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ABSTRACT

Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western
United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and
increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to
influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along
reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling
establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in
the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge
Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led
to large numbers of germinants (first-year seedlings) appearing each year at all sites. The regulated flow in the upper
Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings
survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of
1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa
River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but
survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper
40 cm of the alluvium was fine-textured. Our studies of rooting depths and the stable isotopic composition of xylem
water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become
phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining
effects of shade and competition supported the hypothesis that insufficient soil moisture, possibly in combination with
insufficient light, restricts establishment to unvegetated sites. Collectively, the demographic and experimental studies
suggest that, in arid regions, soil water availability is at least as important as light level in limiting establishment of
Fremont cottonwood seedlings. We hypothesize that in cases where arid land rivers experience large spring stage
changes, recruitment is further constrained within bare areas to those sites that contain sufficient fine-textured
alluvium, saturated during the spring flood, to provide the flood-derived soil moisture normally necessary for
late-summer seedling survival. Copyright © 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

The structure, functioning, and dynamics of floodplain ecosystems are determined in part by stream flows
and fluvial processes that influence site hydrologic and geomorphic conditions, and in part by ecological
processes that influence the patterns of species colonization, competition, and succession (Johnson et al.,
1976; Hupp and Osterkamp, 1996). Sediment erosion and deposition during periods of high flow are of
particular importance because these processes both destroy and create seedbeds, thereby linking fluvial
and ecological processes (Campbell and Green, 1968; Hupp and Osterkamp, 1996; Scott et al., 1996).
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In many temperate and boreal regions of North America, the primary colonizers of mineral soil
surfaces exposed by receding floodwaters are species of Populus (cottonwood) and Salix (willow). The
ecological significance of cottonwood is especially great in arid regions of western and southwestern
North America because in most areas no native replacement tree species exists (Rood and Mahoney,
1990). Our understanding of cottonwood autecology varies among the three dominant taxa present in this
region, narrow-leaf cottonwood (P. angustifolia James), plains cottonwood (P. deltoides Marshall subsp.
monilifera (Aiton) Eckenwalder), and Fremont cottonwood (P. deltoides Marshall subsp. wislizenii
(Watson) Eckenwalder), with Fremont cottonwood probably being least known (nomenclature follows
Weber and Whittman, 1996). It is recognized that cottonwood recruitment involves multiple factors
(Rood and Mahoney, 1993; Busch and Smith, 1995), and most likely varies with geomorphic setting and
channel type (Scott et al., 1996; Friedman et al., 1997). Recruitment processes on free flowing river
systems remain incompletely understood for even the most studied species. For example, cottonwood
seedling establishment has been reported to result primarily from large, relatively infrequent floods
(Everitt, 1968; Scott et al., 1997). However, large floods may result in stage changes greater than 2–3 m
with seedlings establishing in relatively high landscape positions (Scott et al., 1997). Because seedlings are
intolerant of dry soils, rapid water table declines (\4–6 mm/day) can leave seedlings far above the late
summer water table and lead to seedling death (Mahoney and Rood, 1991, 1992; Segelquist et al., 1993).
Thus, the mechanism of seedling establishment on rivers with large stage change is unclear.

Cottonwood seedlings are reported to be shade intolerant (Read, 1958; Braatne et al., 1996; Scott et al.,
1996). Studies of rooted stem cuttings of eastern cohorts of plains cottonwood indicate that plants can
attain approximately 80 and 60% of their maximum net photosynthetic rate (Pn) in approximately 50 and
25%, respectively, of full sun (Regehr et al., 1975; Bassman and Zwier, 1991). However, physiological
studies of cottonwood seedlings have not been performed and thus it is unclear if cottonwood seedlings
on western rivers can attain similarly high photosynthetic rates in shaded environments. The rooted
cuttings were also sensitive to soil water availability, with stomatal closure and the cessation of
photosynthesis at twig xylem pressure potentials (Qxp) of between −1.10 and −1.25 MPa (Regehr et al.,
1975; Bassman and Zwier, 1991), and 80–90% loss of xylem hydraulic conductivity occurring at Qxp of
−1.5 to −2.0 MPa (Tyree et al., 1994). It is unclear whether reduction of sunlight or reduction of soil
water availability by neighbors has a greater influence on seedling survival.

The apparent correlation between flow modification of the major rivers of interior western North
America and the limited cottonwood recruitment now found along them (Colorado River: Busch and
Smith, 1995; Rio Grande: Howe and Knopf, 1991; Missouri River: Johnson et al., 1976; Reily and
Johnson, 1982; Gila River: Fenner et al., 1985; Oldman River: Rood and Mahoney, 1990; Marias River:
Rood and Mahoney, 1995) strongly suggests that regulation may be a causative factor (Johnson et al.,
1976; Williams and Wolman, 1984; Braatne et al., 1996). River regulation by high dams and water
diversions typically reduces both annual maximum or peak flow (Andrews, 1986; Stanford and Ward,
1991) and sediment load (Andrews, 1986, 1991), raises annual low or base flow (Williams and Wolman,
1984), and modifies the rate of flood stage decline. Resultant modifications in hydrologic and fluvial
processes could potentially affect every stage in the recruitment process, from quantity and quality of seed
rain to the growth and survivorship of seedlings. They could also indirectly affect the recruitment process
through direct affects on herbivore or competitor populations. The widespread invasion of a competitor,
tamarisk (Tamarix ramosissima Ledebour), into western riparian systems further complicates establish-
ment of cause-and-effect linkages between river regulation and declines in cottonwood recruitment
(Turner, 1974).

We utilized field studies conducted at paired floodplain sites along the unregulated Yampa River and
regulated Green River to examine seed rain, and the requirements for Fremont cottonwood seedling
establishment (defined by us to be survival through the first three growing seasons). The rivers studied are
large (typical peak annual discharges of 300–500 m3/s), have sand beds, and in their unregulated
condition, feature annual stage changes of 2–3 m. The goal of this paper is to address five primary
questions: (1) What are the natural patterns of seedling establishment on regulated and unregulated
rivers? (2) What is the effect of shade on cottonwood seedling survival? (3) What is the effect of
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competition from tamarisk on cottonwood seedling survival? (4) Is cottonwood seedling survival linked to
taproots reaching the late summer water table or capillary fringe? (5) Is soil texture an important
determinant of cottonwood seedling survival?

THE STUDY REACHES

Our studies were conducted on floodplains of the Green and Yampa Rivers, above and below their
confluence in northwestern Colorado (Figure 1). The Green River originates in the Wind River Range in
west central Wyoming and flows generally southward to its confluence with the Colorado River in Utah.
The Green River is regulated by two high dams: Flaming Gorge, completed in 1962, and Fontanelle, a
smaller, upstream structure completed in 1964. Releases from Flaming Gorge Reservoir, which began to

Figure 1. Locations of the three main study areas in Colorado and Utah: Island Park (IP), Deer Lodge Park (DLP), and Brown’s
Park (BP). Locations of USGS stream gauges used in the study are also shown, as is Echo Park (EP) at the confluence of the Yampa

and Green Rivers
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fill in December 1962, almost completely determine flows in the Green for 102 km, until its confluence
with the Yampa River. The extent of river regulation in the Colorado River and Green River systems are
reviewed by Stanford and Ward (1986) and Stanford (1993).

The Yampa River originates in the Park Range and White River Plateau in north central Colorado and
is the last major tributary of the Colorado River that remains largely unregulated. There are three small
headwater dams within its basin, and a total of about 10% of the annual flow is diverted for municipal
or agricultural use.

Two of our three study sites, Brown’s Park and Deer Lodge Park are along reaches that were quite
similar in geomorphic, hydrologic, and ecological setting prior to river regulation. The Brown’s Park site
(BP) is in Brown’s Park National Wildlife Refuge, along the highly regulated segment of the Green River,
63 km below Flaming Gorge Dam (see Figure 1). Deer Lodge Park (DLP) is on the unregulated Yampa
River, 50 km above its confluence with the Green and below the last major tributary of the Yampa River,
the Little Snake River. The third site, Island Park (IP) is on the Green River, 15 km below the confluence
with the Yampa. The geomorphic and ecological setting at IP is similar to that of the upstream sites, but
its hydrologic regime features an intermediate level of regulation. Both DLP and IP are located in
Dinosaur National Monument. The elevations at DLP, BP, and IP are approximately 1705, 1630, and
1510 m, respectively. The river channel is unconfined within each study reach, meandering across thick,
generally fine-textured alluvium (B2 mm). We also worked in Echo Park (EP), at the confluence of the
Yampa and Green Rivers.

Long-term discharge data for these reaches are available from USGS gauging stations (Figure 1). We
used the Linwood, UT gauge (c09225500) to represent BP flows from 1929 to 1962, when this station
was inundated by the filling of Flaming Gorge Reservoir. We used data from the Greendale, UT gauge
(c09234500), located just below the dam, for 1963 to present. For DLP, we summed discharges of the
Yampa River at Maybell, CO (gauge c09251000) and the Little Snake River at Lily Park, CO (gauge
c09260000). Both of these gauges have continuous data from 1922 to present. For the combined flow of
the Yampa and Green Rivers at IP, we used data from Jensen, UT (1947 to present, gauge c09261000).

The Green and Yampa Rivers both have snowmelt driven peak flows, and their hydrographs prior to
1963 were similar. Mean annual discharges on the two rivers were 54.6 and 58.1 m3/s, respectively, and
are not significantly different. Historic Green River peak flows averaged 80% of the Yampa’s, and
typically occurred about 2 weeks later than the Yampa peak. There was no significant difference between
the mean peak annual discharge of the Yampa at DLP for the periods 1922–1962 and 1963–1995. In
contrast, mean peak annual discharge of the Green River was significantly lower during the 1963–1995
post-Flaming Gorge Dam period at both BP and IP. DLP and IP had similar peaks in 1993 (498 and 566
m3/s, respectively) and 1995 (519 and 527 m3/s), reflecting the large contribution of the Yampa to peak
discharge of the Green at IP.

Annual flow variation (calculated as peak flow divided by low flow for a given year) averaged �33 in
BP and �100 in DLP prior to 1963. Current Green River flow variation is approximately 5–6. The two
rivers have distinctive patterns of stage dynamics (Figure 2). During 1993–1995, river stage in DLP varied
by 1.8–2.9 m, and occurred during the 6–8 weeks between late May and late July or early August (Figure
2). The analogous stage decline was only �0.7 m in BP where peak stage was similar in both magnitude
and duration (�1 month) each year (Figure 2). We also regularly monitored floodplain water table depth
in hand-bored wells cased with slotted PVC pipe. We related water table elevation to river stage by
developing rating curves using staff gauges we installed in our study areas and United States Geological
Survey (USGS) daily average discharge data.

Both the Yampa River and the pre-dam Green River carried large sediment loads. The mean annual
sediment load for the Yampa River at its mouth, the Green River in Brown’s Park, and the Green River
at the Jensen gauge (downstream from Island Park, see Figure 1) were 1.5, 3.3, and 6.3×106 tons/year,
respectively, prior to 1962. Since 1963, sediment load within the BP reach has been reduced to input from
a few small tributaries. The sediment load at the Jensen gauge has been decreased by 54% due to sediment
retention in Flaming Gorge Reservoir (Andrews, 1986).

Copyright © 1999 John Wiley & Sons, Ltd. Regul. Ri6ers: Res. Mgmt. 15: 419–440 (1999)



COTTONWOOD SEEDLING ESTABLISHMENT 423

Figure 2. Daily mean stage for the period October 1993 to October 1995 for the Yampa River in Deer Lodge Park (DLP) and the
Green River in Brown’s Park (BP). The periods of seed rain for DLP and BP (1994 and 1995) are shown as horizontal arrows. Stage

was calculated from USGS daily mean discharge data, and the rating curve generated from our stage measurements

Climatic conditions at the three sites are similar, based on daily precipitation and temperature data
from US National Weather Service stations at Maybell, CO (located 20 km east of DLP), Brown’s Park,
CO (located �5 km from BP), and Jensen, UT (located �15 km southwest of IP). Long-term mean
annual precipitation for Maybell, Brown’s Park, and Jensen are 284, 209 and 199 mm, respectively. On
the average, approximately 1/12th of the annual mean precipitation fell during each of the four growing
season months (June–September). A critical dry period occurred during the summer of 1994 when less
than 10 mm of rain fell during June and July (B20% of the long-term mean), and essentially no rain fell
during July.

METHODS

Patterns of Fremont cottonwood and tamarisk seedling establishment

We determined the period of cottonwood and tamarisk seed dispersal by observation during 1993 (IP)
and 1994 (DLP and BP). In 1995, we quantified cottonwood seed rain in BP and DLP using eight traps
in each area. The traps were oriented in two lines parallel with the river and located in areas where
seedlings could potential establish. Traps were 400-cm2 boards, coated with Tanglefoot© and mounted
horizontally 1 m above the soil surface. We removed seeds and reset traps every 4–15 days from early
June (prior to seed release) through mid-August, by which time all capsules had opened. We determined
the period of tamarisk seed dispersal in 1995 by monitoring ten tamarisk plants in the area of the seed
traps in both BP and DLP.

We evaluated the causes and magnitude of mortality among natural cohorts of Fremont cottonwood
seedlings by monitoring the fates of nearly 5000 seedlings contained in 139 permanent plots, 0.25 m2 in
size, distributed among the DLP, BP and IP study areas. Plots were selected to represent the full range
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of geomorphic and hydrologic conditions present in these study areas. Most (90) plots were established to
monitor members of the 1993 cohort. We censused live seedlings within each plot periodically each
summer during 1993–1995. No plot was protected from herbivores. Seedling survival was evaluated
separately in each study area, with plots grouped by establishment date. We assigned cause of death into
one of four possible categories: inundation, channel erosion, bank sloughing, and desiccation. Channel
erosion or bank sloughing was determined by the loss of the plot substrate, desiccation by the presence
of dead dry seedlings, and inundation, by dead seedlings in seasonally or semi-permanently saturated
soils.

To evaluate the importance of stage decline rate and water table depth on the survival of cottonwood
germinants, we established two 60-m long transects in DLP in 1995 (D95-1, and D95-2), running from the
mature cottonwood forest edge across the topographic gradient of the unvegetated floodplain toward the
river. These transects were located in the inside bend of meanders across sites with active sediment
deposition. We placed permanent 10×10-cm plots at 1-m intervals along each transect and censused the
live cottonwood germinants present in the plots in late July, and again in mid-September. Plot surface
elevation above the late summer base flow water table and soil texture were determined by surveying and
the hydrometer method, for plots (n=60) containing germinants. We pooled plot data from both
transects for analysis using logistic regression to model fates (death or survival) of individual germinants
within each plot (N=774 plants) over the monitoring period. Stepwise regression (Steinberg and Colla,
1991) was used to derive a model relating probability of death to position along the elevation gradient
(variable ELEV, distance above base flow stage elevation, in centimeters), percentages of SILT and
CLAY in plot surface soils (1–10 cm depth), initial plant density (JUL95), and mid-September gravimet-
ric surface soil water content expressed as a percent (MOIST).

We tested whether cottonwood germinants rooted to the late-summer water table using morphologic
(rooting depth) and topographic data (elevation above the late summer water table). We measured
maximum first year rooting depths by carefully excavating 64 germinants (1995 and 1996 cohorts) from
DLP sites spanning the full range of elevations and landforms where germinants had survived through
early September.

Determination of xylem water sources

We directly determined the source of water used by cottonwoods from stable isotope analyses of
ground water, soil water, and xylem water. Because of their greater atomic mass, water molecules
containing deuterium, a stable isotope of hydrogen, are enriched in water exposed to evaporation. Thus,
both unsaturated soil water and summer precipitation contain a higher relative amount of deuterium than
does ground water recharged by the river, furnishing a basis for determining whole plant water sources
using free water extracted from plant tissues (Flanagan and Ehleringer, 1991; Dawson 1993). We collected
fully suberized stem samples from plants that were 2, 4, 8–12, 20–25, and 90+ years old in late August
1996 at DLP; age was determined by ring counts of stems sectioned just above the germination surface.
No 3-year-old plants (1994 seedling cohort) occur at this site. Because stems of germinants (1996 cohort)
were not yet suberized, we collected the top 5 cm of the taproot. Each sample of germinant tissue
contained the taproots of 12 individuals. Unsaturated soil water was obtained from soil collected at a
10–35 cm depth at sites where plants were collected. Samples of ground water were collected by pumping
from monitoring wells that were generally within 10 m of each sample location. We calculated the isotope
ratio relative to that of a standard, dD, as:

dD (‰)= [(D/H)sample/(D/H)standard−1]×1000,

using Standard Mean Ocean Water (SMOW) as our standard (Dawson, 1993). Hydrogen isotope ratios
were determined by Mountain Mass Spectroscopy (Evergreen, CO), using cryogenic distillation methods
with liquid nitrogen to trap water from soil and plant samples, and zinc as a catalyst in hydrogen
reduction of all water samples (Ehleringer and Osmond, 1989).
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The effects of competition from older cohorts on cottonwood seedling establishment

We assessed the effect of previously established cottonwoods on cottonwood germinant survivorship in
a mensurative experiment using paired plots established on 36 fluvial landform features. These features,
located at DLP and Echo Park (EP), represented the full range of sites where cottonwood germinants
survived to mid-September during 1995 and 1996. A 1-m2 plot containing live germinants was established
at a representative location on each landform. On landforms where living or dead germinants were present
both on bare soil and beneath a canopy of older cottonwoods (generally 2–15 years old), a plot was
established in each area. Germinants were censused and their heights measured in early September.

We determined the surface elevation of each plot relative to the river at base flow stage, documented
the underlying soil stratigraphy, and collected samples from each soil horizon for analysis of texture and
water content. We determined gravimetric soil water content for each soil horizon on landforms examined
in 1995, whereas both gravimetric and volumetric samples were collected during 1996 that allowed the
determination of both gravimetric and volumetric water contents. Because soil samples collected in 1995
and 1996 had similar texture and gravimetric water content, the volumetric water content of 1995 samples
was estimated by tabular comparison with 1996 samples. Soil matric potential for each sample was
calculated from soil texture and volumetric water content using the procedures in van Genuchten et al.
(1989).

Effects of shade on seedling establishment

Three shade experiments addressed whether a reduction of photosynthetically active radiation (PAR)
would negatively and differentially affect cottonwood or tamarisk seedling survival. We shaded seedlings
using screen canopies with open sides in 1993, and canopies with both screen tops and sides in 1994 and
1995. In all experiments, we measured sunlight reaching seedlings as PAR (Li-Cor Model 189) relative to
that of full sun on a cloudless mid-summer day. Seedlings were grown from local seed and transplanted
into the field when approximately 1 month old. The seedlings are used as phytometers (Clements, 1935)
to measure the effect of shade on plants of identical age, health and stature. However, we did not control
for, or measure, potential changes in air or soil temperature due to our shading; shade/temperature
interactions were considered in interpretation of results.

Experiment 1. We tested for an effect of shade on the survival of cottonwood seedlings under natural
field conditions using a completely randomized experimental design. We established five replicates of each
of four treatments (55, 30, 17 and 4% of full sun) plus a control on 400-cm2 plots arranged in a grid on
a freshly exposed sediment bar in IP. The bar was leveled to ensure that all plots were a similar distance
above the water table (�1 m in late summer). Twelve, 1-month-old seedlings were transplanted in a
regular array in each plot in mid-July 1993, and revisited in September 1993 and in May and August 1994.
We tested for a relationship between shade and the proportion of seedlings surviving to each census using
logistic regression (SAS Proc GENMOD, SAS Institute, 1992).

Experiment 2. We tested for an effect of shade on cottonwood and tamarisk seedlings grown from seed
in situ at a field site where abundant soil water was provided by sprinkler irrigation. We created 20 pairs
of adjacent 400-cm2 plots in a grid pattern on a newly exposed sediment bar in DLP and transplanted 15
cottonwood seedlings into one plot and 15 tamarisk seedlings into the other in July 1994. We randomly
assigned the paired plots to generate five replicates each of three shade treatments (69, 40 and 17% of full
sun) plus controls, using a completely randomized block design. All plots received water three times daily
(�1.8 cm/day total) until mid-August, when watering was stopped. The water table was 143 cm beneath
the bar surface in early September 1994. Survival in plots at the end of the watering period, and 1 month
after watering ceased was determined. We analysed data as in Experiment 1.

Experiment 3. We tested for an effect of shade and intraspecific competition on naturally established
cottonwood seedlings by placing shade canopies over �3-week-old cottonwood germinants in DLP in
late July 1995. Five replicate pairs of 400-cm2 plots were established for each of three shade treatments
(69, 40 or 17% of full sun), plus a control. We thinned one plot from each pair to a density (r) of ten
seedlings/plot (=250 individuals/m2), whereas the other plot retained its original seedling density
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(r=1073 individuals/m2; S.D.=196.7; n=20). Because no location could accommodate all 40 plots, we
established five sets of four plots each, one of each treatment plus a control, at different locations (LOC)
within a 0.01-ha area. Plots were revisited after 1.5 months. We analysed data as in Experiment 1.

Effects of competition with tamarisk on cottonwood seedling establishment
Experiment 4. We tested the effects of an adult tamarisk overstory (2–4 m tall) on the survival of

transplanted 1-month-old cottonwood seedlings. We transplanted 15 seedlings into each of fifteen 400-cm2

plots established under tamarisk and assigned five plots to each of two treatments plus a control.
Treatment A consisted of pruning the tamarisk canopy at ground level to eliminate competition for light.
Treatment B consisted of canopy pruning plus trenching the plot perimeter to sever horizontal roots in the
top 40 cm of soil and reduce soil water acquisition by neighboring plants. Plots were created in July 1993
and revisited in September 1993, and in May and August 1994. We tested for differences in proportions
of survivors using chi-square analysis.

Experiment 5. We tested for an effect of interspecific competition from tamarisk seedlings on survival
of cottonwood seedlings. The treatment consisted of transplanting 15 cottonwood seedlings (�1 month
old) into dense beds of naturally occurring tamarisk seedlings (�5000 individuals/m2), and was replicated
in three plots in IP in 1993. We removed, by hand, all tamarisk seedlings in one control plot. Removal
caused only slight disturbance to the soil surface and no effort was made to duplicate the soil disturbance
in the treatment plots. We monitored fates of the transplanted seedlings through September 1994.

Soil stratigraphy of flu6ial features supporting emergent, seedling, and established cottonwoods

We excavated trenches across each of the 36 fluvial landform features used in the analysis of
cottonwood germinant survival to analyse soil stratigraphy. We used regression analysis to relate the
density of germinants surviving to mid-September to the total thickness of loam-textured soil layers
(sandy loam, loam and silty loam) within the rooting zone (0–45-cm depth). We also excavated a trench
through an infrequently flooded terrace supporting mature Fremont cottonwood trees in order to examine
soil stratigraphy and evaluate landforms on which the trees established.

RESULTS

Patterns of Fremont cottonwood and tamarisk seedling establishment

The 1993 cottonwood seed rain, which was monitored solely in IP, began in mid-June (Figure 2). In
1994, seed rain in DLP began in early June, just after the Yampa River reached peak stage, and continued
through the entire period of stage decline. In 1995, seed rain in DLP began in late June (Figure 3). Seed
rain began somewhat later in BP than in DLP in both 1994 and 1995 (Figures 2 and 3), but lasted a
similar length of time, 4–6 weeks. The maximum mean rate of seedfall in 1995 was higher in DLP, 362
seeds/m2/day, than that recorded in BP, 70 seeds/m2/day (Figure 3). Seed rain generally coincided with the
declining limb of the spring hydrograph at DLP and IP, but to a lesser extent at BP due to flow
regulation. Seed rain in BP during 1995 began during the second stage peak of the Green River, when all
river bars in BP were inundated. When stage had declined sufficiently to reveal bars (early August),
cottonwood seed rain was nearly complete, although tamarisk seed dispersal was at its peak.

Tamarisk seed dispersal began after cottonwood in all sites and years (Figures 2 and 3). In 1995
tamarisk seed dispersal began in early to mid-July during the period of maximum cottonwood seed release
in DLP and BP and continued until mid-September. Overlap of seed release resulted in the formation of
mixed cottonwood and tamarisk seedling stands in many locations in all study areas.

During all four summers of fieldwork (1993–1996), large numbers of cottonwood germinants estab-
lished on the DLP floodplain as floodwaters receded. Germinants were also common at BP and IP during
those years. In BP, successful germination was restricted primarily to islands and steep cut-banks, the only
areas with moist surface soils. More than 93% of the monitored 1993 cottonwood germinants at DLP and
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77% of those at IP died within a few months of germination (Table I). Survivorship through the first
growing season was only slightly higher at BP (88% mortality, sites pooled). Survivorship over winter
1993–1994 was high, but survivorship through the 1994 growing season was again low (0.29 for DLP,
0.12 for IP; sets pooled: Table I), which included a 5 week long mid-summer rainless period. None of the
monitored members of the 1993 cohort survived through their third growing season (i.e. to September
1995) in BP, and only 4% (61 of 1251 seedlings) survived in DLP (Table I). The DLP survivors were
concentrated in four plots, all of which were located on surfaces \185 cm above river base flow stage.

The causes of seedling mortality varied among the sites. In BP, 62.5% of the seedling mortality was due
to prolonged inundation during the growing season, whereas inundation caused no deaths at IP or DLP.
Germinants on BP banks were killed when banks saturated by higher stage failed (18.8%), a fate
uncommon at DLP (2.3%) and absent at IP, because relatively few germinants grew on banks. In DLP
and IP, seedling mortality was due primarily to desiccation (51.2 and 65.4%, respectively) during the first
or second growing season, or substrate erosion during high flow in the second growing season (46.5 and
34.6%, respectively).

The cohort of 1995 cottonwood germinants monitored along transects DL-1 and DL-2 at DLP emerged
on sites with surface elevations that varied from 100 to 225 cm above river base flow elevation. The
logistic model fit to the July-to-September survival data included soil moisture, soil texture and initial
density as independent variables [Logit (probability of dying)=3.78+ (1.33 MOIST)− (0.80 CLAY)−
(0.24 SILT)− (0.03 JUL95)]. p-values for these variables were all B0.025, and odds ratio values were all
significantly different from 1.00 (MOIST, 3.8; CLAY, 0.45; SILT, 0.78; JUL95, 0.97). The overall fit of
the model was satisfactory (McFadden’s r2=0.219). Thus, percentages of clay and silt, as well as initial

Figure 3. Density of cottonwood seed rain in Browns Park (BP, large solid circles) and Deer Lodge Park (DLP, large open circles)
during 1995. Values are means of eight traps and are plotted in the middle of the period sampled; bars show 91 S.E. Small squares
(coded as above) along the two horizontal dotted lines depict trap collection dates for each site. T1 and T2 indicate the period of

tamarisk seed rain in BP and DLP, respectively
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Table I. Survivorship in the 1993, 1994, and 1995 cohorts of cottonwood seedlings in Deer Lodge Park (DLP), Browns Park (BP) and Island Park (IP)

IPBPDLPDate

1994 1993 Cohort 19941993 Cohort 1993 Cohort1995
Cohort CohortCohort

Time 3 Site CSet A Site BSet A Site A Set ATime 1 Time 1 Time 2 Time 3Time 2
(n=6)(n=26) (n=30)(n=9) (n=2)(n=12) (n=9)(n=6)(n=12)(n=8)(n=8) (n=11)

1993
71.3 76.9 55.33–8 July 196.4151.0

(30.6)(20.9) (23.3) (48.5)(24.2)
10.0 5.3 9.396.5 44.810.5 92.026–7 September

(21.0)(2.1) (20.1)(8.5) (36.0)(3.4)(2.2)

1994
18–22 May 252.0 18.7 84.0 68.910.5 69.5

(14.3)(2.1) (6.4)(24.1) (32.0)(64.8)
8.6 84.015 June 65.3

(15.4)(4.2) (32.0)
0.0 339.76–7 July 45.5 174.0

(63.0)(19.9) (52.8)
81.557.7 0.071.0 1.839.0 0.0 4.7 4.42.014–18 August

(2.0)(17.4) (3.5)(18.5)(1.8)(41.3) (3.8)(29.2)

1995
707.519 July 0.0

(121.6)
12 August 419.7 0.0 0.00 — — —

(90.2)
5.130 September — 1.3

(2.4) (3.6)

Each column represents a group of seedlings from the same cohort followed through time. The uppermost value in a column is the mean count (expressed as seedlings/m2, with
standard error in parentheses) of seedlings initially present in a set of 0.25-m2 plots (n=number of plots) established at the same time. Subsequent values in a column are the
mean number of survivors in that set at the indicated date. Dates are bracketed to indicate the period during which sets were established or revisited. Note that within the 1993
cohort, sets are differentiated by both time of establishment (DLP and IP) and by site (BP).
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Figure 4. Densities of July germinants (open bars) and 1st-growing-season survivors (filled bars) of Fremont cottonwood seedlings
along a 60-m transect, DL-1, traversing a portion of the floodplain inundated in 1995 at Deer Lodge Park. The transect was oriented
perpendicular to the Yampa River, located to the right in the figure. No seedlings established at distances closer than 20 m to the
river. The wavy horizontal line depicts plot surface elevation relative to river stage at base flow. Transect DL-2 featured a very

similar pattern

plant density were positively associated with the proportion of germinant survival through the period.
Importantly, plot elevation above ground water was not a significant determinant of survivorship
probability. Germinant survival through mid-September was highest in areas 175 and 125 cm above river
base flow stage along transects DL-1 and DL-2, respectively (Figure 4).

Taproot lengths of Fremont cottonwood germinants at the end of the 1995 growing season in DLP
averaged 34.2 cm (n=64, S.D.=5.3). The maximum taproot length was 44.0 cm.

The stage decline rate at DLP averaged \3 cm/day for at least a 1-month period in each of 1993, 1994,
and 1995. In addition, a period of very rapid decline, \6 cm/day for \10 days, occurred in 1993 and
1995, and \5 cm/day for \14 days in 1994. Depth to the floodplain water table at DLP was tightly
coupled to river stage, with the value of the regression slope close to one (e.g. Well 20: Y= −29.267+
1.013X, r2=0.99, p=B0.001). Thus, the rate of ground water table decline in areas supporting
germinants is nearly identical to the rate of river stage decline.

Determination of xylem water sources

There was no significant difference in the mean deuterium isotopic ratio (dD) of soil water (−91.59
3.8) and sap water of either germinants (−86.7911.9) or 2-year-old seedlings (−91.594.6) (t-tests;
p\0.05) (Figure 5). Germinant and 2-year-old dD sap ratios differed significantly from mean values for
sap in plants \4 years old and ground water (−114.992.8) (pB0.05). The mean ratio for stem water
in plants \4 years old was not statistically different from that for ground water (p\0.05).

The effects of competition from older cohorts on seedling establishment

Germinant mortality was 100% under or immediately adjacent to older cottonwoods on bars and in
backwaters. Soils beneath isolated stands of live germinants had a higher gravimetric water content than
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Figure 5. Isotopic ratios in stem water in cottonwood trees of various ages and in water from unsaturated soil (Soil) and from
ground water (Water)

soil of similar texture collected at the same time (late August) from beneath cottonwood seedlings and
saplings established in previous years (Figure 6). Coarse-textured soils (sand and loamy sand) consistently
had moderately negative matric potentials and low volumetric water content, regardless of whether the
sample was obtained from beneath saplings or germinants (Table II). In contrast, the matric potential and
water content of sandy loam, loam and silt loam soils were significantly different beneath germinants and
saplings. The highest water content occurred in fine-textured layers (sandy loam, loam, and silt loam)
under germinants (Table II). Sites supporting live germinants in late summer had at least one soil layer
in the rooting zone that contained plant-available water (matric potential between 0 and −1.5 MPa),
whereas plant-available water was absent in the upper 45 cm of soils under saplings.

Figure 6. Regression analysis of percent gravimetric water content for each soil layer between 7- and 45-cm depth against percent
silt in that layer. Open circles are for layers in plots supporting only seedlings, filled circles are for layers in plots supporting an

overstory of existing woody plants
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Table II. Comparison of matric potential (MPa) and volumetric water content (cm3/cm3) of like-tex-
tured soils under cottonwood seedlings and sapling stands

Soil texture Under seedlings Under saplings

n Matric Volumetric n Matric Volumetric

Sand 32 −5.13 (17.46)a 3.74 (1.60)a 14 −8.27 (25.56) 3.44 (1.67)
Loamy sand 7 −2.76 (34.89)b 5.59 (2.66)a 5 −7.83 (8.59) 3.65 (1.85)
Sandy loam 20 −0.96 (2.27)c 15.99 (8.66)c 15 −285 (high) 5.55 (1.74)
Loam 4 −0.48 (0.31)c 27.33 (4.07)c 7 −538 (high) 7.27 (2.93)
Silt loam 9 −1.49 (0.62)c 14.75 (1.20)c 7 −1246 (high) 5.29 (2.05)

Values are means, with 1 S.D. in parentheses. Student’s t-tests were used to compare matric potential and volumetric
water content between seedling and sampling samples of the same soil texture.
a No significant difference, p\0.05.
b Different at pB0.05.
c Different at pB0.001.

The effects of shade on intra- and interspecific competition

The probability that a transplanted cottonwood seedling would survive through the first 10 months of
Experiment 1 was significantly related to the percentage of full sun (SUN) it received [logit (probability
of survival)= −2.055+ (0.0178 SUN); variable SUN: x2=6.71, p=0.01]. The shade dependence re-
mained significant through the August 1994 census (13 months; x2=8.97, p=0.003).

Shading had no detectable effect on survival of Experiment 2 transplants during the �4 week period
prior to the termination of irrigation. Survivorship was 100% in nearly all plots, including four of the five
plots receiving only 17% PAR. After irrigation ended, survival dropped dramatically in all plots. The
lowest values were for cottonwood (Table III).

Table III. Survivorship of cottonwood seedlings in experiments involving shade treatments
(replicates pooled)

Experiment Period Group Survivorship (Nf/No)

(%PAR) Cottonwood Tamarisk

100July 1993–May 1994 26/60=0.431
55 9/60=0.15
30 23/60=0.38
17 8/60=0.13

2/60=0.034

100 74/75=0.99 58/75=0.772 June/July 1994–August 1994
60/75=0.8073/75=0.9969(Irrigated)

40 75/75=1.00 66/75=0.88
17 69/75=0.92 70/75=0.93

Aug 1994–September 1994 100 20/74=0.27 53/58=0.91
69(Post-irrigation) 22/73=0.30 12/60=0.20
40 20/75=0.27 42/66=0.63

53/70=0.7632/69=0.4617

July 1995–September 1995 100-Thinned 17/50 =0.343
100-Unthinned 14/450=0.03

33/50 =0.6669-Thinned
69-Unthinned 40/515=0.08

26/50 =0.5240-Thinned
40-Unthinned 19/497=0.04
17-Thinned 17/50 =0.34
17-Unthinned 4/503=0.01

Tabulated survivorship values are given as Nf/No, where Nf is the final, and No the original population size.
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Figure 7. Mean (91 S.E.) number of cottonwood seedlings (out of 15 planted in July 1993) surviving under adult tamarisk in two
treatments (pruned, pruned and trenched) and control. Three overlapping periods are evaluated. Means with same letter are not

significantly different. Data from Experiment 5, conducted in the Island Park study area

The proportion of naturally established cottonwood seedlings surviving in unthinned plots was much
lower than in thinned plots (Experiment 3; Table III); however, the number of seedlings ultimately
surviving in thinned and unthinned plots was similar. The probability that a naturally growing cotton-
wood germinant in an unthinned plot would survive through the 6 weeks of Experiment 3 was
significantly related to its location on the floodplain (categorical variable LOC), but not to the percentage
of full sun (SUN) it received [logit (probability of survival)= −2.710+0.0115 SUN−0.438 LOC;
variable SUN: x2=2.1, p=0.15; variable LOC: x2=4.9, p=0.03]. Survivorship also appeared to be
independent of shade in plots thinned to 250 seedlings/m2 (variable SUN: x2=0.07, p=0.79).

Effects of tamarisk on seedling establishment

Cottonwood seedlings transplanted under adult tamarisk suffered higher mortality during their first
summer than those similarly planted but with the tamarisk canopy removed (Experiment 4: x2=14.1,
df=2, p=0.001) (Figure 7). Canopy removal plus trenching did not significantly increase cottonwood
seedling survival over canopy removal alone (x2=0.718, p=0.40). Although the higher survivorship was
still evident in May 1994, the effect of canopy removal was eventually masked by desiccation during the
drought of mid-summer 1994, which led to the death of all planted seedlings.

Cottonwood seedlings transplanted into dense beds of naturally established tamarisk seedlings had
lower survivorship than the control group transplanted into a plot cleared of tamarisk seedlings
(Experiment 5: x2=41.04; pB0.001). Through two summers (1993 and 1994), 11 of 15 (73.3%) of
cottonwood seedlings in the control group survived, compared with only two of 45 (4.4%) in treatments.

Soil stratigraphy of flu6ial features supporting cottonwoods

We found complex stratification of the underlying alluvial materials in all 36 fluvial features examined.
A representative transverse cross section through an accreting braid bar, backwater, and channel complex
in DLP is depicted in Figure 8. Braid bars are linear features formed on the channel margin where flow
splits into multiple channels. The bar shown in Figure 8 was cigar-shaped and �10 m long in 1995.
Saplings (�10 years old) grew on the upstream end and a stand of 3-year-old seedlings (the only
survivors of the 1993 cohort on the bar) occupied the middle section. At peak stage in 1995, floodwaters
were more than 1 m deep in the backwater and covered the bar.
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We sectioned the bar downstream of the 1993 cottonwoods, through a group of surviving germinants
(1995 cohort). The sediment texture 0.5–1.0 m below the bar surface was sand (Figure 8). A mound of
sandy loam sediment formed the core of the braid bar, most likely deposited where roughness, higher due
to the presence of �10- and 3-year-old plants, allowed fine sediments to settle out of suspension. A series
of vertically accreted deposits that varied in texture between loam and sand had raised the channel side
of the bar, and a series of silt loam, sandy loam, and sand deposits had raised the floor of the backwater.
Surface sediments on the bar were loam. Germinants had initially grown on all three of these landforms,
but they survived only on bar and backwater sediments, where loam textured layers occurred.

Germinant density on these 36 landforms was significantly related to the total thickness of loam-
textured soil layers (sandy loam, loam and silty loam) within the rooting zone (0–45-cm depth).
Germinants survived where loam layers \10 cm thick occurred in the upper 45 cm of soil, such as the
backwater and bar illustrated in Figure 8, whereas 100% mortality occurred in the channel areas.

A trench excavated across a relatively flat terrace supporting mature cottonwoods provided insight into
the long-term fate of cottonwoods established on braid bars. Floodwaters reached the top of the terrace
only four times in recent decades, in 1957, 1974, 1984, and 1997. Beneath a clay surface soil, we found
two well-developed braid bars composed of a 20–30 cm thick silt loam layer, separated by a channel
(Figure 9). A series of sections (slabs) taken from a cottonwood tree growing next to the trench indicated
that the �90-year-old tree had germinated on one of the braid bars (see right arrow on Figure 9). The
germination surface was located by identifying the slab with the highest ring count (Scott et al., 1997), and
the lowest slab with a pith. A second cottonwood along the trench with similar morphological
characteristics was not aged, but the root crown occurred at the same location on the other braid bar
surface. The germination surfaces of these two trees were �150–200 cm above the current late-summer
water table. The trees had survived the vertical accretion of more than 1 m of sediment, including �50
cm of loam, a thin bed of red sandy loam (probably derived from a flooding tributary), and 50 cm of clay
sediments.

DISCUSSION

Seed rain

Seed rain was abundant in all 3 years at all study sites, and does not appear to be restricting the
establishment of either Fremont cottonwood or tamarisk. Seeds were aerially dispersed across the full

Figure 8. Transverse cross section through a braid bar (B) at Deer Lodge Park depicting sediment stratigraphy. A backwater (BW)
borders the bar toward the upland, and by a channel (C) toward the river. Textures of layers are loam (L), silt loam (SiL), sandy

loam (SL), medium sand (MS), and sand (S)
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Figure 9. Stratigraphic cross section through part of a DLP terrace that currently supports mature cottonwoods. The profile was
oriented perpendicular to the river channel. Soil textures of layers are clay (C), loam (L), silt loam (SiL), sandy loam (SL), medium
sand (MS), and coarse sand (CS). Two cottonwoods had germinated on surfaces of well-developed braid bars, now buried, at

positions marked by arrows

range of moist floodplain surfaces and elevations exposed as floodwaters receded at DLP and IP (Figure
2). The 4–5 week duration of seed dispersal we noted was similar to that reported for cottonwood along
the San Pedro River in Arizona (Warren and Turner, 1975), and along the Rio Grande in New Mexico
(Everitt, 1980), but slightly shorter than that reported for plains cottonwood along the Platte River,
Nebraska (Johnson, 1994). The mean density of cottonwood seeds reaching the floodplain was much
greater in DLP than in BP (Figure 3), a difference we attribute to the presence of dense stands of young,
yet sexually mature cottonwood poles (ranging from 22 to 26 years old) at DLP. Seeds in BP are
produced solely by large, old trees that are widely scattered on high floodplain surfaces. The density of
seeds dispersing onto the DLP floodplain is higher than values reported for Fremont cottonwood along
the Salt, Gila and San Pedro Rivers in Arizona (Horton et al., 1960; Turner, 1974; Warren and Turner,
1975), but lower than values recorded for plains cottonwood along the Platte (Johnson, 1994). The
majority of germinants in DLP, BP, and IP originated from aerially dispersed seed falling on moist
substrate. The high densities we recorded, \500 seedlings/m2, have previously been associated primarily
with water dispersed seed (Craig and Malanson, 1993).

Overlap in the timing of cottonwood and tamarisk seed dispersal resulted in mixed seedling beds in all
study areas. However, because cottonwood seed dispersal begins earlier than tamarisk (Figure 2), the
timing of peak discharge from Flaming Gorge Dam can influence the composition of seedling beds in BP:
early summer peaks promote cottonwood establishment, whereas mid- to late-summer peaks promote
tamarisk establishment. Fenner et al. (1985) and Everitt (1995) also noted the relationship of flood peak
timing to seedbed composition along western US rivers.

Sur6i6al of natural seedling cohorts

Our results indicate that landscape position plays a strong role in cottonwood seedling survival.
Cottonwood germinants established in large numbers in all study areas, on the wet sediments of bars,
islands, backwaters, and banks, in years of low (1994) as well as high (1993 and 1995) peak discharges.
Survivorship through the first growing season, however, was extremely low at DLP and IP except in
previously unvegetated sites on particular landforms along the floodplain margin far from the late
summer and winter channel position. Where germinants survived their first growing season in low
topographic positions relative to late summer stage, they were likely to be scoured out and die as the
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channel bed was mobilized during the subsequent spring flood. Cottonwood seedlings that survived their
first few growing seasons at DLP, EP, or IP were located on the tops and sides of unvegetated vertically
accreting bars and backwaters with fine-textured soils, but not in the channels between braid bars, or on
broad point bars, a location often associated with successful establishment of plains cottonwood (Bradley
and Smith, 1986). The actively accreting bars and backwaters that supported 2- and 3-year-old cotton-
wood in DLP and IP were absent in BP. Cottonwood germinants in BP were restricted to islands and cut
banks where long-term survival was improbable given the long duration of soil saturation on islands and
the instability of annually sloughing vertical banks. Thick beds of Schoenoplectus lacustris, Bobloschoenus
pungens and other marsh vegetation on the islands attested to their wetland rather than riparian character
(Merritt, 1997) and consistently high water table. The limited range of stage change and lack of suitable
unvegetated, developing fluvial landforms in BP precluded natural cottonwood seedling establishment.

Most cottonwood seedling mortality in DLP and IP was attributable to either flood scouring or
desiccation. Sacchi and Price (1992) also considered soil moisture a key to Salix lasiolepis seedling survival
at a riparian site in northern Arizona. McBride and Strahan (1984) noted that 93% of Fremont
cottonwood seedlings on gravel bars along a California stream survived through summer if they were
located adjacent to surface water, whereas none survived where the late summer water table depth was
\1 m.

Fremont cottonwood seedling survival was not found to be dependent upon their maintaining contact
with the ground water. In DLP, IP, and EP cottonwood germinants initially established throughout a
wide elevation zone, but first summer survival occurred almost exclusively at elevations \125–250 cm
above base flow ground water elevations (Figure 4). Our isotopic analyses, and excavations of seedlings,
indicate that only 4+ -year-old cottonwoods have rooted to the depth of the late summer ground water
table.

Soil texture and cottonwood seedling sur6i6al

Free-flowing western rivers with large (\2 m) annual stage changes and large fine-textured suspended
sediment loads, such as the Yampa, create environmental opportunities for, and place constraints on,
cottonwood establishment fundamentally different from those on (1) regulated rivers with small (B1 m)
stage changes, (2) regulated or unregulated rivers with low sediment loads, or (3) river reaches with
primarily coarse-textured substrates. Large annual stage changes and a highly mobile sand bed limit
seedling survival to relatively stable sites in high landscape positions. These sites are typically far from the
winter channel and are unaffected by river ice flows. In contrast, the bars formed along cobble and gravel
bed river reaches are more stable than sand bed channels, and offer opportunities for seedling establish-
ment close to the channel.

The mechanisms that allow Fremont cottonwoods seedlings to survive high above the late-summer
water table in DLP for the 3–4 years necessary to become phreatophytic are, (1) the presence of fluvial
landforms containing layers of fine-textured sediment, (2) relatively high annual river stage, even in years
with average or below average peak discharge, and (3) the predictable occurrence of at least a small
amount of July and August precipitation. Our rating curve (relating discharge to stage) for DLP indicates
that a flow of 270 m3/s, which occurs in 4 years out of 5 (probability of occurrence=0.83), results in a
river stage 200 cm above late summer base flow stage, a height adequate to saturate soils on most
landforms supporting seedlings, even when seedlings initially establish on surfaces created during a large
flood such as occurred in 1995 (peak discharge of 519 m3/s, peak stage 277 cm above base). Peak flows
less than 170 m3/s, which still results in a stage 164 cm above base flow level, have occurred only three
times since 1922: in 1934, 1954 and 1977.

The importance of fine-textured sediment is due to its capacity to store more plant-available water than
sands (van Genuchten et al., 1989). Soil moisture derived from spring floods and depleted by growing
seedlings can only be replenished by summer precipitation. A drought during the mid-summer of 1994
resulted in the death of almost all seedlings planted in our 1993 experimental plots, as well as most natural
seedlings of the 1993 and 1994 cohorts. Thus, during a seedlings first 3–4 years of life, it is susceptible to
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drought induced mortality, regardless of landscape position. Once a seedling roots to the late summer
water table depth its probability of long-term survival becomes limited by biotic rather than abiotic
factors. Although erosion may have a role in survival after the 4th summer, herbivory and other biotic
factors become increasingly important (Andersen and Cooper, unpublished data).

Floodplains with primarily coarse-textured substrates have low water holding capacity, limiting
germinant survival to sites where they can maintain contact with the water table as stage declines (Rood
and Heinze-Milne, 1989; Mahoney and Rood, 1993; Stromberg, 1993; Braatne et al., 1996). Hupp and
Osterkamp (1996) suggest that along such reaches in arid and semi-arid regions the spatial pattern of
germination and initial seedling establishment is influenced by river surface flows (floods), whereas
ground water levels greatly influence seedling survival. On rivers with large stage changes, however,
germinants growing close enough to the channel elevation to reach the water table could be under \2 m
of water during most subsequent stage maxima, with a low probability of surviving sediment burial or
scouring (Hosner, 1957, 1960; Warren and Turner, 1975; McBride and Strahan, 1984). Everitt (1968) and
Scott et al. (1996, 1997) documented that plains cottonwood trees had established 2 m or higher above
river base flow elevation on the northern Great Plains, but neither study provided an explanation of how
seedlings could have survived there. Krasny et al. (1988) linked willow seedling survival and the texture
of the alluvial substrate on Alaskan floodplains.

Tamarisk and cottonwood seedling competition

The timing of cottonwood and tamarisk seed dispersal overlaps, resulting in mixed-species seedbeds in
many areas. We found that cottonwood seedling survival was low in dense tamarisk seedling beds. Our
1994 shade experiment in DLP indicated high survival of both cottonwood and tamarisk seedlings under
conditions of high soil moisture. When supplemental watering was ceased however, cottonwood survival
fell below that of tamarisk. Thus, we feel that Turner’s (1974) statement that tamarisk outcompetes native
vegetation must be qualified. Our results support Busch and Smith’s (1995) hypothesis that tamarisk,
because of its higher water use efficiency, will outcompete cottonwood when water is limiting.

Our field analyses of germinants on sites with and without older cottonwoods showed that soil water
was depleted under stands of saplings relative to soils supporting only germinants (Figure 6). These results
suggest that competition for water is a factor restricting Fremont cottonwood seedling establishment to
sites lacking existing plants. While cottonwoods \4 years old use ground water, they also likely deplete
soil water.

Shade and cottonwood seedling sur6i6al

We hypothesize that both intra- and interspecific competition effects on cottonwood seedlings are
manifested primarily through competition for soil water, and secondarily for light. Our experimental
studies indicate that Fremont cottonwood is more shade tolerant than previously reported (Read, 1958;
Strahan, 1984; Harris, 1987; Scott et al., 1996). Only the greatest reduction in PAR caused a significant
reduction in seedling survival in unwatered plots, and shade had no effect on survival in watered plots
(Table III). Heavy shade increased cottonwood seedling mortality in (a) unwatered plots, (b) dense plots
of cottonwood seedlings, and (c) plots under adult tamarisk, all situations in which competition for soil
moisture is high. Further testing of this hypothesis should include an analysis of interaction effects; shade
may limit root growth and reduce a seedling’s ability to acquire soil water, as has been shown for Salix
lasiolepis (Sacchi and Price, 1992) and plains cottonwood (Shafroth et al., 1995). Shade also changes soil
and air temperatures that could alter water use by plants.

Removal of an overstory tamarisk canopy resulted in a large increase in 1st-year cottonwood seedling
survival, as did canopy removal plus trenching (Figure 7). Both treatments increased light reaching
cottonwood seedlings and reduced the transpirative area, which could have increased soil water availabil-
ity to seedlings. Because we did not monitor soil water in Experiment 4 we cannot reject the hypothesis
that increased water availability, rather than increased light, improved seedling survival.
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Synthesis and management implications

The formation of fluvial features comprised of fine-textured sediments requires a supply of fine
sediment and backwater or slackwater areas for deposition of this material to occur. Obstructions to flow,
such as large woody debris, bedforms, or the stems of vegetation lead to a localized reduction in stream
power and the deposition of fine-textured sediment. When exposed, these fine-textured surfaces not only
provide adequate sites for germination, but also enhance survival through the first growing season due to
their higher water holding capacity. Our data suggest that, in the absence of older plants, soils with a
thickness of at least 10–15 cm of fine-textured layers within the top 40 cm of soil have sufficient water
holding capacity to support germinants through their first summer. Where seedlings persist through the
following year’s flood they increase hydraulic roughness, decrease velocity and result in vertical and
lateral accretion (Hadley, 1961; Smith, 1976; McBride and Strahan, 1984; Strahan, 1984; Hupp, 1992;
Johnson, 1994; Friedman et al., 1996; Hupp and Osterkamp, 1996) forming elongated bars that build
vertically and in a downstream direction. Fresh fine-textured sediment deposited in the lee of the bar each
year allows additional cohorts of cottonwood and tamarisk seedlings to establish, creating a patchy
landscape with small (1–20 m2) stands of relatively even-aged plants which decrease in age in a
downstream direction.

Fluvial complexes of bars, channels between bars, and backwaters develop and vertically accrete as a
unit. Eventually they are inundated by only the largest floods, which deposit fine-textured sediment,
burying the landforms, leveling the topography, and creating a superficially homogenous fluvial feature,
as illustrated by our high floodplain excavation (Figure 9) (Schumm and Lichty, 1963; Brice, 1964; Nadler
and Schumm, 1981). In our study areas, we also found areas where seedlings have established in
abandoned channels (in IP). Although fine-textured bars high above base flow stage appear to be the
primary sites for seedling establishment in our study sites, establishment also occurs in other areas where
fines are present.

Although the design of Flaming Gorge Dam allows for releases above power plant capacity, there is no
capability to restore fine-textured sediment now trapped in the reservoir to regulated reaches of the river.
Currently, Green River flows are managed primarily for endangered Colorado River fish, and annual
variability (including peak flow) is essentially constant from year to year. Seed bed soils are saturated for
much of the summer and are unsuitable for cottonwood establishment. Prescribed high flows in the range
of 185–245 m3/s could flood sparsely vegetated or mechanically cleared fluvial deposits that were formed
by pre-dam floods. These features could provide seedling beds for recruitment events, but once
cottonwood or tamarisk populates these surfaces further seedling establishment is unlikely until new, open
substrates become available through tree mortality, or are artificially created. Cottonwood seedlings
established by controlled floods will be dependent upon subsequent high flows during their 2nd and 3rd
growing seasons to provide soil moisture until taproots reach the late summer water table. A reservoir
release intended to establish cottonwood seedlings should be followed the next 2 years by flows with
similar peaks. Our data also suggest that dense tamarisk thickets preclude or hinder cottonwood
establishment by depleting soil moisture and creating shade. Tamarisk removal prior to a controlled flood
could facilitate cottonwood seedling establishment in existing tamarisk stands.
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