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Abstract. A procedure to select the controlling factors con-

nected to the slope instability has been defined. It allowed

us to assess the landslide susceptibility in the Rio Beiro

basin (about 10 km2) over the northeastern area of the city of

Granada (Spain). Field and remote (Google EarthTM) recog-

nition techniques allowed us to generate a landslide inventory

consisting in 127 phenomena. To discriminate between sta-

ble and unstable conditions, a diagnostic area had been cho-

sen as the one limited to the crown and the toe of the scarp

of the landslide. 15 controlling or determining factors have

been defined considering topographic, geologic, geomorpho-

logic and pedologic available data. Univariate tests, using

both association coefficients and validation results of single-

variable susceptibility models, allowed us to select the best

predictors, which were combined for the unique conditions

analysis. For each of the five recognised landslide typologies,

susceptibility maps for the best models were prepared. In or-

der to verify both the goodness of fit and the prediction skill

of the susceptibility models, two different validation proce-

dures were applied and compared. Both procedures are based

on a random partition of the landslide archive for produc-

ing a test and a training subset. The first method is based

on the analysis of the shape of the success and prediction

rate curves, which are quantitatively analysed exploiting two

morphometric indexes. The second method is based on the

analysis of the degree of fit, by considering the relative er-

ror between the intersected target landslides by each of the

different susceptibility classes in which the study area was

partitioned. Both the validation procedures confirmed a very

good predictive performance of the susceptibility models and

of the actual procedure followed to select the controlling fac-

tors.

1 Introduction

One of the key points in assessing landslide susceptibility by

means of multivariate statistical models is the selection of

the controlling factors (i.e., the predictor variables). Partic-

ularly when adopting approaches based on conditional anal-

ysis, such as UCU or Matrix methods, increasing the num-

ber of factors is the reason for a higher number of combina-

tions and a consequent decreasing of the number of cases

(counts of cells) for which each specific condition is ob-

served and “trained”. At the same time procedures for for-

ward selection or backward elimination are not available for

such landslide density based methods. Procedures and cri-

teria for classifying the importance of each of the consid-

ered factors and a priori taking a decision whether to in-

clude a single factor in the definition of multivariate models

are needed. Among the possible approaches, the statistical

analysis of contingency tables produced by spatially cross-

ing factors and landslides allows for the computing of some

correlation or association indexes, capable of driving the de-

cision (Fernández et al., 2003; Chacón et al., 2006; Irigaray

et al., 2007; Jiménez-Perálvarez et al., 2009). Parametric and

non-parametric statistical methods are widely adopted in de-

riving association, co-graduation and correlation indexes that

express the strength and significance with which a predictor

variable explains the outcome (stable/unstable conditions).

But, to exhaustively define a procedure for the best factors

selection, evaluations are also required on the predictive per-

formances both for each single-variable model and for the

multivariate models, which are obtained by variously select-

ing these. In fact, the results of the validation procedures are

also controlled by the spatial stability of such geostatistical

relationships, when splitting in training and test sub-sets
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Fig. 1. Geographical setting of the study zone. Coordinate Reference System: UTM zone 30 European Datum 50.

UCUs or landslides. In the present paper, results are pre-

sented of a research aimed at analysing the relationships be-

tween a priori ranking of controlling factors and predictive

performance of multivariate models prepared by singling out

the best ones to be combined.

2 Materials and methods

2.1 Setting of the study area

The study area (Fig. 1) stretches NE of the city of Granada

(Andalusia, Spain), coinciding with the basin of the Beiro

river (10 km2), which is a sub-basin of the Genil river, a

subsidiary of the Guadalquivir river that flows through the

south of Spain to the Atlantic Ocean. Despite the nearness to

the sea, the climate in the area is Mediterranean with a con-

tinental influence, being characterised by marked tempera-

ture and rainfall short- and long-period changes. Accord-

ing to the termo-pluviometric station of “Granada-Cartuja”,

720 m a.s.l., rainfall is mainly concentrated between October

and April, while between May and September it is gener-

ally very low (particularly in July and August when it is less

than 10 mm). It rarely rains and the high mountains of Sierra

Nevada do not allow the sea to mitigate the climate. Temper-

atures in winter are often below zero while in summer they

are always above 30 ◦C. High diurnal temperature ranging

is also recorded, reaching up to 15 ◦C. According to the De

Martonne aridity index (1942) the area can be classified as a

semi-arid climate.

The geological setting of the Beiro river basin (Fig. 2) is

characterised by terrains, which are aged from Pliocene to

recent Quaternary, being tectonically limited to the North by

Triassic dolomitic marbles which are very tectonised (Vera,

2004). This terrain is the only formation of the Alpujarride

complex that outcrops into the study zone. This complex

is followed by Pliocene deposits and incoherent Pleistocene

and Quaternary post-orogenic deposits that filled deep val-

leys, producing the great alluvial fans. The post-orogenic

deposits which outcrop into the study zone, from bottom

to top, are: the terrains of the “Pinos-genil formation”, that

marks the transition to continental facies (mainly Pliocenic

conglomerates and, in the higher part of the sequence, sandy

layers); the Cenes-Jun sequence, made of lacustrine deposits

of lutite, sand, silt and gravel; the “Alhambra conglomerates”

sequence made mainly of conglomerates and sand. The se-

quence is closed by Quaternary alluvial deposits which are

the terrain on which the town is settled.

The landscape is generally marked by sub-planar ar-

eas, corresponding to a lower Pleistocene smoothing of the

previous relief deeply engraved by Upper Pleistocene to

Holocene stream incision, surrounded by steep reliefs. The
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Fig. 2. Geological setting of the study zone. Regional geology (a) (modified from Vera, 2004); Beiro river basin (b). Coordinate Reference

System: UTM zone 30 European Datum 50.

geomorphological setting, together with the climatic condi-

tions, is responsible for a wide diffusion of landslides, char-

acterised by several movement typologies and variable area

extensions (Chacón et al., 2006)

2.2 Landslides

A database of 127 slope movements (Fig. 3) has been pro-

duced for the Beiro river basin, the movements have been

classified (Varnes, 1978; Cruden and Varnes 1996, Dikau

et al., 1996) as falls, translational slides, earth flows, debris

flows and flow slides (Table 1). The archive was obtained

by using different recognition techniques. First, we anal-

ysed and interpreted the aerial photos in a scale of 1:33 000

taken between 1956–1957 by “Ejército del Aire de España”

and the European air force (also known as “the American

flight”) and the ones taken in scale of 1:18.000 by the Geo-

graphic Minerary Institute of Spain (IGME) in 1978. An-

other step towards the definition of the landslide archive

was a field survey carried out in scale of 1:10 000 between

March and April 2010. During the field survey, rock and

soil samples were collected and analysed, in order to dis-

tinguish between debris and earth type material. The land-

slide archive obtained was compared to the one obtained

through the use of open source software or free images

like Google Earth (GE) and similar (e.g., Bing Maps 3-

D, aerial photos, etc.) (see also Conoscenti et al., 2009;

Costanzo et al., 2011; Rotigliano et al., 2011b). The lat-

ter were chosen because of the excellent spatial resolution

(DigitalGlobe Catalog ID: 1010010007D4E108, Acquisition

Date: 24 March 2008; Catalog ID: 1010010004736A01, Ac-

quisition Date: 15 August 2005; spatial resolution 46–60 cm

per pixel) of the images, as well as their easy access to up-

dated cartography and of the possibility to dynamically man-

age the angles for each slope (Fig. 4).

The landslide survey has enabled an archive to be pre-

pared:

– Falls (28 cases, 3.8 % of the landslide area): these

landslides mainly affect the over-consolidated silty and

sandy quaternary terrains. The fall movements found in

this area are not very extended and cover areas of tens of

square metres each. The areas affected by this kind of

movement are usually the ones where the geostructural

conditions form near vertical slopes. Weathering pro-

cesses, a high diurnal and seasonal temperature ranging,

are responsible for fractures enlargement inside over-

consolidated soils. The triggering factors for fall move-

ments are the undercutting at the foot of escarpments

and the intensive rainfall.
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Fig. 3. Landslide inventory. Spatial distribution of landslide, obtained for the Beiro river basin by Google EarthTM remote analysis.

Coordinate Reference System: UTM zone 30 European Datum 50.

Table 1. Landslide inventory, extension of landslide and lithology affected by slope ruptures.

TYPOLOGY number
area (m2) for Percentages Affected lithology

of cases
a single landslide (% of cases)

max min mean total Std. Dev. T1 T2 Al Rcsg SoCJ Alh Cs Dol

Falls 28 1802 50 356 14 249 390.1 3.8 0.1 0.0 0.0 15.2 75.1 9.7 0.0

Translational slides 1 69 755 69 755 69 755 69 755 – 18.7 0.7 0.0 0.0 0.0 100 0.0 0.0

Earth flows 36 48 997 165 3668 201 788 6704.3 54.2 2.1 0.0 0.0 5.2 60.2 34.6 0.0

Debris flows 57 2984 85 571 47 438 526.0 12.7 0.5 0.0 0.0 13.2 65.4 21.4 0.0

Flow-slides 5 9758 434 2204 39 683 2108.6 10.6 0.4 0.0 0.0 17.1 67.3 15.6 0.0

Total 127 372 913 100.0 3.81 % Area of Beiro river basin 9.8 km2

Al: Aluvional deposits. Rcsg: red clay, sand and gravel. Alh: Conglomerates of Alhambra. SoCJ: Silt of Cenes-June. Dol: dolomites. T1: percentage in terms of landslide area.

T2: percentage in terms of total area. Std. Dev: standard deviation.

– Translational slide (1 case, 18.7 % of the landslide

area): a single landslide, which is locally called the

Beiro’s translational slide, affecting conglomeratic de-

posits with sandy and silty intercalations (Alhambra

Formation). The extension of the movement reaches up

to 70 000 m2 with a main body 420 m wide and 225 m

long. The movement is characterised by a diachronic

activity, alternating dormant to active stage, with low

or extremely low velocity (Chacón, 2008a, b; 2010;

Chacón et al., 2010).

– Earth flows (36 cases, 54.2 % of the landslide area): the

terrains interested by earth flows are over-consolidated

sands and silts, or conglomerates.

– Debris flows (57 cases, 12.7 % of the landslide

area): these are the most common slope failures in the
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Fig. 4. Beiro translational slide view by different techniques.

area, but they only cover 0.5 % of the Beiro river basin.

The debris flows involve terrains mainly consisting of

surficial regolithic layers produced by intensive weath-

ering and typically occur, triggered by rainfall, along

highly steep slopes.

– Flow-slides (5 cases, 10.6 % of the landslide area): these

landslides (representing the 10.6 % of the total land-

slide area) are complex movements that initiate with the

structural collapsing and the flowing of saturated earth

or debris volumes, the movement of the mass evolves

downhill in a lobate accumulation area (Dikau et al.,

1996). The terrains typically interested by flow-slides

are carbonates, sandstones and conglomerates. The slip

surface is not easily defined for this type of landslide.

In Sect. 1, the discovery of America was described. Here

we will outline the subsequent history until the present. This

is best summarized in Table 1.

As can be seen from Table 1, there is almost no mention

of geomagnetism or the magnetosphere at all. This sorry sit-

uation is discussed further and explained away in Sect. 4.

2.3 Susceptibility modelling

In order to define the landslide susceptibility in the Beiro

river basin, the matrix method in a GIS environment was

applied (Irigaray et al., 1999; Irigaray et al., 2007; Jiménez-

Perálvarez, 2009). This approach is based on the determina-

tion of all the possible combinations, between the multivari-

ate mapping units, the ones to be classified according to a

susceptibility scale, and of the diagnostic areas, which are de-

rived from landslide inventories and allow us to discriminate

between stable and unstable conditions. The susceptibility of

each mapping unit is defined as a function of its conditioning

factors, depending on the spatial relationships between fac-

tors and past landslides. The susceptibility level of each UCU

is computed as the ratio between unstable and total areas ac-

cording to the landslide-susceptibility matrix values (LMS)

that constitute the proportion of slope movements with re-

spect to the total area and represent the relative susceptibility

of each combination of factors at each point of the terrain. A

very similar theoretical background has been used by differ-

ent authors (Davis, 1973; Carrara et al., 1991, 1995; Soeters

and van Westen, 1996; Guzzetti et al., 1999, 2006; Clerici et

al., 2002; Chung and Fabbri, 2003; Conoscenti et al., 2008).

According to largely adopted procedures (e.g., Fernández

et al., 2003; Rotigliano et al., 2011b), the landslide scarp or

source area has been used as the diagnostic area, as it better

allows to single out physical-environmental conditions that

are similar to those responsible for the past landslide activa-

tions. According to Fernández (2003), we will refer to this

area as “rupture zone”.
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Table 2. Correlation between the source area of the landslide and the determining factors. Factors highlighted in grey show the best models.

(A) Falls (B) Translational slides (C) Earth flows

FACTOR R G-K ARPA SHIFT FACTOR R G-K ARPA SHIFT FACTOR R G-K ARPA SHIFT

ROUGH 0.48 0.97 0.467 0.00 USE 0.54 −0.72 −0.243 0.61 USE 0.54 −0.73 0.393 −0.11

USE 0.47 0.96 0.453 0.00 TWI 0.44 −0.63 0.172 0.08 SLOPE 0.43 0.67 0.266 0.03

SLOPE 0.42 0.95 0.450 0.02 SLOPE 0.44 −0.62 0.028 −0.18 LITH 0.52 −0.67 0.350 −0.02

EDAF 0.28 −0.68 0.376 0.01 DIST 0.43 0.55 0.112 0.08 ROUGH 0.16 0.67 0.254 0.01

SPI 0.20 0.48 0.248 0.05 ILL 0.42 0.54 0.291 −0.07 TWI 0.36 −0.67 0.275 0.04

TWI 0.20 −0.41 0.177 0.04 GEOM 0.31 0.48 −0.047 0.40 ELEV 0.27 0.67 0.378 −0.09

LITH 0.19 −0.41 0.022 −0.30 ROUGH 0.31 0.47 0.083 0.09 SPI 0.17 0.29 0.084 0.01

ELEV 0.32 −0.38 0.353 0.06 LITH 0.40 0.45 0.137 0.20 GEOM 0.46 −0.21 0.324 0.01

DIST 0.14 −0.34 0.235 0.04 ASPECT 0.39 0.44 0.170 0.18 DIST 0.28 0.25 −0.141 0.31

ILL 0.50 −0.29 0.221 0.14 SPI 0.25 0.33 0.012 0.02 ILL 0.46 0.12 0.220 0.06

PROF 0.37 −0.25 0.013 0.04 ELEV 0.54 −0.32 −0.064 0.50 PLAN 0.45 0.10 0.228 0.02

PLAN 0.49 0.15 0.179 0.10 EDAF 0.38 0.09 0.037 0.33 EDAF 0.44 0.10 0.311 0.04

ASPECT 0.25 −0.13 0.451 0.04 TPI 0.29 −0.03 0.191 0.05 ASPECT 0.40 0.06 0.233 0.03

TPI 0.38 −0.09 0.368 0.03 PROF 0.29 −0.03 0.149 0.04 PROF 0.40 −0.03 0.190 0.02

GEOM 0.25 −0.02 0.276 0.00 PLAN 0.30 −0.01 0.193 0.03 TPI 0.41 0.01 0.214 0.01

(D) Debris flows (E) Flow slides

FACTOR R G-K ARPA SHIFT FACTOR R G-K ARPA SHIFT

LITH 0.54 −0.92 0.327 0.05 ROUGH 0.55 0.83 0.384 −0.05

SLOPE 0.45 0.90 0.368 0.03 GEOM 0.49 0.83 0.256 0.07

ROUGH 0.45 0.90 0.417 −0.02 SLOPE 0.42 0.81 0.494 −0.15

TPI 0.43 0.89 0.345 0.03 TWI 0.41 −0.80 0.371 0.08

USE 0.43 −0.67 0.343 −0.10 USE 0.28 −0.60 0.401 −0.15

TWI 0.23 −0.46 0.450 −0.10 LITH 0.26 −0.55 0.450 −0.10

SPI 0.22 0.40 0.168 0.03 SPI 0.03 0.46 0.150 0.04

ELEV 0.34 −0.28 0.334 0.02 ILL 0.34 0.27 0.172 0.10

GEOM 0.34 0.09 0.397 0.01 ASPECT 0.23 0.24 0.292 0.06

DIST 0.06 0.05 0.005 0.02 PLAN 0.33 0.13 0.267 0.05

ASPECT 0.21 0.03 0.238 0.05 TPI 0.31 0.13 0.251 0.03

ILL 0.38 0.03 0.134 0.09 PROF 0.30 0.11 0.232 0.04

PLAN 0.36 0.03 0.334 0.06 DIST 0.10 −0.10 −0.153 0.22

EDAF 0.26 −0.02 0.249 0.02 ELEV 0.30 0.09 0.268 0.03

PROF 0.32 0.00 0.273 0.03 EDAF 0.26 −0.04 0.083 0.14

ASPECT: Aspect (sessagesimal degrees clockwise from N); DIST: Distance of tectonic lineaments (m); EDAF: Edafic units; ELEV: Elevation (m a.s.l.); GEOM: Geomorphological

units; ILL: Illumination LITH: Lithology; PLAN: Plan Curvature (rad−1); PROF: Profile curvature (rad−1); SLOPE: Slope angle (sessagesimal dregrees); TWI: Topographic

Wetness Index (m); ROUGH: Roughness; TPI: Topographic Position Index; SPI: Stream Power Index; USE: Land use.

R: linear and contingency correlation coefficient; G-K: Goodman and Kruskal’s gamma; ARPA: areas above randomly predicted area; SHIFT: shift between prediction and success

rate curves.

2.4 Factor selection

Slope stability is directly connected to the types of terrain, to

the presence of discontinuity surfaces, to the morphology of

the slopes (slope angle, aspect, curvature, land use and hy-

drogeological conditions, etc.), while the triggering of new

landslides, is usually connected to internal and external con-

ditions, such as intensive rainfall or earthquakes. The trig-

gering factors can also be anthropologically induced by de-

forestation, intensive erosion different uses of lands, drilling,

etc. (Crozier, 1984; Hansen, 1984). Landslide susceptibil-

ity assessment is based on conditioning factors, as it pro-

duces prediction images which depict the spatial distribution

of the landslide propensity without allowing for the estimate

magnitude or time recurrence for the predicted phenomena.

As the aim of this research was to test a variable selection

procedure, the factors taken into consideration were those

where data and maps were available for processing.

The following 15 controlling factors or variables were con-

sidered (Table 2):

Topographic factors: in describing and quantifying the en-

vironmental conditions, DEM is the most important data

source as it directly influences the quality of the derived fac-

tors, (Burrough, 1986). The DEM here used was derived

by digitalizing the cartography (1:10 000) made by the Gov-

ernment of Andalusia, which was obtained from aerial pho-

tos in scale 1:20 000. The following derived variables were

tested for preparing the susceptibility models. Slope aspect

(ASPECT), which was reclassified in classes of 45◦, from

0 (due north) to 360, (again due north, coming full circle)

clockwise. Flat areas, having no downslope direction are

given a value of −1. Slope aspect can be considered as a
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proxy variable for the attitude of the outcropping layered

rocks. Elevation (ELEV), which was reclassified in equal

classes from 650 m to 1659 m a.s.l. (Fernández et al., 2008),

can express both topographic condition and, indirectly, the

role of thermo-pluviometric conditions. Illumination (ILL),

ranging from 0 to 255, where 0 represents the shadowed

areas and 255 the brightest, allows for the differentiation

of cells with respect to evapo-transpiration. Plan curvature

(PLAN) (Ohlmacher, 2007) and profile curvature (Dikau,

1989) were reclassified in 1/2 standard deviation, from −17.2

to +16.4 rad−1 and from −16.5 to +22.9 rad−1, respectively.

Topographic curvatures control the way in which both sur-

face runoff and gravitative stresses acting on shallow failure

surfaces can converge or diverge. Slope angle (SLOPE) was

classified in 6 natural break intervals expressed in sessagesi-

mal dregrees – (1) 0◦–2◦; (2) 2◦–5◦; (3) 5◦–15◦; (4) 15◦–25◦;

(5) 25◦–35◦; (6) >35◦. SLO is typically considered the main

controlling factor in landslide modelling. Topographic wet-

ness index (TWI), which was reclassified in standard devia-

tion from 4.7 m to 17.9 m (Rodhe and Seibert, 1999; Zinko

et al., 2005), expresses a potential index of saturation of

soils (Sharma, 2010). Topographic roughness (ROUGH) is

a measure of the texture of a surface and was reclassified in

5 classes, from 1 to 1.9 by natural breaks (Hobson, 1972).

It is quantified by the vertical deviations of a real surface

from a linear planar shape. Topographic position index (TPI)

compares the elevation of each cell in a DEM to the mean el-

evation of a specified neighborhood around that cell (Weiss,

2001; Zinko et al., 2005); it was reclassified in 10 natural

break classes from −8.4 to 9.2. TPI allows the expression of

the geomorphological setting in a quantitative way. Stream

power index (SPI) is the time rate of energy expenditure and

has been used as a measure of the erosive power, which can

control the initiation of landslides. SPI can be calculated

as: SPI = As tan β, where As specific catchment area and

tan β is local slope (Sharma, 2010).

Geological l.s. factors: these are derived from available

maps which have been validated and detailed for this re-

search through field checks. Lithology (LITO): is one of

the most important factors because of its influence on the

geo-mechanical characteristics of terrains. The various litho-

stratigraphic units outcropping in the area were grouped in

6 lithological classes – (1) Alluvial; (2) Calcarenites, sands,

marls and limestones; (3) Calcareous marble; (4) Conglom-

erates, sands and limestone; (5) Phyllite, micaschist, sand-

stone; (6) Sand, silt, clay, gravel) – which were defined on the

basis of the prevailing rock composition (Clerici et al., 2006).

Land use (USE), which was reclassified in six classes: (1)

Bush; (2) Permanent crops; (3) Shrubland; (4) Urban areas;

(5) Extractive areas; (6) River beds. Distance of tectonic lin-

eament (DIST), which was reclassified in 3 classes: 1 (0–

200 m), 2 (200–400 m), 3 (>400 m), corresponding to the

distance from the faults and thrust faults. Geomorpho-

logical units (GEOM), reclassified in: (1) karst platform;

(2) Floodplain. (3) Hills; (4) Mountain chain. Edafic units

(EDAF), reclassified in five classes: (1) Calcareous cambisol;

(2) Regosol; (3) Lithosol; (4) Luvisol; (5) Fluvisol.

To maximize the resolution of the topographic factors,

which were derived from a 1:10 000 map, the pixel size of

all square grid layers was set to 10 m, even if the scales of

the source maps from which the geological l.s. factors were

smaller: land use (1:25 000), lithology, geomorphology and

edafic units (1:50 000), DEM (1:10 000).

Before combining the variables in a UCU layer, univariate

geostatistical relationships between each variable and land-

slide were estimated, by analysing the association coeffi-

cients of contingency tables. By cross-tabulating a factor

grid layer and a landslide vector layer, it is in fact possi-

ble to derive contingency tables whose statistical correlation

can be quantitatively estimated (Irigaray, 1999; Fernàndez,

1996; Chacón, 2003; Fernàndez, 2003; Irigaray et al.,

2007). By using statistical software packages like Unistat

and IBM SPSS, the following correlation indexes were com-

puted: linear and contingency correlation coefficient (R),

Goodman-Kruskal’s gamma (G-K) (Goodman and Kruskal,

1954; Davis, 1973).

The predictive role of each single variable concerning the

assessment procedure was also estimated, by validating sus-

ceptibility models based on a single factor. The method re-

quires (Chung and Fabbri, 2003) the spatial random partition

of the landslide inventory in a training subset, which is ex-

ploited to classify the susceptibility levels of the UCUs so to

produce a prediction image, and a test subset, which is con-

sidered as the unknown target pattern. The prediction im-

age is then compared to the actual spatial distribution of the

test rupture zones and success and prediction rate curves are

produced. On the contrary, in the only case of translational

slide present in the study area where it is not possible to split

the diagnostic areas archive (we have just one case), the ap-

proach is based on the random division of the (UCU), iden-

tifying UCU training and test domains, to obtain the predic-

tion rate curve. Some morphometric indexes of the validation

curves were used to estimate the performance of the models.

The quality of the susceptibility models was estimated by ap-

plying a procedure based on the quantitative analysis of the

shape of the success and prediction rate curves, which ex-

ploited two morphometric indexes: ARPA, areas above ran-

domly predicted area; and SHIFT, shift between prediction

and success rate curves (Rotigliano et al., 2011a, b). Since

the diagonal trend attests for a non-effective prediction, a

high performance produces high values of ARPA; a good fit

of the model is testified by low SHIFT results. By drawing

a theoretical validation curve respecting these threshold val-

ues, Rotigliano et al. (2011a) indicate 0.12 as the lower limit

of ARPA for an effective susceptibility model.

2.5 Models suite

In light of the results of the procedure for evaluating the

relevance of each variable, it was possible for each of the
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landslide typologies to rank the controlling factors according

to a predictivity scale. Authors are aware of the univariate ba-

sis of the proposed analysis, so that interaction or confound-

ing effects cannot be determined as factors are then analysed

one by one. However, a suite of multivariate models was

prepared so to verify if the ranking positions of each factor,

which is obtained by applying the above described univariate

procedures, are additive or not. Interaction between factors

should result in anomalous increasing or decreasing of the

prediction skill of models obtained by differently selecting

the combined factors from the ranked list.

Among the very high number of possible models which

can be prepared for each landslide typology starting from the

15 factors, a representative suite of models is discussed here,

which has been defined to the aim of highlighting the way

in which the univariate performances of the single variables

propagate when the latter are combined in multivariate mod-

els. Particularly starting from the single variable best model,

predictive performances were estimated both when progres-

sively or randomly adding less performing factors. The re-

sults of the multivariate models were submitted to valida-

tion by applying both the success and prediction rate curve

method and the analysis of the degree of fit (Chung et al.,

2003; Chacón et al., 2006; Irigaray et al., 2007; Remondo et

al., 2003).

3 Results

3.1 Factors

Table 2a–e shows the results of the analysis of the contin-

gency tables for each landslide typology, showing the factors

listed according to a decreasing order of the gamma G-K’s

absolute value, which was used to indicate the correlation be-

tween independent (factors) and dependent (landslides) vari-

ables. G-K ranges from −1 to +1: when G-K is close to

1, we have high correlation (for positive values, we have a

direct correlation, for negative ones it is indirect or nega-

tive); instead, G-K values close to zero indicate no corre-

lation. The predictor variables are classified as “effective”

(EFF) or “not effective” (NEF) depending on if the condition

G-K index > 0.5 and R > 0.4 applies or not (Fernández et al.,

1996, 2003; Irigaray et al., 2007).

Slope angle is among the more effective instability fac-

tors for all the 5 landslide typologies, having very high G-

K values (G-K > 0.8) for falls, debris flows and flow slides.

Roughness, land use and topographic wetness index are also

among the main causative factors. Roughness has high cor-

relation (G-K > 0.8) for all the typologies, with the exception

of earth flow (G-K = 0.67) and translational slides, for which

it does not enter among the more predictive variables. Land

use is a good predictor variable for all the typologies, with

the exception of flow slides, while topographic wetness in-

dex is not among the effective variables both for debris flows

and falls. Among the factors which are classified as EFF vari-

ables for only one landslide typology, geomorphologic units,

for flow slides, topographic position index and lithology, for

debris flows, are strongly (G-K > 0.8) effective. Finally, the

distance from tectonic lineaments and illumination, for trans-

lational slides and elevation, for earth flows, show medium

G-K values. All the other variables do not satisfy the condi-

tion and are, in the following, considered as not effective.

By looking at results from the “landslide typology point of

view” the following results can be highlighted: falls can be

explained by three EFF variable, which produces very high

G-K (>0.95) and ARPA (>0.45) values; five EFF variable

have been observed for debris flows, giving high G-K (close

to 0.9, except for USE) and variably high ARPA values; four

variables for flow slides produces G-K values close to 0.8,

and medium-high ARPAs; medium G-K and very variably

low ARPA values characterise the five explanatory variables

for translational slides; the six EFF variable for earth flows,

finally, are characterised both by medium G-K and ARPA

values.

The relationships between G-K and ARPA can be sum-

marized as follows. The validation of all the univariable

models gives high ARPA values, well above the threshold

of 0.12 (typically >0.25). Translational slide represents an

exception, since the models prepared for SLOPE and DIST

do not fit the ARPA threshold limit; for this landslide typol-

ogy, ARPA values quite above the 0.12 limit are among the

NEF variables. Larger (>0.3) ARPA values for NEF sin-

gle parameter values are observed for falls (EDAF, ELEV,

ASPECT, TPI, GEOM), earth flows (GEOM, EDAF), debris

flows (TWI, ELEV, GEOM, PLAN) and flow slides (USE,

LITH). Five of the latter cases are represented by factors just

below the limit of the EFF factors (EDAF, for falls, GEOM,

for earth flows, TWI, for debris flows, USE and LITH, for

flow slides). ARPA values close or larger than 0.4, seems

to be strictly related with EFF variable or, in case of NEFs,

with G-K greater than 0.45, with very surprising exceptions

of GEOM, for falls and debris flows.

3.2 Multivariate models

According to the results of the contingency tables, for each

landslide typology, the factors have been ranked from I (the

best predictor) to XV (the least predictor), depending on the

value of the association indexes (Table 3). In order to verify

both the correctness of the threshold values adopted in clas-

sifying the factors and the extent to which univariate corre-

lation between each single factor and landslides propagates

onto the predictive performances of multivariate models, a

large set of combinations of variables has been used to pre-

pare susceptibility models. The factors have been combined

to produce a suite of UCU layers, which have then been inter-

sected with the landslide (rupture zone) archive, to derive the

susceptibility grid layer. All the prepared models have been

submitted to validation procedures. Particularly prediction
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Table 3. Summary of classification of the determining factors for

each type of slope failure. FLL: falls; TSL: Translation slides;

EFL: Earth flows; DFL: Debris flows; FSL: Flow slides.

SUMMARY

FACTOR FLL TSL EFL DFL FLS

ELEV VIII XI VIII VIII XIV

SLOPE III V VI II III

ASPECT XIII IX XIII XI IX

TWI VI II V I IV

PROF XI XIV XIV XV XII

PLAN XII XV XI XIII X

ROUGH I VII IV III I

TPI XIV XIII XV IX XI

SPI V X VII VII VII

LITH VII I III VI VI

USE XV III I V V

DIST IX IV IX X XIII

GEOM II VI II IV II

EDAF IV XII XII XIV XV

ILL X VIII X XII VIII

and success rate curves were drawn, by randomly splitting

the landslide archive in a training and a test balanced sub-

sets. For the quantitative evaluation of the results of the vali-

dation, two morphometric parameters have been computed

(ARPA and SHIFT). Among the great number of models

which have been evaluated, the results for the most diffused

landslide typologies (falls and debris flows), are discussed

(Figs. 5 and 6; Table 4a and b). The two suites of models al-

lowed the verifying of a strong coherence between progres-

sively adding variables to the multivariate models and vari-

ation of ARPA. An expected score was computed for each

model by adding the rankings of the combined variables (so

that the lower the score the more effective the factors). When

EFF variables are added to the model, a quite large increasing

ARPA and very small stable SHIFT are observed; the maxi-

mum ARPA value found for the best model (which includes

only EFF variable). A transition to models including NEF

variables is clearly marked by best+1 models, prepared by

adding to the best models the best of the NEF variables. If an-

other NEF variable is added or a lower score is produced, the

decreasing of ARPA is very marked (46 %, for debris flows,

27 % for falls) and strictly coherent with the increasing of

SHIFT. For models including also NEF variables, it is possi-

ble to observe a clear inverse correlation between ARPA and

SHIFT.

In light of the above described results, models for two

UCU layers have been prepared for each landslide typolo-

gies: best models, including only EFF variables, and best+1

models, which also get the best among the NEF variables.

Table 5 lists the results of the validation of the suite of sus-

ceptibility models which were prepared, whose validation
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Fig. 5. Correlation between ARPA and SHIFT morphometric in-

dexes for suite models; Falls (a); Debris flows (b).

graphs are shown in Fig. 6. All the models are largely satis-

factory, with ARPA values higher than 0.35 and very lim-

ited SHIFT (<0.05), with the exception of EFLBEST+1,

which is characterised by low ARPA and high SHIFT, and

FSLBEST+1, which associate high ARPA to a very high

SHIFT. Generally, the best models gave ARPA values greater

than the ones which were produced by one of the single com-

bined variables or, when ARPA are similar to the ones re-

sulted from a single factor model (e.g., debris flow and flow

slides) a lowering of SHIFT is produced by combining EFF

variables. Particularly, the susceptibility models for falls and

debris flows, which are prepared by combining EFF vari-

ables characterised by high G-K and ARPA (Table 3a and

d), confirmed to have a high predictive skill; coherently, the

earth flow best model shows a quite (ARPA < 0.4) predic-

tive skill, in accordance to the quite good performances of

the single combined variables. Surprisingly, flow slides and

translational slides best models produce results opposite to

the expected ones. TSLBEST is in fact characterised by very

high performance, in spite of the medium to low G-K and

ARPA values (Table 2b); on the contrary, FSLBEST gives a

results that is similar to the performance of the single com-

bined factors (Table 2e). It seems that variables add in a con-

gruent increasing and incongruent decreasing way, for trans-

lational slides and flow slide, respectively. Finally, with re-

gard to the best+1 models, it must be noticed that high ARPA

(>0.4) best models are less susceptible to decrease their per-

formance when the best NEF variables are added. For if it

were to prove correct, then the consequences would be enor-

mous to say the least.
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Table 4. The two suites of models allowed high coherence between the progressive addition of variables to the multivariate models and

variation of ARPA; falls (a); debris flows (b).

Model suite: Falls

MODEL RANKS SCORE COMBINED FACTORS ARPA SHIFT

FLL A I 1 ROUGH 0.467 0.00

FLL B I–II 3 ROUGH-USE 0.474 0.00

FLL D I–III 4 ROUGH-SLOPE 0.466 0.01

FLLBEST I-II-III 6 ROUGH-USE-SLOPE 0.476 0.01

FLLBEST+1 I-II-III-IV 10 ROUGH-USE-SLOPE-EDAF 0.437 0.05

FLL C I-II-III-V 11 ROUGH-USE-SLOPE-SPI 0.258 0.23

FLL G I-II-III-XV 21 ROUGH-USE-SLO-GEOM 0.258 0.23

FLL E IV–V 9 EDAF-SPI 0.313 0.08

FLL F V–VI 11 SPI-TWI 0.273 0.03

FLL H IV-V-VI 15 EDAF-SPI-TWI 0.296 0.09

FLL I IV-VI-VII 17 EDAF-SPI-LITH 0.088 0.40

Model suite: Debris flows

MODEL RANKS SCORE COMBINED FACTORS ARPA SHIFT

DFL I I 1 LITH 0.327 0.02

DFL II I–II 3 LITH-SLOPE 0.419 0.01

DFL III I-II-III 6 LITH-SLOPE-ROUGH 0.427 0.03

DFL IV I-II-III-IV 10 LITH-SLOPE-ROUGH-TPI 0.434 0.02

DFLBEST I-II-III-IV-V 15 LITH-SLOPE-ROUGH-TPI-USE 0.438 0.03

DFLBEST+1 I-II-III-IV-V-VI 21 LITH-SLOPE-ROUGH-TPI-USE-TWI 0.437 0.04

DFLBEST+2 I-II-III-IV-V-VI-VII 28 LITH-SLOPE-ROUGH-TPI-USE-TWI-SPI 0.317 0.16

DFLBEST+3 I-II-III-IV-V-VI-VII-VIII 36 LITH-SLOPE-ROUGH-TPI-USE-TWI-SPI-ELEV 0.292 0.19

DFL III+XV I-II-III-XV 21 LITH-SLOPE-ROUGH-PROF 0.273 0.19

DFLBEST+WORST I-II-III-IV-V-XIII-XIV-XV 57 LITH-SLOPE-ROUGH-TPI-USE-PLAN-EDAF-PROF 0.168 0.32

Table 5. Summary of the results of the validation of the suite of susceptibility models, for best and best+1. FLL: falls; TSL: Translation

slides; EFL: Earth flows; DFL: Debris flows; FSL: Flow slides.

MODEL CODE COMBINED FATORS ARPA SHIFT

FALLS BEST FLLBEST ROUGH-USE-SLOPE 0.476 0.00

FALLS BEST+1 FLLBEST+1 BESTS+EDAF 0.437 0.05

TRANSLATIONAL SLIDES BEST TSLBEST LITH-TWI-USE-DIST-SLOPE 0.468 0.01

TRANSLATIONAL SLIDES BEST+1 TSLBEST+1 BESTS+GEOM 0.432 0.05

EARTH FLOWS BEST EFLBEST USE-GEOM-LITH-ROUGH-TWI-SLOPE 0.392 0.00

EARTH FLOWS BEST+1 EFLBEST+1 BESTS+SPI 0.299 0.11

DEBRIS FLOWS BEST DFLBEST TWI-SLOPE-ROUGH-GEOM-USE 0.438 0.03

DEBRIS FLOWS BEST+1 DFLBEST+1 BESTS+LITH 0.437 0.04

FLOW SLIDES BEST FSLBEST ROUGH-GEOM-SLOPE-TWI 0.379 0.04

FLOW SLIDES BEST+1 FSLBEST+1 BESTS+USE 0.334 0.21

3.3 Susceptibility maps and validation

Susceptibility maps for the five best models were prepared,

in which six classes, based on a standard deviation reclassi-

fication method (from −1 standard deviations to more than

4, with respect a mean value of 9.8 % of density) were used.

Adopting standard deviation criteria in depicting landslide

susceptibility is coherent with the relative meaning of the

concept of susceptibility itself: how much more likely is a

new failure in a site with respect to another. The relative error

between intersected target landslides by the different suscep-

tibility classes was used to estimate the predictive skill of the

maps. The degree of fit was computed for each susceptibility

class confirming a very good predictive performance of the

five susceptibility models. Finally, a general landslide sus-

ceptibility map was produced by cumulating, for each of the
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Fig. 6. Comparison of best and best +1 model. With validation

curves fall best model (a); fall best+1 model (b); debris flows best

model (c); debris flows best+1 model (d). Degree of fit between

susceptibility range and falls (e) or debris flows (f).

five classes, the landslide area produced for the five typolo-

gies. Also in this case, fully satisfactory predictive results

have been obtained (Fig. 7a and b).

4 Discussion and concluding remarks

A procedure to select the best determining factors connected

to landslide susceptibility has been defined. The method al-

lows the determining factors to be ranked according to their

expected contribution to the predictive skill of multivariable

model, classifying them as “effective” or “non-effective” and

the factors were ranked from I (the best predictor) to XV (the

poorest predictor), depending on the value of the association

indexes for each landslide typology and establish their best

susceptibility model. The identification of the most determi-

nant factors is an important step in a classification process.

Statistical methods should be able to get the most parsimo-

nious and geologically meaningful models. The exclusion of

poorly related predictive variables is an advantage during the

model building procedure allowing to reduce the complexity

of the susceptibility model, which in turns become easier to

be interpreted from a geological point of view.

Theoretically, a manual selection of the most relevant fac-

tors by an expert geomorphologist could be considered the

best approach, but because the number of probable descrip-

tors is often large, it is not always actually possible without

imposing subjective choice in the model building process.

Therefore, the best variables must be selected automatically.

The automatic process can be used as a preliminary approach

in order to filter unnecessary attributes.

Procedures of forward selection of variables have been ap-

plied for logistic regression and discriminant analysis models

(e.g., Carrara et al., 2008; Van den Eckhaut et al., 2009). In

the present paper, a similar approach is proposed for mod-

els based on conditional analysis, which is applicable to the

matrix method and unique condition units method. This

methodology has been applied to the Beiro River basin in

the northeastern area of the city of Granada (Spain).

The results demonstrated that slope angle is among the

more effective instability factors for all the 5 landslide ty-

pologies studied. Roughness, land use and topographic wet-

ness index are also among the main causative factors. Rough-

ness has high correlation in all the typologies, with the ex-

ception of earth flow, for which it is not among the predic-

tive variables. Land use is a good predictor variable for all

the typologies, with the exception of flow slides, while to-

pographic wetness index is not among the effective variables

for debris flows or falls. The lithology is not always present

in the suite of the best models selected by the chosen sta-

tistical coefficients. The latter, in fact, is particularly deter-

mining for medium-large landslides, for instance earth flows,

while is not of great significance for smaller landslides like

falls and debris flows. This can be explained by consider-

ing that these movements equally affect the debris landslides

and those over-consolidated terrains that outcrop in the area,

leading to a non-significant statistic in the determining fac-

tors. Also, the geological map which was exploited does not

have the necessary resolution to produce measurable spa-

tial variations of the terrains with the same detail than the

landslide archive does; the lithological terms that we had to

adopt do not respond to geo-mechanical properties, as differ-

ent types of rocks were grouped in single classes. Generally,

(earth- and debris-) flow landslides are controlled by topo-

graphic conditions together with land use and outcropping

lithology, while flow slides are completely explained by to-

pographic continuous (slope, topographic wetness index and

roughness) and nominal (geomorphologic unit) features. To-

pographic wetness index is an important predictor for earth

flows and the first among the non-effective for debris flows.

Falls are very effectively explained by just two topographic

(slope and roughness) and one nominal (land use) attributes.

Results for translational slides are heavily affected by the cir-

cumstance that just one case was observed.

Generally, the univariable validation method resulted in

being coherent with simple association and co-graduation in-

dex. At the same time the score (or order of importance) for

each variable, which was evaluated on a univariable basis,
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Fig. 7. Landslide susceptibility map (a) and validation (b). Coordinate Reference System: UTM zone 30 European Datum 50.

resulted in being coherent with the influence in the perfor-

mance of the multivariable models: adding an effective vari-

able always resulted in an increasing of the model fitting.

However, the best susceptibility maps obtained following

the GIS matrix method and the proposed procedure effec-

tively explain the spatial distribution of slope movements.

These maps provide valuable information on the stability

conditions of broad regions and are essential in the planning

phase to ensure that suitable corrective measures are taken.

The option of organizing the controlling factors according

to a statistical correlational coefficient could save both eco-

nomical and time resources. This kind of statistical approach,

however, requires excellent quality of the data input, regard-

ing both the variables examined and the details and the reso-

lution of the landslide archive, even though Google EarthTM,

was of excellent help in identifying the area subject to geo-

morphological instabilities. The main limit is, thus, due to

the scale of the maps available for an area, which is also the

scale that the definitive map will have. The possibility of

exploiting Google EarthTM images, was here demonstrated

on the basis of a comparison of coeval remote and field de-

rived landslide dataset. This tool offers the opportunity to

efficiently and more rapidly implement multitemporal land-

slide archives, allowing us to assess the landslide susceptibil-

ity conditions on a regional scale, for very large areas (hun-

dreds of square kilometres) for which landslide archives are

typically lacking.
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Tóvar, F. J., Caravaca de la Cruz (Murcia) 15th–18th September

2010, 288 pp., Open Lectures, 255–268, 2010.

Chacón, J. and Corominas, J.: Special Issue on “Landslides and

GIS”, Nat. Hazards, 30, 263–512, 2003.
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