed in parallel — different
parts of the array being processed at the same time, providing increased execution speed.  To
simplify the benchmark code, successive array elements will be multiplied.  The program uses the
construct:

for INDEX in (A’FIRST + 1)..A’LAST loop
A(INDEX) := A(INDEX) * A(INDEX - 1);

end loop;

This series cannot be vectorized because the execution of each statement depends upon the
results of the previous iteration.  The benchmark will not measure the effects of the high speed
vector hardware and will, therefore, be in error.  A corrected version:

for INDEX in A’FIRST..(A’LAST - 1) loop
A(INDEX) := A(INDEX) * A(INDEX + 1);

end loop;

can be vectorized and will use the vector feature of tested machines.

Environment-specific influences (e.g., the effects of a particular optimizing compiler) are not con-
sidered here, although a well-designed benchmark will anticipate and overcome such influences.

2.3. Interference from Side Effects

Interference due to side effects are distortions in benchmark results caused by factors external to
the benchmark itself.  For example, a software benchmark is normally translated by compilers,
linkers, and loaders, all of which affect the performance of the benchmark in ways that are not
easily accounted for.

The following list summarizes the interference effects discussed in this report:

• Timing Anomalies

• insufficient clock precision

• variations in the clock

• clock overhead

• System Software Effects

• effects of program translation

• translation anomalies

• optimization

• asymmetrical translation

• multiple translation modes

• placement of code into memory



10 CMU/SEI-87-TR-22

• effects of the run time

• elaboration

• memory allocation

• garbage collection

• operating system effects

• overhead

• periodic and asynchronous events

• co-processes, scheduling, and priorities

• Hardware Effects

• processor design

• pipelining

• multi-processor and distributed architectures

• memory speeds

• speed of main memory

• cache memory

• cache design

• triggering the cache

• segmented memory designs

• inter-machine variability

• individual variation

• minor differences in hardware/firmware

2.4. Format of the Discussion of Interference Effects

Chapters 3 through 5 examine individual causes of interference.  Each entry in the summary list
above is examined in order.  First, the effect is described.  Where available and appropriate,
examples are provided.  Examples are normally drawn from our direct experience, but other
sources are sometimes used; interference effects discussed in this report are not limited to those
actually encountered. The sections entitled Detection and Solutions discuss how variation may
be identified and avoided.

Since most of our work with Ada benchmarks to date has been with the University of Michigan
Ada benchmarks, Chapter 6 discusses the methods used by Clapp et al. for controlling variation.
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Terms used frequently in this report are defined below.

CLOCK The Ada CLOCK function provided in package CALENDAR.  Since
CLOCK is included as part of the Ada standard, many benchmarks
use it for timing.

Object of interest The specific element of the real-time system under test.  Normally,
the object of interest is the theoretical quantity which should be
measured (e.g., speed of dynamic storage allocation).  In many
cases, the object of interest is chosen to correspond exactly with
some Ada construct, as in "measure the time required to allocate a
record with the new operator."

Dual loop benchmark A commonly used technique for measuring the execution speed of
small objects of interest with the standard Ada CLOCK.  A single test
will consume too little time to be accurately measured, so the test is
repeated many times, and the time is taken before and after the ex-
ecution of the series of tests.  Normally, the multiple tests are per-
formed using a loop construct.  The overhead of the test loop is
removed by subtracting the time obtained for control loop, which con-
tains the loop control statements but excludes the test.

Test loop Used in dual loop benchmarks to perform the actual test.

Control loop Used in dual loop benchmarks to factor out the overhead time of the
loop control statements.

Precision Used to denote the accuracy with which an observation can be
made. Normally, precision describes the exactness of the CLOCK.
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3. Timing Anomalies

Timing anomalies cause interference in benchmarks through the mechanism used for timing the
benchmarks. Many benchmarks measure the time required for a selected operation.  These
times are normally collected by using the standard clock provided by most modern computers.
Such a clock is an intrinsic part of Ada, and it is reasonable to assume its presence in any
validated Ada compiler.  However, the precision of the clock may not be high.  In such cases,
benchmarks that depend on the Ada clock routines may produce imprecise results.

Examples
Examples are provided below under individual topics.

Detection
The University of Michigan benchmarks check the CLOCK function provided by Ada in several
ways. The benchmark suite includes explicit checks to verify overhead for important time
routines, and tests for periodic intervention by other processes by means of a second differencing
technique.

We plan to test for timing anomalies using specialized hardware (e.g., a logic analyzer).

Solutions
The University of Michigan benchmarks use the Ada CLOCK function provided with the Ada
system. Their use of a dual looping benchmark design is intended to avoid the problem of
insufficient clock precision, which is explored further below.

We decided not to depend totally on the standard CLOCK function and have been examining the
use of more precise timing tools.  To date, we have acquired and begun preliminary work with a
vendor-supplied real-time clock for the MicroVAX target which is more precise and less prone to
interference. Use of this clock requires writing appropriate calls as part of the benchmark.  This
technique is not general purpose, however, because one real-time clock is required for each
target system, with a unique program interface to each clock.

We also have a logic analyzer for use in timing.  The unit can be attached to the hardware bus or,
in some cases, directly to the CPU.  The logic analyzer provides a timing resource that is inde-
pendent of the system under test and that is very fast compared to normal Ada clocks.  At the
cost of some effort in identifying measurement points, logic analyzers (traditionally used for
hardware development and testing) can be combined with software tests to make timing
measurements.
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3.1. Insufficient Clock Precision

Insufficient clock precision occurs when the resolution of the benchmark’s timer is not sufficient to
measure the time taken to execute the object of interest with the desired degree of exactness.
This situation often occurs when the standard Ada CLOCK function is used to time the
benchmark. Consider the precision of an average wristwatch that displays time to the second.  It
is sufficiently precise to measure and coordinate certain human activities (e.g., commuting, meet-
ings, meals, and social events); it is not precise enough to resolve a close finish at a swimming
meet.

Two factors determine the suitability of a clock.  First, the length of time being measured is
important. The duration of benchmarks varies widely, from fractions of a second to many
minutes. The clock must be able to measure the full duration of the benchmark.  Second, the
desired accuracy must be considered.  The accuracy is conceptually simple to measure, although
many practical obstacles often arise.

Assume that the clock measures time in single increments of t . A benchmark which requires a
constant time to execute will (assuming no other complications) always return a time of n × t .1

Expressed as a percentage, the variation of the observation is , with the uncertainty being one
100

n

clock increment (or tick).  This percentage is the uncertainty of the observation.  Since the preci-
sion t cannot be changed for the CLOCK function, the accuracy is responsive to n . Selecting an
acceptable percentage is an arbitrary choice, but figures of about 5% or less have achieved a
certain respectability as a threshold value. A lower tolerance is even more arbitrary.  It is suf-
ficient to assume that below a certain level, other issues, such as the time required to run the
benchmark, will be the deciding factors in running the benchmark.  For a 5% uncertainty, t must
be one-twentieth the duration of the shortest benchmark (or, put another way, n must always be
at least 20).

For focused tests, the precision of the Ada CLOCK function is larger than the time required for
many of the objects of interest. The benchmark must either average many repetitions of the
object of interest or migrate to a more precise timer.

Examples
Virtually every University of Michigan benchmark is written with the assumption that the Ada
clock’s resolution will be large (or coarse) relative to the time required for the execution of the
object of interest. Each of the Ada compilers we examined has used a clock rate which is not
precise enough to measure the discrete events considered interesting.

1For simplification, this discussion assumes that the benchmark always runs in synchronization with the clock.  In many
real-world cases, no synchronization occurs, and the time would then be either n × t or (n + 1) × t . This fact does not
materially affect the discussion.
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Detection
The precision of the Ada CLOCK function can be determined by inspecting the documentation for
the Ada system being used.  The Reference Manual for the Ada Programming Language (LRM)
[1, p. 11-13] defines SYSTEM.TICK as "the basic clock period, in seconds." SYSTEM.TICK is
the resolution of the clock, the smallest unit of time which can be measured by the CLOCK
function.2 The same details can be obtained from a simply constructed Ada program.

The other timing devices considered in this report — logic analyzers and real-time clocks —
provide similar specifications of accuracy through their documentation.

Solutions
The University of Michigan benchmarks control insufficient clock precision by using a dual loop
design, i.e., by repeating the test many times and taking the time only before and after the run of
tests. This solution introduces overhead from the loop control statements, which is factored out
by running a test loop and a nearly identical control loop that does not contain the object under
study.

Dual loop design also has some interesting side effects that illuminate certain important problems
in benchmarking which might not otherwise be evident.  The logical design of a two loop arrange-
ment suggests that if Loop T is a superset of Loop C, then the time difference td defined by
td = tT − tC should always be zero or positive.  For many tests that were run using the DEC VAX
Ada compiler, this was not the case.  Thinking about the reason why led to this report.

It is important to note that the benchmarks which produced the negative times are as valid as the
benchmarks which produced positive times. Both groups were affected by the bias, which was
sufficient in some cases to overwhelm the extra time consumed by the test loop.  Indeed, the
negative values served the valuable function of alerting analysts that further investigation is
needed.

The actual causes of the negative times are discussed in Section 4.1.1.2 below.

Software Vernier
A refinement to the dual loop technique, the software vernier, is designed to increase measure-
ment precision when used with the standard clock.  The general format of a dual loop benchmark
is used, but initiation of a timed loop is delayed until the standard clock increments.  The loop
executes a set number of repetitions, then a tight code loop waits for the clock to change, while
incrementing a counter.  The counter is used to adjust the row loop time, eliminating the time not
actually used by the benchmark, which would normally be counted as part of the benchmark time.

2Note that DURATION’SMALL, another quantity of time, is the smallest representation of time, and "need not
correspond to the basic clock cycle, the named number SYSTEM.TICK" [1, p. 9-10].  DURATION’SMALL normally is a
great deal smaller than SYSTEM.TICK and should not be confused with it.  This is true of each of the Ada systems we
have examined to date.  As an example:

In VAX Ada, DURATION’SMALL is 2-14 seconds, or approximately 61 microseconds.  The value does not
correspond to the value of the named number SYSTEM.TICK, which is 1.0-2 seconds (10 milliseconds) in VAX
Ada. (SYSTEM.TICK represents the smallest unit of time used by VAX/VMS in its time-related system
services.) [4, p.  9-14]
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The software vernier uses a tight loop as an auxiliary timer to increase clock precision.  It as-
sumes that the number of loop repetitions can be converted to times using an empirically derived
time value from a calibration test.  This assumption is only true when textually identical loops do
in fact require the same amount of time to execute, an assumption which does not always prove
to be true.

We intend to use dedicated timing hardware to solve the problem of insufficient clock precision.

3.2. Variations in the Clock

Variations in the clock are deviations between the value read by the CLOCK function and the time
we would obtain from an absolutely correct timer, were one available.  Clock variations impact the
benchmark results by introducing errors in benchmarks whose results include time values.

Ada defines two data types for time:  STANDARD.DURATION and CALENDAR.TIME.  TIME is
used for storing a calendar type date and time consisting of a year, month, day, and time of day; it
is anchored to the normal Julian calendar. A DURATION is a span of time, in seconds, which is
not fixed to any particular zero point.  The CLOCK function returns a value of type TIME. Sub-
tracting two TIMEs yields a DURATION.  Benchmark results are normally spans of time (i.e.,
DURATIONs).

Most computer architectures include two kinds of hardware for timing.  Computer processors use
high rate oscillators for instruction execution.  We use the term system oscillator for this
hardware. System oscillators typically pulse several times during the execution of each instruc-
tion. Normally, these pulses are not counted, nor can they be detected by an application running
on the processor.  A second set of timing hardware is used for providing time information to
programs using the computer (both system and application programs).  This timer is the system
clock and, in most systems, is the source of the time provided by Ada’s CLOCK function.

Details of the implementation of the system clock vary widely between computer architectures. A
"typical" system clock consists of a source of timing pulses (internal or external3), a method of
counting the pulses (normally software or firmware), and an interface to allow the time values to
be read by the software.

The varying demands of timing often prompt computer manufacturers to provide a number of
different clocks for a given computer, representing a number of price/performance combinations.
It is common for two or more of these devices to use the same interface, and hence completely
different implementations of hardware appear as the system clock in a manner that is transparent
to the user.  It is fair to say that most modern computer architectures provide a standard system
clock, and the standard system clock is selected to be an economical source of time rather than
the most exact timer available.  It is also fair to say that the benchmarker must assume that only
the standard clock will be present when preparing generic benchmarks.  Even in cases when

3A typical external source is the AC power input; in the U.S., AC provides an accurate 60hz signal.
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more accurate timers are present, it cannot be assumed that they are automatically used by the
Ada system under test.

The system clock can vary from the true time in several ways. First, the clock may drift, gradually
running slow or fast when compared to some accurate reference standard.  Second, the system
clock may jitter, speeding up or slowing down temporarily, but tending to catch up at some later
time. A jittering clock tends to be more accurate when measuring longer time spans, as the
jittering evens out, while a drifting clock will vary more from the reference clock as time passes.
Of course, an actual clock may both jitter and drift.

The sensitivity of a given benchmark to time variation depends, in part, upon its duration.  A short
duration benchmark will tend to be more sensitive to clock jitter, while both short and long dura-
tion benchmarks will suffer from the effects of drift.  If the drift rate is constant, then the percent-
age error will be about the same.  The effects of drift become more obvious with a long duration
benchmark.

Of course, no clock is perfectly accurate.  What is desired is a clock whose precision is sufficient
to allow good measurement.  Measuring clock variation would appear to require a second timer
for comparison.

Examples
We have not tested for clock variations.

Detection
We intend to use dedicated timing hardware to solve this problem, based on the assumption that
a dedicated tool (such as a logic analyzer or a real-time clock) is sufficiently accurate so that
clock variation will be negligible.  To a certain extent, the assumption will be taken as the solution
(i.e., testing for variation in the secondary clock is not planned).

Solutions
Where clock variation is large enough to matter, the most reasonable solution is to substitute a
more accurate clock.  This substitution sacrifices generality if the clock cannot be integrated into
the Ada run-time system via a call to CALENDAR.CLOCK (either the library unit provided by the
Ada standard or an overloaded definition).  In benchmarks that have been tailored to assume a
slow clock (such as the dual looping scheme), the form of the benchmark might have to be
altered to take advantage of a better clock, even if it can be accessed via a call to
CALENDAR.CLOCK.

3.3. Clock Overhead

Clock overhead is the amount of time that taking a time measurement adds to the test.  Reading
the clock always takes time, which must be considered in any measurement.  However, if the
time can be taken quickly, relative to the event being measured, the effect of clock overhead is
negligible.
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Where the clock overhead is constant, its effects may be removed from the raw benchmark time
by a simple subtraction.  If the overhead for a clock call is variable, the problem becomes more
serious.

Examples
The University of Michigan benchmarks measure clock overhead.  The published results show
that, using the software clock provided with several Ada run times, clock overhead adds time to
Ada benchmarking.  We reran the benchmarks on several other configurations and, unsurpris-
ingly, reached the same conclusion.

Detection
Clock overhead for the Ada CLOCK function can be measured by calling CLOCK successive
pairs without intervening statements.  Any difference between the measured times is the over-
head of the clock.  Where the clock overhead is less than the precision of the clock, the difference
will be either zero or a positive value (one can reasonably expect this to be one SYSTEM.TICK).

Solutions
The University of Michigan’s use of a dual loop test will intrinsically factor out the clock overhead
when the control time is subtracted from the test time (assuming that clock overhead is a con-
stant), without the need for an explicit subtraction.

We found this approach to be only approximately accurate and plan to use some fast, dedicated
timers for software timing.
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4. System Software Effects

System software effects are uncontrolled or unexpected side effects of using tools to perform
benchmarks.

Each of the Ada benchmarks we ran required editing, compiling, linking, transfer and loading of
the executable code on the target computers, execution, and monitoring.  Each of these steps
required intervention from vendor-supplied software.  Each of these software components has the
potential to affect the running speed of the software.

This observation is not particularly profound — after all, highlighting differences between program
development environments is an important reason for preparing and running benchmarks.
However, some of the decisions taken by the system software may arbitrarily change benchmark
results, causing a benchmark to show optimal or suboptimal results in what appears to be a
random fashion.  Even worse, system software effects may never be detected, leading to false
reliance on arbitrary observations.

As an example, during any run of a computer program, executable code is eventually assigned to
locations in the computer’s address space.  In some computer systems, the placement of code
into memory affects how fast code and data can be accessed, changing the time required for a
benchmark. Since a decision like memory placement is based on a large number of factors,
many of which are deeply buried in system software, not only is the location not predictable, there
can be no reasonable expectation of repeatability except where systems are strictly identical — a
daunting task when one considers the complexity of configuring even a modest computer system.
System software can introduce uncontrolled variability which has the potential (at least) to over-
whelm the values being sought for by the benchmark.

Examples
Examples are provided under the individual sections below.

Detection
Detecting system software effects consists of two major tasks:  first, the general detection of an
undesirable effect, and second, the isolation of the specific cause.  For example, a benchmark
that measures the time required to assign values to a variable may be affected if the assignment
is recognized as invariant and removed from the body of the loop.  General detection would be
realizing that the test results are unreasonable.  Isolation would be recognizing that the Ada
compiler changes the code by moving the assignment outside the timing loop.

A primary consideration for general detection is the need for methods which represent economi-
cal use of the experimenter’s time.  Preemptive techniques are sometimes employed — when the
benchmark is written, unwanted system software effects are avoided by anticipating their action
and avoiding their activation. In a preemptive scheme, an invariant assignment is disguised by
placing the assignment into a subroutine which is compiled after the main body, avoiding the
optimization of the code.  Anticipation is a useful technique, but it assumes that all the system
software effects can be anticipated.  It should be supplemented by additional detection methods.
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Our work with general detection currently centers on two techniques:

• Reasonableness criteria

• Calibration routines

Applying reasonableness criteria is a somewhat formal application of common sense. It is not
reasonable, for example, for a benchmark to produce a negative time value.  Unreasonable
results should trigger further investigation.  Calibration routines are tests whose expected results
are known prior to execution.  We have written calibration routines to test the dual looping
scheme assumption that two identical loops should require the same amount of time to execute.
The results demonstrate that this assumption is only true in an approximate sense.  For example,
in a VAXELN system, two loops of a specific format take the same amount of time plus or minus
six percent.

Isolation of specific causes has not been generalized.  We currently lean on the use of tools
provided by the program development environments.  The following methods have been used for
isolation; comments pertain to the DEC VAX Ada environment Ver. 1.3 and VAXELN
Ada Ver. 2.3:

Compiler listing Compiler listings are quite useful when they include machine lan-
guage translations.  However, cases of further optimization have
been noted which limit the effectiveness of this technique (i.e., the
compiler listing is not always identical to the executing code).

Load maps Load maps provide detailed information on the location of data and
code, the sizes of modules, the location and source of included
system routines, and similar low-level details.  Load maps can be
extremely useful in determining how translating of Ada code has
been performed.  We have had poor success with load maps due
to a lack of low level detail in the maps examined and the use of
virtual memory, which obscures the actual placements of some
code and variables in memory.

Load module dump The fully linked software can be examined statically before execu-
tion begins.  This can usually be done on the development system.
Dumping the load module entails translating the machine code to
human readable form. Facilities for this purpose range from simple
direct translations from binary to display characters to sophis-
ticated interpretation.  The AEST Project has had poor success
with this technique because the available facilities for load dump-
ing were rudimentary.

Dynamic machine code Observation of executing code via a debugger has proven useful.
Viewing the Ada source code being executed is helpful, but the
facility to view machine instructions is often needed.  In general,
dynamic debugging is time consuming but powerful.  Limitations
include: the need to simplify the execution of benchmarks to
reasonable sizes; interference with timing caused by the need to
slow the benchmark to human speeds; and the difficulty of inter-
preting low level details (e.g., system calls) of the execution of the
program under the Ada run time.
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Solutions
Unfortunately, there does not seem to be any general solution to the problem of system software
effects. Only the most intimate knowledge of the internals of system software will allow absolute
predictability of the output of the chain of system software which produces the executable
benchmark code. This must be combined with an expert knowledge of the hardware/software
execution environment in which the benchmark will be run.

Benchmarks should be written to control for as many system software effects as possible.
However, since useful benchmarks are comparative tools, some limit must be placed on efforts to
prepare benchmarks for any particular machine.  The addition of calibration routines will assist in
isolating idiosyncratic behavior of individual program development environments.  During the ex-
ecution of benchmarks, the tester must be alert to the possibility of unreasonable results and
must vigilantly disqualify or explain unbelievable values.

Even if system software no longer has unexpected results, one issue will remain:  should
benchmarks be tailored to produce the best possible results, typical results, or worst-case
results? Perhaps the aesthetically appealing answer is "all of the above," but the scale of effort
required is large.

4.1. Effects of Program Translation

Program translation can alter the benchmark by changing the assumed structure of the program.
In a simple case, one compiler may optimize away Ada constraint checking when an assignment
is known to be invariant, while another compiler will retain constraint checking.  If the intent of the
benchmark is to simulate a situation where constraint checking is required and expected, the
benchmark will be defeated.  Optimization can sometimes be deactivated by the programmer, but
not in every case.

4.1.1. Translation Anomalies
Translation anomalies occur when the software is translated from language statements to ex-
ecutable machine code.  Translation anomalies include optimization and asymmetrical trans-
lation.

4.1.1.1. Optimization
Optimization affects the generated code by changing the designed code into a form which was
not intended by the benchmark design.  A benchmark makes assumptions about the relationship
between the source code and the executable code, such as "this loop statement will cause the
generation of machine language code that accesses my variable UPPER_LIMIT." The compiler
might violate this assumption by realizing that UPPER_LIMIT is invariant and substituting a con-
stant value into the loop, or by placing the value into register storage.

The intent of optimization is to produce more efficient program execution.  Optimization is un-
desirable when it defeats the assumptions or intent of a benchmark. It is important to prevent
optimization of the object of interest, since the benchmark will then become an instrument for
measuring an unintended quantity.  On the other hand, optimizations which do not affect the
correctness of the benchmark are often desirable.
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Examples
During benchmark testing, modifications to the University of Michigan dynamic object allocation
benchmarks were made.  Dummy subroutines were added to the heads of packages containing
the timed portions of the benchmarks.  The intent was to ensure that the dual timing loops were
fully equivalent so that the loop’s times would cancel out, leaving only the time required for the
execution of the object of interest.  Examination of listings from the compiler which contained the
assembly code showed that the dummy subroutines were being included.  Calibration tests
showed that the dummy routines were not having the desired effect.  Further investigation
showed that these dummy routines were optimized away in the subsequent link step, since they
were never called during the execution of the program. The optimization was defeated by calling
each dummy subroutine to force its inclusion in the running code.  The loop timings were made
somewhat more equivalent, although run-time variation in timing continued to be observed.

Detection
We suggest the use of reasonableness criteria and calibration routines for general detection.
Calibration routines should closely emulate the program structure of the benchmarks in form,
size, and duration of execution.  When benchmark results are available from several systems,
cross comparison of the results can be used to detect markedly different results for further inves-
tigation.

Solutions
There is no simple solution to optimization.  In preparing general tests, avoidance of undesired
optimization can be pursued.  Wulf et al. noted:

The literature contains a fairly large collection of known optimization techniques; these,
in turn, fit into a fairly small number of categories.  Nearly all of the unpublished, ad
hoc, techniques known to the authors also fall into one of these categories.... [6, p. 4]

Wulf et al. go on to categorize optimization techniques as follows:

Constant folding Calculation of constant arithmetic and logical expres-
sions at compile time.

Dead code Elimination of unreachable code sequences, including
[those] due to constant propagation into control con-
structs.

Peephole Reduction of short machine code sequences by passing
a "window" over the final object code and eliminating or
collapsing adjacent instructions where possible.

Expression reordering Application of valid mathematical laws such as as-
sociativity, commutativity, addition of zero, etc., to
simplify arithmetic and logical operations.

CSE in statement Common subexpression elimination, i.e., evaluation of
common arithmetic and logical expression (or address
calculations) only once within statement.

CSE in basic block CSE in a single entry, single exit sequence of code.

Global CSE CSE across control structures such as loops and con-
ditional statements.
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Rankordering Priorities in use of registers for program variables and
compiler-generated temporary variables.

Load/store motion Data flow optimization to and from variable locations.

Crossjumping Merging of common code sequences at the end of con-
ditional branches.

Code motion Motion of common code sequences out of conditional
branches and motion of code sequences out of loop
bodies leaving the behavior of the algorithm invariant.

Strength reduction Reduction of multiplication to addition, especially in the
case of loop indices used in array subscripts.

Note that there is no universal agreement as to the names of some of the optimizations.
We have used common names where possible (e.g., strength reduction) but the reader
should not assume that an optimization is either present in or absent from the list on the
basis of our name for it. [6, p. 4-5]

Where optimization changes the validity of the benchmark, it can often be avoided by adroit
coding. The University of Michigan tests explicitly avoided optimization in several instances:

Code optimization, however, can distort benchmark results by removing code from test
loops, eliminating procedure calls, or performing folding.  The benchmark programs
must therefore utilize techniques to thwart code optimizers.

The key to avoiding these problems is not to let the compiler see constants or expres-
sions in the loops whose times are being measured.  For example, instead of using a
for loop with a constant iteration limit, a while loop is used with the termination con-
dition being the equality of the index variable to an iteration variable.  The index vari-
able is incremented by a procedure, the body of which is defined in the body of a
separate package.  The iteration variables are declared and initialized in the specifica-
tion of a library package. Since the iteration values are kept in variables (no constants)
and the body of the increment procedure is hidden in the body of the package, there is
no way the benchmark loops can be removed by optimization as long as the package
specification and body are compiled separately, with the body being compiled after the
benchmarking unit.

Similarly, the compiler must be prevented from either removing the execution of the
feature being tested from the loop, or eliminating the loop entirely from the control loop
that does not contain the feature.  To ensure that these problems do not arise, control
functions are inserted into both loops, and the feature being measured is placed in a
subprogram called from a library unit.  Again, if the bodies of these subprograms are
compiled separately, and after the benchmark itself, the compiler is unable to determine
enough information to perform optimization and remove anything from either the control
or test loops.  These techniques will be evident in the benchmarks described below.
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The loops must each be executed N times, as discussed in the next section, to produce
the desired accuracy.  The form of the test loop is

T1 := CLOCK;
while I < N loop
control functions;
DO_SEPARATE_PROC_F; -- the function F whose

-- time is being measured
INCREMENT(I);

end loop;
T2 := CLOCK;
Tm := T2 - T1;

The control functions and subprogram call to increment I are included to thwart code
optimizers. The control frame would be identical to this except that
a separately compiled function DO_SEPARATE_PROC_NULL would  replace
DO_SEPARATE_PROC_F. [3, p. 762].

We have concentrated our efforts on running existing benchmarks rather than on developing our
own. Working initially with the DEC VAX Ada compiler, our experience with optimization has
primarily been aimed at detecting its presence and avoiding it where required.  To examine
optimization, several techniques have been tried.  Each has depended on the presence of a
suitable tool for the purpose, a need which has only been partially fulfilled in several instances.

• Examine the assembly language produced by the compiler. Assembly language can
be obtained easily by using the appropriate parameter during compilation.  However,
further optimization (pruning of dead code) occurs during the link stage.

• Examine the locations of variables in the executable code.  DEC provides optional
load maps during program linking (translation to executable code) and building (ad-
dition of system software to the linked code for execution on the bare machine).  All
addresses provided by the map are in terms of the virtual address space. Addresses
of variables and routines are only provided if the routines are made externally visible
(e.g., by including them in the package specification).  In general, the DEC load
maps were not detailed enough for us to use effectively.

• Dump the machine code for static analysis.  DEC provides at least one utility for this
purpose, but the Ada code subjected to this routine has, so far, resisted successful
dumping.

• Examine the executing code.  DEC’s debugging facilities allow examination of source
or machine language during program execution. Output can be written to disk for
further work.  Use of the debugger prevents normal timing and, in practical terms,
can only be attempted for small numbers of repetitions of looping tests.

Looking for optimization in programs has proven that optimization can be detected using standard
system tools.  However, the effort is time consuming.  As a result, looking for optimization effects
by human inspection is most efficient when it can be performed on a representative sample of a
class of benchmarks.  Where possible, examination for optimization should be initiated only
where explicit tests or reasonableness criteria indicate that it is needed.

We have devoted little formal effort to developing reasonableness criteria or tests.  Informal
criteria were applied (e.g., it is not reasonable that some times are reported to be negative).
Similarly, certain test programs served, in part, as tests of optimization.  These tests replicated
the looping structure of the University of Michigan benchmarks (a test loop and a control loop),



CMU/SEI-87-TR-22 25

with the loops made textually identical.  Timing values for such a loop should average to zero.
Where they did not, further examination was performed, although optimization was not found to
be the cause of the problem.

4.1.1.2. Asymmetrical Translation
Asymmetrical translation occurs when equivalent pieces of code are translated differently,
depending on some factor other than their semantic analysis.  For example, asymmetrical trans-
lation occurs if variations are caused by the position of the code in the package as well as the
semantic analysis of the program statements.

Examples
The DEC VAX Ada compiler Ver. 1.3 translated the University of Michigan benchmarks so that
the first routine in a package contained one less machine code instruction than the following
routines in the package.  Since the timing and control loops and their dependent routines were
packaged together in pairs in several packages (to avoid optimization), with the test routine first
followed by the control routine in each package, the test sequence had several fewer machine
code instructions in each repetition.  For small tests, where the object of interest in the test loop
executed quickly or even added no extra time to the execution of the test loop, the test loop could
take less time to execute than the control loop, giving rise to negative results.  Tests which were
producing reasonable (i.e., positive) times were still biased by the asymmetrical translation, al-
though the percentage of the bias decreased as the duration of the test increased.

Detection
The tools used to identify and solve the above example are identical to those suggested in Sec-
tion 4.1.1.1 above: reasonableness criteria, calibration routines, and inspection of the translated
Ada program. When the benchmarks failed to produce reasonable results, test programs whose
results were predictable were constructed.  Then inspection of software was performed in stages,
each stage coming closer to the executing code. The asymmetrical translation was detectable
from the machine code listings during compilation.

Solutions
Asymmetrical translation as we experienced it is an interesting example of an unanticipated sys-
tem software effect. Planning for its presence requires foreknowledge of its existence in a
specific software environment. In preparing a general benchmark, anticipating the idiosyncrasies
of all the systems it will be tested on is impossible.  Successful benchmarks are used by in-
dividuals other than the creators to test products which were not available when the benchmark
was devised.  Any solution would tend to be specific to a given system.  The most economical
approach to solution is to avoid known problems, and to provide strong detection facilities in
anticipation of future problems.

It is worth noting that this particular problem cannot be solved by increasing the number of repeti-
tions nor by applying high speed timers, since the bias occurs during each repetition and within
the normal context switch of the subroutine calls.  (Of course, with high speed timers, selection of
the point of measurement is critical.  The exact location of the measurement point determines
whether the effect causes bias or not.)
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The specific solution undertaken for the University of Michigan dynamic object allocation tests
was the insertion of a dummy subroutine at the head of each package that was used in the timing
loop. Since the subroutine was called before executing the timing loop, it could not be optimized
away, and since it lay outside the timing loop, it did not change the benchmark times.  The
translation of the control and timing loops was now symmetrical, since they were no longer the
first routine within a package.  Another solution, not implemented, would be to make each routine
in the timing loop into a separate package, thereby ensuring each would be the first routine in a
package.

General detection and avoidance of asymmetrical translation has not been widely considered.
We have not developed a general technique, but including test programs with expected results
would seem to provide some promise for detecting asymmetrical translation without an undue
investment of effort.

4.1.1.3. Multiple Translation Modes
Some program translators are designed with multiple operational nodes.  For small programs,
code generation schemes are used that produce efficient code.  As the translator exhausts its
resources such as table space, less rigorous schemes are used to translate the program.

Translators which use multiple modes offer the advantage of allowing programs of widely varying
sizes to be translated by a single translator. However, textually identical segments of code can
be translated differently, depending upon their location within a program or simply because of the
overall size of the program being translated.

Use of multiple translation modes can result in non-comparable code within a single program, or
in a benchmark program whose results, while valid, will not scale up to larger programs. An
interesting unintended consequence would be the invalidation of some synthetic benchmark
which is constructed of "typical code segments" drawn from production software.

Examples
No examples were observed.

Detection
When the translation mode shifts in a single program, it can be detected by examining the resul-
tant code.  For benchmarks, this examination can be concentrated on critical segments.  Scale-up
effects should be detectable by a set of programs of different sizes which are designed to
produce comparable results.  Examination of compiler documentation is useful where the
documentation is sufficiently complete.

Solutions
Translator modality is a source of error only in those few cases where it occurs in a way that
violates a critical assumption made during benchmark design.  If, for instance, a mode change
occurs between two timing loops, the translation of the two loops will not be identical.  In a series
of similar benchmarks (e.g., a series which examines rendezvous with increasing numbers of
entry points), translator modality can cause a discontinuity in the results.  In most cases, trans-
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lation modality represents a source of variation that should be captured to fully describe the
environment under test.

4.1.2. Placement of Code into Memory
Placement of code into memory, which is handled by the system’s linker, loader, or similar utility,
can change the speed of execution in ways which are not allowed for in the program design.  For
example, the placement of the critical segment of code so that it is in faster or slower memory, or
on a boundary so that a cache page fault will always occur, will bias the speed of execution.
Since the size of system programs and the implementation of memory in a specific machine can
affect the locations, the possibility for variation between runs is high.

Examples
A simple calibration routine containing five identical Ada timing loops was run on two target
systems. Consistent variation was reported between the different loops, although the individual
loops displayed consistent times within the limits of measurement accuracy.

In the case of the DEC MicroVAX computer under VAXELN, one loop of the five was consistently
slower. The percentage variation between the slowest and fastest times varied with the number
of repetitions and the code size.  In one case, using 100,000 repetitions, the largest time was
12% greater than the smallest.  The explanation, based on debugger runs and consultation with
the vendor, is that the slow loop appears to span a memory page in the virtual address space.
The virtual memory hardware imposes the additional overhead which can be seen in the in-
creased time.

The MC 68020 shows a different pattern, with two fast loops and three slower loops.  In the
100,000 repetitions case, the slower loops took about 11% more time.  We have tentatively
identified the cause as the alignment of the loop’s executable code in memory.  Loops aligned on
full word boundaries required fewer memory cycles for execution.

Detection
Detecting the effects of code placement requires: 1) an understanding of the optimal and sub-
optimal locations in a given system’s physical memory, and 2) the ability to identify where the
critical portions of a benchmark are actually being placed.  A simple testing procedure is to run a
benchmark several times, varying the location of the code in memory for each run.  The reloca-
tion should avoid normal memory increments (powers of two) to encourage testing of optimal and
worst-case locations in memory.

The example cited above was detected by using textually identical timing loops.  The execution
order of the individual loops was varied into several different patterns.  Since the times for a
number of repetitions of individual loops were consistent while the times between different loops
varied, the difference in times appeared to be a function of the difference between the loops
rather than a function of environmental factors.  However, this method was not sufficient to iden-
tify the specific cause of the variation.  The assistance of the vendor and use of appropriate
hardware documentation were required for this purpose.
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Solutions
This problem has two dimensions for benchmarking.  First, it violates the assumptions of the dual
loop benchmark method. Fixing this problem for a dual looping test requires anchoring the test
and control loops in the same relative positions in memory.  Second, it raises the question of
capturing the range of variability for the objects of interest for the full range of memory align-
ments. The question is how to gain representative examples of these constructs in the best and
worst cases.

We have not identified a general solution to this problem.  Specific knowledge of the hardware
and software being used is required.

4.2. Effects of the Run Time

Effects of the run time are caused by the support software peculiar to the Ada programming
language. The run-time software may run on the bare machine, or it may be implemented to run
under an operating system or executive.  If combined with an operating system or executive, the
effects of the run-time system are often difficult to differentiate from those of the operating system
(executive).

4.2.1. Elaboration
The Ada Language Standard offers the following definitions:

Elaboration. The elaboration of a declaration is the process by which the declaration
achieves its effect (such as creating an object; this process occurs during program
execution. [1, p. D-2]

Declaration. A declaration associates an identifier (or some other notation) with an
entity.... [1, p. D-2]

Object. An object contains a value. A program creates an object either by elaborating
an object declaration or by evaluating an allocator.... [1, p. D-3]

Entities which are elaborated include packages, tasks, types, and subprograms.  Elaboration
occurs once, when the entity is first executed.  Elaboration of dependent units, such as a library
package called by the package undergoing elaboration, will occur when the first package to use
the library package is elaborated (but elaboration will occur only once for that library package).
Elaboration can potentially increase the execution time of the first use of a package.  The com-
piler may optimize the elaboration of declarations [1, p. 10-12], which implies that the exact se-
quence will vary from system to system.

Examples
We have not explored elaboration formally.  Some observation with the debugger of a VAXELN
Ada program (VAXELN Ver. 2.3; VAXELN Ada Ver. 1.2) showed elaboration occurring for each
package.
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Detection
Elaboration forms part of the language standard.  Its presence can be assumed in any Ada
execution environment. (Optimization may, of course, intervene to remove elaboration on a case-
by-case basis.)

Solutions
The University of Michigan benchmarks execute each benchmark timing loop (control and test
loop) several times (usually five) and take the minimum value for each set of observations in-
dependently of the other.  These minimum values are then used to calculate the benchmark time
value. The other observations are printed but do not contribute to the benchmark time.  This
arrangement allows the effects of elaboration to be discarded in cases where they are large
enough to change the benchmark times.

Another suggestion is to precall each elaboration unit prior to use to ensure that elaboration is
performed outside the timing loop [2, p. 169].

Interestingly, this problem might be exacerbated when a high speed timer is used.  If the timer
checks a single iteration rather than averaging a series of runs, the effects of elaboration may
skew the benchmark. This may be avoided by pre-elaboration or by taking multiple observations
within a single run. (Of course, multiple runs would simply measure the overhead of elaboration
multiple times.)

4.2.2. Memory Allocation
Memory allocation, in the Ada standard, is handled dynamically for many variable types.  The
exact method of performing the allocation is not specified.  It is easy to envision an Ada im-
plementation which obtains memory for allocation in relatively large chunks and parcels them out
in smaller units as needed.  The speed of dynamic allocation would then vary based on whether
the available supply of free memory was exhausted or not.

Examples
No examples were observed.

Detection
Memory allocation may be observed by controlled experiment.  Gradually increasing the size of
memory requested by an allocation benchmark will detect any break points, where jumps in the
benchmark execution times due to the intervention of memory allocation will be observed.
Program development tools often allow user control of memory pools which, in turn, provide
information on the allocation scheme.

Solutions
Memory allocation may be controlled in several ways.  Where possible, the problem may be
avoided by ensuring that sufficient free memory is available at the start of the benchmark execu-
tion. Where the tests are looped, changing the size of the loops may avoid memory allocation.  If
the tests are run multiple times (as the University of Michigan tests are), the problem may be
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factored out by discarding the largest result numbers, assuming that the repetition count chosen
is not a "magic number" that always causes memory allocation to occur within a given portion of
the test.

4.2.3. Garbage Collection
Garbage collection is an operation in which the Ada run time reclaims storage space that was
previously allocated but is no longer in use.  Garbage collection depends on the specific Ada
run-time system, which may or may not actually perform the function.  Garbage collection is
normally a time-consuming procedure, capable of biasing the benchmark results, which may not
occur at a predictable time. (Note, for example, that garbage collection may be sensitive to the
amount of physical or virtual memory available on a given system, varying when the amount of
memory changes.)

Examples
No examples have been observed.  DEC VAXELN Ada (Ver. 1.2) does not appear to perform
garbage collection.

Detection
A straightforward software test can be devised to detect the presence or absence of garbage
collection. Allocation and (implied) release of memory are continued until memory overflow must
occur if deallocation does not.  The University of Michigan benchmarks include such tests.

Detecting specific garbage collection intervals is more complex because the triggering
mechanism can vary widely.  Garbage collection may occur upon release of memory, or it may be
deferred until the free pool is exhausted. However, appropriate benchmarks can probably be
devised.

Solutions
Garbage collection is not a problem which needs a solution as such.  If present, its effects must
be allowed for in interpreting benchmark results.  The benchmarks which it affects must be iden-
tified, and, for these cases, garbage collection can be avoided (e.g., by increasing the free
memory pool to avoid triggering it), or its presence can be explicitly noted in the results.

4.3. Operating System Effects

An operating system is a software entity that exists to provide services for and to control the
operation of other computer programs.  An important service of most operating systems is provid-
ing a means of sharing a computer among several programs simultaneously.  An operating sys-
tem is a facilitator and does not normally do "useful" work on its own.  It is one element of data
processing that is often omitted from real-time systems, since these systems often need to
sacrifice generality and convenience for predictability and speed. It is present in certain
categories of real-time systems, often "stripped down" to restrict interference in the application or
as a special, limited functionality entity (often called an executive).  Where present, as it often has
been in early versions of Ada environments, an operating system can cause variation in the
execution of Ada programs.
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Note that the Ada run time has provided certain operating system functions (such as task
scheduling) within the Ada language. It relieves the implementor from the need to provide such
services. The presence of the Ada run time does not imply that the effects of an operating
system will necessarily be removed, since run times can be implemented using an existing
operating system or executive.

4.3.1. Overhead
Overhead is the cost of using the operating system to do business.  For example, the periodic
update of the system clock is part of the operating system overhead in some systems.  For some
operating systems, the clock update may be complicated by the servicing of a timer queue which
can be used to activate tasks on a given date or at a given time. Peripheral input/output is
another example of overhead.  If the overhead is constant, it may be considered part of the object
of interest. If the overhead varies due to external factors (e.g., how fragmented storage is on a
disk volume or how system tuning parameters are set), it is an uncontrolled variable.

4.3.2. Periodic and Asynchronous Events
Periodic and asynchronous events are interruptions in the execution of a benchmark by burst
execution of operating system processes.  A typical example is the operating system daemons.
Daemons perform some needed function on a scheduled or irregular basis, without running con-
tinuously. Electronic mail is often transmitted and received by operating system daemons.  Nor-
mally, daemons operate in bursts of activity followed by periods of inactivity.  To the extent
possible, periodic and asynchronous events should be deactivated while benchmarking, or their
presence should be allowed for.  If they provide services needed by the benchmark, however,
there is no method for ensuring that a given run will be consistent.

Examples
Entities which can cause periodic and asynchronous events include communications servers,
mail daemons, and virtual paging systems.

Detection
Where the effect of periodic and asynchronous events is large, it can be noted in the variability of
the raw execution times of repeated benchmark runs.  Examination of the operating system
documentation and system start-up scripts will provide information on the configuration of event
generators such as daemons. Often it is possible to monitor the system execution with utilities to
detect the presence of event generators, although certain system processes are sometimes hid-
den from view and cannot be detected by examination of the running system. The University of
Michigan benchmarks use a second differencing technique to detect with a software test the
presence of periodic and asynchronous events.

Solutions
The normal method used to control the effects of periodic and asynchronous events during
benchmarking is to deactivate the source(s) of the interruption.  This seems particularly ap-
propriate for real-time applications, which are normally run in restricted environments to avoid
such interference with time-critical functions.
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4.3.3. Co-Processes, Scheduling, and Priorities
Co-processes, scheduling, and priorities is a descriptive phrase for the interference which can be
caused by Ada tasks and system processes initiated by the benchmarks.  Priority levels and the
scheduling algorithm determine which processes (including Ada tasks) will be activated, and in
what order, during the run of a benchmark.

Normally, it is assumed that only the benchmark will be running during a timing test.  However,
the Ada run-time system must be minimally active.  Other units, such as a downline loader or I/O
daemon, may also be required.  Their priority and tuning can cause variation in timings.

Examples
During debugging of the University of Michigan benchmarks using DEC VAXELN Ada (Ver. 1.2)
under the VAXELN kernel (Ver. 2.3), diagnostic output using Ada I/O that was initiated prior to the
start of a benchmark loop significantly increased time values for the benchmark.  The I/O to a
slow output device (terminal) overlapped and interfered with the program operation.

Detection
Detecting the effects of co-processes, scheduling, and priorities is difficult to generalize.  The
effects of these factors depend on the particular environment being tested.  This tends to make
detection the responsibility of the tester rather than the benchmark developer.

Solutions
The problem is normally addressed by running the benchmark as the sole process, at the highest
allowed priority, and without activating any co-processes. The example mentioned above was
avoided by the University of Michigan benchmarks because they are written to avoid interference
from I/O processing by performing I/O only after the completion of testing.
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5. Hardware Effects

Hardware effects are caused by the hardware and firmware making up the tested computer sys-
tem. The variety of potential effects is large, and the following list is only a partial enumeration of
the possible sources of variation.

5.1. Processor Design

Processor design encompasses the specific details of how a given implementation of a computer
is designed to execute programs and process data.  Details will vary across members of a com-
puter family which share a common architecture, and across computer architectures.  Oc-
casionally, the same architecture will be achieved by divergent designs (e.g., MIL-STD-1750A
processors). Benchmarks may well favor certain processor designs over others by providing
instruction streams which are ideal or worst-case for a particular architecture.  Thus, the results of
benchmarks may not provide figures that represent the performance of actual applications on a
given system.

5.1.1. Pipelining
Pipelining is a technique used in processor design to increase throughput by dividing the execu-
tion of a stream of instructions into discrete steps which may be performed simultaneously.  The
details of how pipelining works vary and can affect the speed of the benchmarks.  As an example,
in some designs a linear stream of instructions benefits from pipelining, while a program jump is
handled by interrupting the pipeline.

Benchmarks which are effectively structured for pipelining will execute more quickly than those
which are not, even if the programs are functionally equivalent.  In contrast, instruction streams
can be devised which effectively negate the benefits of pipelining, achieving a worst-case evalua-
tion of an implementation.

5.1.2. Multi-Processor and Distributed Architectures
Multi-processor and distributed architectures — where two or more computer processors are
linked into a single real-time system — represent an emerging technology for real-time systems.
Some currently available designs are said to be capable of executing unmodified code on multiple
processors (e.g., by dividing the program up by tasks).  Other systems require explicit assignment
of program units to various processors.  Synchronization and intercommunication between the
processors ensures that the program results match those from sequential execution.

Effective benchmarking for multi-processor configurations must use the characteristics of these
systems.
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5.2. Memory Speeds

Memory is an element of the hardware which affects the execution speed of any stored computer
program. The extent to which a program meets the ideal form for a given machine’s memory
affects the time required for program execution.

5.2.1. Speed of Main Memory
The speed of main memory — how quickly instructions and data may be accessed — is a factor
which seems obvious.  Unfortunately, not all computers provide memory which runs at a single
speed — that is, the speed of the program may be affected just by where it lies in main memory,
without reference to any other factor.

5.2.2. Cache Memory
Cache memory is designed to provide high memory throughput at an economical price.  Nor-
mally, in a caching design, instructions and data are read into a small (expensive) high speed
memory store in blocks, as required, from the slower main memory.  Once a block of information
has been read into cache, access occurs at high speed.  Performance with the cache depends
partly on how well the placement of program instructions and data fit the structure of the cache.

Cache memory provides some special challenges to benchmarking.  Since the capacity of a
cache memory is small, the size of a program that fits completely into the cache memory must be
small. Many benchmarks, particularly the parts actually timed, are small.  Also, since cache
design usually allows several distinct parts of a program to be stored and often inserts and
removes segments based on usage, tests of context switching, rendezvous, and the like may also
be completely contained within the cache.  Small benchmark loops are thus likely to fit into the
cache while executing, giving a high performance that would not be achieved in programs of a
more realistic size.

The effects of cache memory can be divided into design effects, which are variations caused by
the system architecture, and execution effects (here called triggering the cache), where the
benchmark code introduces variation.

Examples
No examples have been encountered so far.  The initial test computer, a MicroVAX II, does not
employ cache memory.

Detection
The presence of cache memory can normally be determined by examining the architectural sum-
mary of a system.  Effects can sometimes be detected in tests which expect equivalent execution
times between paired segments of code.  Where times vary, operation of the cache may be a
source of the variation. However, such simple tests are by no means proof that cache effects will
be detected.

It is worth noting that when we considered caching as a problem, something in excess of a day
was required to resolve the simple question of whether the MicroVAX II being used for
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benchmarking was equipped with cache memory.  Literature for the MicroVAX I was replete with
descriptions of cache memory advantages, while the MicroVAX II literature was ambiguous.
Close examination and consultation with knowledgeable sources finally revealed that cache
memory for the MicroVAX II was dropped when a high speed memory bus was implemented.

Solutions
Two concerns have been identified with cache memory.  First, any benchmark which uses the
test loop/control loop design should, ideally, ensure that the use of the cache is identical between
the two loops (e.g., if one loop triggers a cache read during each repetition, the other should as
well). However, since the loops are of different sizes, this can be difficult to achieve in some
special cases.  Second, if use of the cache can significantly alter benchmark timings, should the
benchmark capture best case, worst case, or some average case?

In general, knowledge of the caching design will facilitate intelligent solutions to the problem. If
caching speed is an issue, a simple test might be the testing of a loop (with small sample size)
against a program consisting of a large number of identical statements (in essence flattening the
loop to a linear code sequence).

5.2.2.1. Cache Design
Cache design — the size of the cache and the number of different cache units — is usually a
hardware design feature which is not under the control of the Ada programmer.  A cache runs
faster because a small amount of data can be stored in high speed memory.  Controlling a
program for maximum (or minimum) efficiency is not a part of standard Ada, so the loaded
program may or may not be optimized for the cache.

5.2.2.2. Triggering the Cache
Triggering the cache occurs when a program references a data location that is not currently
resident in a cache memory.

Examples
No examples have been encountered so far.

Detection
See the discussion in Section 5.2.2 above.

Solutions
In a benchmark containing dual test and control loops, the loops should be aligned to cause the
same number of cache triggerings.  This requires sufficient control over the placement of code
into memory, which is provided by the Ada standard.  This assumes that the address specified in
an Ada program can be used to force alignment to a physical location (normally alignment to a
"page" or similar memory unit).
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5.2.3. Segmented Memory Designs
Segmented memory designs allow a relatively small virtual address space to use a larger physi-
cal memory.  Specialized hardware expands each memory reference into a reference to physical
memory. Segmentation was used in the design of several popular machine architectures (e.g.,
MIL-STD-1750A, Intel 80x86).  Segmentation forces hidden "memory context switches" and dif-
fering instruction sequences for programs that happen to fall across boundaries.  Again, the
behavior of a given benchmark depends on how the machine code is ultimately structured and is
not under the control of the Ada programmer.  Optimization can provide much improved timings,
while the size and placement of system routines can affect what are otherwise identical
benchmarks.

5.3. Inter-Machine Variability

Inter-machine variability is the difference between different machines of the same make and
model.

5.3.1. Individual Variation
Individual variation is the intrinsic difference between two different samples of a given system.
Obviously, this is a factor when the benchmarks are run on a machine other than the target.  It
can be argued that software is not subject to this problem but is prone to minor differences (e.g.,
a patch).

5.3.2. Minor Differences in Hardware
Minor differences in hardware occur when the manufacturer, maintainer, or customer makes
hardware changes that differentiate the benchmark machine from the units that will actually be
used. A particular problem is that computers often provide many methods of making very subtle
hardware changes (e.g., strapping, configuration of components, termination of circuits, engineer-
ing changes) that are not documented and whose effects on benchmarkings are not well under-
stood.

Examples
No examples have been noted so far.  Tests using "identical" MicroVAXes have not been com-
pleted. However, of informal comparisons, benchmarks performed on multiple "identical" targets
have not thus far displayed any noticeable differences.

Detection
Minor hardware differences can be detected by simple comparison of results between runs made
on different "identical" machines.  This has the advantage of ignoring any differences which have
no detectable effects. Detection can also be pursued by inspecting components for differences,
including alterations after purchase, installation, and repair.  Detection constitutes an ongoing
process, since the constant upgrade of field serviceable and swapped components is usual for
most vendors.  However, noting a difference is not equivalent to isolating its effect on a
benchmark.
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Solutions
There is no solution to this problem.  Confidence in the applicability of the benchmarks to all
systems may be increased by repeating the tests on multiple instances of "identical" machines.
Where feasible, the target being tested and the options configured on it, as well as the versions of
software being used, should be specified as part of the benchmark report.  Normally, specification
to the lowest level (e.g., board revision level or software fix level for all components) is not
available.
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6. Variation Control Techniques Used by the University
of Michigan Benchmarks

The University of Michigan tests [3] focus on the execution speed of specific features of the Ada
programming language.  This approach isolates relatively small items to allow comparisons of
critical interest (e.g., rendezvous versus subroutine call), but has led to some very interesting side
effects. In particular, these focused tests characteristically have a very small size, especially the
size of the critical segments where the object of interest is tested.  A single object of interest often
requires very little time to execute — often so little time that the precision of the system clock is
larger than the time required for the test.

To test such small objects of interest, most of the University of Michigan benchmarks use a dual
loop testing design.  A test loop contains the actual test along with control statements to repeat
the test many times.  The time is taken at the start and end of the loop.  A similarly structured
control loop is constructed which excludes the test of the object of interest but contains all the
loop control statements.  Subtracting the control loop time from the test loop time will factor out
the overhead of the loops.  Dividing by the number of repetitions provides the time required for
the object of interest.

University of Michigan Ada benchmarks have solved a number of problems causing variation:

• Timing Anomalies

• Insufficient clock precision as compared to the time taken to execute the object
of interest.  First, the University of Michigan benchmarks check the resolution
of the Ada CLOCK function empirically. Second, based on existing compilers,
they assume that the clock will be slow compared to the time required to ex-
ecute the object of interest.  They control this factor by repeating the test many
times and by taking the time only before and after the run of tests.  This solu-
tion introduces overhead from the loop control statements, which is factored
out by running a test loop and a nearly identical control loop that contains only
the looping and other overhead code, not the actual test.  The time required for
the control loop is subtracted from the time used by the test loop, and the
difference is divided by the number of times the test has been performed.

• Clock overhead. The University of Michigan benchmarks take account of
clock overhead in two ways.  First, explicit tests provide information on the
overhead imposed by the use of standard Ada time functions.  Second, the
impact of clock overhead on benchmarks is factored out by use of the dual
looping test scheme.  The benchmarks consult the clock at the start and end of
the test and control loops, then factor out the overhead by subtracting the
control time from the test time.

• System Software Effects

• Effects of program translation

• Translation anomalies

• Optimization. The University of Michigan explicitly protects
against optimization by hiding constant variables from view,
preventing simplification of loop constructs, and by arranging the
order of compilation for similar purposes.
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• Operating System Effects

• Periodic and asynchronous events. The University of Michigan
benchmarks use a second differencing technique to estimate how fre-
quently operating system processes interfere with the execution of their
test program.

For many University of Michigan benchmarks, a single trial consists of
multiple runs of the control and timing loops (five runs in many in-
stances). The minimum value for each control and timing loop is taken
independently, and the result is obtained by subtracting these two
values. It is assumed that the minimum figure represents the smallest
amount of interference from the operating system.
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7. Summary and Conclusion

The benchmarking and instrumentation subgroup of the Ada Embedded Systems Testbed Project
has examined a number of benchmark suites which are intended to evaluate Ada run-time en-
vironments. Work with well-conceived benchmarks has still provided results which were incon-
sistent or improbable.  Increased effort in identifying the causes of variation within the
benchmarks has identified potential for variation in clocking, system software, and hardware.

The dream of an ideal, transportable set of Ada benchmarks which can be plugged into any
run-time system without modification is an illusion.  It may be pursued indefinitely without final
result. A more realistic view includes the tester as an active participant in testing and adjusting
benchmarks to work with the system.  Basic assumptions about benchmarks and their measure-
ment accuracy must be tested before the results are published.  Individual benchmarks must be
qualified, and variation must be explained.

Some variation in results can be controlled by good design and, where required, by modifications
to the benchmark code.  The accuracy of benchmarks may be enhanced by:

• Using more accurate timing devices, such as real-time clocks or logic analyzers.

• Constructing calibration routines to identify variation by expected results.

• Executing benchmarks on multiple samples of a given system.

• Developing reasonableness criteria, which trigger further investigation when results
are not logically consistent with theoretical values.

• Interactive testing, where the execution of benchmarks is conducted with the expec-
tation that some of the results may have to be adjusted or rejected as non-typical.

The use of dual looping benchmarks, a usual method of overcoming imprecise clocks, has been
examined. The method is applicable to all Ada systems which provide the CALENDAR.CLOCK
function allowing unmodified benchmark code to be run on multiple systems.  The basic assump-
tion that two loops containing the same Ada statements will require the same amount of time to
execute has been demonstrated as false for several systems.  The accuracy of the method is
therefore variable.  It remains a strong technique for averaging out the effects of one-time and
periodic overhead factors in the execution of the benchmark.

Certain classes of variation can, conceivably, be eliminated by adjusting the benchmark software
or system software, or by using external timers.  For example, it is possible to envision adjust-
ments to systems to fully validate the assumptions of the dual looping benchmarks.  These kinds
of variation are, therefore, problems to be solved by adroit application of knowledge.

Other classes of variation are an immutable part of the system under test and present a more
philosophical question:  what kind of result is desired? Should the benchmark strive to present a
"typical" result, or is a best case/worst case range more practical?  A single value for any
benchmark is not sufficient unless it is repeatable.
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As a result of this variability, we have redirected our focus from executing suites of benchmarks
uncritically on a variety of targets to a more critical role.  Future work will emphasize validating the
benchmarks as well as executing them. Validation will require software tests, specialized
hardware, and logical analysis of the systems on which the benchmark is executed.



CMU/SEI-87-TR-22 43

References

[1] Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A-1983 edition, ANSI, 1430 Broadway, New York, New York 10018,

1983.

[2] Broido, M.D.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 30(2):169-171, February, 1987.
This is a technical communication from M. Broido with a reply by Clapp, et al. on Clapp’s

article of the same title published in Communications of the ACM, August 1986.

[3] Clapp, Russell M., et al.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[4] VAX Ada Language Reference Manual.
Digital Equipment Corporation, Maynard, Massachusetts, 1985.

[5] Donohoe, P.
A Survey of Real-Time Performance Benchmarks for the Ada Programming Language.
Technical Report CMU/SEI-87-TR-28, Software Engineering Institute, October, 1987.
To be published.

[6] Wulf, W., Feiler, P., Zinkas J., and Brender, R.
A Quantitative Technique For Comparing the Quality of Language Implementations.
July, 1979.
This unpublished report is quoted with the permission of the senior author.



44 CMU/SEI-87-TR-22



CMU/SEI-87-TR-22 i

Table of Contents

1. Introduction 3
1.1. Objectives and Methodology 3
1.2. Facilities 4
1.3. Progress to Date 4

2. Variability Described 7
2.1. Measurement of the Wrong Quantity 7
2.2. Design or Implementation Errors 8
2.3. Interference from Side Effects 9
2.4. Format of the Discussion of Interference Effects 10

3. Timing Anomalies 13
3.1. Insufficient Clock Precision 14
3.2. Variations in the Clock 16
3.3. Clock Overhead 17

4. System Software Effects 19
4.1. Effects of Program Translation 21

4.1.1. Translation Anomalies 21
4.1.1.1. Optimization 21
4.1.1.2. Asymmetrical Translation 25
4.1.1.3. Multiple Translation Modes 26

4.1.2. Placement of Code into Memory 27
4.2. Effects of the Run Time 28

4.2.1. Elaboration 28
4.2.2. Memory Allocation 29
4.2.3. Garbage Collection 30

4.3. Operating System Effects 30
4.3.1. Overhead 31
4.3.2. Periodic and Asynchronous Events 31
4.3.3. Co-Processes, Scheduling, and Priorities 32

5. Hardware Effects 33
5.1. Processor Design 33

5.1.1. Pipelining 33
5.1.2. Multi-Processor and Distributed Architectures 33

5.2. Memory Speeds 34
5.2.1. Speed of Main Memory 34
5.2.2. Cache Memory 34

5.2.2.1. Cache Design 35
5.2.2.2. Triggering the Cache 35

5.2.3. Segmented Memory Designs 36
5.3. Inter-Machine Variability 36

5.3.1. Individual Variation 36



ii CMU/SEI-87-TR-22

5.3.2. Minor Differences in Hardware 36

6. Variation Control Techniques Used by the University of Michigan 39
Benchmarks

7. Summary and Conclusion 41


