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Abstract

Background: Knowledge of population-level processes is essential to understanding the efficacy of selection

operating within a species. However, attempts at estimating effective population sizes (Ne) are particularly

challenging in bacteria due to their extremely large census populations sizes, varying rates of recombination and

arbitrary species boundaries.

Results: In this study, we estimated Ne for 153 species (152 bacteria and one archaeon) defined under a common

framework and found that ecological lifestyle and growth rate were major predictors of Ne; and that contrary to

theoretical expectations, Ne was unaffected by recombination rate. Additionally, we found that Ne shapes the
evolution and diversity of total gene repertoires of prokaryotic species.

Conclusion: Together, these results point to a new model of genome architecture evolution in prokaryotes, in

which pan-genome sizes, not individual genome sizes, are governed by drift-barrier evolution.
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Background

Population dynamics dictate the evolution of species, such

that organisms with large effective population sizes (Ne)

evolve under effective selection, preventing most deleteri-

ous alleles to reach fixation in the population, and those

with small Ne are more susceptible to genetic drift, whereby

alleles can sometimes reach fixation irrespective of their

adaptive value. Like other traits, the structure of genomes is

shaped by selection and drift, such that organisms with

smaller Ne accumulate weakly deleterious sequences, such

as mobile elements, intergenic DNA, and introns [1].

Conversely, in species with large Ne, deleterious sequences

have a low probability of reaching fixation through stochas-

tic processes and are eliminated by selection. Thus, the

genomes of species with large Ne would be expected to lack

slightly deleterious, non-functional sequences, and the

genomes of species with small population sizes would pos-

sess such sequences [1, 2]. For these reasons, Ne is thought

to be the main parameter driving the evolution of genome

size in eukaryotes and in bacteria [1–3].

Multiple parameters contribute to differences in Ne

across organisms. Naturally, census population size and

its fluctuation over time are the primary determinants of

Ne. Population substructure can reduce Ne through

non-random breeding in sexual species, such that Ne is

animals is largely governed by parental investment and

fecundity rather than geographic range or demographic

perturbations [4]. In contrast, the determinants of Ne

remain largely enigmatic for microbial organisms.

Whereas microbes often reach enormous census popula-

tion sizes, estimates of their effective populations sizes

are usually many orders of magnitude lower [5]. This

discrepancy between predicted and observed population

sizes suggests that demographic fluctuations and other

mechanisms contribute to the loss of a large part of their

genetic diversity.

Estimating the effective population sizes of bacterial

species has been considered problematic for several rea-

sons: (i) Genomic-based methods used to estimate Ne

rely on segregating alleles at neutral sites, but since

selection might potentially be acting on every nucleotide

position in bacterial genomes [6], identification of

strictly neutral sites is challenging. Moreover, the im-

print of selection is a time-dependent process [7], so Ne

estimates that consider any non-neutral sites must be
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adjusted for divergence time. (ii) Due to clonality and gen-

omic linkage, both background selection against deleteri-

ous alleles and selective sweeps of beneficial alleles result

in the loss of polymorphism. These processes, better

known as Hill-Robertson effects [8], are thought to

strongly impair most common estimators of Ne in asexual

or variably recombining organisms [9]. (iii) Ne estimates

depend on the population in question—typically entire

species—and the delineation of species boundaries in

bacteria has been fraught with difficulties [10].

In this study, we apply a standardized framework that

uniformly defines species borders to derive relative and

absolute estimates of Ne across Bacteria and Archaea.

We examine multiple traits that can potentially affect Ne

across a set of 153 prokaryotic species, and the relation-

ship between Ne and genome size and pan-genome size.

By further analyzing the relationship between drift and

population size on the complete gene repertoires of

bacterial species, we show that pan-genome size—rather

than absolute genome size—is likely shaped by the

effectiveness of selection across species.

Results
Variation of Ne across bacterial phyla and lifestyles

We based our estimates of effective population size on

two methods: dN/dS, which estimates the effectiveness

of selection and was used as a proxy for Ne in 153

species, and Watterson’s estimator, which was applied to

those 10 species whose mutation rates are available

[11, 12]. To ensure that comparisons of Ne were ro-

bust across taxa, we (i) defined species based on a uniform

set of criteria, (ii) computed dN/dS ratios on a common set

of universally distributed genes, and (iii) limited analyses to

a specific sequence-divergence interval. Both methods for

estimating effective population size yielded similar values

and indicated that Ne of most bacterial species is on the

order of 108–109. (Additional file 1: Table S1). Five species

displayed much lower Ne (Aggregatibacter actinomycetem-

comitans, Bordetella pertussis, Tropheryma whipplei and

Yersinia pestis), and of all species considered, Mycoplasma

pneumoniae had the smallest effective population size (Ne

= 3.8 × 106). Similar values were obtained for Ne when

computed from the entire core genome of each species or

Fig. 1 Variation in effective population size (Ne) across bacteria. The effective population size of each bacterial species is estimated from the

average dS/dN, normalized across species by considering a common set of universally distributed genes (outer circle) for strains within a species

whose divergence at synonymous sites were in the range of 0.1≤ dS≤ 0.3. Grey shading denotes those species that do not contain strains within

the considered divergence range of dS values. Bacterial lifestyles are indicated in the inner circle. The maximum likelihood tree was built on the

concatenate of prokaryote-universal proteins with one representative strain for each species. The scale bar indicates the substitution rate per site.

The major prokaryote clades are indicated in the tree (clockwise): A: Archaea, M: Mycoplasma, F: Fusobacteria, Ac: Actinobacteria, D:
Dehalococcoides, Cy: Cyanobacteria/Melainabacteria, S: Spirochaetia, C: Chlamydiae, B: Bacteroidetes/Chlorobi, δ/ε: Delta- and Epsilonproteobacteria, α:

Alphaproteobacteria, β: Betaproteobacteria, γ: Gammaproteobacteria
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from the 44 universally distributed genes (Additional file 1:

Table S1 and Additional file 2: Figure S1).

We tested the impact of phylogeny on Ne, testing

whether more closely related lineages yielded more similar

estimates of Ne. We built the phylogenetic tree of the 153

analyzed species (Fig. 1) and correlated phylogenetic dis-

tances (see Methods) with the dissimilarity in effective

population sizes, defined for each species pair as |Nei - Nej|

for species i and j, respectively. As evidenced by the high

scatter of points and low correlation coefficient (Add-

itional file 3: Figure S2), Ne is weakly but significantly pre-

dicted by the phylogenetic relationship of the different

species (Spearman’s rho = 0.17, P < 10− 15). More closely re-

lated species tend to exhibit more similar values of Ne;

however, closely related species often share similar life-

styles (Fig. 1), and there is a very strong association be-

tween species lifestyles and Ne (Figs. 1 and 2). For clarity,

we present results as dS/dN values—instead of the custom-

ary dN/dS values—because it scales positively with Ne, and

in each figure, the expected Ne values are extrapolated

from the dS/dN metrics. As expected, free-living bacteria

display the largest Ne, and obligate endosymbiotic bacteria

the smallest (Fig. 2 and Additional file 1: Table S1), while

commensals and obligate pathogens have intermediate

values. Similar results were obtained when dS/dN ratios

were based on the entire core genome of each species as

when limited to the set of universally distributed genes

(Additional file 1: Table S1 and Additional file 4: Figure

S3). Within each of the lifestyle categories, there is vari-

ation of Ne estimates suggesting that additional mecha-

nisms influence the range of Ne.

Maximal growth rate correlates negatively with Ne

Although the reported doubling times might not accur-

ately reflect the true growth rate of bacteria under natural

conditions, we observed a negative correlation between

the minimal doubling time of bacteria and Ne (Fig. 3a

Spearman’s rho = − 0.38, P < 10− 4, PIC correction). Note

that when doubling time correlates negatively with Ne, its

inverse (i.e., growth rate) must correlate positively with

Ne. Similar results were observed when Ne was estimated

on core genomes (Additional file 5: Figure S4, Spearman’s

rho = − 0.22, P < 0.05, PIC correction). The same, but not

significant, trend was found for the few species for which

we could estimate absolute estimates of Ne (Fig. 3b Spear-

man’s rho = − 0.59, P = 0.08). These results indicate that

those species capable of rapid growth typically have larger

effective population sizes.

Recombination has limited impact on Ne

Asexual organisms should display reduced effective

population sizes due to genomic linkage [9, 13], since

strongly linked genomes are expected to lose neutral

polymorphisms through background selection, hitchhik-

ing and/or Müller’s ratchet [8]. However, bacteria engage

in homologous recombination to varying degrees—ran-

ging from strictly clonal species to highly recombining

taxa [10, 14]—and the extent to which recombination ef-

fectively modulates the levels of bacterial polymorphisms

is unknown.

We tested how the scale of recombination, estimated

both by ClonalFrameML (r/m) [15] and by the ratio of

homoplasic to non-homoplasic alleles (h/m), [10] affects

estimates of Ne. Both methods for detecting recombin-

ation were highly correlated to one another (Add-

itional file 6: Figure S5A-B); however, h/m ratios are

much more consistent between the core genes and the

set of universal genes from the same species (Additional

file 6: Figure S5-D). With either metric, there is little if

any association between recombination rate and Ne

(Additional file 7: Figure S6).

Ne drives the evolution of the pan-genome

Previous analyses reported a strong negative association be-

tween the level of drift and bacterial genome size [3], and

we observe much the same trend (Fig. 4a): bacterial species

Fig. 2 Correlation between bacterial lifestyle and effective population

size. Ne values and lifestyles follow those presented in Fig. 1, with the

number of species in each lifestyle category indicated (need to change

the location of numbers to under lifestyle category). Plant pathogens

were not represented, since it was often unclear whether they were

obligate or facultative pathogens. ***P < 0.001, **P < 0.01, *P < 0.05,

Wilcoxon test
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with larger Ne (less subject to drift) have larger genome

sizes (Spearman’s rho = 0.30, P < 0.001, PIC correction).

The same result was obtained when dS/dN ratios are calcu-

lated from the core genomes (Additional file 8: Figure S7A,

Spearman’s rho = 0.32, P < 0.001, PIC correction) or based

on the absolute estimates of Ne (Fig. 4b, Spearman’s Rho =

0.77, P < 0.05). This positive relationship between Ne and

genome size persists when confining analyses to bacteria in

each of the lifestyle categories (free-living, commensals and

obligate pathogens) (Additional file 9: Figure S8); however,

the correlations no longer reach significance after PIC cor-

rection. These results are in line with previous studies [3],

supporting the view that the higher effectiveness of selec-

tion in bacteria with large population sizes is linked to lar-

ger genome sizes.

Prokaryote genomes are largely devoid of intergenic and

nonfunctional DNA, such that larger genomes are usually

enriched in functional accessory genes [16]. Pan-genome

size (i.e., the total number of genes encoded by a species

adjusted for strain number to allow comparisons across

species) correlates positively with Ne, as estimated both

from universally distributed genes (Fig. 4c, Spearman’s rho

= 0.48, P < 10− 8, PIC correction) and from core genomes

(Additional file 8: Figure S7B, Spearman’s rho = 0.48, P <

10− 7, PIC correction), and these correlations remain signifi-

cant after PIC correction for each major lifestyle category

(Additional file 10: Figure S9, Additional file 11: Table S2).

This correlation remained significant when the size of the

pan-genome was corrected for the number of strains by an

alternate method (Additional file 12: Figure S10, Spear-

man’s rho = 0.48, P < 10− 8, PIC correction). Pan-genome

sizes and average genome sizes are strongly correlated

(Additional file 13: Figure S11) making it difficult to

disentangle whether drift impacts the size of individual

bacterial genomes or drives the gene diversity of bacterial

species. However, the strength of the correlations between

Ne and pan-genome size are systematically better than

those between Ne and average genome size (Add-

itional file 11: Table S2), suggesting that pan-genome size—

rather than individual genome size—is being shaped by the

efficacy of selection.

Because we evaluated numerous features of bacterial

genomes and lifestyles, we performed several multivari-

ate analyses to characterize the interactions among all

the quantitative variables examined in this study. The

first two principal axes obtained in a principal compo-

nent analysis (PCA) of the variables represented 64% of

the variance, with PC1 associated with genome size,

pan-genome size, Ne, and GC-content (Additional file 14:

Table S3) and PC2 associated with the maximal growth

rate and the recombination rate (h/m). Similar results

were obtained when Ne was estimated on the core

genome (Additional file 14: Table S3) and when Ne was

estimated without restraining the set of strains based on

dS values (Additional file 14: Table S3). We then built

the matrix and corresponding network of correlations

across these quantitative variables (Additional file 14:

Table S3, Additional file 15: Figure S12), and again, Ne,

pan-genome size and genome size were strongly cor-

related (Additional file 14: Table S3, Additional file 15:

Figure S12). Furthermore, GC-content was strongly

correlated with genome size, weakly correlated with

pan-genome size and showed no association with Ne.

In sum, these analyses indicate that our different

estimates of Ne are systematically and most strongly

associated with pan-genome size.

A B

Fig. 3 Correlation between bacterial growth rate and effective population size. a. Correlation between estimates of Ne based on dS/dN (as

presented in Fig. 1) and growth rates (Spearman’s rho = − 0.38, P < 10− 4, PIC correction). b. Correlation between absolute estimates of Ne and
growth rates (Spearman’s rho = − 0.59, P = 0.08). Growth rates were defined as reported minimal doubling times (Additional file 19: Table S5)
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Fine-scale dynamics of genome evolution

As reported in previous studies, [3, 17], we show that

bacterial genes are typically lost by drift when selection

is relaxed. Since the evolution of bacterial genomes fre-

quently involves the loss and gain of multiple genes, we

hypothesized that events of gene loss would correspond

to episodes of more relaxed selection. To test this as-

sumption, we built a phylogenetic tree for each species

based on its core genome, and then estimated rates of

gene gains and gene losses along each branch using Count

[18]. For each branch, we calculated a rate of gene turn-

over T (defined as the ratio of the rate of gene gains

divided by the rate of gene losses) and a dS/dN ratio (see

Methods). We observed a positive correlation between

dS/dN and the rate of gene turnover for the vast majority

of species (Fig. 5a). This correlation reached significance

in 37% of species and in no cases did we observe a

significant negative correlation (Fig. 5b). Similar results

were obtained when inferring gene losses and gene gains

under different parameters (Additional file 16: Figure

S13). Species evolving under less efficient selection (i.e.,

those with lower dS/dN values) were those in which gene

losses outnumbered gene gains (T ≈ 0), whereas gene con-

tent was more stable or increased (T > > 0) in species

evolving under more effective selection (i.e., those with

higher dS/dN values). Together, these results suggest that

species subjected to stronger drift display a net loss of

genes and are unlikely to maintain a large pan-genome.

Discussion

The size and organization of bacterial genomes are gov-

erned by population-level processes dictating a need for

accurate estimates of effective population size (Ne).

However, estimating the effective population sizes of

A B

C D

Fig. 4 Correlation between effective population size, genome size and pan-genome size. a. Genome size vs. Ne. Genome size for a given species

was calculated as the average across all sequenced strains, and Ne was computed from the average dS/dN ratio determined for common set of

universally distributed genes (as described in Fig. 1 and Methods, Spearman’s rho = 0.30, P < 0.001, PIC correction). Colors indicate the life style of

each species: green: free-living, blue: commensal; red: obligate animal pathogen, light green: plant pathogen, purple: obligate intracellular. b

Genome size vs. absolute estimates of Ne (Spearman’s Rho = 0.77, P < 0.05). Genome size for a given species was calculated as the average across

all sequenced strains, and Ne was computed for the species with known mutation rates using Watterson’s estimator. c Pan-genome size vs. Ne.

Pan-genome size for a given species was calculated as the total number of protein families detected normalized by strain number, and Ne was
computed from the average dS/dN ratio determined for common set of universally distributed genes (Spearman’s rho = 0.48, P < 10− 8, PIC

correction). d Pan-genome size vs. absolute estimates of Ne
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microbial species has been notoriously difficult on

account of several factors—the enormous sizes of their

census populations, the variation in the amount of

recombination among lineages, and the constraints on

what constitutes a species.

Due to their size, asexuality and short generation times,

bacteria have tremendous potential for population growth

and can attain extremely large population numbers even

in very circumscribed environments. But because such

populations are typically founded by one or few individ-

uals, there are likely to be substantial differences between

the standing and the effective population sizes in most

bacterial species [9]. This disparity was initially noted by

those assessing the variation within natural populations of

E. coli [19, 20], and it is particularly evident when consid-

ering marine bacteria, which are the most abundant cellu-

lar organisms on the planet [5, 21]. Based on dN/dS

ratios, we estimated effective population sizes on the order

of 108 for Prochlorococcus marinus, whereas its census

populations may be upwards of 1013 [5]. This disparity

was also noted by Batut et al. (2015) [22], and several ex-

planations, including population substructure, frequent

selective sweeps and background selection, have all been

invoked to account for these discrepancies [9, 10, 20, 23].

We note that our analyses were restricted to the genomes

classified as Prochlorococcus marinus, whereas other stud-

ies have included all genomes typed to Prochlorococcus

when analyzing this “species” [5]. Defining species of Pro-

chlorococcus is particularly problematic and inconsistent

across studies, since this group represents a single species

based on 16S rRNA sequence (i.e., > 97% identity) but

comprises multiple species based on Average Nucleotide

identity (ANI), which can be as low as 66% [24]. Although

the classification of genomes into species should not be

based solely on 16S rRNA sequences, many genomic

studies ignore such guidelines or do not attempt to

characterize the taxonomic level of the studied popula-

tions, which hampers comparisons across studies. Aside

from the natural forces that might contribute to the rela-

tively small Ne of bacteria, it is also possible that Ne esti-

mates based on neutral variation are inaccurate because

synonymous sites are possibly under effectively stronger

selective constraints in very large populations [5].

In asexual microbes, genomic linkage can potentially

cause the loss of neutral variants through Hill-Robertson

effects, thereby reducing estimates of Ne [9, 13]. Because

recombination varies widely among microbial species [14],

sometimes approaching the levels of outcrossing, sexual

species [25–27], we predicted that Hill-Robertson effects

would be most evident in purely clonal species, which, in

turn, would have the smallest Ne. However, we detected no

significant effect of recombination rate on Ne despite the

theoretical predictions made for bacteria, and empirical

results observed in animals and plants [9, 13, 28–30]. The

absence of a relationship between recombination and Ne in

prokaryotes could result from relatively rapid changes in

Ne or rates of recombination over the evolutionary history

of a species, which would prevent us from capturing

long-term estimates of Ne and/or recombination rates by

analyzing the variation in contemporary populations.

A B

Fig. 5 Correlations between gene turnover and effective population size. a. Gene turnover, T, was defined as the rate of gene gains divided by

the rate of gene losses at each branch of each species tree. Rates of gene gains and losses were estimated using a posterior probability threshold

of 0.2. For each branch of the same species trees, the dS/dN ratio was estimated using CodeML (see Methods), and the Spearman’s correlation

between T and dS/dN ratios computed for each species. The distribution of the coefficient rho across species is represented. b. Species were

organized into three categories: those with a positive correlation between gene turnover T and dS/dN (top, Spearman’s correlation, P < 0.05);

those with no significant correlation between T and dS/dN (middle; Spearman’s correlation, P≥ 0.05); and those with a negative correlation

between T and dS/dN (bottom, Spearman’s correlation, P < 0.05)
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In animals, Ne increases with progeny size but is

poorly predicted by geographic range [4]. Similarly,

growth rate in bacteria, which is somewhat comparable

to progeny size of animals, can drive the evolution of

Ne, since fast growing bacteria can readily reach larger

population sizes. It also appears that the ecological niche

occupied by a given bacterial species can impose

constraints on their growth ability. Thus, the growth rate

and lifestyle of natural populations seem to be the

primary forces shaping Ne in microbial species.

The relationship between Ne and genome size in bac-

teria is well established: bacterial species with the smal-

lest effective population sizes are those with the smallest

and most compact genomes. For example, the small

genomes of pathogens and symbionts have usually been

considered to result from drift, imposed through the

repeated bottlenecks occurring during infection of new

hosts, which reduces the efficacy of selection [20]. This

causes the inactivation of many previously useful genes,

which erode and are eliminated by the overriding muta-

tional bias towards deletions, resulting in a small and

compact genome [3, 31].

Why does Ne drive the diversity of gene repertoires in

prokaryotic species? The most intuitive explanation stems

from the drift-barrier model, which was originally pro-

posed to explain how increased levels of drift render selec-

tion ineffective to modulate rates of mutations [32]. The

pan-genome of bacterial species consists mainly of

“accessory” genes, those harbored by relatively few strains

and not part of the essential core genome [16, 33]. Our

model predicts that lower Ne (i.e., higher levels of drift)

will increase the stochastic loss of accessory genes, espe-

cially those of little benefit to fitness. In this scenario, all

accessory genes are expected to be beneficial under some

conditions, and based on nearly-neutral theory, these

genes will be maintained only when their selection coeffi-

cients can overcome the intensity of drift (i.e, s > > 1/Ne)

[34]. As such, species with small Ne retain the most bene-

ficial accessory genes, whereas larger numbers of

accessory genes of more modest fitness contributions will

be conserved by selection in species with larger Ne. This

model is particularly relevant in prokaryotes, since

accessory genes can be exchanged across species boundar-

ies by horizontal gene transfer, thereby increasing the scale

and speed with which gene repertoires can increase.

Our model can potentially explain the discrepancy

observed in marine bacteria that have small genomes

(usually under 2 Mb) but are considered to have

extremely large population sizes [21]. Interestingly, the

pan-genomes of such taxa (e.g., Prochlorococcus) are

thought to be enormous, despite the small size of indi-

vidual genomes [5], which suggests that they adhere to

our drift-barrier model of pan-genome evolution. To

date, relatively few genomes are available for these taxa

and, more importantly, the taxonomy of these organisms

is highly debated, making it difficult to assign species

boundaries [24]. A more extensive analysis of these taxa

and their species borders would help elucidate this issue.

A key aspect of our model is the assumption that the

vast majority of genes in bacterial genomes are adaptive.

Multiple lines of evidence suggest that bacteria tend to

lose deleterious and neutral sequences very rapidly, as

evident from the very small amount of intergenic DNA,

pseudogenes, introns and mobile elements in prokary-

otes [35], and recent modelling further supports the

view that most accessory genes are beneficial [31].

Although mobile elements, such as temperate phages,

can represent a substantial fraction of bacterial

pan-genomes, these elements often carry beneficial func-

tions to their bacterial host and are conserved by purify-

ing selection [36]. That the vast majority of genes

constituting the pan-genome are beneficial does not mean

that each will be conserved by selection because genes

with small selection coefficients can be lost through drift.

As a consequence, the size of pan-genome is expected to

be a function of drift, and, therefore, of Ne.

Two recent publications have attempted to evaluate the

interplay between effective population size and

pan-genome size. The first detected a positive correlation

between genome polymorphism diversity and pan-genome

size [17], results that are in general agreement with our

conclusions; but this study derived estimates of Ne from

neutral polymorphisms, under the untested assumptions

that species’ borders are well defined and that mutation

rates did not deviate among species, which limits the

robustness of their findings. In contrast, the second study

hypothesized that pan-genome size resulted from the com-

bined effects of effective population size and the potential

for migration to new niches [37]. Although we show that

pan-genome size is largely consistent with a drift-barrier

model, the authors dismiss this alternative by presupposing

that pan-genomic sequences must be neutral in order to be

shaped by drift and that neutral sequences would be purged

from the pan-genome by the mutational bias towards dele-

tions. A more accurate interpretation of the impact of drift

on pan-genome size is that effective population size modu-

lates the efficacy of selection, thereby affecting the number

of genes that are effectively perceived as neutral (and elimi-

nated) and the number of genes that are retained by

selection (the pan-genome).

Our model of pan-genome evolution contends that the

vast majority of genes in a genome are maintained by

selection, because neutral and non-adaptive regions are

removed by the deletion bias inherent to bacterial

genomes [38, 39]. Recently, others have reasoned that a

neutral (or nearly-neutral) model of pan-genome

evolution is more parsimonious, since populations with

higher Ne are expected to sustain higher numbers of
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nearly-neutral alleles (i.e., nearly-neutral variants in gene

content) [36, 40, 41]. Along these lines, Vos et al. [41]

considered it unlikely that the entire pan-genome is

adaptive since mobile elements often constitute a large

part of the pan-genome [42]. However, close inspection

of mobile elements reveals that many encode prophages

[16], which mostly encode proteins involved in their

own replication and morphogenesis, but could help

bacteria eliminate competitors [43], and are maintained

by selection [36]. Other types of mobile elements can

expand briefly after reduction in Ne but most of them

are eventually eliminated by deletions [44]. Additionally,

if pan-genomes were guided by neutral evolution, those

species with higher Ne should also harbor large amounts

of other types of nearly-neutral sequences, such as inter-

genic DNA and pseudogenes, which is not the case. In

contrast, we do not observe an increase in the amount

of intergenic DNA with Ne (Additional file 17: Figure

S14), as estimated from dS/dN values and pseudogenes

are equitably rare in bacterial species on account of their

removal by deletions [45, 46].

Prokaryotic species possess genomes and pan-genomes

in which virtually all genes are maintained by selection,

such that species with larger effective population sizes sus-

tain larger pan-genomes. Additionally, the non-functional

regions within prokaryotic genomes are transient denizens

that are eventually purged by deletions. As such, strains

within a prokaryotic species can differ substantially in their

gene contents due to differential gene acquisition and loss.

In contrast, eukaryotic species display the opposite trend in

which less effective selection (i.e., lower Ne) is associated

with larger genomes, which expand through the accumula-

tion of non-coding and slightly deleterious DNA, such as

introns, mobile elements and intergenic DNA [2]. As a

result, differences in genome size among eukaryotes need

not be associated with changes in gene contents, and the

gene repertoire in all members of species are identical or

very nearly so. The processes underlying the disparate

trends of prokaryotes and eukaryotes are three-fold: first

and foremost is the pervasive mutational bias in prokary-

otes towards deletions, which rids genomes of

non-functional DNA even in species where selection is

abated; second is the limited ability of eukaryotes to gain

genes through horizontal gene transfer [47–49], which of-

fers prokaryotes rapid opportunities for changes in gene

contents and functional capabilities; and third is sexual

reproduction, in which conserved blocks of genes and

chromosome numbers are required for homologous ex-

change, thereby serving to homogenize genome contents

within eukaryotic species.

Conclusions
In this study, we provide estimates of Ne for a large set

of prokaryotic species, and show that Ne is shaped by

lifestyle and growth rate, but is not substantially

impacted by phylogenetic relationships or recombination

rates. We further show that the size of bacterial

pan-genomes, i.e., the total number of genes harbored

by a species, rather than the size of individual genomes,

is driven by Ne. Whereas recent publications have

debated whether the size of the pan-genome is driven by

adaptive or neutral processes, we propose that

pan-genome size is guided by drift-barrier evolution.

This model emphasizes that accessory genes of little

adaptive value (i.e., genes with low selection coefficients

s) are virtually neutral when drift dominates over selec-

tion and that such genes are eventually lost due to the

pervasive deletion bias occurring in prokaryotic

genomes. Since Ne determines the amount of genes that

are perceived as effectively neutral, species with large Ne

are able to retain larger gene pools than species with low

Ne.

Methods

Species sampling and strain classification

Based first on the species assignments and designations

at the NCBI website (ftp.ncbi.nlm.nih.gov/genomes/;

April 2016), we downloaded all bacterial and archaeal

species (n = 245) represented by at least 15 genome se-

quences. For each genome, we used HMMER v3.1b2

[50] to recover the set of 44 proteins reported as being

universally distributed in prokaryotes [51]. The best hit

of each protein in each strain (e-value < 10− 5) was con-

sidered a potential ortholog. Because several genomes

contain paralogs that might lead to the misidentification

of orthologs (such that the true ortholog is missing from

the genome but a paralog is present), for each of the

universally distributed homologs, we assembled for each

species the distribution of e-values of confirmed paralogs

(the second-or-higher best hit in each strain with an

e-value < 10− 5) and the distribution of e-values for

potential orthologs (the best hit in each strain). A poten-

tial ortholog was considered a true ortholog when its

e-valuelog was more similar to the median e-valuelog of

potential orthologs than to the mean e-valuelog of para-

logs. Strains in which we detected less than 42 univer-

sally distributed orthologs were excluded since they

likely represent incomplete assemblies. (In the case of

Mycoplasma, four missing proteins were tolerated since

it harbors a highly reduced genome.)

Each protein family was aligned with MAFFT v7 [52]

and transformed in silico into the corresponding nucleo-

tide sequences, and alignments were merged into a sin-

gle concatenate for each species. For each concatenate,

we computed the pairwise distances D using RAxML v8

under a GTR + Γ model [53]. Many species contained

multiple strains that were identical (or nearly so), so we

randomly excluded strains with very short evolutionary
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distances (D < 0.00005). After these procedures, all

named species represented by < 15 strains were excluded

from the analysis, and final dataset comprised 152 bac-

terial species and one archaeon.

Several individual species contained very large numbers

of sequenced strains (e.g., Escherichia coli, Mycobacterium

tuberculosis, Pseudomonas aeruginosa, Salmonella enterica,

Staphylococcus aureus and Streptococcus pneumoniae).

Those species with > 400 distinct strains were randomly

subsampled down to 400 strains. We then defined species

borders based on gene flow, as described in a previous

methodology [10]. A total of 44 species (29%) were rede-

fined, such that sexually isolated strains were removed

from the species. The list of included and excluded strains

for each species is detailed in Additional file 18: Table S4.

Phylogeny

We built a phylogenetic tree including the entire set of

species based on the sequences of the universally distrib-

uted proteins. For each species, we randomly selected

one strain from among those with the most complete

representation of the 44 proteins. Each set of universally

distributed orthologous proteins were aligned with

MAFFT v7 [52], trimmed using BMGE [54] with the

BLOSUM30 matrix and merged into a single concaten-

ate. The phylogenetic tree was built using a maximum

likelihood approach in RAxML v8 [53] under the LG + Γ

model. We computed 100 rapid bootstrap replicates

using the same model [55]. The resulting tree was used

to correct statistical tests with the phylogenetic inde-

pendent contrast method (PIC) [56] implemented in the

R package Ape [57].

Defining pan- and core genomes

For each genetically defined species, we initially identi-

fied orthologous proteins for each pair of strains using

Usearch Global v8.0 s [58]. Orthologs were defined as

best reciprocal hits with at least 70% protein sequence

identity and 80% length conservation. Orthologous pro-

teins were then grouped into protein families by transi-

tivity, such that every pair of orthologs belongs to the

same protein family. The total number of protein fam-

ilies—including families consisting of a single, unique

protein—defines the size of the pan-genome (Npan) of

each species. Because the size of the pan-genome in-

creases with the number of sampled strains [16], it can-

not be compared directly among species with different

sample sizes. To compare pan-genome sizes across spe-

cies, we defined P, the normalized pan-genome size, cor-

rected as in [59] such that P = Npan/α, where α is the

sum of harmonic series of the number of strains defined

by α ¼

Pn−1
i¼1

1
i
, with n representing the number of strains

for a given species. The pan-genome was estimated with

a second metric, Ps, in which each species was subsam-

pled to the same number of strains (n = 13) while maxi-

mizing strain divergence calculated on the core genome

(i.e., the pan-genome of the13 most divergent strains of

each species). Protein families were considered as part of

the core genome if present in ≥85% of the strains in the

species, and those protein families with paralogs were

systematically excluded from the core genome. Each

core protein family was aligned with MAFFT v7 [52] and

reverse-translated in silico into the corresponding nu-

cleotide sequences. The alignments were merged into a

single concatenate of core genes for each species.

Absolute estimates of Ne

We computed Watterson’s estimator θ [59] with Pegas

v0.9 [60] on four-fold degenerate sites within each concat-

enate of the core genome. Effective population size (Ne)

was given by θ = 2.Ne.μ [59], where μ represents the muta-

tion rate, as available for 10 bacterial species [11, 12].

Estimation of Ne based on dN/dS

For each species, pairwise dN/dS ratios were computed

with PAML v4.3b using the yn00 algorithm [61, 62] on

the concatenate of universally distributed genes or the

concatenate of core genes. Since dN/dS ratios do not re-

main constant over time [7], this metric does not allow

for direct comparisons of Ne across species unless the

strains within a species diverged within the same time

interval. Therefore, for each species, we computed the

average dN/dS for the pairs of strains having dS values

in the range of 0.1 ≤ dS ≤ 0.3, which was well below sat-

uration and maximized the number of analyzed species.

Absolute estimates of Ne were inferred from dN/dS ra-

tios following [63]: dN
dS

¼

N eS

1¼e
−N

eS
. In this case, the selection

coefficient s is likely to be similar across species since it

applies to the same set of universally distributed genes.

We used the 10 absolute values of Ne defined above to

estimate the selection coefficient s of the universal set of

genes. Ne estimates for each species were then deter-

mined using the mean value of the different estimates of

the selection coefficient s.

Estimating recombination rates

We used two approaches to estimate recombination

rates across the core genomes and the concatenates of

universally distributed genes of all species. First, we built

the phylogenetic tree of each species using RAxML v8

under a GTR + Γ model on the two datasets and we esti-

mated the transition/transversion ratio kappa with the

same program. We then used ClonalFrameML [15] to

estimate r/m across both datasets, where r is the number

of alleles introduced or exchanged by recombination and

m is the number of alleles introduced by mutations. We
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also used the ratio h/m to estimate recombination rates

[10], where h is the number of homoplasic alleles and m

the number of non-homoplasic alleles in the two

datasets.

Growth rates

Minimal doubling times were obtained from the litera-

ture (Additional file 19: Table S5). Several of these values

had already been assembled in [64]. In cases where there

were multiple growth-rate estimates for a species, we

used the smallest doubling time reported.

Gene turnover

Rates of gene loss and gene gain were estimated per

branch along the tree built for each species using Count

[18]. Based on the pan-genome (defined above), we gen-

erated a matrix of gene presence or absence across all

strains within each species. Rates of gene gains and

losses were estimated based on a Poisson distribution.

One hundred rounds of rate optimization were com-

puted. Ancestral reconstructions were performed using

posterior probabilities, with rates of gains and losses ini-

tially estimated by maximum likelihood with posterior

probability thresholds of 0.2 and 0.3. Results presented

use a posterior probability threshold of 0.2, since it was

shown to be the most accurate when run on similar data

sets [65]. For each branch i, the gene turnover Ti was de-

fined as Ti = Gi/Li with Gi denoting the branch rate of

gene gains and Li, the rate of gene losses. The same set

of species trees was then used to estimate dN/dS ratios

along the branches of the trees using CodeML imple-

mented in PAML v4.3b [62] with the free-ratios model.

Due to the extensive computation time required, the

core genome concatenate of each species was subdivided

into 150,000 bp fragments, which were each used to

infer dN/dS ratios. Initial dN/dS ratios were set with the

dN/dS ratio estimated for each species under the yn00

algorithm (see above). For each branch i of each species

tree, dN/dS ratios were defined as the average dN/dS of

the branch i estimated across the different fragments of

the core genome. Due to the size of the dataset, not all

fragments and species (i.e., those containing over 60

strains) could be evaluated with CodeML, with the result

that a total of 102 species were analyzed.

Additional files

Additional file 1: Table S1. Data summary. (XLSX 84 kb)

Additional file 2: Figure S1. Correspondence between Ne estimated

from universally distributed genes and from the complete set of core

genes. Effective population sizes are estimated from dS/dN considering a

common set of universally distributed genes for each species (x-axis) and
the entire set of core gene set for a species (y-axis). The dashed line

represents the theoretical expectation (y = x). Most species present

similar estimates of Ne when computed on both sets of genes with the

exception of Aggregatibacter actinomycetemcomitans, Vibrio alginolyticus
and Vibrio cyclitrophicus. (PDF 141 kb)

Additional file 3: Figure S2. Correlation between phylogenetic

distance and Ne dissimilarity. Phylogenetic distances for each pair of

species were obtained from the maximum likelihood species tree (Fig. 1).

Dissimilarity in effective population sizes for each species pair is defined

as |Nei - Nej| for species i and j, respectively. (PDF 8178 kb)

Additional file 4: Figure S3. Association between bacterial lifestyle and

effective population size, as computed from species’ core genomes.

Lifestyle colors and designations follow those presented in Fig. 1, with

the number of species in each lifestyle category indicated. ***P < 0.001,

**P < 0.01, *P < 0.05, Wilcoxon test. (PDF 119 kb)

Additional file 5: Figure S4. Correlation between growth rate and

effective population size computed from species’ core genomes. Growth

rates are defined as minimal doubling times reported in the literature

(Additional file 19: Table S5). Spearman’s rho = − 0.22, P < 0.05, PIC

correction. (PDF 135 kb)

Additional file 6: Figure S5. Comparison of recombination detection

methods. Recombination rates were estimated based on the ratio of

homoplasic to non-homoplasic alleles (h/m) [10] and with ClonalFra-

meML (r/m) [15]. The two methods were compared on the set of univer-

sal genes (A) or on the entire core genome (B) for each species. The

performance of each method was then evaluated by comparing the re-

combination rate on the set of universal genes relative to the complete

core genome of each species with h/m ratios (C) and r/m ratios (D).

Spearman’s correlation coefficients rho are indicated on top of each

graph. (PDF 382 kb)

Additional file 7: Figure S6. Impact of recombination on estimates of

effective population size. Relationship between recombination rate and

the effective population size of each species. Recombination rate,

estimated from the frequencies of homoplasies, and dS/dN for each

species were calculated for universally distributed genes (A) and for the

set of core genomes (C), and recombination rate, estimated with

ClonalFrameML, and dS/dN for each species were calculated for

universally distributed genes (B) and fore the set of core genomes (D).

(PDF 359 kb)

Additional file 8: Figure S7. Correlation between genome size, pan-

genome size, and effective population sizes as computed from core ge-

nomes. Correlation between genome sizes (A) and pan-genomes sizes

(Spearman’s rho = 0.32, P < 0.001, PIC correction) (B) when N average dS/
dN ratios are determined for core set of genes for each species (Spear-

man’s rho = 0.48, P < 10− 7, PIC correction). (PDF 240 kb)

Additional file 9: Figure S8. Correlation between genome size and Ne
for each lifestyle category. Genome size for a given species was calculated

as the average across all sequenced strains. dS/dN ratios were calculated

from the common set of universally distributed gene (A–C) and from the

core genome of each species (D–F). Spearman’s correlations were adjusted

with phylgenetically independent contrasts. (PDF 278 kb)

Additional file 10: Figure S9. Association between pan-genome size

and Ne for each lifestyle category. Pan-genome size for a given species

was calculated as the total number of protein families detected normal-

ized by strain number. dS/dN ratios were calculated from the common

set of universally distributed gene (A–C) and from the core genome of

each species (D–F). Spearman’s correlations were adjusted with phylo-

genetically independent contrasts. (PDF 274 kb)

Additional file 11: Table S2. Correlation statistics between Ne and
genome or pan-genome size for each lifestyle category. (XLSX 45 kb)

Additional file 12: Figure S10. Association between Ne and pan-

genome size, adjusted for sample size (Spearman’s rho = 0.48, P < 10− 8,

PIC correction). Ne was estimated from dS/dN ratios (Fig. 1). Pan-genome

sizes were corrected for sample size by analyzing the same number of

genomes for each species while maximizing the divergence rate of the

core genome. Using a recursive approach, the pair of the most similar ge-

nomes for a species was identified, and one of the two genomes was

randomly discarded. This process was repeated until each species was

down-sampled to 13 genomes. The pan-genome was then re-built for

each species as described above. (PDF 154 kb)
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Additional file 13: Figure S11. Association between genome size and

pan-genome size. Genome sizes represent averages a across all se-

quenced strains for a given species and pan-genome sizes were calcu-

lated as the total number of protein families normalized by the number

of strains of a given each species. (PDF 138 kb)

Additional file 14: Table S3. Principal component analysis statistics of

the quantitative variables used in the study. (XLSX 13 kb)

Additional file 15: Figure S12. Network of correlations among

genomic and lifestyle variables. The correlation network was built using

the P-values obtained from the correlation matrix for these quantitative

variables (Additional file 14: Table S3). Each node represents a

quantitative variable, and the thickness of edges is proportional to the

strength of the correlations, defined as –log(P-value). Correlations with P-
values > 0.01 were not included in the network. (PDF 112 kb)

Additional file 16: Figure S13. Correlation between gene turnover and

effective population size. A. Gene turnover, T, was defined as the rate of

gene gains divided by the rate of gene losses on each branch of each

species tree. Rates of gene gains and losses were estimated with a

posterior probability threshold of 0.3. For each branch of a species trees,

the dS/dN ratio was estimated using CodeML (see Methods). The

Spearman’s correlation between T and dS/dN ratios was computed for

each species, and he distribution of the coefficient rho across species is

presented. B. Species were organized into three categories: those with a

positive correlation between gene turnover T and dS/dN (top, Spearman’s

correlation, P < 0.05); those with no significant correlation between T and
dS/dN (middle; Spearman’s correlation, P ≥ 0.05); and those with a

negative correlation between T and dS/dN (bottom, Spearman’s

correlation, P < 0.05). (PDF 119 kb)

Additional file 17: Figure S14. Correlation between dS/dN and

intergenic DNA. For each species, dS/dN ratios were estimated as in Fig.

1. Average intergenic DNA of each species corresponds to the average

number of base pairs between two consecutive protein-coding genes.

No positive correlation was observed between dS/dN and the average

intergenic DNA (Spearman’s rho = − 0.22, P < 0.05). (PDF 137 kb)

Additional file 18: Table S4. List of analyzed genomes for each species.

(XLS 317 kb)

Additional file 19: Table S5. Minimum doubling times of each species

and corresponding references. (DOCX 217 kb)
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