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Abstract. We classify up to an isomorphism all factors of the classical horocycle
flow on the unit tangent bundle of a surface of constant negative curvature with
finite volume.

Let T = {T,,teR} and S = {S,,tsR} be two measure preserving (m.p.) flows on
probability spaces (X, /u.) and (Y, v) respectively. We say that 5 is a factor of T if
there is a measure preserving

for all teR and /u-almost every (a.e.) x eX. i/r is called a conjugacy between T
and S. T and S are called isomorphic (T~S) if there is an invertible conjugacy
between T and S, called an isomorphism. We write (T,S)~(T',S') if T~T' and
S ~S'. 5 is called trivial if there is y € Y such that v{y} — 1. Henceforth the word
'factor' means non-trivial factor.

Let $>(T) denote the set of all isomorphisms

<t>:X->X such that cf>(T,x) = Trf>(x)

for all teR and a.e. x eX and let V = V(T, S) denote the set of all conjugacies
between T and 5. We say that tAie^ and 4i2 e^P are equivalent (IAI — I/^) if there
are<f>i€<t>(T) and </>2e<I>(S) such that tl>2 = 4>2°il'io<t>i a.e.

Let TT(T,S) denote the set of equivalence classes in ty. It is clear that if (T, S) ~
(T\ S') then there is a natural one-to-one correspondence between TT(T, S) and
v(T', S'). So \TT{T, S)\ is an invariant of the isomorphism class of (T, S).

One would naturally raise the following problems: (1) classifying all possible
factors of a given m.p. flow T up to an isomorphism; (2) describing n(T, S) for a
given factor S of T.

In this paper we shall solve these problems for the classical horocycle flow on
the unit tangent bundle of a surface of constant negative curvature with finite
volume.

Let G denote the group Sh{2,R) equipped with a left invariant Riemannian
metric and let 3" be the set of all discrete subgroups Y of G such that the quotient
space M = T\G - {Tg: geG} has finite volume. M can be viewed as the unit tangent
bundle of a surface of constant negative curvature with finite volume. Let F be an
element of the Lie algebra si of G and let Ft = exp (tF)eG. The flow f = {ft,teR}
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466 M. Ratner

on M denned by /t(Fg) = TgF,, geG, teR is called the algebraic flow, generated
by F. f preserves the Riemannian volume v on M derived from the Haar measure
on G. v is defined on the Borel cr-algebra BM of M and we denote by (38, /JL ) the
normalized completion of (BM, v), fi(M) = 1.

The horocycle flow

h={h,,teR}

on M is the algebraic flow, generated by ( ), i.e.

where

AT, = (* j ) , teR,geG.

It is well known that h is ergodic and mixing on (M, fx.), in fact mixing of all
degrees [1].

Let F e si, F,e ST, i = 1, 2 and let/01 be the algebraic flow on Mt = TAG, generated
by F, i = 1, 2. It is easy to see that if I\ <= r2 then /(2 ) is a factor of fa). Indeed, let

be defined by

<A(rig) = r2g, geG.

Then </r is measure preserving and

4>f?\Tlg) = <A(rlgF() = r2 gF, =/ i 2 ) (r 2 g ) =/<
(
2

We shall call f2) an algebraic factor of /(1).
The following theorem shows that every factor of the horocycle flow is algebraic.

THEOREM 1. Let Yxe3~, Mx =YX\G and let S be a factor of the horocycle hm

on (Mi, n^. Then there is Y2e3~ such that F i c r 2 and S is isomorphic to ha) on
(M2, fi2).

It has been proved in [4] that for I\ , F2e 3~ the horocycle flows hn) and h<2) are
isomorphic iff Fi and F2 are conjugate in G, i.e. F2 = CTxC~l for some CeG. For
F G 5 " we denote

a(F) = { f e ^ : F c f } .

It is well known [6] that a(T) is finite. F is called maximal if a(F) = {F}. We get
the following corollary.

COROLLARY 1. The number of non-isomorphic factors of the horocycle flow h on
M = F\G, F e 5" is finite and equals the number of conjugacy classes in a (F).

It was proved in [4] that if F2ea(Fi) and tp: MX-*M2 is a conjugacy between
hm and h{2) then there is C e G such that

C F . C - ' c r , and

for some o-Ei? and a.e. Fig e Mu g e G, where ipc (Fig) = F2Cg. This says that 4<~<l'c-
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For F2 G a (Fi) we denote

<g(Tu r2) = {C £ G: CFxC"1 c r2} = {C e G: C'XY2C e a (I\)}

and

* (Fi, T2) = {re a(I\): r = C"ar2C for some C e G}.

It follows from [4] that

iff C2 = CC\D for some C e f 2 and some D e f i, where f denotes the normalizer
of F in G, i.e.

f = 1

In this case we write C 2 ~Ci . ~ is an equivalence relation in <€(r1,T2). For
' lF', F"GK(FI, F2) we write P ~ F " if r = D'lT'D for some D&YX. It is clear that

C2 ~ Ci in ^(Fi, F2) iff C2
l F2C2 ~ C71 F 2 d in K (FI, F2). We have just proved the

following theorem.

THEOREM 2. Lef F1; F2 e STand Fj c F2. Then

7r(ha\ha))=Wc]: c z%(rur2)},

where [ip] denotes the equivalence class oftfre yV{ha), h{2)). Tr{ha\ hi2)) is finite and
\ir{ha\ ha))\ equals the number of equivalence classes in K(TU F2).

COROLLARY 2. / / F is maximal and S is a factor of h on T\G, then S is isomorphic
tohand\v(h,S)\ = \.

THEOREM 3. Let S on (Y,i>) be a factor of hi (the time-one transformation of the
horocycle flow) on (M = F\G, fi), F E 3~ with a conjugacy tjj: M -* Y, if/hi(x) = hitj/(x)
a.e. x eM. Then there exists a m.p. flow {S,, t eR} on (Y,u) such that S = S\ and
#,(*) = Sffi{x)for allteR and a.e. xeM.

COROLLARY 3. If S is a factor of h i1' on Mx = FAG then there is F2 => Fx such that
S is isomorphic to /ii2) on M2 = F2\G. / / Fi is maximal then every factor of h^ is
isomorphic to hli\

The geodesic flow g = {g,, t e R} on M = F\G, FG ST is the algebraic flow, gener-

ated by I ) G si, i.e.

g and h satisfy the following commutation relation:

g, o hs = hs exp(2<) ° gt, t,seR. (*)

(*) shows that ha and hp are isomorphic if a • /3 > 0 and that the entropy of h is zero.
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It is well known that g is Bernoulli [2] and therefore g has uncountably many
non-isomorphic factors. (*) shows that the entropy of g equals 2 for every F 6 3".
This implies that g(1) is isomorphic to g<2) for any Y\,Y2&ST. One can show that
7r(g(1), g<2>) is uncountable.

The proof of theorem 1 consists of three basic steps: (1) We show (§ 3) that if
a flow 5 on (Y, v) is a factor of the horocycle flow h on (M,(JL) with a factor map
i/r:M-» Y then t̂ ~1{y} is finite for a.e. yeY. This uses the basic estimates on
divergence of horocycles (§ 2) to show that tp is locally 1-1; (2) using (1) we show
that any factor map of the horocycle flow must be a factor map of the entire action
of SL(2,R) (§ 4); (3) using (2), we construct a discrete subgroup of SL(2,R) for
which the factor is a horocycle flow (the end of § 4).

Section 1 contains some measure-theoretical background and in § 5 we prove
theorem 3.

I am grateful to Joe Wolf for valuable discussions.

1. Factors and invariant partitions
Henceforth all measure spaces are assumed to be separable and complete.

Let 5 = {S,, t e R} on (Y, v) be a factor of T = {T,, t e R} on (X, n) with a conjugacy

forallfefl anda.e. xeX. (1.1)

We can assume without loss of generality that (1.1) holds for all x eX. 4i induces
a measurable partition

f = £(,/,) = {^-1{y}:y e Y}

of X (see [5]), invariant under T, i.e. for every teR

Ce£ iff T,CeI

Let X/i be the quotient space, induced by $ and let TT:X -*X/£ be the projection
n(x) = C(x), where C(x) denotes the atom of £, containing x. A set A<=-X/^ is
called measurable in X/g if TT~1(A) is measurable in X. We define a measure (JL(

on X/1; by /xf(A) = /x(7r~1(A)). TT is a conjugacy between T and the m.p. flow T(

on X/i denned by

THC(x)) = C(T,x), xeX,teR.

It is clear, that T* is isomorphic to S.
It is well known (see [5]) that for a.e. C e g there is a probability measure fic

on C such that if A <= X is measurable in X then A n C i s measurable in C and

(1.2)
'X/f

Henceforth it will be clear from the context when C e £ is considered as a subset
of X and when it is considered as a point of X/$. The family of measures \p.c) is
unique in the following sense: a family {fj.'c} satisfies (1.2) iff ix'c = yic for a.e.
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C e X/g. This says that by possibly changing {fic} on a set of /urmeasure zero we
can get a set

n<=x/£ rfn=n,
such that it Ceil then

A c C i s measurable in C iff T,A is measurable in r,
and IXC(A) = HT,CT,A for all teR. (1-3)

We can assume without loss of generality that (1.3) holds for all C e X/g, since T4

restricted on ft is isomorphic to T( on X/g.
We say that /u,c is atomic if there is x e C s.t. JUC{X}> 0.

PROPOSITION 1.1. Suppose that T is ergodic and that there is Z <=X/g, fx.i(Z)>0
such that /u.c is atomic for every C e Z. Then there are

\U = U, teR,

, T,D=D, teR,

and an integer n>0 such that for every C eU, D nC consists of exactly n points
x,(C),...,xn(C)with

fjLC{xi(C)} = - , i = l , . . . , n .

Proof. Let m:X/g^R be defined by

m(C) = sup {/xc{*}: x sC}.

m is measurable [5] and (1.3) shows that m is constant on orbits of T*. Since T*
is ergodic, there is

U'^X/i, TfU' = U', teR, iMi(U') = l

such that m equals a constant a on £/'. Since

fie(ZnU')>0 and m(C)>0

for every C eZ,a must be positive.
Let

D = {x eX: C(x) e U' and ixc{x} = a}.

D is measurable [5] and (1.3) shows that D consists of orbits of T. It is clear, that
/i.(£))>0. Since T is ergodic, n(D) = 1.

Let

U = {C eU': nc(C nD) = l],

= l, TiU = U, teR.

If x e C n£> then /XC{JC} = a > 0, C e [/. This says that CnD,CeU consists of
finite many points Xi(C),. . . , xn(C) and that a = l/n, since /JLC{C nD) = 1, C e U.
This completes the proof. •
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It also follows from [5] that if a.e. CeX/fj consists of n points of equal
/nc-measure, then there are a measurable

V<=X/& ne(V) = l, ir~\V)=X, fi(X)=\

and pairwise disjoint measurable AT,- c X, i = 1 , . . . , n,

X = \JX,, fi(Xt) = - , i = l , . . . , n
i = i n

such that if C e V then

CnXi = {xi{C)}

consists of exactly one point and the maps fa: X onto Xt defined by

are measurable, / = 1 , . . . , n. The pair (Xh <£,) is called a measurable cross-section
of i, i = 1 , . . . , n.

2. Properties of the covering horocycle flow in G
Let p:G->M = T\G, F€ 3~ be the covering projection p{g) = Fg. Let

te' 0 \ /I 0

y j d W ^
e' 0 \ / I 0\

Q e_,j a n d W,g = g - ^ J
be the geodesic and the horocycle flows on G, covering {g,} and {h,} on M respec-
tively. We shall also consider the flow

on G, covering the flow

on M.
We have

Gt°// s=// s e x p ( 2 , )°G,

G,°HS =rtSexp(-2l) °G,

We assume that G is equipped with a left invariant Riemannian metric, in which
the length of the orbit intervals [g, G,g], [g, Htg] and [g, / /?g] is t, g e G. Let
d :GxG-»i? + be the left invariant metric on G, induced by this Riemannian metric
and let e denote the identity element of G.

Denote

= max{| l-a | ,H, |c |} for g =

It is well known, that there is A > 1 such that

A"'A(g)<rfUg)</lA(g) for all g e G with d{g,e)<\. (2.2)

For x, y € G we have
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e g = xx -y and Ns = (

then

where g = x~x -y and Ns = ( A It follows from (2.2) that if d{Hsx,Hsy)< 1,
\s 1/

T-, • g • Ns)<d(Hsx,Hsy)^AA(N.s • g • Ns)

where. (2.3)

A(N.S • g • Ns) = m3ix{\l-a-bs\,\b\,\bs2 + s(a-d)-c\}

and
-i ^ a b \

Let 0<e < 1 be small and suppose that d(x, y)<e. We shall now estimate the
length of the time the horocycle orbits H,x and H,y stay within e. (2.3) shows that
d{HsX, Hsy) grows polynomially in 5. We have

+: A(AT-f • g • N,)*A • e} = E(g,e) (2.4)

where g =JC~1 • y and A(JV_, • g • A/j) are as in (2.3).
It is easy to compute that:

(1) E{g, e) consists of at most two connected components E0 = E0(g, e) aO and
£i=£'i(g, e);

(2) If

/ = l(g, e) = max {l(E0), /(Ei)}> l(/(/) denotes the length of 7),

then for every s e E(g, e) we have

| l -a , | s£>(e) / / , |6s |sD(e)//2 , |cs|<e (2.5)

where

(US bf)=N-s-g-Ns and e<£>(e)^0

when e -» 0.

It follows from (2.3) and (2.5) that if / > 1 then

A(iV_s_u -g •NJ+u)<3D(e) for all s eE(g, e) and all 0 < M </.

This implies that

d{Hs+ux,Hs+uy)^3AD(e) for all s e£(g, e) and all 0 < M </. (2.6)

Henceforth D (e) will always mean a constant depending only on e and converging
to 0 when e -» 0.

Let us observe that if

and e is sufficiently small then

g =HqH*Gpe where p = log a/(l + ftc), r = be~", q=cep. (2.7)
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For g e G and a, (3, y s 0 we define

It follows from (2.1) that for every t s R

G,U(g;a, 0, y) = U(G,g; a^e'2', ye2'). (2 .8)

It fo l lows f r o m (2 .4 ) , (2 .5 ) a n d (2 .7 ) t h a t if s tE{x~l -y,e) a n d / = /(A:"1 • y, e ) > l
t h e n

HsyeU(Hsx,D(e)/l,D(e)/l2,D(e)) (2.9)

where D(e)-*0 when e -*0.
We shall need the following:

LEMMA 2.1. G/ue« 0<<5<l there are <5>0 and 5 > 0 depending only on 8 such
that if d(x,y)<8, x,yeG then for every seE(x~x -y, 1) and every 0 < M <

8l{x~l-y, 1) withs+u£E(x~'Ly, 1)

e/tfjer d(Hs+ux, Hs+u+ly) <Sor d(Hs+ux, Hs+u-ly)< 8. (2.10)

Proof. It is enough to show that there are 5 > 0 and <5>0 such that if A(g)<5,
geG then for every s eE(g,l) and every

0<w<5/(g, 1) and s+u£E(g, 1)

we have |cs+u| > 1 and

max{|l-as + u | , |6S+U|, | c s + u -

where

and sign c = c/\c\ if c ¥• 0.
Let 0 < 8 < 8 be so small that if A(g) < 8 then

A(gs)<l forallO<s<2Z?(l)/5.

(see (2.5) for the definition of D(l)). This says that

Let 8 =5/4D(l) and let se£(g , 1), 0 < K <5/. We have using (2.3) and (2.5)

8. (2.12)
(2.11) shows that

c s + u |> l if s + u£E(g, 1)

since A(gs+U) > 1 for s + u £ E(g, 1). Also |cs| < 1 for s eE(g, 1). This and (2.12) imply
that

|cs+u-signcs+u|<<5 if s+u£E(g, 1).

This completes the proof. D
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Denote

We(g)=U(g;e,e,O),gzG.

We say that x, y e G, y e We (x) form an e-strip of length t > 0 if for every s e [0, t]
there is q(s) > 0, q(0) = 0 such that

H^yeW.iHjc). (2.13)

q(s) = q(s, x, y) is uniquely defined by (2.13) and is a smooth function of (s, x, y).
It is easy to compute that

\q(s)-s\=D(e)s, (2.14)

where D ( e ) - » 0 when e - » 0 . It follows from (2.1) that if x,y form an e-strip of
length t then G^x, GTy, T > 0 form an e-strip of length t e2T.

3. h-invariant partitions
Let /i = {ft,, f eR} be the horocycle flow on (M = T\G,fi) and let S on (Y,v)be a.
factor of ftx (the time-one transformation of the flow ht) with a conjugacy ifi.M ^*Y

fora.e. x e M (3.1)

LEMMA 3.1. Lef £ fee the partition of M induced by <A {see § 1). 77ien there exists
Z <= Af/f, nc(Z) > 0 SMC/I tfiaf /AC w atomic for every C e Z.

Prao/. We can assume without loss of generality that Y is a compact metric space
and 5 is a homeomorphism of Y onto itself. Moreover, there exists eY > 0 such that

dY(y,Sy)>eY for every yeY, (3.2)

where dy denotes the metric in Y (see for instance [3]).
Let O<0<O.O1 be fixed.
Since t{i:M-*Y is measurable, there is A<=Af, / A ( A ) > 1 —0 such that i/f is

uniformly continuous on A (see lemma 3.1 in [4]).
Let 0 < S < 1 be such that

if d(wl,w2)<8, wi, w2e A then dY{^w\, ilfw2)<eY-

Let 8 = 8(8)>0 and 5 =5(5) >0 be as in lemma 2.1. Since hi is ergodic, there
are V<=M, /x(V0> 1-5/100 and an integer no>0 such that

if n a n0 and JC e V then the relative frequency of

A on {x, hix,..., hnx] is at least 1-20.

Let VaM, n(V)>l-8 and an integer ni>n0 be such that

if n > «i and x eV then the relative frequency of
- (3.4)

V on {x, hxx,..., hnx\ is at least 1-5/90.

Let 0<5i <5 be so small that if d(x, y)<8ux,yeG then

d(Hsx,Hsy)<l forallO<5<2n!/5. (3.5)
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We claim that

d(u,v)>81 (3.6)

for every u,veCnV, u^v and every Cef.
Suppose on the contrary that there are Coe£ and u0, vo€.Con V, Uo^vo such

thatd(uo,vo)<Si.

Letxo = p~l(uo), yo = P~1(vo), Jo, yoeG be such that d(x0, yo) = d(uo, v0) and let
E =E(xo1 -yo, l) = £ o u £ i be as in (2.5) {E\ can be empty), Eo = [0,so], i?i =
[Sl,S2],Si>S0.

(3.5) implies that

2m/8 ^ KEo) =s max {l(E0), l(E,)} = I.

Denote

Fo = [so,so + 8l/2], F = [0,so]uFo its1-so>8l

and

Fo = [s2,S2 + 8~l/2], F = [0,52]uF0 i f s i - s o s 5 / .

We have Fo <= F - E and

|F|2=BI and |Fo|/|F|>5/20. (3.7)

where \F\ denotes the number of integers in F.
Let

/ = {m e F : m is an integer and hmuoe V, hmvoe V}.

It follows from (3.4) that

| / | / |F |> 1-5/40

since u0, vo£V and |F|>ni. This and (3.7) imply that there is an integer m0 such
that

moeFonJ.
Denote

J = {m e[m0, mo + 8l/2]: m is an integer and hmuoe.A, hm~ivo£ A, ̂ m+1u06 A}.

It follows from (3.3) that

since

hmoUo, h^Voe V and 8~l/2>ni>n0.

This implies that there is

m i E [m0, m0 + 81/2] c [So, s0 + 81/2] u [s2,

such that

hmiuoeA, hmi-ivoeA and hmi+ivoeA. (3.8)

It follows from lemma 2.1 that

either d(hm,u0,hmi+1v0)<8 or d(hmiuo,hmi-lvo)<8 (3.9)

since d{u0, v0) < 5i < 5(5).
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Assume for simplicity that the first condition of (3.9) holds. We have by (3.8)
and our choice of S

dY(i(>hmiUo,il/fimi+iVo)<eY- (3.10)
(3.1) implies that

it>(hmi+ivo) = Stl/(hmiv0).
Also

since u0, voeCoeC (3.10) implies then that

dy(y, Sy)<eY

which contradicts (3.2). So we have proved (3.6).
Since n(V)>0 there is Z <= M/C, nc(Z)>0 such that

Hc(CnV)>0 for every C e Z . (3.11)

(3.6) implies that C o V is at most countable. This implies via (3.11) that fic is
atomic for every CeZ. This completes the proof. •

Note 3.1. It follows from the proof of lemma 3.1 that given 0<d <0.01 there are
a compact KcM, n(K)>\-6 and 5 i>0 such that

d(u, v)^Si for e v e r y u,veC nK, u^v a n d e v e r y C £ £.

4 . Algebraicity of €

From now on our discussion will be similar to [4].
Let S = {S,, t € R} on (Y, v) be a factor of h = {h,, t £ R} on (M, p.) with a conjugacy

t{/:M-*Y

il/h,(x) = Srf/{x) for all teR and a.e. xeM,

and let £ be the fc-invariant partition of M, induced by ip. It follows from proposition
1.1 and lemma 3.1, that there are DczM, hJD=D, teR, n*(D) = l, U^M/i,
h\U = U, teR, jLi£(f/) = l and an integer n > 0 such that for every CeU the
intersection DnC consists of exactly n points with /ucrmeasure 1/n.

We assume without loss of generality that D =M and U = M/£. Thus each C £ £
consists of n distinct points of jiic-measure l/n.

Let O<0<O.O1 be given. Using the discreteness of Ye6~, M = Y\G and note

3.1, we can get a compact K<=M, ^(/sT)> l-82/n2 and p >0 such that

(1) if x ep~x{K) then the projection p-.G^M, p(g) = Fg
is an isometry on the ball of radius p centered at x. (4.1)

(2) d(u,v)>p for every u,v eC nK, u^v,Ce£.

Let

where n:M -+M/g is the projection v(x) = g(x), xeM.K' consists of atoms of £.
We have

fi.(K')>l-e/n and K'<=K, (4.2)
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since fi,(K)> l-62/n2 and every C e | consists of n points of /u,c-measure \/n.
Let 0 < e < p/2 be so small that

e < 1 (see (2.2)) and 3AD{e)<p/2 in (2.6). (4.3)

Let 0 <S o < e be so small that if d(x,y)<S0, x,y eG then

d(Hsx, Hsy)<e for all 0 < s < 1. (4.4)

Let u<=K,veM and d(u, v)<S<S0. Letx, y eG be such that p(x) = u,p(y) = v
and d(x, y)<8. Denote

E ( u , v, e ) = E 0 ( x ~ 1 • y , e )

where E0(x~l • y, e) is defined in (2.5). E(u, v, e) is well defined and does
not depend on the choice of x &p~l(u),y &p~x{v), since ueK and 8<p. It
follows from (4.4) that l(E{u,v,e))>l. Henceforth £(u) denotes the atom of f,
containing v.

LEMMA 4.1. Let 0<S<S0, u,veMandA,=A,(u,v,8) = {s€[0,t]: there exists
«(j)ef(i)) suc/t that hsv(s)eK' and d(hsu,hsv(s))<8}, f > l . If l(A,)>0.9t then
there is seA, such that l(E(hsu, hsv(s), 8)) >0.2f.

Proo/. The proof is similar to that of lemma 2.1 in [4]. Let

Es=s +E(hsii,hsv(s),8), seA,.

We claim that

ifsieA, and v(si)^v(s) thensi£.Es. (4.5)

Indeed, suppose on the contrary that 5i sEs. Then

d(hSlu,hSlv{s))<3AD(e)<p/2

by (2.6) and (4.3). Also we have

d(hSlv(Sl),hSlu)<8<p/2,

since Si e At. This implies that

We have

ASlt;(

since v(s), v(si)eg(v). Also

since Si e A, and therefore

since if' consists of atoms of ̂ . This and (4.6) imply that

hSlv{s) = hSlv(si)

which contradicts v(s) ^ v(si) in (4.5).
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Let B ={Eu...,Em} be the collection of pairwise disjoint intervals £;, =
[si, T , ] C [0 , t], Sj>Ti, /> / , such that Et=Es for some seAt, i = \,... ,m and
A, c I X i £. and let d(Eh E,) = s, -T,.

Let* e G be such thatp(x) = u,xc =HSix,p(xi) = hSiu = w, and let y, e G be such that
d(xit yi)<8 and p(y,) = hStv(Si) = vt. We have

Ei = Si+E0{x7i •yi,8)<=si+E(xil -y,,5)

and

(see (2.5)). Suppose that s, - s , =q and v(si) = V(SJ). We have

(hS)U, flSiV(Sj)) = (My, Uy) = (fc,M» M i ) -

ThoughdUi, yf) <5,p(jc,) = M,,p(y,) = «,- andrf(My, Vj) < S, it is not necessarily true that

d(Hqxi,Hqyi)<8,

but there is a unique 3l e T such that

d(Hqxi,2)-Hqyi)<8. (4.7)

We write £,- ~Et if t)(sf) = u(sy) and Qs^e'va (4.7), £•, ~£;- if v(st) = V(SJ) and S = e
in (4.7) and £, ~ £ , if u(s,-) 5̂  t>(«y). It follows from (2.6) and (4.3) that

d{Hqi+sXi, Hqi+Syt) < 3AD(e) < p/2 (4.8)

for all 0 s s < ^, where q, = T, - Sj, / = 1 , . . . , m. This implies via (4.1) that

si -n = d(Eh E,) > /, if Ex ~ £,• (4.9)

since y, e p " 1 ^ ) . (4.8) also shows that

d(hTi+su, hTl+sv(Si)) = d(hqi+sUi, hqi+svt)<p/2

for all 0 < s < /,. This implies that

Sj - T, = d(Eh Ej) > /, if Et ~E,, (4.10)

since otherwise we would have

d(hSjv(si),hSlv(s,))<p

which contradicts (4.1), since w(s,-)#i;(sy), hSjv(s,)eK' and /iS/t;(s1)6^(/is.tj(s;))<= A"'.

Let us now define a new collection (3 ={E\,..., Em} by the following procedure.
We set Ei=Ei unless Ei~E2 and d(E1,E2)^l(E1). In this last case we set
J^I = [si, T2] =>EIKJE2. Suppose £(„ k = 1 , . . . , p have been defined. To define Ep+i

we apply the same construction to the firstE eB, which has not been included in any
Ek,k = l , . . . , p .

It follows from the construction of 0 that

d(Ek,Ek+l)>l(Ek) if Ek~Ek+l (4.11)
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and for each Eke0 there is Eik e j3 such that

either Ek=Eik or £ ^ ( 4 u £ , t + 1 ) and l(Ek)<%k. (4.12)

This, (4.9) and (4.10) imply

d(Ek,Ek+1)>lik>l(Ek)/3
- r _ - t -

if Ek —f/t+i or Ek ~Ek+i. This and (4.11) give
d(Ek,Ek+1)>l(Ek)/3 fo ra l l* = l , . . . , m - l . (4.13)

Denote

1(0) = I
fc = i

We have

H0)>O.9t,

since A,<=Ur=i £*•

This and (4.13) imply that there is E e /3 such that

This implies via (4.12) that there is E e(3 such that l(E) >0.2t. This completes the
proof. •

COROLLARY 4.1. Let u,veM and let l{A,)>0.9t for all t>to>\, where A,=
A,(u,v,8) as in lemma 4.1. Then there is veg(v) such that v=hqu for some
q=q(u,v,S), \q\<8.

Proof. It follows from the proof of lemma 4.1 that there is s a 0 such that

l(E(hsu,hsv(s),S))>0.2t forallf>f0.

(2.5) shows that this may happen only if hsv(s) = hqhsu for some |<j|<5. We get
v =v(s) = hqu,v eg(v). O

For A c M w e shall write A <£ if A consists of atoms of £
According to § 1 there are X <g, IJ.(X) = 1 and pairwise disjoint measurable sets

X,cX, i = l,...n,\JXi =X,n(X,) = -
, = i n

such that for every x eX the intersection

€0c)nX,={x,(x)}

consists of exactly one point and the map <£,: X onto Xt defined by <£,(*)= *••(*)
is measurable, i = l,...,n.

Let K' be the set defined in (4.2) and let

K=K'nX, fjL(K) = ti(K')>\--, K <£.
n
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Since (j>,•.;. X -* X, is measurable, i = 1 , . . . , n there is A c X, /x (A) > 1 - 6 such that
and each <£,-, / = 1 , . . . , n is uniformly continuous on A (see lemma 3.1 in [4]).

Let

and let Cl be the generic set of Q for h,

htn = Cl, teR,

LEMMA 4.2. For every 0<8 <S0 there is a> = a>(8)>0 such that if uu vi&Cl,Vi = gp«i
for some |p|<w, then for every u2e£(ui) there is v2££(vi) such that v2

 = hbgpu2 for
some b =b(uuu2,p), \b\<8andb(h,ui,hiu2,p) = b{uu u2,p) for all teR.

Proof. Since <£,, / = 1 , . . . , n are uniformly continuous on A there is 0<o> <8/2
such that

if d(wu w2)<(o, wu w2e A then d(<f>j • wu(f>i • w2)<8/2, i = 1 , . . . ,n. (4.14)

Let MI, Vied, V\ = gpui for some |p|<w. Let Ao>0 be such that

if A > Ao then the relative length measure of Q on 4̂ 1 SI
[«i,/iA«i] and on [vu h^vijis at least 1-3(9.

Let x, y eG,y =GpX be such thatp(x) = ui,p(y) = Vi. x and y form an w-strip of
length A for every A > 0. We have

Hqis)y = GpHs (see (2.13)) and hq(s)vi = gphsm for all s > 0.

Denote

Fx={se[0, A]: hjn£ Q, fc,(,)»i 6 O}.

It follows from (4.15) that

l(F,)>(l-7d)\ (4.16)

if <o > 0 is sufficiently small and A >Ao, q(A)2A0 (see (2.14)).
Let u2 e f (ui). We write /(/) = i e { 1 , . . . , n} if h,u2 eXt.
We have

or

where vi(q{s))e(;(vi) and if s eF x then

hsu2eK', hq(s)vi(q(s))eK'
and (4.17)

by (4.14). Let w = gpw2- We have

hq(S)W = gphsu2

and therefore

d(hsui, hq(s)w)<CJ.
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This and (4.17) imply that

d(hq(s)w,hq(s)Vl(q(s)))<(o+S/2^S (4.18)

for all seFi and all A >A0, <7(A)>A0.
Let A, =A,{w, vi, S) be as in lemma 4.1. (4.16) and (4.18) show that there is

t0 > 1 such that

l(A,)>0.9t forallf>f0.

It follows then from corollary 4.1 that there is v2 e £(i>i) such that v2 = hbw = hyc[pu2

for some b = b(ui, u2,p), \b\<8. It is clear, that b(h,ui, h,u2,p) = b(ui, u2,p) for
attteR, \p\<co. D

It follows from lemma 4.2 that there exists a)0>0 such that

gpw e fi iff gpU e ft

for every u eft, w S£(M), |p|<w0, since fl is A-invariant and {l<£.
Let

£lp = {u e il: gpU e ft}, |p| <w 0 .

ftp is /t-invariant, /x(ftp) = 1 and ftp <^.

LEMMA4.3. There is an h-invariant ftp <= ftp, ftp < £, fi (ftp) = 1 such thatb(u, w,p) = 0
for all u e ftp, wef(«), |p|<w0-

Proo/. It follows from the definition of b(u, w, p) that it is measurable and

b(u,w,p) = -b(w,u,p)

b(x, w,p) = b(u, w,p)-b(u,x,p),x,weg(u), (4.19)

u eftp, |p|<w0.

Define/p:ftp^i? and/p:ftp^/? by

fp(u) = max{b(u,w,p): we£(u)}

fp(u) = min{b(u, w,p): weg(u)}.

The functions fp and fp are measurable and constant on orbits of h. Since h is
ergodic, there are ftpcftp) ^(Cl'p) = 1, ftp<£ and constants <r, <r such that / p =<r
and ^, = <? on ftp. x ^^

We claim that a = cr = 0. Indeed, suppose on the contrary that a > 0. Let M € ftp

and w e £(w) be such that

Then /

^(w, U,p) = —<7<0

and therefore a < 0.

Let JC e |(M) be such that

b(u,x,p) = <j.

Then

, w, p) = <r — <? ><?
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by (4.19) which contradicts the fact that & = max{b(x, w,p): we{(x)}. Therefore
& = & = 0. This completes the proof. •

Let
ft= n np.

p is rational
|p|<O)O

ft is ft-invariant, n(£l) = 1 and ft < | . We have

for all u e ft and all rational \p\ <w0.
Let ft = {u e M: ft is dense on the geodesic orbit of «}. ft is /t-invariant, fi (ft) = 1

and ft n ft < g. Lemma 4.2 shows that b (u, w, p) is continuous in p. This implies that

(4.20)

for all u e ft n ft and all p G R with gp« € ft.

Let gpu e M - ft for some M e ft n ft, p € R. We have

£(gpM)c:A/-ft, since ft<f;

g P ( f (« ) )cM-n by (4.20).

Let us define a partition £ on ft by

i(gpU) = ZigpU) if W € ft n ft, gpM G ft

#(gp«) = gP(!(")) i fuef tnf t , gpM^ft.

We have

# i i # # ) (4.21)

for all M e ft and all r e R.
Let QcM, (i(Q)>l-28, Q<£ be as in lemma 4.2. Since A is ergodic, there

are Z c ft, Z < £ ^ (Z) > 1 - 6 and 7 > 0 such that

if z e Z, f > 7 then the relative length measure of Q
(4.22)

on [z, htz] is at least 1-30.

Let Z c ft be the generic set of Z for the geodesic flow g, Z < £, (it (Z) = 1.

L E M M A 4.4. 77iere eju'sfa -y > 0 sucft that ifu,veZ and v =hfu for some \r\<y then

Proof. The proof is similar to that of lemma 4.2. Since <£,, i = 1 , . . . , n are uniformly
continuous on Q, given 0 < S < So there is 0 < w = w (S) < 5/2 such that

if d(wi, w2)<w, wi, w 2 e O then d(4>iWUcf>iW2)<S/2 for all / = 1 , . . . , « .
(4.23)

Let 0<y <o) be such that it x,y eG, y e Wy(x) then x, y form an cu-strip of
length 1 (see (2.13)). Let

u,v&Z,v = hfu for some | |
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We shall show that

h*uiei{v) for every ui e£(u).

Let x, y € G, p{x) = u, p(y) = v, y = H*x. x and y form an w-strip of length 1.
Since u, v e Z, there is a sequence 0 < rk -* °o, k -> oo such that exp (2rk) > 1 and

u(k) = gTku eZ , u((c) = gTku eZ,fc = l ,2

Let x(fo = GTtx, y<(tl = GTky. We have p(x(k)) = ulk\ p(yik)) = v{k) and x^ ' .y '^
form an w-strip of length tk =exp {2rk)>l. This means (see (2.13)) that

Hqis)y
ik)e Wa(JK#lky) for all s e [0, fk]

or

^ ' ^ ^ ( M * 1 ) , s6[0,rk] .

Let

Sfc ={5e[0, tk]: hsu
(k)eQ, h^v^eQ}.

k = 1, 2 , . . . (4.22) implies that

l(Bk)>(l-76)tk, * = 1,2, . . . (4.24)

if w is sufficiently small, ffc >7, q(tk)>l.
Let u1ei{u). Then

by (4.21). W e write /fc(s) = j e { 1 , . . . , « } if /isMf 6 AT,. W e have that iiseBk then

or

for some

since u < f c ) €Z<=f l , and

jfe = l , 2 , . . . (4.25)

by (4.23). Let

w=h*ul and w ( k ) = gTtw, fc = l , 2 , . . .

W e have

f \ ' k ) , 5 6 [ 0 , f t ] , jk = l , 2 , . . .

This and (4.25) imply that

d(hqis)w
ik),hqis)v

ikXq(s)))<aj+8/2<8.

Also

hqU)v
lk)(q(s))eK' iis€Bk. (4.26)
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Let

Ak=AqUk){ww,vik\S)^l0,q{tk)]

be as in lemma 4.1. We have

by (4.24) and (4.26), if <o is sufficiently small. This implies via lemma 4.1 that there
is sk e [0, q(tk)] such that

E(hSkw
ik\ hSkv

lk\sk), 8)>0.2q(tk), k = 1, 2 , . . . .

This implies via (2.9) that

hSkv
(k\sk)eU(hSkw

(k),D(e)/tk,D(e)/t2
k,D{e))

and therefore

fc = l , 2 , . . . (4.27)

where v(k) = g-Ttt>
(k)(sfc)€f(u) by (4.21). (4.27) may happen only if

w=hfulei(v)
since S/t exp (-2TIC)G [0, q(l)], k = 1, 2 , . . . , and f(u) is finite. This completes the
proof. •

For w G M we denote

WM{w) = {w'eM:w' = hrgpw for some p, re/?}.

W(u)(w), w E M form the unstable foliation Wiu) for the geodesic flow g. The set
n consists of leaves of W(u\ It follows from (4.21) that if wk e Wiu)(w), wetl and
wk -* w in the topology of W(u\w), then

Let

Z = {w e fi: Z is dense on the ft*-orbit of w},

/x(Z) = l and let

W = {w e Cl: Z n Z is dense in WM(w)}, (JL(W) = 1.

It follows from lemma 4.4 and (4.21) that W <i and

ii u, v e W, v = hqhfgpu for some p,q,reR then f(u) = hqh?qp£(u). (4.28)

This implies that if

wk G W, w'keW, wk -» w G M, w k -* w

when k -* oo then

and this limit equals i(w), if w e IV. This implies that

- i y , wk->w, wk&W then lim |'(wfc)cAf-W.
k o o
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Let us define a partition £ on M by

# = #(«) if H eW^ and

g() = lim i(uk), ukeW,uk^u,k^>oo.
k

£ is well defined and
£ = £ o n W n C l n O , b y ( 4 . 2 1 ) a n d if v = h q h * g p u , u e M

then f (i>) = hqh ?gj(u) by (4.28).

(4.29) shows that h( on M/g and /i€ on A//£ are isomorphic, since Wnfinfl is
ft-invariant and ( i ( f n ( i n f l ) = 1.

Proof of theorem 1. Denote
f 1 and f =

where uo = p(e). We shall show that f is a subgroup of G.
We say that / € G is a chain in G if / = J\ • • • Jk where

1 n\ (I 0\
exp ( -J U

for some pt, qt, r,; e R, i = 1, • • • , &. It is clear, that for any glt g2 e G there is a chain
/ e G such that g2 = g\ • J-

Let g, g e f1 and let

g = ^- / , g = e-J

for some chains

/ = / i - - - / f c , Ji=HqtH*GPi£, i = l,...,k

and

/ = / ! • • - A , Ji=H^tGPie, i = \,...,k.

We write

p ( / , ) = hqih*gPip{e) = ( h h * g ) i { u 0 ) , i = l,...,k.

We have

since g, g e f. This implies by (4.29) that

(A**g)k •••(***g

and (4.30)

We have

and

Pig

by (4.30).
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This implies that g • g e f and that f is a subgroup of G. It is clear that f is
discrete and T <= f.

Let g € f(«), ueM and let g = e • J for some chain / eG. (4.29) shows that then

f(«) = f / = fg.
Define <£: f/G onto M/£ by

It is clear that tji is measure preserving and

#, ( fg) = tf (f g • Nt) = f(p(g • AT,)) =

This shows that <£ is an isomorphism between h and t/G and ft£ on Af/f. This
implies via (4.29) that h is isomorphic to h( on M/£. D

5. Proof of theorem 3
Let 5 on (K,«/) be a factor of /ii on (M = T\G, ft) with a conjugacy ip:M -* Y

i{/h1(x) = Stl>(x) fora.e. x€M,

and let £ be the /i i- invariant partition of M, induced by ip. It follows from proposition
1.1 and lemma 3.1 that there are D <= Af, hxD =D, fi(D) = 1, U<=M/C, h{U = £/,
Hc{U) = 1 and an integer n >0 such that for every C eU the intersection C nD
consists of exactly n points each of /xc-measure 1/n.

We assume without loss of generality that D-M and U = M/£. So each C e f
consists of n distinct points of /xc-measure 1/n.

Let d, K, p,K',e and So be as in § 4 for £.
We omit the proof of the following lemma, since it is fully analogous to the proof

of lemma 4.1 and corollary 4.1.

LEMMA 5.1. Let 0<8<80, u, veMand let

Ak ={m e { 0 , 1 , . . . , k}\ there exists u(m)e£(u)

such that hmv(m)eK' andd{hmu, hmv{m))<8}.

If \Ak\/k >0.9 for all integers k >ko>0 then there is v e£(v) such that

v=hqu for some q=q(u,v,8),\q\<8.

Let X<{tft{X) = l and AT, cX,i = l,..., n.

\JXt=X, (Xi)

be such that for every x eX the intersection £(jt)nX, consists of a single point
Xj(jt) and the map <f>i\ X ontoX; defined by <f>{x) = Xi{x), is measurable.

As in § 4 we denote

pick
A<=X,
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such that each <£,, i = 1 , . . . , is uniformly continuous on A and take

Q = AnK, fi(Q)>l-2e, Q<£.

Let F c A f be the generic set of Q for h\. We have

hxF = F, F<£ and

LEMMA 5.2. For every 0 < S < So there is (3 =(3 {8) such that ifu\,V\eF,v\ = h,u\for
some \t\<B then for every K 2 S£(UI) there is v2€.£{v{) such that v2

 = hau2 for some
a =a(«i, u2, t), |a|<<5 and a(h\U\, h\u2, t) = a{u\, u2, t).

Proof. The proof is similar to that of lemma 4.2. Let /3 > 0 be such that

if d{wi, w2)<B, w\, w2e A then

d(<f>iWu<f>iW2)<8, i = \,...,n. (5.1)

Let

Hi,t>i6F and v\ = htu\ for some |f|</3.

Since u\,V\&F there is fc0>0 such that if k >k0 and

Bk = {m e { 0 , 1 , . . . , k}: hmut e Q, hmVl e Q}

then

Bk\/k>l-l6 (5.2)

where \B \ denotes the number of points in B.
Let u2e£(ui). We wri te / (m) = i e{l,..., n} if hmu2£Xi, m = 1, 2 , . . . . We have

or

for some UI(W)G^(DI) and if m eBk then

hmu2eK', hmvi(m)eK'

and

d(hmu2, hmvi(m))<8

by (5.1). This and (5.2) imply via lemma 5.1 that there is v2€£(v\) such that

v2 = hau2

for some a =a(ui, u2t), | a |<5. It is clear that

aihxUi, hxu2, t) = a(uuu2, t). O

Let T(x) denote the h,-OTbit oixeM and let

F = {xeM:FnT(x) is dense in T(x)}.

F is /irinvariant, t e R and /x (F) = 1.
It follows from lemma 5.2 that if JC eF, x, e T(x)nF, i = 1, 2 , . . . andx;-**, / -»oo

in the topology of T(x) then the lim1_0O£(xI) exists and does not depend on the
sequence x, e T(x)nF, x, -»x, i-»oo. If x e F n F then this limit equals to £(x).
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We define I on F by

f ( ) £ ( ) if xeFnF

and
<f(x) = lim£(x,) if xeF-F

i-*oo

where X;€T(x)nF, / = 1,2,... andx,-»x, /-»oo in T(x).
£ is well defined and

£(x) = £(x) fora.e. x e M

Proof of theorem 3. In order to prove the theorem it is enough to show that there
exists an fr,-invariant set

F'^F, / i (F ' )=l , F'<£

such that

h,(£(x)) = Cih*) for all x eF' and all t e R.

I t fo l lows f r o m l e m m a 5 .2 t h a t for e v e r y xeF, i~€£(x) a n d teR t h e r e is
a =a{x,x,t)eR such that

, hix, t) = a(x, x, t) (5.3)

a(x, x,t) = t, a(x,x,0) = 0, a(x,x,l) = l.

The function a(x, i", 0 is uniformly continuous in t for every x eF, x e ^(x).
Denote

r~(x, f) = min {a(x, x, t): x ef(x)}

r+(x, f) = max{a(x, x, f): i" ef(jc)}, xeF,teR.

r~(x, t) and r+(x, f) are continuous in f and are constant on the /ix-orbit of x. Since
hi is ergodic, there isF, <=F,F,<£, hiF, = F,, fi(F,) = 1 such that r+(x, t) and r"(x, f)
equal constants r+(t) and r~(0 respectively on F,.

Let

F= n F(, M(F) = 1, !!!/ = #, F<f.
r is rational

We have
r(x,t) = r-(t)

r+(x,t) = r+(t)

for every x e F and every rational t. Since r+(x, t) and r~(x, f) are continuous in t,
(5.4) holds for all r e£ .

Let

F' = {xeF :Fnr (x ) is dense in T(x)},

hF' = F',t<=R,F'<£ and n (F') = 1. (5.4) implies that

r(x,t)=r(t), r+(x,t) = r+(t)
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for all x e F' and all t e R, since

r+(x, t) = lim r+(xu f), r~(x, r) = lim r~(xh t)

if xi eT(x)nF and Xi-+xinT(x).
Take xeF ' and let xe£(x) be such that

We have

a(x, x, t)>r~{t) = a(x,x, t) for every xe£(x).

This implies that

and therefore

r-(r'(O) = r~(f) for all t eR. (5.5)

We claim that

r~(t) = r+(t) = t for all re/?. (5.6)

Indeed, it follows from (5.3) and the definition of r+ and r~ that

r-(l) = r+(l)=l (5.7)
and

Let us first show that

Since r~(t) is continuous, there is roe (0,1) such that

r'(to) = i

This and (5.5) imply that

r-(i) = i
and therefore

r (2) = 2

by (5.7). We have shown that if x e F ' then

Al/2f(jc)
This implies that

+{\-t) = \ for all

Arguing as above we get that (5.6) holds for r = 4 and r = | . Proceeding by induction,
we get that (5.6) holds for all t e R of the form k/2n, k, n = 1, 2, Since r~ and

r+ are continuous, (5.6) holds for all teR. (5.6) implies that

h£{x) = Cih,x) for all x eF' and all r 6 R.

This completes the proof. •
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