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[1] The contrast in surface albedo between sea ice and open ocean suggests the possibility
of an unstable climate state flanked by two separate stable climate states. Previous
studies using idealized single-column models and comprehensive climate models have
considered the possibility of abrupt thresholds during sea ice retreat associated with such
multiple states, and they have produced a wide range of results. When the climate is
warmed such that the summer minimum Arctic sea ice cover reaches zero, some models
smoothly transition to seasonally ice-free conditions, others discontinuously transition
to seasonally ice-free conditions, and others discontinuously transition to annually
ice-free conditions. Among the models that simulate a continuous transition to seasonally
ice-free conditions, further warming causes some to smoothly lose the remaining
wintertime-only sea ice cover and others to discontinuously lose it. Here, we use a toy
model representing the essential physics of thermodynamic sea ice in a single column to
investigate the factors controlling which of these scenarios occurs. All of the scenarios are
shown to be possible in the toy model when the parameters are varied, and physical
mechanisms giving rise to each scenario are investigated. We find that parameter shifts that
make ice thicker or open ocean warmer under a given climate forcing make models less
prone to stable seasonally ice-free conditions and more prone to bistability and hence
bifurcations. The results are used to interpret differences in simulated sea ice stability in
comprehensive climate models.
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1. Introduction

[2] When the polar sea ice cover recedes, the change in
surface albedo causes an increase in absorbed solar radia-
tion, which promotes further warming and hence more sea
ice loss. The idea that this positive feedback may lead to
instability has a long history in climate science. Early dif-
fusive energy balance models of the annual-mean global
climate system [Budyko, 1969; Sellers, 1969] often exhibit
multiple states due to this feedback. For some values of the
solar constant in a typical energy balance model, five dif-
ferent solutions are possible: depending on the initial con-
dition, the model can settle on (i) a stable completely ice-
covered state, (ii) an unstable state with ice edge in low
latitudes, (iii) a stable state with ice edge in midlatitudes,
(iv) an unstable state with ice edge in polar latitudes, and
(v) a stable completely ice-free state (see review by North
[1990]). However, these states exist only in a limited region
of the parameter space. Only ice-free solutions are possible
when the solar constant is large, and only ice-covered solu-
tions are possible when the solar constant is small. Hence
when the climate is warmed in such a model from modern-

like conditions, the ice edge gradually recedes poleward to
about 70 degrees latitude, and then a bifurcation point is
crossed and the entire remaining ice cover abruptly dis-
appears. This abrupt loss of ice is irreversible in the sense that
the climate must be cooled considerably beyond the initial
transition point for the ice cover to return, and the ice edge
traces out a hysteresis loop as the solar constant is varied. The
irreversibility is associated with the existence of two stable
states separated by an unstable state in a finite region of the
parameter space.
[3] The observed loss of Arctic sea ice during recent

decades has prompted increased interest in the question
whether sea ice retreat in the real world exhibits bifurcation
thresholds similar to diffusive energy balance models, i.e.,
whether the retreating Arctic sea ice cover will pass a tipping
point [Eisenman and Wettlaufer, 2009, and references
therein]. If a tipping point is defined as an irreversible jump
in the sea ice cover as the forcing is gradually varied, then
an unstable sea ice state is a necessary condition for a tipping
point to be possible in a simple dynamic system.
[4] Recent studies examining the possibility of bifurcation

thresholds during sea ice retreat have produced a range of
results which are summarized in Figure 1. Starting from
modern conditions with sea ice cover throughout the year
(blue shading in Figure 1), warming can cause the Arctic
Ocean to become seasonally ice-free (red shading), and then,
under extreme warming, to become ice-free throughout the
year (gray shading). As described below, some studies have
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suggested that the complete loss of the current Arctic sea ice
cover would occur in a continuous and reversible fashion
(Scenario I in Figure 1), others have suggested that the loss
of summer sea ice is reversible but a discontinuity would
occur during the final loss of a wintertime-only sea ice cover
(Scenario II), others have suggested that warming beyond
perennial ice conditions would cause a large jump to com-
pletely ice-free conditions with no stable seasonal ice cover
being possible (Scenario III), and others have suggested that
there would be a jump during the transition to stable sea-
sonally ice-free conditions (Scenario IV).
[5] A recent evaluation of threshold behavior during

anthropogenic climate change identified the loss of the
summertime sea ice cover in the Arctic as a threshold
(Scenario IV), finding it to be the most imminent tipping
point in the global climate system [Lenton et al., 2008]. This
finding was based on an aggregation of the opinions of
experts at a workshop, an elicitation of the opinions of other
experts, and a review of the literature.
[6] Several recent studies have investigated aspects of

the possibility of bifurcation thresholds in comprehensive
coupled atmosphere-ocean global climate models (GCMs).
Holland et al. [2006] found that some GCMs exhibit abrupt
reductions in summer minimum Arctic sea ice cover during
21st century climate projections, with large reduction events
in some simulations causing an early onset of seasonally
ice-free conditions. These results elevated the widespread
concern that the summer minimum sea ice cover might
pass a tipping point [e.g., Serreze, 2011], which would be
Scenario IV. However, further analysis of the simulations
revealed that abrupt increases in summer ice extent occur
just as frequently as abrupt decreases, with the year-to-year
variability about the long-term decline increasing as the
ice cover diminishes but no significant skewness in the
anomalies [Holland et al., 2008]. This implies a noisy but
continuous loss of the summer sea ice cover, consistent with
Scenario I or II. Winton [2008] also examined GCM simu-
lations of 21st century climate, and he found linear rela-
tionships between polar albedos, polar temperatures, and
global temperatures, supporting Scenario I or II. Winton
[2006, 2008] further examined two GCMs which produced
annually ice-free Arctic Ocean conditions in response to
extreme greenhouse forcing. In both GCMs, the linear

relationships were not affected when the Arctic Ocean
transitioned to seasonally ice-free conditions. However,
after global temperatures further warmed by several degrees,
one of the GCMs began to show a sharp increase in the
surface albedo feedback, exhibiting heat budget changes
consistent with the presence of an unstable state in diffusive
energy balance models. This drove an abrupt elimination of
the remaining wintertime-only sea ice cover in the GCM
(Scenario II). The other GCM exhibited an approximately
linear transition to annually ice-free conditions (Scenario I).
Ridley et al. [2008] found that a different GCM also
exhibited nonlinear behavior. Arctic sea ice cover initially
declined linearly with global temperature in this model, but
the final loss of the winter sea ice cover was abrupt and
nonlinear in global temperature. Further evidence such as
cycles of collapse and recovery of the winter sea ice cover
under steady forcing was used to argue for the existence
of two stable winter sea ice cover states in this model under
extreme warming (Scenario II). Some studies have also
manually removed sea ice in GCMs and examined whether
it recovers. Winton [2008] did not allow sea ice to form in
two versions of the Geophysical Fluid Dynamics Laboratory
GCM. He found that although the surface absorbed more
solar radiation due to the change in albedo, this was more
than compensated by an increase in longwave radiation and
turbulent heat loss due to the change in surface temperature,
implying that the ice would grow back and hence that there
is no unstable state under modern forcing in this GCM
with less sea ice than the simulated modern sea ice
cover. Schroeder and Connolley [2007] found that sea ice
recovered within a few years when it was manually removed
in a GCM simulation with preindustrial forcing. Similarly,
Tietsche et al. [2011] found that when they removed all
of the Arctic sea ice at various times during a simulation of
21st century climate with a different GCM, the ice extent
recovered within about 2 years. These three manual ice
removal studies all suggest the lack of an imminent unstable
sea ice state and hence support Scenario I or II. Armour et al.
[2011] directly addressed the possibility of irreversibility
during sea ice retreat in a GCM by increasing CO2 until the
simulated Arctic Ocean became entirely ice-free throughout
the year and then decreasing CO2 until all the ice returned.
The results showed no evidence for multiple states outside

Figure 1. Sketch of the range of results from previous studies using single-column models and GCMs.
Solid black lines indicate stable states and orange dashed lines indicate unstable states. Bifurcation thresh-
olds occur where solid and dashed lines intersect. Note that annually ice-free conditions are not included in
Scenario IV as this is meant to describe studies that typically do not discuss further warming after the loss
of the summer ice cover.
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the envelope of year-to-year variability, indicating that the
GCM used in that study supports Scenario I. Finally,
Ferreira et al. [2011] found that a GCM with intermediate
complexity atmospheric physics and two different idealized
geographic configurations was capable of simulating both
a nearly ice-free climate and a climate with perennial ice
extending to midlatitudes under the same forcing, thereby
implying a region of instability consistent with Scenarios II-IV
without distinguishing between the scenarios. Taken together,
these results imply that some comprehensive GCMs simulate
Scenario I and others simulate Scenario II, with only a few of
studies simulating sufficiently large warming to distinguish
between the scenarios.
[7] “Toy” models, i.e., conceptual mathematical models,

are computationally cheap and can provide a level of mech-
anistic understanding that is often not feasible with GCMs.
Recent toy models of sea ice and climate have typically
employed a single-column representation. In a simple con-
ceptual representation of the influence of a temperature-
dependent surface albedo on an annual-mean single-column
picture of earth’s climate, an unstable state analogous to the
unstable solutions of diffusive energy balance models exists
for some parameter choices [North, 1990]. Adding a funda-
mental representation of seasonally varying sea ice thickness
to this picture, Thorndike [1992] modeled seasonal thermo-
dynamic sea ice growth and ablation in an ocean mixed
layer below a linear energy balance atmospheric column.
The intriguing result of this study is that all seasonally ice-
free solutions are unstable. When the forcing in this model
is gradually increased, the model abruptly transitions from
annually ice-covered to annually ice-free conditions (Sce-
nario III). Similarly,Muller-Stoffels andWackerbauer [2011]
found bistability between annually ice-covered and annually
ice-free states with no stable seasonal ice cover (Scenario III)
in a horizontally homogeneous layer of ice-ocean cells with
specified atmospheric and oceanic forcing at the vertical
boundaries. In contrast to this, a recent single-column model
allowed stable seasonally ice-free solutions [Eisenman and
Wettlaufer, 2009]: a gradual increase in forcing lead to a
smooth transition from perennial sea ice to seasonally ice-
free conditions, but at some point as the forcing continued
to increase the remaining wintertime-only sea ice cover
abruptly disappeared (Scenario II). Results consistent with
Scenario II were also found using a variant of this model that
included a representation of fractional sea ice area and other
additional physical processes [Eisenman, 2007]. Similarly,
an intermediate-complexity single-column model with prog-
nostic vertical structure of ocean temperature and salinity and
40 different sea ice thickness categories simulated results
consistent with Scenario II [Björk and Söderkvist, 2002].
However, a variant of the Eisenman and Wettlaufer [2009]
model with a parameterized representation of clouds simu-
lated a bifurcation at the point of transition to seasonally ice-
free conditions for some choices of the cloud feedback
parameters [Abbot et al., 2011], supporting Scenario IV.
Merryfield et al. [2008] similarly found results supporting
Scenario IV in an idealized mathematical representation
of the processes governing the Holland et al. [2006] GCM
behavior. Finally, Flato and Brown [1996] used a single-
column model with a sensitive parameterization of the
dependence of surface albedo on temperature, ice thickness,
and snow thickness, and they found that seasonal and

perennial ice states were both possible under the same forc-
ing, consistent with Scenario IV. Hence Scenarios II, III,
and IV have all occurred in different single-column models
in previous studies.
[8] In summary, each of the four contrasting scenarios

illustrated in Figure 1 has been supported by multiple mod-
els in previous studies, which raises the question what
physical factors determine which scenario occurs and hence
which scenario is most likely in the real world. We address
this question by exploring the range of possibilities in a
stripped down toy model representing the essential physics
of sea ice in a single column. The parameters are varied
broadly, which is meant to provide an analogy to adding
representations of additional physical processes. We find
that the toy model is able to reproduce the full range of
previous single-column model and GCM results (Scenarios
I-IV), depending on the parameter values. This toy model is
sufficiently simple that its behavior can be rigorously
understood, and we examine the physical mechanisms that
give rise to the toy model behavior and parameter depen-
dencies. The analysis is used to build a conceptual frame-
work for understanding other model results and thereby
assessing their relevance to the real world.

2. Idealized Sea Ice Model

[9] The model used in this study represents a slab of ice
floating in a uniform ocean mixed layer below a time-varying
linear atmosphere. It is meant to represent the skeleton of sea
ice variability in single-column models and GCMs, i.e., the
essential physics governing the thermodynamic evolution of
sea ice in a single column and nothing else. The intent is thus
that the results of this model will be qualitatively robust
across the range of single-column sea ice models discussed
above and informative for understanding sea ice results from
GCMs.
[10] Thermodynamic changes in sea ice thickness are

primarily controlled by vertical diffusion within the ice, a
Stefan condition for growth or ablation at the ice-ocean
interface, and a Stefan condition for ablation at the upper
surface when the temperature warms to the melting point.
The influence of snow on the ice surface and bulk salinity
within the ice also play a role, but for simplicity they are not
explicitly included here. Solving the equations for these
processes under observationally based forcing produces a
seasonal cycle in sea ice thickness and temperature that
is consistent with observations [Maykut and Untersteiner,
1971]. Semtner [1976] developed a numerical scheme to
efficiently include these processes in gridded models, and
the thermodynamic component of the sea ice representation
in most current GCMs is based on this scheme.
[11] The toy model we use in this study is a simplified

variant of the model developed by Eisenman and Wettlaufer
[2009] (hereafter EW09). A derivation starting from the
model of EW09 is provided in section 2.1. This toy model
is approximately equivalent to the model of Semtner [1976]
with no prognostic temperature levels (“zero-layer model”)
and with the addition of simple representations of the ocean
mixed layer and atmosphere. It is also approximately equiv-
alent to the model of Thorndike [1992] with a smoothed
seasonal cycle in forcing and zero specific heat capacity of
sea ice. These similarities strengthen the case that the toy
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model results presented here are relevant for understanding
the physical mechanisms causing the range of previous toy
model and GCM results illustrated in Figure 1.
[12] The toy model is illustrated schematically in Figure 2.

It evolves a single variable representing the surface enthalpy
(E), which varies smoothly between ice-covered and ice-free
model states, as in the model of EW09. When ice is present,
the ocean mixed layer temperature (To) is fixed at the melt-
ing point (Tm) and the ice thickness (hi) evolves, and when
ice is absent the ocean mixed layer temperature evolves. The
surface enthalpy describes how far the system is, in terms
of energy per unit surface area, from the transition point
between ice-covered and ice-free conditions:

E ≡
!Lihi E < 0 sea ice½ #
coHo To ! Tmð Þ E ≥ 0 ocean½ #

!

ð1Þ

with Li = 3 & 108Jm!3 the sea ice latent heat of fusion and
coHo = 2 & 108Jm!2K!1 the heat capacity of the ocean
mixed layer (using a 50 m depth). The surface enthalpy
evolves according to

dE

dt
¼ f t;Eð Þ ð2Þ

with the net energy flux into the system being

f t;Eð Þ ¼ A! BT þ FB: ð3Þ

Here T ≡ Ts ! Tm is the departure of the surface temperature
(Ts) from the melting point, A ! BT represents a lineariza-
tion of the dependence of the net surface flux on the surface
temperature, and FB is the heat flux into the bottom of the
sea ice or ocean mixed layer. We treat B and FB as constants,
and formulae for A and T are given below.

[13] The surface flux (A ! BT) can be viewed as com-
prising only net shortwave (i.e., solar) and longwave (i.e.,
thermal) radiation, although the default parameter values
will be chosen to additionally account for turbulent surface
fluxes of sensible and latent heat (see section 2.1). The
temperature-independent component of the surface net
longwave flux varies seasonally due to atmospheric energy
flux convergence and the seasonal cycle in optical depth (see
section 2.1). We approximate both longwave and shortwave
seasonal variations to be sinusoidal with a specified phase
offset (f) between them:

A ¼ !aþ
Da

2
tanh

E

Liha

" #

Sm ! Sacos2p
t

P

$ %

! Lm þ Lacos2p
t

P
!

f

P

" #& '

: ð4Þ

Here !a and Da are the mean and difference, respectively,
in coalbedo between ice and ocean (with coalbedo≡ 1! albedo),
ha is a parameter dictating the smoothness of the albedo
transition as E passes through zero, Sm and Sa describe the
shortwave forcing, Lm and La describe the longwave (and
turbulent) forcing, P = 1 year is the period of the forcing, and
time is referenced to the winter solstice (i.e., minimum
shortwave forcing occurs at t = 0).
[14] There are three possible regimes for the surface tem-

perature, which are separated by thresholds associated with
solid–liquid phase transitions. (i) If no ice is present, the
surface temperature is equal to the ocean mixed layer tem-
perature (Ts = To). (ii) If ice is present but surface melt is
occurring, the surface is at the melting point (Ts = Tm). We
assume that the energy required to heat or cool the ice is
negligible (see section 2.3), and hence surface melt occurs
whenever there is flux into the surface (A ! BT = A > 0). (iii)

Figure 2. Schematic illustrating the toy model employed in this study, which is a single-column repre-
sentation of the atmosphere, sea ice, and ocean mixed layer. Red arrows indicate energy fluxes, with S(t) ≡
Sm ! Sacos2pt/P being solar forcing and L(t) + B(Ts ! Tm) ≡ Lm + Lacos2p(t/P ! f) + B(Ts ! Tm) repre-
senting the sum of a linearized approximation of upwelling thermal radiation (sTs

4), downwelling thermal
radiation, and turbulent surface fluxes. A linear temperature profile is assumed within the sea ice (blue line).
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If ice is present and the surface is not melting, no energy
can accumulate at the surface, and the surface temperature
is calculated from a balance of fluxes at the ice-atmosphere
interface. In this scenario, the surface temperature is colder
than the melting point (Ts < Tm), whereas the temperature
at the phase interface marking the base of the ice must be
equal to the melting point (Tbase = Tm), as illustrated in
Figure 2 (left). We neglect salinity effects and treat the
melting temperature as constant. With negligible sensible
heat capacity in the ice, the temperature profile is always
approximately linear (see section 2.3), and hence the
diffusive heat flux upward through the ice is equal to
ki(Tbase ! Ts)/hi = !kiT/hi, with ki being the thermal
conductivity of ice. The temperature of the frozen ice surface
is calculated by setting this flux equal to the flux between the
surface and the atmosphere,

!
kiT

hi
¼ !Aþ BT ; ð5Þ

and solving for T. The three regimes for the surface temper-
ature are combined as

T ¼

E

coHo

E ≥ 0 open ocean½ '

0 E < 0; A > 0 sea ice;melting surface½ '

A

B
1þ

z

hi

! "!1

E < 0; A < 0 sea ice; frozen surface½ '

;

8

>

>

>

>

<

>

>

>

>

:

ð6Þ

where the constant

z≡
ki

B
ð7Þ

is introduced here as the thermodynamic scale thickness for
sea ice and described in more detail in section 2.2. Inserting
equation (1), z/hi = !zLi/E in equation (6), and hence
equations (2)–(4) and (6) fully specify the ordinary differ-
ential equation for the time evolution of E.
[15] The following sections further describe the toy

model formulations. Readers less concerned with the
model details may choose to skip forward to Table 1, where
the dimensionless model quantities are listed, and then to
section 3.

2.1. Derivation of Default Parameter Values

[16] Here we derive default parameter values for the toy
model (equations (2)–(4) and (6)) to make it approximately
equivalent to the model of EW09, which was derived from
first principles in that study and demonstrated to generate an
observationally consistent Arctic sea ice seasonal cycle. We
also examine the influence of the simplifications employed
in this toy model compared with EW09.
[17] Three terms in the EW09 surface flux depend on

time: (i) shortwave forcing is specified from surface obser-
vations; (ii) the temperature-independent component of the
surface net longwave and turbulent flux forcing is specified
based on the seasonal cycle in atmospheric optical depth
associated with water vapor and clouds, as well as the
specified temperature equatorward of the model domain
which influences atmospheric energy flux convergence; and
(iii) the temperature dependence of the surface flux varies
based on the seasonal cycle in optical depth. Each of these
terms has been approximated as a sinusoid or constant in
equations (2)–(4) and (6). For the first and second terms, we
use the one-year sinusoidal component from a Fourier
transform of the forcing used by EW09, and for the third
term we use the annual-mean value from EW09. This leads
to Sm = 100 Wm!2, Sa = 150 Wm!2, Lm = 85 Wm!2,
La = 41 Wm!2, f = 0.15 years, and B = 2.83 Wm!2/K. The
longwave forcing term peaks f = 0.15 years after the sum-
mer solstice, when maritime surface temperatures are typi-
cally largest, both because of increased atmospheric optical
depth allowing less longwave radiation to escape to space in
late summer than in winter and because the temperature
equatorward of the model domain in the representation of
atmospheric energy flux convergence is largest in late sum-
mer. Note that under this approximation the solar forcing,
which multiplies the surface albedo, becomes negative dur-
ing part of the winter, unlike in the real world. This is,
however, an accurate representation of the leading Fourier
component of the observed solar forcing. Higher order har-
monics modify the final result of EW09 such that the solar
forcing is nonnegative throughout the year, but including
only the dominant Fourier component does not substantially
alter the model solution, as discussed below in this section
(see also section 5.3 where the bifurcation structure of the
toy model used here is compared with the EW09 model).

Table 1. Dimensionless Variables and Parameters

Symbol Definition Description Value

Variables
~t t/P Time t/1yr
~E E/(!SmP) Surface enthalpy T/8.8K or !hi/5.9m

~T T/ !aSmP
coHo

# $

Surface temperature (diagnostic) T/8.8K

Parameters
~Sa Sa/Sm Shortwave seasonal amplitude 1.5
~Lm Lm/(!Sm) Longwave annual mean 1.25
~La La/(!Sm) Longwave seasonal amplitude 0.73
~" f

P
Longwave seasonal time lag 0.15

~B B/ coHo

P

% &

Longwave temperature dependence 0.45
~# Li

ki
B
/(!SmP) Thermodynamic scale thickness 0.12

~"a Da/(2!) Surface albedo jump 0.43

~ha ha/
!aSmP
Li

# $

Range of ~E for albedo jump 0.08

~FB FB/(!Sm) Heat flux into bottom of model domain 0
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[18] The surface albedo occurs in two places in the system
(2)–(4) and (6). First, it occurs in the net shortwave flux
forcing the evolution of E (part of A in equation (3)). Second,
it occurs in the ice surface temperature (part of A in
equation (6)). In the model of EW09, where the albedo
occurs in two similar places in the model equation, the
dependence of the albedo on E was smoothed in the first
occurrence to allow a gradual transition from ice-covered to
ice-free net shortwave forcing. An equivalent treatment of
the equation for the surface temperature would be to smooth
the transition between the E ≥ 0 and E < 0 regimes. This was
expected to have a smaller impact on the results of EW09
because the unsmooothed temperature varies continuously
as E crosses through zero, and hence this additional smoothing
was not employed by EW09 in the interest of keeping the
equations as transparent as possible. Here for simplicity we use
the same smoothed dependence of the surface albedo on E in
both instances where the albedo occurs in the model equations.
[19] The seasonal cycle of ice thickness and surface tem-

perature in the EW09 model is plotted in Figure 3 (dark
blue). The simplifications of the time-dependent forcing
discussed above, as well as the adjustment of the albedo
representation in the surface temperature, have only a small
impact on the EW09 model solution (light blue). Winter
temperatures decrease due to the negative solar forcing
associated with using only the leading Fourier component,
but the seasonal cycle in the model state (hi) is not substan-
tially affected.
[20] The EW09 model also includes a representation of

ocean heat flux into the bottom of the sea ice or ocean mixed
layer, as well as wind-driven ice export out of the model
domain. Both of these terms are quantitatively important for
the simulated seasonal cycle under a given forcing (green
and orange curves in Figure 3), but setting them to zero in
the toy model is not expected to influence the qualitative
bifurcation structure when the parameters are varied (see
section 5.3), and it makes the model more readily interpret-
able. Furthermore, the presence or absence of sea ice motion
in the current suite of GCMs does not appear to be a domi-
nant factor for the simulation of sea ice retreat compared
with other differences among the models [Eisenman et al.,
2011]. We set ice export to zero in the toy model; we set
FB = 0 in the default parameter regime, but we retain the
term in equations (2)–(4) and (6) and vary it in the sensitivity
analysis.
[21] Removing ice export and basal heat flux both cause

the simulated ice thickness to increase. In order to get an
observationally reasonable Arctic sea ice seasonal cycle in
the toy model, we compensate for these simplifications by
reducing the annual-mean longwave radiative cooling to
Lm = 70 Wm!2. All other toy model parameters are set at
default values identical to those of EW09: z ≡ ki/B = 0.7m,
!a ≡ 1 ! (ai + ao)/2 = 0.56, Da ≡ ai ! ao = 0.48, and
ha = 0.5m.
[22] With the changes described in this section, the EW09

model becomes equivalent to the system (2)–(4) and (6) (red
curves in Figure 3).

2.2. Thermodynamic Scale Thickness

[23] The constant z is defined in equation (7) as the ther-
modynamic scale thickness for sea ice. This quantity
describes the tendency for thin ice to grow considerably more

rapidly than thick ice, thereby encapsulating the nonlinear
thermodynamic effects of sea ice growth during winter.
[24] During winter, the surface flux balance (equation (5))

involves three terms: (i) diffusive heat flux upward through
the ice that leads to congelation at the ice-ocean interface
(!kiT/hi > 0), (ii) a forcing term that promotes cooling
(!A > 0), and (iii) the temperature-dependent term in the
surface flux (BT < 0). The quantity hi/z describes the ratio
between terms (iii) and (i). When hi ( z, the dominant
balance in equation (5) is between terms (i) and (ii). This
leads to rapid ice growth: in this regime, equations (2)–(4)
and (6) reduce to Lidhi/dt ≈ ∣A∣ during ice-covered winter.
The dominant balance in equation (5) when hi ) z is
between terms (iii) and (ii). Diffusive heat flux in the ice is
negligible in this regime, and equations (2)–(4) and (6) give
negligible ice growth (Lidhi/dt ≈ 0).
[25] This discussion of the asymptotic hi ( z and hi ) z

regimes brackets the nonlinear stabilizing effect of sea
ice growth. Thin ice grows faster than thick ice, and this
dependence gets steeper as ice thins.

2.3. Stefan Number

[26] In the derivation of equation (6), we assumed that
sensible heat changes were negligible and equivalently that
the temperature profile could be approximated as linear. The
Stefan number describes the ratio of latent heat changes to
sensible heat changes, and this was a large Stefan number
approximation. Here we derive the thickness range for which
this approximation is valid.
[27] We consider a diffusion equation for temperature

(ci∂T/∂t = ki∂
2T/∂z2) within ice of thickness hi subject to a

specified flux ( f ) out of the surface boundary and a Stefan
condition for thickness change at the lower boundary
(!ki∂T/∂z = Lidhi/dt). Here ci = 2 * 106 J/m3/K is the vol-
umetric heat capacity of ice. Integrating the diffusion equa-
tion from the base of the ice to the surface leads to the
following equation:

f ¼ Li
dhi

dt
! cihi

d!T

dt
ð8Þ

with !T ≡ (1/hi)(
R

!hi

0 Tdz) the column-averaged temperature.

The ratio between the two terms on the right-hand side,

NS = (LiDhi)/(cihiD!T ), is a form of the Stefan number.
Assuming Dh = 0.5m as a typical value for summer abla-

tion and D!T = 10K to describe the seasonal variability of
the column-averaged temperature, this implies that NS > 1
as long as hi < 8m, and hence latent heating dominates over
sensible heating in this regime.
[28] Near the transition to seasonally ice-free conditions

(edges of red shaded regions in Figure 1), the large Stefan
number approximation employed here should hold in most
parameter regimes because seasonal ice is relatively thin.
When the ice is very thick (lowest areas of blue shaded
regions in Figure 1), the approximation becomes less accurate.

2.4. Dimensionless Version of Model

[29] We are able to remove two parameters from the sys-
tem (2)–(4) and (6) by scaling E and t. Here we scale all
parameters so that they are dimensionless, removing the
annual period and the mean absorbed shortwave radiation
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and clumping together parameters that do not appear
independently.
[30] We scale time by the annual period (P) and scale

enthalpy by the average shortwave radiation absorbed during
one year (!aSmP). Fluxes are scaled by the mean absorbed
shortwave radiation (!aSm). The thermodynamic scale thick-
ness (z) and smoothness of the albedo transition (ha) are both
expressed in the same scaling as the dimensionless enthalpy.
The albedo jump (Da), while already being dimensionless, is
scaled by twice the mean albedo. Finally, the temperature-
dependent flux term is scaled with the ocean mixed layer heat
capacity and the annual period. We represent dimensionless
quantities by adding a tilde to the dimensional symbol. In
terms of dimensionless quantities, equations (2)–(4) and (6)
can be written as

d~E

d~t
¼ ~A ! ~B~T þ ~F B; ð9Þ

~A ¼ 1þ ~"a tanh
~E

~ha

! "

1! ~S acos2p~t
% &

! ~Lm ! ~Lacos 2p ~t ! ~f
% &

;

ð10Þ

~T ¼

~E ~E ≥ 0 open ocean½ '
0 ~E < 0; ~A > 0 sea ice;melting surface½ '

~A

~B
1!

~z

~E

 !!1

~E < 0; ~A < 0 sea ice; frozen surface½ '

:

8

>

>

>

<

>

>

>

:

ð11Þ

The values for each dimensionless parameter, as well as the
dimensional definitions, are listed in Table 1.

2.5. Numerical Solutions

[31] Figure 4a shows simulations of a single year in the
toy model starting from three different initial conditions. The

black curve in Figure 4a ends at the same value of ~E as it
started from, and the green curves above and below it
slightly converge on the black curve, indicating that the
black curve is a stable steady state seasonal cycle solution of
the toy model.
[32] In order to identify all stable and unstable solutions in

a given parameter regime, we generate a one-year Poincaré
map by beginning with a range of different initial conditions
and numerically integrating them all forward for one year, as

Figure 4. Poincaré map in the default parameter regime. (a) One-year trajectories for the steady state
seasonal cycle solution (black) and years that begin with slightly warmer and colder initial conditions
(green). (b) Poincaré map produced by integrating the toy model for one year from a range of different
initial conditions. Black and green dots correspond to trajectories in Figure 4a. Similar to Figure 1, blue,
red, and gray shading indicates one-year integrations that are continuously ice-covered, seasonally
ice-free, and ice-free all year, respectively.

Figure 3. Derivation of the toy model used here from the model of EW09. (a) Seasonal cycle in ice
thickness. (b) Seasonal cycle in ice surface temperature. Beginning with the model of EW09 (dark blue
curves), the time-dependence of the forcing is approximated as sinusoidal (light blue), basal heating is
set to zero (green), and ice export is turned off (orange). After re-adjusting the longwave forcing to offset
these changes, we arrive at the toy model used in this study in the default parameter regime (red).
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was done by EW09. Advantages of this method compared
with the standard practice of integrating the model forward
until it stops drifting are that this method identifies all stable
and unstable solutions and that it is more efficient when
forward integrations converge slowly.
[33] We define the model state at the winter solstice of year

n as ~En ≡
~E(~t = n). The change in ~E during the course of one

year as a function of the initial condition is then defined as

F ~En

% &

≡ ~Enþ1 ! ~En: ð12Þ

F(~En) is a version of the Poincaré map, which is a mapping

from ~En to ~En+1; note that we consider ~En+1 ! ~En rather than
~En+1 in order to make the model behavior more clear in the
figures, as was also done by Abbot et al. [2011].
[34] The Poincaré map reduces the seasonally varying

ordinary differential equation (9)–(11) to a one-dimensional

discrete map (12) that evolves ~E from one winter solstice to

the next. Fixed points of the Poincaré map (~E*) occur when

F(~E *) = 0 and correspond to steady state seasonal cycle

solutions of the model. Those with slope F′(~E *) > 0 are

unstable and those with slope !1 < F′(~E *) < 0 are stable.

Note that !2 < F′(~E*) < !1 corresponds to a stable oscilla-

tory fixed point of the Poincaré map and F′(~E*) < !2 cor-
responds to an unstable oscillatory fixed point, but for all

parameter regimes considered in this study F′(~E*) >!1. Small

perturbations about a stable fixed point ~E * can be readily
shown to exponentially decay with a timescale of

t ¼
!P

log 1þ F ′ ~E∗
% &' ( ; ð13Þ

which is related to the Lyapunov exponent for the stable

attractor. Stable fixed points with a flatter slope F′(~E*) have
a slower decay timescale t and a lower degree of stability.
Saddle-node bifurcations occur when a stable fixed point
merges with an unstable fixed point and disappears as the

parameters are varied, at which point F′(~E*)→ 0 and t→ ∞.
For further details see, e.g., Strogatz [1994, chapter 10].
[35] The Poincaré map in the default parameter regime is

numerically generated for a range of initial conditions in
Figure 4b. There is only one fixed point in this parameter
regime (black circle in Figure 4b) and it is stable. Similar to
Figure 1, blue shading indicates initial conditions with one-
year integrations that are ice-covered all year, red shading
indicates integrations that are seasonally ice-free, and gray
shading indicates integrations that are ice-free all year. One-
year integrations that begin with an ice-free initial condition

(~En > 0) but quickly cool and remain ice-covered for all
~t > 0.25 are considered ice-covered all year and shaded blue
in Figure 4 because there is ice during the entire summer.
The ice-albedo feedback is a destabilizing influence on
seasonally ice-free one-year integrations, causing a positive
slope in much of the red-shaded region. The associated
bump on the right-hand edge this region implies the possi-
bility of a pair of stable and unstable fixed points being
created by a saddle-node bifurcation in response to warming,
as will be discussed in section 3.
[36] Abrupt transitions associated with the temperature

and albedo thresholds occur during the seasonal cycle in

some parameter regimes, which can cause difficulties in
one-year numerical integrations of the system (9)–(11). For
each of the figures included in this study, the system was
integrated separately with two different solvers: an explicit
Runge–Kutta solver and an implicit variable order solver.
When the solvers differ in terms of the number and type of
solutions in a given parameter regime, the solution is cho-
sen based on a visual inspection of the smoothness of the
Poincaré map.

2.6. Ice-Free Model States

[37] Purely ice-free model states are approximately linear
and can be readily solved analytically. Taking the annual

mean of equations (9)–(11) in the regime ~E/~ha ≫ 1 leads to

d ~E
) *

d~t
¼

~E∗
) *

! ~E
) *

~t
; ð14Þ

which describes the annual-mean model state 〈~E〉 evolving

toward the fixed point 〈~E*〉 ≡ (1 + ~Da ! ~Lm + FB)/~B with an

exponential decay timescale of ~t ≡ 1=~B , which is the
dimensionless version of the quantity given in equation (13),
~t ¼ t=P. We integrate the system forward one year to find
the Poincaré map,

F ~En

% &

¼ ~En ! ~E∗
) *

þ d~E
% &

e!
~B ! 1

# $

; ð15Þ

where the vertical offset d~E ≡ [~Sa~B(1 + ~Da) + ~La(~B cos 2 p~f!

2p sin 2p~f)]/(~B2 + 4p2) is due to the phase of the seasonal

cycle at the reference time ~t = 0. Equation (15) describes the
straight line in the gray region of Figure 4b.

3. Response to Warming

[38] The toy model is warmed by varying the annual-

mean longwave forcing ~Lm, which is equivalent to the
method used by EW09 and is intended to serve as an anal-
ogy for greenhouse-induced climate change. For each value

of ~Lm in Figure 5a, a Poincaré map is numerically generated.
The thick curve indicates values of the fixed points of the

Poincaré map (~E*), and the thin curves indicate the summer

maximum and winter minimum values of ~E during the
one-year integration for each fixed point (i.e., the associated
steady state seasonal cycle). As in Figure 1, solid black
curves in Figure 5a indicate stable states, dashed orange

curves indicate unstable states, values of ~E* with one-year
integrations that are perennially ice-covered are shaded blue,
values with seasonally ice-free conditions are shaded red,
and values with conditions that are ice-free throughout the
year are shaded gray. In other words, the shading in
Figure 5a at the location of the thick curve (fixed point of
Poincaré map) changes color whenever a thin curve directly
above or below it (maximum or minimum value during the

year) crosses ~E = 0.
[39] The left edge of Figure 5a (~Lm = 1.25) corresponds to

the default parameter regime. As the climate is warmed, the
toy model initially makes a smooth transition to seasonally
ice-free conditions, but a discontinuity in the stable solution
occurs during the transition to annually ice-free conditions
due to a pair of saddle-node bifurcations creating and then

EISENMAN: SEA ICE BIFURCATIONS D01111D01111

8 of 18



destroying an unstable fixed point. Hence the toy model
simulates Scenario II in the default parameter regime, as in
the results of EW09.
[40] The stability timescale from equation (13) is plotted

in Figure 5b. Near the bottom of the figure, the ice becomes
more stable (smaller t) as it thins, as expected from more
efficient heat conduction through thinner ice (see section 2.2).
The timescale increases as either bifurcation point is
approached, with t → ∞ at the actual bifurcation points and

t < 0 (not shown) in the range of ~E* where the solution is

unstable. For solutions that are annually ice-free with ~E/~ha ≫
~ha throughout the year, the response time assumes the con-

stant value from equation (14) of t = P/~B = 2.2 years.
[41] A striking behavior in Figure 5b is that the system

becomes less stable (larger t) during the transition from
perennial ice (blue shading) to seasonal ice (red shading).
Although there is no bifurcation during the transition, this
implies that Scenario IV may be possible in this toy model in
a parameter regime that augments this decrease in stability.
This slowing down as the system warms to a seasonally ice-
free state is identified and analyzed by Moon and Wettlaufer
[2011] in the EW09 model in its default parameter regime;
note that in the EW09 model, which includes a representation

of ice export as a stabilizing influence, the timescale is
shorter than in the toy model used here.
[42] Indeed, when we vary the parameters in the toy model,

we find that Scenario IV and each of the other scenarios
can be simulated (Figure 6). Increasing the dependence of
outgoing longwave radiation on surface temperature leads
to Scenario I, Scenario II occurs in the default parameter
regime, Scenario III occurs when the longwave seasonal
cycle amplitude is reduced, and making the albedo transition
more abrupt leads to Scenario IV. Note that the bifurcations
do not occur at the exact transition to seasonally ice-free

conditions due to the smoothing of the albedo transition (~ha).

4. Mechanisms for Unstable Fixed Points

[43] Since each discontinuity in the black curves in
Figure 6 is associated with the creation or annihilation of an
unstable fixed point by a saddle-node bifurcation, we can
analyze the threshold behavior by considering the factors
controlling the presence of the unstable states.

4.1. Scenarios II and III

[44] The evolution of the toy model can be viewed in
terms of three distinct feedbacks, which are illustrated in

Figure 6. Bifurcation diagrams in four different parameter regimes. Thick solid and dashed curves and
shading are as described in Figure 5a. By varying the parameters, the toy model is able to produce all four
of the scenarios in Figure 1. Here ~B = 1.6 for Scenario I, ~La = 0.2 for Scenario III, ~ha = 0 for Scenario IV, ~Lm
is varied in all panels, and all other parameters are set at their default values.

Figure 5. Bifurcation diagram and stability timescale with default parameters except ~Lm, which is varied.
(a) Bifurcation diagram indicating stable fixed points (thick solid curves) and unstable fixed point (thick

dashed curve), ~E*, of the Poincaré map as the climate is warmed by scaling ~Lm. Thin curves indicate the
summer maximum and winter minimum values of ~E in the steady state seasonal cycle associated with each
fixed point of the Poincaré map. Blue, red, and gray shading indicate steady state seasonal cycles which are
perennially ice-covered, seasonally ice-free, and ice-free all year, respectively. (b) Decay timescale (hori-
zontal axis) for perturbations about the stable fixed points, given by equation (13).
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Figure 7. The first is the Planck feedback (warmer surface
emits more radiation), which is a linear stabilizer governed

primarily by the parameters ~B and ~z. The second is due to sea
ice thermodynamic effects associated with heat conduction
and phase change (thin ice grows faster than thick ice),
which is a nonlinear stabilizer governed primarily by the

parameter ~z . The third is the surface albedo feedback (~E > 0

warms more than ~E < 0), which is a nonlinear destabilizing

influence governed primarily by the parameters ~Da and ~ha.
[45] The effect of the Planck feedback alone can be seen

by considering equations (9) and (10) with ~Da = 0 and
equation (11) replaced by

~T ¼ ~E ; ð16Þ

in which case the equations for an ice-free ocean are used

even when ~E < 0 (cf. EW09). The system (9), (10), and (16)

with ~Da = 0 reduces to equation (14) for all ~E. The Poincaré
map for this linear system, which is given by equation (15),
is indicated by the straight dashed line in each panel of
Figure 7.
[46] The addition of sea ice thermodynamic effects to this

picture (solid curve in Figure 7a) is represented by replacing
equation (16) with equation (11), i.e., using the toy model

(9)–(11) with ~Da = 0. Compared with the dashed line in
Figure 7a, the solid curve has a steeper negative slope for

values of ~En corresponding to seasonal cycles with thin ice
and a less negative steep slope for thick ice. This illustrates
that sea ice thermodynamic effects cause increased stability
for solutions with thin ice and decreased stability for solu-
tions with thick ice, as discussed in section 2.2.
[47] The system with only albedo and Planck feedbacks

(solid curve in Figure 7b) is represented by equations (9),

(10), and (16) with all parameters including ~Da at their
default values. In this regime, one-year integrations that are
perennially ice-covered (blue shading) or perennially ice-
free (gray shading) have the same slope as the dashed line,

obeying equation (15) except that the sign of ~Da is switched

when ~En < 0. The entire seasonally ice-free region (red
shading) is unstable due to the influence of the albedo
feedback (cf. Figure 2 of EW09).
[48] All three feedbacks are included in Figure 7c, which

is generated using the toy model (9)–(11) with default
parameter values. This Poincaré map can be approximately

visualized as a linear superposition of the Planck feedback
(dashed line in each panel of Figure 7), the addition of sea
ice thermodynamic effects (difference between solid and
dashed curves in Figure 7a), and the addition of the albedo
feedback (difference between solid and dashed curves in
Figure 7b). Compared with Figure 7b, in Figure 7c the left-
hand side of the seasonally ice-free region is stabilized by
sea ice thermodynamic effects, whereas the perennial ice
region is less stable. This allows stable seasonally ice-free
solutions to occur on the left-hand side of the red shaded
region in Figure 7c, where the slope of the Poincaré map
is negative. Unstable seasonally ice-free solutions still
occur on the right-hand side of the red shaded region, where
the Poincaré map has a positive slope. This instance of
Scenario II is equivalent to that described by EW09.
[49] When the climate is warmed by decreasing ~Lm, the

change in the Poincaré map approximately resembles a
uniform vertical shift upward. Warming the climate in the
default parameter regime causes an unstable fixed point to
be created and then destroyed via saddle-node bifurcations
(Figure 8a). Initially, the unstable fixed point is created
along with a stable fixed point that is ice-free all year when
the bump near the right-hand edge of the red-shaded region

crosses ~E n+1 ! ~E n = 0 (lower dashed curve in Figure 8a).
Further warming causes the unstable fixed point to migrate
to the left in Figure 8a as the Poincaré map continues to
shift upward (thick solid curve in Figure 8a). The unstable
fixed point and the colder stable fixed point merge and dis-
appear when the dip at the left-hand edge of the region of the

Poincaré map with positive slope rises above ~En+1 ! ~En = 0
(upper dashed curve in Figure 8a).
[50] As will be discussed below in section 5, varying the

toy model parameter values changes the size of the unstable
region in Figure 7c, i.e., the range of initial conditions for
which the Poincaré map has a positive slope. The toy model
produces Scenario III if the unstable region is large and
Scenario II if the unstable region is small.
[51] We close this section by considering the relevance

of the unstable fixed point associated with Scenarios II and
III in the toy model to more comprehensive representations
of the climate system. The Planck feedback is believed to be
the dominant feedback in the global climate system [e.g.,
Soden and Held, 2006]. The feedback associated with ice
thermodynamic effects has been found to apply robustly
both to submarine observations and to large-scale mean quan-
tities in GCMs [Bitz and Roe, 2004]. The broad qualitative

Figure 7. Poincaré maps illustrating specific feedbacks. (a) Planck feedback plus ice thermodynamic
effects. (b) Planck feedback plus albedo feedback. (c) Full toy model including Planck feedback, albedo
feedback, and ice thermodynamic effects. (d) Planck feedback plus albedo feedback with a sharpened
albedo transition. The dashed line in each panel indicates the Poincaré map with the Planck feedback only.
Shading is as described in Figure 4b, and ~Lm = 1.0 in all panels.

EISENMAN: SEA ICE BIFURCATIONS D01111D01111

10 of 18



features of the surface albedo feedback have been identified
in satellite observations of the Arctic [Perovich et al., 2007],
as well as in global-mean quantities in GCMs [e.g., Soden
and Held, 2006]. Hence the broad features of these three
feedbacks may be expected to apply to basin-wide average
quantities in the Arctic Ocean, and it is plausible that this
unstable state exists in more physically complete spatially
varying models and also in the real world. However, it is
also plausible that the influence of spatial variability, motion,
weather noise, and other physical processes would remove
the unstable state.

4.2. Scenario IV

[52] The unstable fixed point associated with Scenario IV

is caused by the crest of ~E(~t) crossing zero when the albedo
transition is sharp. The Poincaré map for Planck plus albedo

feedbacks with ~ha = 0 is plotted in Figure 7d for comparison
with the smoother albedo transition (using the default value

of ~ha = 0.08) plotted in Figure 7b. At the left-hand edge of
the red-shaded region in Figure 7d, where the initial condi-
tions first become seasonally ice-free during the one-year
integrations, there is a sharply positive slope that quickly
levels off. Compared with Figure 7b, in Figure 7d the slope
of the Poincaré map at the left-hand edge of the red-shaded
region is considerably steeper, whereas the slope to the right
of this narrow dip is considerably less steep. This can lead to
a second unstable fixed point existing in a limited region of
the parameter space.
[53] In Figure 8b (solid curve), an enlargement of the

seasonally ice-free region of the Poincaré map is plotted
including all three toy model feedbacks, using equations

(9)–(11) with ~f , ~ha, and ~Lm set to values near the bifurca-
tion point associated with Scenario IV.
[54] The stable and unstable fixed points on the right-hand

side of Figure 8b are the same as the stable and unstable
seasonally ice-free fixed points in Figure 8a (see section 5.2),
but there is an additional unstable fixed point in this param-
eter regime at the left-hand edge of the seasonally ice-free
region of the Poincaré map, along with an additional stable
fixed point in the blue shaded region.

[55] We consider one-year integrations starting from five
different initial conditions, which are indicated by green dots
in Figure 8b. The time series for each integration is plotted in
Figure 8c. Starting from the coldest initial condition (lowest

green curve in Figure 8c), increasing the initial value of ~E
(next higher green curve) causes the time series to just reach
~E = 0 at the warmest point of the year. When we further
warm the initial condition by a very small amount, such that

the increase in ~E is almost indistinguishable during the first

part of the year in Figure 8c, the flat crest of ~E (~t ) crosses
above zero at the time of summer maximum. Due to the
sharp albedo transition, this causes a large change in the
amount of time that the surface is ice-free, and hence a large
change in the annual absorbed solar radiation. Further
incremental warming of the initial condition (two higher
green curves in Figure 8c) causes only relatively small
increases in the ice-free duration. The result is that the ice-
albedo feedback is substantially more destabilizing near the
boundary between blue and red regions of the Poincaré map
in Figure 8b than in the rest of the red region, with an
associated unstable fixed point.
[56] The dashed curves in Figure 8b, which represent

slightly increased and decreased values of ~Lm, indicate that
this unstable fixed point is created by a saddle-node bifur-
cation, as for the unstable fixed point discussed in section 4.1.
Depending on the parameter regime, warming the system
when both unstable fixed points exist can cause either of the
unstable fixed points to be annihilated (see section 5.2). In
parameter regimes such as that plotted in Figure 8b, as the
climate is warmed from an ice-covered state (black circle in
blue-shaded region), a series of two saddle-node bifurcations
cause a stable seasonally ice-free fixed point to appear along
with the unstable fixed point associated with Scenario IV
and then to disappear along with the other unstable fixed
point. This is represented in Figure 8b by a shift in the
Poincaré map from the lower dashed curve to the solid curve
and then to the upper dashed curve. The black circle in the
blue-shaded region remains during these bifurcations, and
hence the new seasonally ice-free stable fixed point is never
visited during a warming scenario in the absence of an

external forcing driving ~E to the warmer fixed point. In other

Figure 8. Poincaré maps and ~E(~t) trajectories. (a) Poincaré map with default parameter values except
~Lm = 0.98 (solid curve). Stable and unstable fixed points are indicated by filled and open circles,
respectively. Poincaré maps for a slightly warmer climate (~Lm = 0.92) and slightly colder climate
(~Lm = 1.20) are included as dashed curves. Shading is as described in Figure 4b. (b) Same as Figure 8a
but with ~f = 0.94, ~ha = 0, and ~Lm = 1.04; dashed curves have ~Lm = 1.03 and ~Lm = 1.07. Initial
conditions slightly warmer and colder than the unstable fixed point on the left-hand side are indicated
by small green circles. (c) One-year trajectories of ~E associated with the green circles in Figure 8b.
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parameter regimes, the left-hand region of the solid curve

in Figure 8b with ~En+1 ! En < 0, rather than the right-hand
region, rises above zero in response to warming. In these
regimes, warming the climate leads to a point where the
unstable fixed point merges with the perennial ice cover
fixed point and the system abruptly transitions to seasonally
ice-free conditions, demonstrating behavior consistent with
Scenario IV. Further warming in these regimes causes an
abrupt transition from seasonally ice-free conditions to
annually ice-free conditions when the seasonally ice-free
stable fixed point merges with the remaining unstable fixed
point in a saddle-node bifurcation (see section 5.2).
[57] As discussed in section 5.2, the unstable fixed point

associated with Scenario IV occurs when the albedo tran-

sition is sharp (varying ~ha) or when the seasonal cycle is

shifted such that the crest of ~E (~t ) crosses zero near the

summer solstice (varying ~f). In Figures 8b and 8c, we use
a parameter regime that maximizes both of these factors.
[58] The unstable fixed point associated with Scenario IV

depends crucially on the shape of the crest of ~E(~t). Because
not all points in a spatially varying representation of the
climate have the same ice thickness, and hence they do not
all reach zero at the same moment, the unstable fixed point
associated with Scenario IV appears to be an artifact of
a single-column representation. Specifically, this analysis
implies that it would not occur in a representation that
includes spatial variability in sea ice thickness. This unstable
fixed point may coincide with the instability that is found by
Abbot et al. [2011] to give rise to a tipping point during the
transition from perennial to seasonal ice cover under some
cloud feedback regimes.

5. Range of Possibilities

[59] In order to determine what controls which of the four
scenarios in Figure 6 occurs in the toy model, we investi-
gate the parameter dependence. The full range of solutions
to the system (9)–(11) occupies a 9-dimensional parameter
space (Table 1). Since the four bifurcation scenarios con-
sidered here (Figure 1) all occur during warming, we
examine 2-dimensional planes of the parameter space by

varying ~Lm concurrently with each one of the other 8 para-
meters. Hence we address the question how the system
would respond to forced warming if any one of the para-
meters were different from its default value.
[60] Figure 9 indicates what stable fixed points occur

when the parameters are varied. Each point in each panel of
Figure 9 represents a single point in the model parameter
space. For each point, a Poincaré map is numerically gen-

erated for the range !8 < ~En < 8 and fixed points are iden-
tified. In some instances, a phase offset is used in the 1-year
integrations when this is found to give a smoother numerical
solution. Blue, red, and gray shading in Figure 9 represents
regions with a stable fixed point corresponding to a steady
state seasonal cycle with perennial ice, seasonally ice-free con-
ditions, or annually ice-free conditions, respectively. Multiple
states, and hence unstable fixed points, occur where shading
of different colors overlaps. The bifurcation curves marking
the edges of these parameter regions are drawn in black. The
white regions in Figure 9 have ice thicker than the 50 m
lower limit of the range of the Poincaré map. Note that all

parameter regimes plotted in Figure 9 have no more than
one stable fixed point of each of the three colored types.
[61] A green dot is included in each panel of Figure 9 to

indicate the default parameter regime. Hence Figures 9a–9h
all have identical behavior along the vertical line (not drawn)
that passes through the green dot, which represents variations

in ~Lm with all other parameters at default values. The over-
lapping colors along this vertical line indicate Scenario II, as
expected for the default parameter regime (section 3). This
can be seen by comparison with Figure 6: in Scenario II,

some values of ~Lm have stable fixed points in both gray and

blue regions and other values of ~Lm have stable fixed points
in both gray and red regions (with fixed points in gray regions
occurring above the plotted range). Hence vertical lines in
Figure 9 that have both gray overlapping with blue and gray
overlapping with red indicate Scenario II. Vertical lines in
Figure 9 with no overlapping colors indicate Scenario I,
vertical lines with only gray and blue overlapping indicate
Scenario III, and vertical lines with red and blue overlapping
indicate Scenario IV.
[62] There is a single area in each panel of Figures 9a–9h

that has gray overlapping red or blue. This implies that the
8 parameter planes plotted in Figures 9a–9h represent slices
of a single continuous 9-dimensional hyper-volume of the
parameter space in which this unstable fixed point occurs.
Hence all instances of Scenario II and III in the toy model
are expected to be due to a single physical mechanism,
namely the mechanism discussed in section 4.1 above.
[63] Overlap between red and blue shading (indicating

Scenario IV) occurs in only a small area of the parameter

surfaces explored here, occurring when ~ha < 0.01 in

Figure 9h and when !0.14 < ~f < 0.01 in Figure 9f (note that
~f is defined modulo 1). The slices of parameter space plotted
in Figure 9 do not allow us to distinguish whether this
unstable fixed point in Figure 9h is connected to that in
Figure 9f. In order to address this, two additional planes of
the parameter space which connect the relevant regions of
Figure 9f and Figure 9h are plotted in Figure 10. The first
parameter plane (Figure 10a) connects the vertical line in

Figure 9h (~ha = 0.001, ~f = 0.15) to an intermediate param-

eter region (~ha = 0.001, ~f = 0.94). The second parameter
plane (Figure 10b) connects this intermediate region with the

vertical line in Figure 9f (~ha = 0.08, ~f = 0.94). The results
plotted in Figure 10 indicate that the points where red and
blue overlap in Figures 9h and 9f are indeed connected in the
parameter space, and hence that they both represent the same
unstable state which occurs in a single continuous hyper-
volume of the parameter space and is expected to be governed
by the single physical mechanism discussed in section 4.2
above. Figure 10 also implies that the detailed structure of
the panels in Figure 9 and the widths of the unstable regions
in Figure 6 depend on the default parameter values.
[64] In most regions of the parameter space plotted in

Figures 9 and 10 where the unstable fixed point associated
with Scenario IV occurs (red overlapping with blue), the
unstable fixed point associated with Scenarios II and III also
occurs (gray overlapping with red or blue); a small region of
Figure 10b is the exception. Hence in these regions of the
parameter space there are 3 stable fixed points and 2 unsta-
ble fixed points, and any of the 5 associated steady state
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seasonal cycle solutions are possible depending on the initial
condition.

5.1. Scenarios I, II, and III

[65] Here we examine the occurrence of gray overlapping
with red or blue in Figure 9, which determines whether
Scenario I, II, or III occurs. In order to understand the
physical mechanisms controlling the parameter dependen-
cies in Figure 9, we also consider how the annual-mean
model state depends on the parameter values (Figure 11).
5.1.1. Size of Albedo Jump ( ~Da)
[66] The range of physical factors controlling the size of

the unstable state associated with Scenarios II and III can be
understood by primarily considering only Figures 9g and

11g. Decreasing the albedo jump ( ~Da) makes perennial ice
solutions absorb more solar radiation and hence have
thinner ice, and it makes annually ice-free solutions absorb
less solar radiation and hence have colder ocean

temperatures (Figure 11g). This is favorable to seasonally
ice-free conditions because it enhances the thinning of the
ice and the cooling of the ocean, promoting transitions
between the two regimes (increased red area in Figure 9g).
It is not conducive to multiple states and hence unstable
fixed points because it is discourages the coexistence of
ice-covered and ice-free solutions under the same forcing
(decreased region of overlap in Figure 9g).
[67] Hence as the albedo jump ( ~Da) is decreased, the

region of instability decreases, going from Scenario III
(where there is no red region, and the system jumps
from blue to gray, on the right-hand side of Figure 9g) to
Scenario II (where there is a small instance of bistability
over the transition from red to gray) to Scenario I (where
the system transitions continuously from red to gray on the

left-hand side of Figure 9g). Note that the albedo jump ~Da

depends physically on many factors including snow cover

Figure 9. Classes of stable fixed points and bifurcation curves under varied parameters. For each point in
each panel, a one-year Poincaré map is generated for the range !8 < ~En < 8 and the fixed points are iden-
tified. Stable fixed points representing perennial ice, seasonally ice-free conditions, and annually ice-free
conditions are identified by blue, red, and gray shading, respectively. Regions with multiple stable fixed
points are indicated by overlapping shades, and the bifurcation curves marking the edges of these regions
are indicated by black curves. Dimensionless parameters in the vertical and horizontal axis labels in each
panel are as defined in Table 1, except in Figure 9i where the results of the EW09 model are plotted using
ranges of the EW09 dimensional parameters equivalent to the toy model dimensionless parameter ranges
plotted in Figure 9h. Note that the upward direction on the vertical axis corresponds to warmer climates
and lower values of ~Lm. White areas indicate points where the coldest initial condition leads to further
cooling, implying ice thicker than the 50 m limit of the range considered here. The green dot in each panel
indicates the default parameter regime. Each panel includes 100 equally spaced values of ~Lm and 60
equally spaced values of a second model parameter.
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and the age of the ice, as well as clouds which influence
the planetary albedo.
[68] Similar arguments can be applied to each of the other

parameters: in all panels of Figures 9 and 11, parameter
shifts that cause thinner perennial ice or colder ice-free
ocean temperatures (lighter shades of red and blue in
Figure 11) make the system more conducive to seasonally
ice-free solutions (larger red region in Figure 9) and less
conducive to instability (smaller overlap region in Figure 9).
5.1.2. Smoothness of Albedo Jump (~ha)
[69] Increasing the value of ~ha reduces the difference in

albedo between thin ice and open water near the melting

point, and hence it is analogous to decreasing ~Da. It leads to

annual-mean values of ~E that are nearer to zero (Figure 11h),

but unlike a decrease in ~Da, it has this effect only when ~E is

near zero. Nonetheless, because this is the range of ~E that
is relevant to the transition between ice and open water,

increasing ~ha leads to a larger region with stable seasonally
ice-free solutions and a smaller region with bistability. The

parameter ~ha is meant to characterize both the dependence
of albedo on the thickness of bare ice in a given location
[e.g., Weller, 1972] and the influence of spatial variability
on the relationship between the spatial-mean surface albedo
and spatial-mean surface enthalpy.
5.1.3. Temperature Dependence of Surface Flux (~B)
and Scale Thickness (~z )
[70] The Planck feedback is controlled by the dimensional

parameter B, which is part of the dimensionless parameters
~B and ~z . Ice-free solutions are not influenced by ~z (upper
region of Figures 9b and 11b), whereas ice-covered solutions

Figure 11. Annual-mean model state under varied parameters. The panels are as described in Figure 9,
with the green dot indicating the default parameter regime. For each point in each panel, the annual-
mean value of ~E associated with the coldest stable fixed point is plotted.

Figure 10. Planes of the parameter space connecting the regions where blue and red shading overlaps in
Figures 9f and 9h. (a) Same as Figure 9f but with ~ha = 0.001. (b) Same as Figure 9h but with ~f = 0.94.
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are not influenced by ~B because the system (9)–(11) does

not depend on ~B when ~E < 0 (lower region of Figures 9a
and 11a).
[71] According to equation (14), the annual-mean value of

~E for ice-free solutions is inversely proportional to ~B. Hence

larger values of ~B make the ice-free ocean temperature
colder. This leads to a larger region with stable seasonally
ice-free solutions and a smaller region with bistability. The
dimensional parameter B depends physically on the myriad
factors which control the climate sensitivity, which is equal

to 1/B. The dimensionless parameter ~B also depends on the
ocean mixed layer depth, and hence the results in Figure 9a
are consistent with the finding by Björk and Söderkvist
[2002] that a shallow mixed layer promotes solutions with
stable seasonal ice.
[72] For ice-covered solutions, hi/z becomes larger when z

is decreased and hence ice of thickness hi grows more slowly
during winter (see section 2.2), leading to solutions with

thinner ice (Figure 11b). Hence small values of ~z have an

effect on the ~E < 0 region of Figure 11b analogous to the

effect of large values of ~B on the ~E > 0 region. Note that both
of these scenarios are associated with an increase in the

dimensional parameter B. In Figure 9b, smaller values of ~z
are associated with larger regions with stable seasonally
ice-free solutions and smaller regions with bistability. The

parameter ~z is proportional to the sea ice thermal conduc-
tivity (ki), the latent heat of fusion Li, and the climate sen-
sitivity (1/B). The presence of leads makes the ice more

conductive, increasing ~z and thereby leading to thicker ice.
The presence of snow decreases thermal conductivity and

hence ~z , leading to thinner ice [cf. Notz, 2009], although
the additional degree of freedom associated with varying
snow thickness could plausibly cause a substantial change in
the bifurcation structure.
5.1.4. Basal Heat Flux (~FB)
[73] An increase in ~FB when ~E > 0 has the same effect as

an equal decrease in ~Lm, since in this regime ~FB ! ~Lm may be
written as a single parameter in equation (14). However, sea

ice is more sensitive to heating from below (~FB) than from

above (~Lm). This is because heating the surface (increasing ~A)
leads to warmer wintertime surface temperatures and hence
some of the heating perturbation is lost to surface radiation

(~B~T ). Heating the base (increasing ~FB), by contrast, does
not directly influence the surface temperature, so all of the
heating perturbation goes into inhibiting ice growth in
equation (9). The influence of perturbations to both the sur-

face and basal fluxes (~A → ~A + d~A, ~FB→ ~FB + d ~FB) on the

evolution of ~E during ice-covered winter (~E < 0, ~A < 0) can
be written, from equations (9) and (11), as

dd~E

d~t
¼ d~A 1!

~E

~z

! "!1

þ dFB: ð17Þ

This illustrates the greater efficacy of basal heating compared

with surface heating. During summer (~A > 0), however, the
surface temperature is fixed at the melting point, and heating
from above and below both have an equal effect on the

amount of summer sea ice melt in equations (9)–(11). Hence

the annual effect of an increase in ~FB is to thin the ice more
than ice-free solutions are warmed (Figure 11c), which leads
to a regime more conducive to stable seasonally ice-free
conditions and less conducive to bistability (Figure 9c). The

rate of basal heating (~FB) is associated with heat flux con-
vergence driven by ocean currents and the stability of the
upper ocean, as well as factors including the velocity of upper
ocean currents relative to the sea ice.
5.1.5. Seasonal Amplitude (~Sa and ~La)
[74] Figures 11d and 11e illustrate nonlinear rectification

of the seasonal cycle when sea ice is present. An increase in
~Sa or ~La leads to both more summer heating and more winter
cooling. During summer, however, the Planck feedback is
inactive because the temperature in equation (11) is fixed at
the melting point. Hence all of the additional summer heat-

ing leads to increased ice ablation (d~E/d~t ), whereas the
additional winter cooling is divided between increased ice
growth and decreased surface longwave radiation associated

with the Planck feedback (~B~T ), leading to annual-mean
thinning. This may help explain why sea ice thickness in the
single-column model of Bitz et al. [1996] was more sensitive
to forcing in summer than in winter. A further implication is
that this mechanism governing the thermodynamic response
of sea ice to the amplitude of the seasonal cycle of the
forcing may help explain the nonlinear response of sea ice in
climate models to orbital precession, which is typically
attributed instead to the surface albedo feedback [Jackson
and Broccoli, 2003; Tuenter et al., 2005].
[75] When the system is ice-free, by contrast, the equa-

tions are linear and hence the annual-mean value of ~E does

not depend on ~S a or ~La (Figures 11d and 11e). Thinner ice
and unchanged ocean temperatures lead to a larger parameter
region with stable seasonally ice-free conditions and a
smaller parameter region with bistability, as discussed
above. In addition, a simple linear system such as the toy
model with only the Planck feedback (dashed line in the
panels of Figure 7) would also have a larger region with

seasonally ice-free solutions when ~Sa or ~La is increased

because the seasonal cycle in ~E would be larger and hence

would cross ~E = 0 in a larger range of climates.
[76] A number of previous studies have identified multiple

sea ice states in annual-mean representations of the climate.
Thorndike [1999] found multiple states in a minimalistic
annual-mean model of two interacting columns, and Gildor
and Tziperman [2001] and Sayag et al. [2004] found mul-
tiple sea ice states in a box model with several and then
many grid points in the meridional direction. Simulations
with an atmospheric GCM with annual-mean forcing above
a thermodynamic ocean mixed layer with sea ice were also
suggested to demonstrate multiple states [Langen and
Alexeev, 2004], although it should be noted that the GCM
results (their Figure 2) appear to possibly violate the “slope-
stability theorem” for multiple sea ice states [Cahalan and
North, 1979], and further inquiry may be merited.
Figures 9d and 9e illustrate that, at least in the toy model
used here, multiple states occur over a larger range of
parameters when the seasonal cycle amplitude is smaller,
and hence multiple sea ice states may be considerably more
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prone to occur in annual-mean representations of climate
than in more realistic seasonally varying representations.
5.1.6. Seasonal Phase (~f)
[77] The phase shift between the shortwave and longwave

forcing components is varied in Figures 9f and 11f. When ~f
is decreased to 0 from the default value of 0.15, the ampli-
tude of the total seasonal forcing, which is a superposition of
shortwave and longwave components, increases. The effect

of this is to increase the range of values of ~Lm with stable
seasonally ice-free solutions and to decrease the range with

multiple states, analogous to increasing ~Sa or ~La. When ~f is
increased to 0.5, the two components of the forcing are
exactly out of phase with each other, leading to a minimum

amplitude of variability in the forcing. If ~Lm ≥ (1 ! ~"a)(1 +
~Sa) ! ~La = 0.70, ~A remains negative throughout the year,
causing there to be no ice ablation, and hence the ice thick-

ness grows without bound. The parameters ~Sa, ~La, and ~f are
influenced by factors including latitude, cloud feedbacks,
water vapor, and meridional atmospheric energy transport.

5.2. Scenario IV

[78] The unstable fixed point associated with Scenario IV
requires a strong destabilizing surface albedo feedback on
the left edge of the seasonally ice-free region of the Poincaré
map (positive slope in Figures 7d and 8b). This is influenced
primarily by the phase lag between shortwave and longwave

forcing (~f) and the smoothness of the albedo transition (~ha).
[79] The phase lag (Figure 9f) influences the strength of

the shortwave forcing during the ice-free portion of the year.

In the default parameter regime, the model state ~E lags
behind the shortwave forcing. When the system is warmed
such that a transition to seasonally ice-free conditions
occurs, the surface albedo changes during autumn, when
solar radiation is weak, and there is only a modest change in
surface forcing. Shifting the longwave forcing to an earlier

phase causes the seasonal cycle in ~E to be earlier, thereby
causing the change in surface albedo associated with the loss
of the summer minimum ice cover to occur at a time nearer
the summer solstice (see Figure 8c). This causes a larger
destabilizing albedo feedback associated with the initial
transition from perennial to seasonal ice conditions.
[80] A small value of ~ha sharpens the albedo feedback

and thereby promotes instability (Figure 9h). Hence either a

sharp albedo transition or an early seasonal cycle in ~E (~t )
promote the occurrence of Scenario IV.

5.3. Comparison With EW09

[81] The parameter sensitivity in the EW09 model is
included in Figures 9 and 11 for comparison. The behavior
of the toy model presented here is qualitatively equivalent to
the EW09 model when the albedo transition smoothness and
surface heating are varied (compare Figures 9h and 11h with
Figures 9i and 11i), although quantitative differences exist.
[82] The presence of the unstable state associated with

Scenario IV, which occurs near the left edge of Figure 9i, is
lacking from Figure S4 of the online supplement to EW09
because these narrowly separated solutions were not picked
up within the precision of the numerical solver used in
EW09 in this small area of the parameter space. We note that

this does not affect the central message of EW09. In this
study, we have addressed this by using an implicit variable
order solver in addition to a Runge–Kutta solver.

6. Discussion and Conclusions

[83] In summary, previous studies using single-column
models and GCMs have produced the range of results
described by Scenarios I-IV in Figure 1. We used a skeletal
toy model to show that all of these scenarios are possible
when the parameters are varied broadly as an analogy to
varying the physical processes represented in the model. We
found that depending on the parameter regime, bistability
can occur in the large range described by Scenario III (as
in the results of Thorndike [1992] and Muller-Stoffels and
Wackerbauer [2011]), in the smaller range described by
Scenario II (as in the results of Winton [2006, 2008],
Eisenman and Wettlaufer [2009], and Björk and Söderkvist
[2002]), or not at all following Scenario I (as in the results
ofWinton [2006, 2008] and Armour et al. [2011]). Parameter
shifts that make ice thinner or ocean temperatures colder
under a given climate forcing were shown to make the range
of climates with bistability smaller and the range with sea-
sonal ice larger, thereby determining whether Scenario I, II,
or III occurs. We argued that Scenario IV (as in the results of
Abbot et al. [2011], Merryfield et al. [2008], and Flato and
Brown [1996]) occurs as an artifact of the single-column
representation. The aim of this study was to build under-
standing of the fundamental processes governing the bifur-
cation structure of sea ice loss in the absence of spatial
variability and motion.
[84] Although many aspects of the toy model used in this

study are analogous to a column in a GCM, it is possible that
sea ice threshold behavior would occur in GCMs due to the
myriad other processes represented in GCMs that are not
included in the toy model. For example, in the framework
of this toy model, dynamic ice motion is expected to make
ice thinner in cold climates by exporting ice from the polar
region while leaving ocean temperatures in warm ice-free
climates unaffected, thereby making the system more prone
to stable seasonally ice-free conditions and less prone to
bistability. However, the additional degrees of freedom
associated with sea ice motion are not represented in the
framework of this toy model. Hibler et al. [2006] found that
a gridded model of sea ice circulation in the Arctic basin
with narrow outlet passages under perpetual winter forcing
produces multiple flow states. One stable state has thin ice
and rapid ice export and the other stable state has an arch
of nearly stationary thick ice blocking outflow through the
passages. Hence the complex effects of sea ice motion,
which are not included in the toy model used here, could
plausibly play an important role in determining the bifurca-
tion structure of sea ice retreat in GCMs.
[85] Nonetheless, the results of this study provide a

framework for speculation about mechanisms underlying
GCM simulation results. Winton [2006] found evidence that
one GCM (MPI ECHAM5) simulated results consistent with
Scenario II whereas another GCM (NCAR CCSM3) simu-
lated results consistent with Scenario I. A separate study
with CCSM3 yielded consistent results [Armour et al.,
2011], but the key difference between the two GCMs has
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remained elusive. We can crudely consider each GCM as a
collection of single columns in a specific parameter regime

with variations in ~Lm providing an analogy to both latitude
and greenhouse forcing. The results presented here suggest
that because CCSM3 is less prone to bistability than
ECHAM5, it should be described by a toy model parameter
regime that has thinner ice and colder ocean temperatures,
and hence it should allow a stable seasonal sea ice cover in a

wider range of values of ~Lm. Indeed, comparing the simu-
lated mean seasonal cycles of Northern Hemisphere sea ice
area in the two GCMs under forcing representing years
1900–2000 (using data from Eisenman et al. [2011]), we
find that the amplitude is 40% larger in CCSM3. In other
words, CCSM3 has 40% more area with a seasonal sea ice
cover than ECHAM5 during the simulated 20th century,
implying that CCSM3 is considerably more favorable to
seasonal ice. This implies that if we only had the 20th cen-
tury simulation results from the two GCMs, based on the
results presented in this study we would predict that
ECHAM5 is more prone to bistability, and hence more
likely to simulate Scenario II rather than Scenario I in
response to extreme warming, than CCSM3. This may help
shed light on the differences between the two models that are
responsible for their differing projections of sea ice stability
in a warming world, thereby constraining which is more
realistic. In particular, although the application of this toy
model to the interpretation of GCMs must be treated cau-
tiously, the results presented here suggest that the differing
projections may be due to processes or parameter values that
cause ECHAM5 to simulate thicker ice or warmer ice-free
sea surface temperatures than CCSM3.
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