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The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the

penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study

we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral

artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were

included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their

penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by

circular singular value decomposition deconvolution maps (Tmax46 s) and results were compared with volumes obtained with

non-deconvolved maps (time to peak44 s). Loss of penumbral volume was defined as difference of post- minus pretreatment

diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between base-

line characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of

covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral

tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collat-

erals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfu-

sion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with

3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was �2% with �1.5 ml/h,

indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main

factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and

slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of

penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.
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Introduction
The goal of acute stroke treatment with intravenous thrombolysis

or endovascular therapy is to rescue the penumbral tissue at risk.

The penumbra refers to the severely hypoperfused brain tissue at

risk of infarction, but still salvageable if reperfused early enough

(Astrup et al., 1981; Heiss, 2000). One viable method for approxi-

mation of penumbral tissue in clinical practice is applying diffusion-

weighted (DWI) and perfusion-weighted imaging (PWI) using MRI

and calculation of the PWI-DWI mismatch, although this method

cannot define the penumbra with absolute accuracy (Heiss, 2011).

Factors influencing the penumbral evolution are of major inter-

est. Reperfusion success and the elapsed time from symptom

onset to reperfusion are known to be critical for the evolution

of the penumbra. The impact of collaterals has been addressed

by some studies and good collaterals are considered to protect the

penumbra (Miteff et al., 2009; Zhang et al., 2010; Liebeskind

et al., 2010; Shuaib et al., 2011). However, knowing all factors

that have an effect on the evolution of the PWI-DWI mismatch is

important for stroke therapy, because PWI-DWI mismatch is or

has been used for patient selection and treatment decisions both

in clinical practice and trials such as DEFUSE 2, MR-RESCUE,

EPITHET and DIAS-2 (Davis et al., 2008; Hacke et al., 2009;

Lansberg et al., 2012; Kidwell et al., 2013).

The aim of this study was to examine the impact of the quality

of collaterals, reperfusion, elapsed time and baseline factors on the

evolution of the penumbral volume as defined by PWI-DWI

mismatch in patients undergoing endovascular therapy for

middle cerebral artery occlusions.

Materials and methods

Patients and treatment
The present study includes patients of the Bernese stroke registry, a

prospectively collected database. Some of their aspects have been

reported previously (Arnold et al., 2007; Jung et al., 2011, 2012;

Galimanis et al., 2012). Patients were included in this analysis if: (i)

diagnosis of ischaemic stroke was established; (ii) a proximal occlusion

of the middle cerebral artery (M1 or M2 segment) was documented on

digital subtraction angiography; (iii) they underwent endovascular ther-

apy and achieved at least minimal reperfusion in control angiography

at the end of the endovascular procedure [thrombolysis in cerebral

infarction (TICI) score 51; Higashida et al., 2003]; (iv) pretreatment

DWI and PWI and post-treatment DWI were performed with sufficient

quality; and (v) imaging data were recorded into the picture archiving

and communication system (as done since 2004). Patients without any

reperfusion (TICI score 0) had to be excluded from this study because

time to reperfusion, that was needed for our calculations, could not be

defined.

Age, gender, medication, National Institutes of Health Stroke Scale

(NIHSS), time from symptom onset to treatment, coronary artery

disease, atrial fibrillation, hypertension, diabetes, smoking, hyperchol-

esterolaemia, history of transient ischaemic attack or ischaemic stroke,

family history of transient ischaemic attack and stroke, treatment de-

tails (use of urokinase, mechanical procedures, bridging concept) and

complications were recorded as baseline characteristics. Collaterals

were classified as suggested by Higashida et al. (2003). Both collaterals

and reperfusion were scored retrospectively by two examiners blinded

for clinical data (J.G., C.Z.). Disagreements in scoring were resolved by

discussion. The study was performed according to the ethical guide-

lines of the Canton of Bern and with approval of our institutional

review board.

Magnetic resonance imaging and
image analysis
All patients had pre- and post-treatment magnetic resonance scans.

MRI was performed using a 1.5 T or 3 T MRI system (Magnetom,

Siemens). The MRI protocol included whole brain DWI (b = 1000t,

24 slices, thickness 5 mm, repetition time 3200 ms, echo time 87 ms,

number of averages 2, matrix 256 � 256) yielding isotropic b0 and

b1000 as well as apparent diffusion coefficient maps that were calcu-

lated automatically. Apparent diffusion coefficient (ADC) maps were

calculated according to the exponential relation S(b) = S(0) exp(�b �

ADC), where S(b) is the signal intensity using diffusion weighting with

the value b, and S(0) is the signal intensity with b = 0. For PWI the

standard dynamic-susceptibility contrast enhanced perfusion MRI (gra-

dient-echo echo-planar imaging sequence, repetition time 1410 ms,

echo time 30 ms, field of view 230 � 230 mm, voxel size:

1.8 � 1.8 � 5.0 mm, slice thickness 5.0 mm, 19 slices, 80 acquisitions)

was acquired. PWI images were acquired during the first pass of a

standard bolus of 0.1 mmol/kg gadobutrol (Gadovist, Bayer

Healthcare). Contrast medium was injected at a rate of 5 ml/s followed

by a 20 ml bolus of saline at a rate of 5 ml/s.

Symptomatic and asymptomatic intracerebral haemorrhage was

graded according to the definition of the PROACT II Study (Kase

et al., 2001).

Segmentation of the DWI lesion volumes was performed with the

in-house developed Java software SCANalyze Version 5.1.r637

(Slotboom et al., 2008). DWI volumes were calculated using semi-

automated thresholding with adjustable standard deviation of pixel

values to identify hyperintense regions of interests.

PWI lesion volumes were obtained by block-circular singular value

decomposition deconvolution maps and generated with the Perfusion

Mismatch Analyzer (PMA, from Acute Stroke Imaging Standardization

Group ASIST) Ver.3.4.0.6 (Wu et al. 2003; Kudo et al. 2009). The

maps were segmented with Slicer 3D with a time to maximum (Tmax)

cut-off value of 6 s.

In addition, PWI lesion volumes were obtained by non-deconvolved

maps with the in-house developed java software SCANalyze Version

5.1.r645 (H.S.) with a time to peak (time to peak) threshold of 44 s to

distinguish the penumbra from benign oligemia (Supplementary

material).

Volume measurements were performed by one author (M.G.) and

checked by another (M.E.), both blinded for the clinical data and

outcomes.

Statistical analysis
Statistical analysis was performed using SPSS 21 (SPSS Inc.).

Reperfusion was dichotomized into poor (TICI 1-2a) and good

(TICI 2b-3).

The ratio of penumbral tissue loss was defined as:

100 x
post treatment DWI volume� pretreatment DWI volume

pretreatment PWI volume� pretreatment DWI volume

The following factors were examined for correlations with the
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penumbral tissue loss in univariate analysis: collaterals, reperfusion,

PWI-DWI mismatch volume, time from symptom onset to reperfusion,

time from MRI to reperfusion, age, gender, atrial fibrillation, diabetes,

smoking, hypertension, hypercholesterolaemia, asymptomatic intracer-

ebral haemorrhage and NIHSS score on admission. All variables with a

P-value of 50.2 were then examined for correlations with the pen-

umbral tissue loss in analysis of covariance.

After exclusion of all non-significant factors the final analysis of

covariance was performed for the dependent variable penumbral

tissue loss. Covariates were time from symptom onset to reperfusion

or time from MRI to reperfusion, and factors were collaterals (five

levels) and reperfusion (two levels: TICI 1-2a and TICI 2b-3). A

P-value of 50.05 was considered significant. For subgroup analysis

reperfusion had the two levels TICI 2b and TICI 3.

Because DWI and PWI volumes were not normally distributed,

the consistency of the results was verified after square root

transformations of the volumes.

Results
Altogether, 356 patients were treated for M1 or M2 occlusions

with endovascular therapy from 2004 to April 2012. In 56 patients

a technically sufficient pre- and post-treatment MRI scan was per-

formed and in 44 of these at least a minimal reperfusion (TICI

score 51) was achieved. Baseline characteristics of the 44 patients

with proximal middle cerebral artery occlusions analysed in this

study (Table 1) were similar to all patients with anterior circulation

occlusion and endovascular treatment in our centre (Galimanis

et al., 2012). Median time from symptom onset to reperfusion

was 323 min (range: 237–492 min) and from MRI to reperfusion

173 min (range: 91–288 min). Occlusion site as seen in

angiography was M1 in 36 of 44 patients (81.8%) and M2 in

eight patients (18.2%).

Collaterals before treatment and reperfusion success on control

angiography at the end of the endovascular procedure was graded

by two examiners in consensus reading (inter-rater variability

kappa = 0.636 for collaterals and 0.809 for reperfusion).

Collaterals were graded as 0 in eight patients (18.2%), as 1 in

12 patients (27.3%) and as 2 in 24 patients (54.5%, two patients

borderline grade 3). Reperfusion was graded as TICI 1 in two

patients (4.5%), TICI 2a in six patients (13.6%), TICI 2b in 22

patients (50%), and TICI 3 in 14 patients (31.8%). Post-treatment

MRI was performed on Day 1 in 38 patients (86.4%), Day 2 in

two patients (4.5%), and Days 5, 7, 8 and 10 in one patient each

(each 2.3%).

The pre- and post-treatment DWI volumes, penumbral volumes

and the penumbral tissue loss in dependence of the degree of

collaterals are listed in Table 2 and demonstrated in Fig. 1.

Covariance analysis of the ratio of penumbra loss for the two

factors collaterals and reperfusion success (dichotomized into levels

1-2a and 2b-3) and controlling for the covariate time interval from

MRI to reperfusion showed significant main effects (quality of

collaterals P = 0.021, reperfusion success P = 0.003) and a signifi-

cant interaction between both factors (P = 0.031). The effect of

time as covariate was not significant (P = 0.254). Tissue loss was

Table 1 Baseline characteristics and therapy of 44 patients

P-value in analysis
of covariance

Occlusion location M1 36/44 (81.8%)

Occlusion location M2 8/44 (18.2%)

Age, years (SD) 60.1 (17.2) 0.851

Female sex 21/44 (47.7%) 0.550

Vascular risk factors

Diabetes mellitus 8/44 (18.2%) 0.052

Hypertension 25/44 (56.8%) 0.962

Current smoking 10/44 (22.7%) 0.141

Hypercholesterolaemia 27/44 (61.4%) 0.669

Atrial fibrillation 17/38 (44.7%) 0.501

Baseline NIHSS score, median (range) 12 (3–36) 0.888

Thrombolysis

Endovascular with/without mechanical procedures 28/44 (63.6%)

Endovascular mechanical only 7/44 (15.9%)

Bridging 9/44 (20.5%)

Minutes from symptom onset to reperfusion, median (range) 323 (237–492) 0.360

Minutes from MRI to reperfusion, median (range) 173 (91–288) 0.254

Reperfusion TICI 2b-3 36/44 (81.8%) 0.003

Collaterals 0.021

Grade 0 8/44 (18.2%)

Grade 1 12/44 (27.3%)

Grade 2 24/44 (54.5%)

Asymptomatic intracerebral haemorrhage 10/44 (22.7) 0.199

Symptomatic intracerebral haemorrhage 0/44

The centre column shows the results of analysis of covariance with penumbral tissue loss as dependent variable.
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greater in patients with TICI 1-2a reperfusion and even greater for

those with grade 0 collaterals. A post hoc comparison of the three

collateral levels showed no differences between grades 0 and 1 or

between 1 and 2, but between grades 0 and 2 (P = 0.018). When

controlling for time from symptom onset to reperfusion as covari-

ate, almost the same main and interaction effects were observed,

but ‘time’ was not significant (P = 0.360).

Subgroup analyses were performed in patients with TICI 2b or 3

reperfusion and without any intracerebral haemorrhage (n = 30).

The results for the mean penumbra loss and mean hourly penum-

bral tissue loss according to the collateral quality are given in

Table 3. Covariance analysis of the ratio of penumbra loss

showed a significant main effect only for the quality of collaterals

(P = 0.017). The effects of reperfusion (levels TICI 2b and 3) and

time were not significant (reperfusion P = 0.386, time from MRI to

reperfusion P = 0.147, time from symptom onset to reperfusion

P = 0.329). When collaterals were excluded from the model time

from MRI to reperfusion was the only significant factor

(P = 0.013). There was a linear relationship between the quality

of collaterals and penumbra loss per hour in regression analysis

(P = 0.008). Only in the subgroup of patients with grade 2

collaterals we found a trend for a linear relationship between

time from MRI to reperfusion and penumbra loss in regression

analysis (P = 0.068).

With non-deconvoluted time to peak maps for penumbra def-

inition the results were comparable (Supplementary material). The

above described trend for linearity between time and penumbra

loss in patients with TICI 2b or 3 reperfusion and grade 2 collat-

erals was significant with this definition of the penumbra

(P = 0.018).

Discussion
This study shows that the loss of MRI-defined penumbral tissue in

patients with proximal middle cerebral artery occlusions who re-

ceive endovascular therapy is mainly influenced by the quality of

collaterals, the quantity of successful reperfusion and an inter-

action between these two factors. Good collaterals markedly

slow down and reduce the penumbra loss. Accordingly the elapsed

time accounts only for a minor fraction of penumbral volume loss

in patients with good collaterals but influences penumbra loss in

larger scale in patients with poor collaterals. These results indicate

that collaterals have a major impact on penumbral evolution and

support the hypothesis that good collaterals extend the time

window for acute stroke treatment by slowing down the tempo

of penumbral tissue loss.

The final infarct volume correlates with functional outcome and

has been used as a marker for success of acute stroke treatment

(Yoo et al., 2012). The location of the vessel occlusion, reperfu-

sion success and the elapsed time to reperfusion are considered as

the main factors determining the final infarct volume. From a clin-

ical point of view the knowledge of factors contributing to the

evolution of the MRI defined penumbra is of major interest
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Figure 1 Collateral quality dependent mean values of

pretreatment DWI and PWI volumes and post-treatment

DWI volumes.

Table 2 Clinical and radiological data in dependence of quality of collaterals of 44 patients

Collaterals grade
0 (n = 8)

Collaterals grade
1 (n = 12)

Collaterals grade
2 (n = 24)

Baseline NIHSS score, median (range) 11 (3–17) 12 (5–36) 13 (5–22)

Pretreatment DWI volume (cm3), mean (SD) 34.4 (31.4) 28.7 (21.4) 29.3 (43.3)

Pretreatment penumbral volume (cm3), mean (SD) 98.4 (44.9) 107.3 (47.9) 126.5 (50.9)

Post-treatment DWI volume (cm3), mean (SD) 68.8 (73.1) 42.2 (29.7) 32.5 (41.1)

Penumbral tissue loss, %, mean (SD) 25 (52) 14 (18) 3 (17)

Asymptomatic intracerebral haemorrhage 5/8 (62.5%) 1/12 (8.3%) 4/24 (16.7%)

Table 3 Penumbral tissue loss depending on collateral
quality in patients with TICI 2b-3 reperfusion and without
any haemorrhage (n = 30)

Collateral
quality

n Total penumbral
tissue loss (%),
mean (SD)

Penumbral tissue
loss per hour
(ml/h), mean (SD)

Grade 2 18 �2 (13) �1.5 (6.9)

Grade 1 9 11 (19) 3.4 (4.4)

Grade 0 3 27 (29) 8.9 (11.3)
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because the primary goal of acute stroke treatment is to rescue

penumbral tissue. In addition, penumbral volumes have been and

are being used for patient selection in clinical studies and treat-

ment decisions in clinical practice.

The goal of the present study was to identify factors contribut-

ing to the evolution of the penumbra. In our analysis of covariance

we considered baseline factors, time, collaterals and reperfusion. It

turned out that the ratio of penumbra loss was influenced by

the quality of collaterals (P = 0.021), the quantity of reperfusion

(P = 0.003) and an interaction between these two factors

(P = 0.031). This interaction indicates that the effect size of collat-

erals depends on the quality of reperfusion and the effect of col-

laterals to save penumbra is larger in case of poor reperfusion.

None of the baseline factors influenced penumbra loss. We

found only one study that made a similar analysis with inclusion

of multiple factors. In the study of Bang et al. (2008) recanaliza-

tion instead of reperfusion and infarct growth instead of loss of

penumbra were used. They found the quality of collaterals and the

volume of PWI-DWI mismatch to influence infarct growth, but not

recanalization. In our study collaterals had a significant effect on

the ratio of penumbra loss: in patients with TICI 2b-3 reperfusion

and without any haemorrhage 27% [standard deviation (SD)

29%] of the penumbra had been lost with grade 0 collaterals,

but only 11% (SD 19%) with grade 1 collaterals and �2% (SD

13%) with grade 2 collaterals. The results of our study are in line

with studies that found good collaterals associated with smaller

final infarct volumes (Roberts et al., 2002; Christoforidis et al.,

2005; Miteff et al., 2009; Zhang et al., 2010). Instead of analysing

final infarct volume or infarct growth, we preferred the ratio of

penumbral tissue loss, because it includes pre- and post-treatment

volumes and adjusts for the variability of pretreatment infarct and

penumbral volumes.

Randomized trials using intravenous recombinant tissue plas-

minogen activator show unequivocally that time to treatment is

crucial for outcome (Lees et al., 2010). Unlike in these trials, pen-

umbra loss in our patients with proximal middle cerebral artery

occlusions and endovascular therapy was not influenced in analysis

of covariance by the time from symptom onset to reperfusion

(P = 0.360) nor by the time from MRI to reperfusion

(P = 0.254). To exclude any confounding effects, additional sub-

group analyses were performed in patients with TICI 2b-3 reper-

fusion and without any haemorrhage. Patients with TICI 1-2a

reperfusion were excluded from the subgroup analysis, because

after poor reperfusion tissue loss probably continues and time to

reperfusion may differ from the time until final infarct size.

Patients with acute intracerebral haemorrhage were also excluded

to avoid any confounding effect due to haemorrhage induced in-

farct growth (outliers with acute intracerebral haemorrhage are

illustrated in Fig. 2B). The subgroup analysis in the remaining 30

patients confirms our main results: only the quality of collaterals

influenced penumbra loss (P = 0.017). Reperfusion success (levels

TICI 2b or 3) (P = 0.386), time from symptom onset (P = 0.329)

and time from MRI to reperfusion (P = 0.147) did not influence

penumbra loss. The main results and results of subgroup analyses

were also consistent when penumbral volumes were obtained by

non-deconvoluted time to peak maps (Supplementary material)

and after square root transformation of the volumes.

According to our findings the quality of collaterals and success

of reperfusion seem to be more important than the time elapsing

from stroke onset to reperfusion among all factors determining

penumbra loss. Remarkably, time from MRI to reperfusion

turned out as significant predictor of penumbra loss after exclusion

of the factor collaterals from the model (P = 0.013). This was also

the case in our recent analysis of 623 patients with anterior cir-

culation strokes who had received endovascular treatment. Time

to treatment turned out to be a predictor of clinical outcome only

when collaterals were excluded from multivariable analysis

(Galimanis et al., 2012).

The quality of collaterals competes with the elapsed time in

logistic regression models because good collaterals both reduce

and slow down penumbra loss (P = 0.008): in patients with

grade 0 collaterals 8.9 ml (SD 11.3) penumbra was lost per

hour, with grade 1 collaterals 3.4 ml/h (SD 4.4) and with

grade 2 collaterals �1.5 ml/h (SD 6.9). With grade 2 collaterals

the penumbra volume change is probably linear (P = 0.068 for

Tmax-based maps and P = 0.018 for time to peak-based maps in

linear regression analysis, see Fig. 2A–C). The negative values

indicate an overall DWI lesion reversal in patients with grade 2

collaterals, although it took a median time of 3 h to reperfusion

in these patients. Our patients with grade 2 and 1 collaterals

showed a slower and those with grade 0 collaterals a faster

penumbra loss than the 5.4 ml/h calculated for a typical non

reperfused large vessel stroke in a theoretical model (Saver,

2006). Accordingly the elapsed time accounts only for a minor

fraction of penumbra loss in patients with good collaterals but

influences penumbra loss in large scale in patients with poor

collaterals.

Our study has several limitations. The relatively large standard

deviations of the mean values of penumbra loss in our patients

sound a note of caution for the interpretation of these values.

Because only 44 of our 356 patients with proximal middle cere-

bral artery occlusions had technically adequate pre- and post-

treatment magnetic resonance scans and at least TICI grade 1

reperfusion, we cannot exclude a selection bias. Another limita-

tion relates to the assessment of the penumbra. It is known that

DWI magnetic resonance scans tend to overestimate the real in-

farct core volume and PWI magnetic resonance scans overesti-

mate the real tissue at risk compared to the golden standard PET

(Heiss et al., 2004; Sobesky et al., 2005; Olivot and Marks,

2008; Takasawa et al., 2008; Zaro-Weber et al., 2010;

Campbell et al., 2012). It is controversial which MRI based def-

inition of the penumbra and which thresholds most accurately

approximate the PET-defined penumbra. Three studies found

similar performance of maps of Tmax (55.5 s) and maps of

deconvolved time to peak (54.2 s respectively 54.8 s) compared

with a PET derived penumbra definition (Takasawa et al., 2008;

Zaro-Weber et al., 2010). Also our results obtained with a Tmax

(46 s) based definition of the penumbra were consistent with

those obtained with a time to peak (44 s) based definition of

the penumbra. The wide range of time from MRI to reperfusion

and that 14% of follow-up scans were performed 41 day after

the stroke may represent another limitation. Finally, our results

are only valid in our selected patients with proximal middle cere-

bral artery occlusions and reperfusion within 8 h. We do not
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know whether the evolution of the penumbra is similar in

patients with occlusions of other cerebral vessels, during the

first hour or after 8 h of symptom onset.

In conclusion, the quality of collaterals and the quantity of

reperfusion are the major factors determining the penumbra

loss as assessed with PWI and DWI in patients with proximal

middle cerebral artery occlusions. Good collaterals both markedly

reduce and slow down penumbra loss. The elapsed time accounts

only for a minor fraction of penumbra loss in patients with good

collaterals but influences penumbra loss in large scale in patients

with poor collaterals. Thus, good collaterals seem to extend the

time window by slowing down the tempo of penumbral tissue

loss. Our study confirms that ‘time is brain’, but the collaterals

set the pace.
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Figure 2 (A) Percentage of penumbral tissue loss in dependence of the elapsed time from MRI to reperfusion (n = 44). (B) Percentage of

penumbral tissue loss in dependence of time in patients with both good collaterals and TICI 2b/3 reperfusion (n = 21), Filled cir-

cles = patients with asymptomatic intracerebral haemorrhage. Open circles = patients without asymptomatic intracerebral haemorrhage.

(C) Percentage of penumbral tissue loss in dependence of time in patients with good collaterals and TICI 2b/3 reperfusion but without

asymptomatic intracerebral haemorrhage (n = 18).
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