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Facts and Fantasies of Education

Patrick Suppes

Stanford University

1. Introduction

The text for my sermon today is the closing paragraph of Hume's

Enquiries Concerning Human Understanding.

When we run over libraries, persuaded of these principles

(Hume's principles of the understanding), what havoc must we

make? If we take in our hand any volume; of divinity or school

metaphysics, for instance; let us ask, Does it contain any

abstract reasoning concerning quantity or number? No. Does

it contain any experimental reasoning concerning matter of

fact and existence? No. Commit it then to the flames: for

it can contain nothing but sophistry and illusion.

Hume would be the first to admit that we are all entitled to our fantasies,

but he would also insist that we recognize them as the fantasies they are.

To reformulate his text, general ideas about educational policy and prac-

tice contain little but sophistry and illusion, unless they can be defended

by abstract reasoning from some other accepted general principles or be

inferred in a definite manner from particular matters of fact.

This sounds like a hard line, and it is. It is too hard to be used

at all times and places in discussions of educational policy and practice,

but it is not too hard for a reflective occasion like this one, which is

aimed at appraising the relevance of research to educational ideas.
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Rather than begin with any general remarks or general propositions,

I shall first report some of the results of perusing my own library and

applying Hume's tests. The initial examples that I critically examine

will be those that most of us can sagely and benignly agree about. I

shall move on to others that are more controversial, and for that reason,

probably more important.

Rewording Hume's text still once again, the thesis of this paper

may be expressed succinctly in the following way: Without proper evidence,

alleged facts on which educational policy
or practice is based can only

be classed as fantasies. It is the task of research to convert the

'right' fantasies into facts and to show the others to be the unsub-

stantial fantasies they are.

Before turning to particular examples, I want to say a preliminary

word about evidence. I have a somewhat skeptical and Bayesian attitude.

I do not think it is possible to state in mathematically precise terms

what is to count as evidence and what is not. Evidence also need not

be collected by systematic experimentation. The most glorious quanti-

tative science of them all, namely, astronomy, has scarcely ever been

able to include experiments. Evidence is also not just a matter of quan-

titative data, organized in obvious quantitative fashion. We do not need

to perform an experiment or take systematic observations in order to hold

the firm factual belief that the sun will rise tomorrow. On the other

hand, when we turn to the formulation of general principles or general

ideas about human conduct and how that conduct might be changed by the

process of education, we must forever be wary and skeptical of those who

promise much in general terms and give
us principles unsupported by evidence.
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I fully recognize also that over large periods of time most people

are indeed taken in by some unsupported principles. One of the most

sobering facts I know is that one of the earliest English charities

was organized to collect money to buy wood to burn witches. The

record of human folly committed in the name of morality or truth is

too long and dismal to survey here.

At this point, I turn to same examples that give a more vivid sense

of the continued need and the vital place of research in education. I

consider initially what I call first-order fantasies. These are fantasies

about general ways of organizing education in matters of theory, policy

or practice. Afterward I turn to second-order fantasies, which are

fantasies about methodology or about how we should determine the truth

or falsity of first-order fantasies. Remember that in the sense I am

using the terms here, fantasies of either the first or second order can

be good fantasies in the sense that they can be true. It is the task

of research to produce the evidence that will convert them from fantasies

to fact.

2. First-order Fantasies

I begin with a classic example of applied linguistics.

Linguistic fantasies about reading. The importance and significance

of the work of the American linguist Leonard Bloomfield is widely recog-

nized and not challenged by me. The very quality of Bloomfield as a

linguist makes all the more striking the simplicity of his ideas and

his apparent total unawareness of the need for data in recommending how

reading should be taught. His ideas are set forth in the book Let's Read,
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A Linguistic Approach (1961), jointly authored with Clarence L. Barnhart

and published some years after Bloomfield's death.

So as not to enter into too elaborate an analysis, I shall restrict

myself to Bloomfield's recommendations about the first materials of

reading. He enunciates in a few paragraphs (pp. 39-42) the following.

1. "Our first material must show each letter in only one phonetic

value."

2. "Our first material should contain no words with silent letters

(such as knit or gnat) and none with double letters, and none with com-

binations of letters having a special value (as th in then or be in bean)."

3. "The letter x cannot be used, because it represents two phonemes

(ks or 1E)."

4. "The letter a cannot be used, because it occurs only in connection

with an unusual value of the letter u."

5. "The best selection of values of letters to be used in the first

materials for reading is the followang and here follows a large set of

recommendations.

6. "Our first reading material will consist of two-letter and

three-letter words in which the letters have the sound values given in

the above list."

7. "We should not, at this stage, ask the child to write or print

the words: that comes much later."

8. "The early reading lessons should not be very long, for they

demand a severe intellectual effort. It may be well to take up only two

words in the first lesson."

9. "In the second lesson, after review, add two or three more words

of the same group."



10. "The drill should continue until the child can read correctly

any one of the words when the parent or teacher points to it."

11. "If the child has learned the pattern in the list of actual

words, he should be able to read nonsense syllables using the same

pattern. . . . The nonsense syllables are a test of the child's mastery

of the phoneme. Tell the child the nonsense syllables are parts of real

words which he will find in the books that he reads."

12. "The acquisition of nonsense syllables is an important part

of the task of mastering the reading process. The child will learn the

patterns of the language more rapidly if you use the nonsense syllables

in teaching."

A number of additional principles (pp. 19-42) are stated, but I

have given a large enough sample to indicate in an explicit way why

I label these principles Bloomfield's fantasies. hey represent one

of the purest examples of an analysis of one kind being extrapolated

and applied to a different kind of problem without recognition of the

need for data and for evaluation of the correctness of principles in

their new application. Bloomfield applies some fairly obvious phonetic

principles and generalizations, but shows no recognition at any point

of the need for data to check on the correctness of these principles

as principles of reading.

As I use fantasy in this paper, a fantasy can be correct or true,

but it remains a fantasy unless propar evidence is offered, and this

is certainly the case for what Bloomfield offers us for principles

about reading. It is almost breathtaking to have him assert, for

example, the principle that children learn language more rapidly if
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nonsense syllables are used in teaching. To fail to recognize the need

for data and to state such a learning principle without any systematic

concept of learning seems, in our currently skeptical time, almost

incredible.

Piaget's stakes. The influence of Jean Piaget on developmental

psychology is recognized throughout the world. His very status, however,

as an imaginative creator of new concepts and theories about children's

behavior and development has led to an often uncritical acceptance of

his ideas. I select for emphasis in the present discussion'his concept

of stages of development, which has played such a central part in many

of his works and has also been taken over into developmental psycho-

linguistics. At first glance one might think that the concept of stages

of development is a methodologically innocent one and scarcely a subject

of controversy. A perusal of Piaget's own writings and the large deriva-

tive corpus soon leads one to another conclusion. As an example I shall

discuss the analysis of three stages of multiple seriation in The Early

Growth of Logic in the Child by Bgrbel Inhelder and Piaget (1964).

To indicate the unequivocal adoption of the idea of stages, I quote

from page 270:

We shall distinguish three stages, corresponding to the

usual three levels. During stage I, there are no seriations

in the strict sense. The child's constructions are inter-

mediate between classification and seriation. . . . During

stage II, there is seriation, but only according to one of

the criteria, or else the child switches fram one criterion

to the other. . . Finally, during stage III (starting at
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7-8 years), the child re-ches a multiplicative arrangement

based on the twofold seriation of the set of elements.

There is in this discussion, as elsewhere in Piaget, no suggestion that

matters could be otherwise--that development could be incremental and

continuous and that no stages could be identified in nonconventional

fashion. To adopt the idea of stages as a convenient, conventional way

of talking in certain restricted contexts is, of course, quite natural.1

It is another thing to talk as if they were real abstractions with a

verifiable and unequivocal empirical content.

It is a truism that children Eevelop new capacities and new skills

as they get older. The problem in evaluating the existence of stages

is not one of affirming this truism, but rather one of differentiating

the concept of stages from the equally natural concept of continuous

development.

A second related problem that needs detailed study is the extent

to which the mastery of different concepts follows the same order in

different children. Again, it is important that the experimental de-

sign be as meticulous as possible in order not to prejudge the issue.

It can scarcely be said that Piaget's design in the study I am considering

satisfies this criterion, and very few others of like nature do either.

Moreover, if nonconventional plateaus were discovered in the behavior

of individual children, we would also want to know whether these plateaus

run across the same set of concepts or occur in a manner that is much
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more randomly related to the concepts themselves and that might reflect

quite different sorts of processes of maturation in the child. Again,

little evidence is to be found on this point.

My first dmft of these remarks on the concept of stages received

an excellent critique irom Harry Beilin, and he has provided me refer-

ences to his own work and that of Piaget where the question of the actual

existence of stages is discussed. Piaget writes:

I now come to the big problem: the problem of the very

existence of stages; do there exist steps in development or

is complete continuity observed? . . . when we are faced

macroscopically with a certain discontinuity we never know

whether there do not exist small transformations which would

be continuous but which we do not manage to measure on our

scale of approximation. In other words, continuity would

depend fundamentally on a question of scale; for a certain

scale of measurement we obtain discontinuity when with a

finer scale we should get continuity. Of course this argu-

ment is quite because the very manner of defining con-

tinuity and discontinuity implies that these ideas remain

fundamentally relative to the sckle of measurement or ob-

servation. This, then, is the alternative which confronts

us: either a basic continuity or else development by steps,

which would allow us to spealz of stages at least to our scale

of approximation (1960, p. 121].

A more detailed and careful analytical discussion of the concept of

stage is to be found in Beilin (1971), and he raises a number of issues

that are not pertinent to the main point I wish to make here. In the



printed discussion following Beilin's paper, there are remarks by Piaget

that seem to me incorrect, and in general, incorrect for the same reasons

that the above auotation about the existence of stages is incorrect. In

the context of Beilin's paper Piaget (1971, p. 194) is discussing the

problem of novelty, and he has this to say:

Thus, to my regret, I did not find in Beilin's paper

any reference to this problem of novelty--of the formation of

novelties in general and the conditions necessary for the de-

velopment of new structures. . . . If there are no novelties,

then the concept of stages is artificial. There lies the

whole problem.

Before commenting directly on these remarks of Piaget's, I want to

compare the almost total absence of serious critical analysis of the

concept of stages with the controversy in learning theory that existed

about ten years ago between all-or-none and incremental learning. In

the latter case the battle was joined with intensity and fruitful re-

sult because there were strong protagonists on both sides of the argument,

and each was determined to establish the incorrectness of the other's

view, and if possible, the correctness of his own view. A large number

of experiments were performed, and quite detailed analyses were made of

the data to test whether or not the learning of simple concepts or simple

associations satisfied all-or-none or incremental properties. Analyses

with special relevance to concept formation in children are to be found

in Suppes (1965) and Suppes and Ginsburg (1963). For the purpose of this

discussion, the all-or-none model would correspond to Piaget's idea of

stages, and the tests of incremental learning models to the continuous
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learning that is the natural alternative to stages. We need the kind of

sharp exchange and critical examination of experiments and concepts

characteristic of that learning-theoretic controversy of a decade ago in

the analysis of the concept of stages in developmental psychology.

It should be apparent that the attitudes expressed in the quota-

tions from Piaget do not provide the basis for this kind of sharp ex-

change and critical examination. Piaget raises what is essentially

an irrelevant auestion of scale. The problem is to find out for the

given scale at which experimentation is conducted whether the process

is all-or-none or incremental, and not whether there are microscales,

for example, at which the process is continuous even if the data indicate

all-or-none learning at the ordinary scale of experimentation. The second

remark about novelty also seems to me to miss the point, especially as

reflected in the extensive work on all-or-none learning in concept iden-

tification as opposed to concept formation experiments. It certainly

is perfectly possible that learning is all-or-none or in terms of stages

even when no questions of novelty are involved. There is also no reason

to think that when concept formation and mastery of novel concepts are

evident that learning is necessarily to be characterized in terms of

stages rather than incrementally. I say once again that the element

missing in this discussion by Piaget, and even by Beilin in his other-

wise excellent article, is the concept of precise and detailed experi-

mentation with quantitative analysis of data to test for the existence

of stages.

Finding out the true state of affairs about stages is important not

simply for theoretical purposes in developmental psychology, but because



continual use of these concepts is found in the talk of educators in their

organization of curriculum for young children, in their discussion of the

skills of young children and in other related ways. It would be easy to

document the continual casual reference to Piaget in a variety of educational

publications in which teachers are once again being taught dogma without

data that developmental stages are the way to think about the development

of children.

I cannot resist one passing remark on this matter of stages and

concepts like that of groupement and seriation. The very language used

by Piaget and his more ardent followers is itself a kind of fantasy of

mathematics. Those of good faith can believe that back of such talk is

a real body of concepts that can be put into reasonable order. Those

of us who are more skeptical face the beginning of the fantasies here

and wait for a new round of theory and experiments to clear the air.

A comparative point of intellectual history is perhaps in order.

There is much about Piaget's ideas that resembles the kind of suggestive

web woven by Descartes in his principles of philosophy. Descartes, of

course, was dealing with the physical world and Piaget with the psycho-

logical world of child development. Both operate in large theoretical

terms and with little regard for detailed experimental investigation.

Descartes' tale proved to be enormously seductive in the seventeenth

century, and even Newton found it difficult to throw off the Cartesian

ideas. Leibniz, however, put it correctly when he characterized Descartes'

physics as a roman de physique, and I shall be bold enough to say that we

may very likely in the future characterize Piaget's work as a roman de

psychologie. To say this is not to deny that Descartes has occupied an

important place in the history of physics or that Piaget has occupied an



important place in the history of psychology. It is rather to put in

proper perspective large -scale theories that are as close to fantasies

as they are to facts.

Skinner on arithmetic. As an example of a different sort, but at

the same first-order level of fantasy, I next would like to consider what

Skinner has to say about teaching arithmetic in his book The Technology

of Teachinc, (1968, pp. 14-15). Here is the opening passage on arithmetic.

From this exciting prospect of an advancing science of

learning, it is a great shock to turn to that branch of tech-

nology which is most directly concerned with the learning

process--education. Let us consider, for example, the teach-

ing of arithmetic in the lower grades. The school is con-

cerned with imparting to the child a large number of responses

of a special sort. The responses are all verbal. They consist

of speaking and writing certain words, figures, and signs which,

to put it roughly, refer to numbers and to arithmetic operations.

The first task is to shape these responses--to get the child to

pronounce and to write responses correctly, but the principal

task is to bring this behavior under many sorts of stimulus

control. This is what happens when the child learns to count,

to recite tables, to count while ticking off the items in an

assemblage of objects, to respond to spoken or written numbers

by saying "odd," "even," or "prime." Over and above this

elaborate repertoire of numerical behavior, most of which

is often dismissed as the product of rote learning, the teach-

ing of arithmetic looks forward to those complex serial arrange-

ments of responses involved in original mathematical thinking.



The child must acquire responses of transposing, clearing frac-

tions, and so on, which modify the order or pattern of the

original material so that the response called a solution is

eventually made possible.

The crudeness of this talk about responses and shaping them without

serious reference to how arithmetical concepts should be built up is

typical of this strange and undocumented proposal of how arithmetic

ought to be taught. The naive and impressionistic character or the

remarks is attested to by the juxtaposition of the words 'odd', 'even',

and 'prime' in the middle of the passage. The very special role, for

example, of students' ever responding prime to spoken or written numbers

is to be emphasized. The casual way of talking about moving from arith-

metic to "those complex serial arrangements of responses involved in

original mathematical thinking" is a reflection of how vague and un-

substantial Skinner's ideas about the teaching of arithmetic or other

parts of mathematics are. It would be interesting indeed to have those

complex serial arrangements of responses made to match any serious piece

of mathematical instruction, let alone original mathematical thinking.

The casual talk about acquiring "responses of transposing, clearing

fractions, and so on" is again indicative of the unthought-out and

undocumented character of the remarks.

No evidence is offered about the effectiveness of these ideas for

the teaching of arithmetic. What is more important--it would not even

be clear from this passage or the passages that follow how any teacher

would begin to arrange the complex material of arithmetic in proper

order for learning by children. It would be interesting to see what
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Skinner would have to say about the detailed sequence of materials in

arithmetic, and how the proper arrangement of materials should be made,

according to which principles and on the bas4_s of what data. It is

especially ironic to have such a broad and unsubstantiated sketch of how

arithmetic should be taught without reference to any of the extensive

literature on the learning of arithmetic.

I cannot think of a better challenge to Skinnerians than to produce

a genuine psychological theory of mathematical learning and thinking.

So far as I know, there is not yet a serio:s contribution from either

Skinner or his followers on this important educational topic. In some

quarters at least, I an sure the fantasy will remain that somehow operant

conditioning is the key to successful mathematical learning.

3. Second-order Fantasies

By a second-order fantasy I mean a belief about the efficacy or

lack of it of a certain methodology, which :.s unsupported by evidence

or systematic argument. I begin with an example much closer to hone

than any I have yet considered and refer to the writings of two authors

with whom I am in general intellectually sympathetic.

Campbell and Stanley on experimentation. The fantasy I have in

mind is the unsupported and yet wholly enthusiastic support of experi-

mentation by Campbell and Stanley in their well-known chapter on this

subject in the Handbook of Research on Teachir (1963). As most of

you will remember, the handbook was itself a product of this association.

Let me begin with two quotations from the second and third pages of the

chapter.
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This chapter is committed to the experiment: as the

only means for settling disputes regarding educational prac-

tice, as the only way of verifying educational improvements,

and as the only way of establishing a cumulative tradition

in which improvements can be introduced without the danger

of a faddish discard of old wisdom in favor of inferior

novelties. . . . even though we recognize experimentation

as the basic language of proof, as the only decision court

for disagreement between rival theories, we should not ex-

pect that "crucial experiments" which pit opposing theories

will be likely to have clear-cut outcomes. When one finds,

for example, that competent observers advocate strongly

divergent points of view, it seems likely on a priori

grounds that both have observed something valid, about the

natural situation, and that both represent a part of the

truth. The stronger the controversy, the more likely this

is. Thus we might expect in such cases an experimental

outcome with mixed results, or with the balance of truth

varying subtly from experiment to experiment.

As matters of personal belief, I accept with certain reservations

what Campbell and Stanley have to say in the quoted passages. What I

am criticizing is the lack of argument for the position, and for this

reason I have labeled the passage an example of a second-order fantasy.

The chapter contains no systematic examination of alternatives to ex-

perimentation, no review of sciences like astronomy which do not engage



in experimentation in any serious way and yet achieve remarkable results,

no attempt to formulate general principles to make it clear why experi-

mentation is so important; in fact, there is no scientifically serious

attempt to define the concept of an experiment.

I emphasize that I do not have in mind a rigorous formal treatment

of the concept of an experiment, but rather a densely argued informal

consideration of the principles of evidence that offer a systematic

defense of the use of experimental procedures. For example, within

a Bayesian framework (I do not mean to suggest that they necessarily

should adopt such a framework), one can argue that the likelihoods, as

opposed to the prior distributions of opinion or belief, can be agreed

upon by different investigators of different theoretical persuasions.

It is the practical possibility of agreement on likelihood functions

that makes experimentation attractive. We can of course go on to ask

the deeper question, why is it that different individuals of quite

different orientations can agree on likelihood functions and the con-

ceptual scheme of experimentation when they are far apart theoretically?

It is not always true that they can so agree: but it is true often enough

that an analysis can be given of the reasons for agreement in a wide range

of circumstances.

My own view would be that the defense should be built on the basis

of the different status of different kinds of knowledge. We can, for

instance, agree on how a given group of students answered the items on

a test if the test was multiple choice, but we may not be able to agree

on how to interpret the results, or if we gave an essay test how to

evaluate even narrowly the essay responses. It seems to me that the
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defense of experimentation depends heavily on the drawing of such dis-

tinctions between the kinds of knowledge we have.

The second major aspect of classical psychological and educational

experimentation centers around the difficult and elusive concept of

randomization. Here too, it seems to me that Campbell and Stanley do

not give the research worker in search of help a detailed and closely

argued defense of the reasons for randomizing in experiments. If the

authors felt that the subtle topic of randomization was too difficult

a one to enter into, clear warnings should have been given the readers

that they were not attempting any defense of the concept and that it

was being taken on faith as a wonderful thing.

later in the chapter there is a section entitled "Some preliminary

comments on the theory of experimentation, If and once again wise remarks

are made about statistical lore and experimental practice. What is missing,

however, is that sense of intellectual openness on the one hand and pre-

cision of argument on the other so very much required in the theory

of experimentation,or more generally, in applied statistics. Applying

Hume's dichotomy of having either reasoning about abstract matters or

evidence about matters of fact, we find that both the quotation above

and the longer section on the theory of experimentation are neither

organized around abstract principles from which more principles of ex-

perimentation are derived, nor validated by a systematic collection of

empirical evidence bearing on the theory of experimentation.

It is appropriate to add weight to these general statements by

some more detailed examples. There are at least three respects in which

I think the innocent reader might be misled by Campbell and Stanley's
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generally excellent article. To begin with, the deeper and more varied

the contact a person has with applied statistics, the more evident it is

that some experience in seeing the statistical procedures and tests of

significance derived from first principles is of importance. It is too

easy for the innocent researcher to divorce in his mind the simple algebraic

formulation of particular tests or procedures from the probabilistic back-

ground that justifies their derivation and interpretation. I am not sug-

gesting something that I think is easy to do within the restrictions

Campbell and Stanley set for themselves; however, some sense of derivation

from first principles in at least one example would deepen considerably

the basis the reader would have for accepting the kinds of distinctions

introduced.

0

My second remark is a more serious and important one. Already at

the beginning of the nineteenth century, in his treatise on the theory

of probability, Laplace (1820) emphasized the importance of not simply

establishing the existence of an effect, but establishing a method for

estimating the magnitude of an effect. From a broad methodological stand-

point, perhaps the single most important criticism one might make of the

statistical procedures used and exemplified in the Journal of Experimental

Psychology, methods of which Campbell and Stanley in general approve, is

the overwhelming use of tests of significance establishing the existence

of effects, in contrast to the almost total absence of tests that estimate

magnitudes of effects.

A simple, but powerful, analysis of such an example is provided by

Laplace's attempt to estimate the benefits of inoculation for smallpox

by variolar virus before vaccine was available. (Laplace concluded that

the mean increased longevity from inoculation was about three years,
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provided that there was no food shortage or other violent disruption of

the environment.) Such estimates of the magnitude of causal effects

are of the first importance in both pure and applied science, and it is

especially important to bring them more to the fore in educational research.

We may leave to the psychologists aloft in the pares in the Journal of

Experimental. Psychology the design of experiments that test, for existence

of effects. In education we are much more ,:oncerned with estimatilg

magnitudes of effect. If, for example, a new curriculum that costs

twice as much as an old curriculum produces a measurable effect, but

that measurable effect is very small in magnitude, then the practical

use of this curriculum is questionable.

Mentioning the problem of estimating magnitudes of effects suggests

immediately broadening the framework of statistical analysis to that of

statistical decision theory. For many educational experiments, a three-

fold decision procedure: accept the new procedure of instruction,

reject it, or continue further experimentation where the current verdi't

of nothing yet proved would lead to a new look at experimerr;a1 procedums,

and especially their interpretation. But I shall not attempt to explcre

these matters further in the present context.

My third and final comment on the "interior analysis" of Campoell

and Stanley's chapter concerns some remarks they make about linear mod1s.

In discussing tests of significance for time series designs, on page 43

they assert "Statistical tests would probably involve, in all but the

most extended time series, linear fits to the data, both for convenience

and because more exact fitting would exhaust the degrees of freedom,

leaving no opportunity to test the hypothesis of change."
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It seems to me that here is an example of simplifying too drastical:

and therefore introducing a small-scale kind of fantasy too easily adopted

by educational researchers. It is a fantasy that we must always test for

linear relations, because we have no ability to handle nonlinear ones.

Especially with the use of modern computers, it is almost as easy to deal

with simple nonlinear models as linear ones. Exploring the alternatives

to linearity provides excellent insight into the nature of the relations

between the variables and does not require necessarily the use of more

degrees of freedom. Let us consider, for example, just the simple case

of two variables, with x the independent variable and y the dependent

variable. We may express the linear model by the following equation:

y = a bx .

This model has two parameters to be estimated from the data and thus two

degrees of freedom are lost. If we think of the effects of increase in

x on y proceeding at a faster than linear fashion, we can estimate

the same number of parameters for the quadratic model:

y = a bx
2

.

On the other hand, if we think of the nonlinear increase in y with

increases in x as less than linear, we can easily test the logarithmic

model:

y = a b log x .

There is much more to be said about these matters, and I am not

pretending to give a detailed analysis to complement these brief remarks.

It is just that in my search for fantasies I have tried to look everywhere,

even among some of the best established
and generally most sensible sources.
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Chomsky's theory of competence. As a second example of a second-

order fantasy, I select Chomsky's theory of canpetence. If the ideas

that he seems to be putting forth were correct, they would have some

fairly far-reaching implications for educational research and educational

practice. I classify his remarks quoted below as second order, because

they recommend an approach to the study of behavior that is at considerable

variance with current emphases. The following passage (Language and Mind,

1972, pp. 72-73) states Chomsky's methodological point in succinct form.

The theory of generative grammar, both particular and

universal, points to a conceptual lacuna in psychological theory

that I believe is worth mentioning. Psychology conceived as

"behavioral science" has been concerned with behavior and

acquisition or control of behavior. It has no concept corre-

sponding to "competence," in the sense in which competence is

characterized by a generative grammar. The theory of learning

has limited itself to a narrow and surely inadequate concept

of what is learned--namely a system of stimulus-response con-

nections, a network of associations, a repertoire of behavioral

items, a habit hierarchy, or a system of dispositions to re-

spond in a particular way under specifiable stimulus conditions.

Insofar as behavioral psychology has been applied to education

or therapy; it has correspondingly limited itself to this con-

cept of "what is learned." But a generative grammar cannot be

characterized in these terms. What is necessary, in aaaition

to the concept of behavior and learning, is a concept of what

is learned--a notion of competence--that lies beyond the
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conceptual limits of behaviorist psychological theory. Like

much of modern linguistics and modern philosophy of language,

behaviorist psychology has quite consciously accepted method-

ological restrictions that do not permit the study of systems

of the necessary complexity and abstractness. One important

future contribution of the study of language to general psy-

chology may be to focus attention on this conceptual gap and

to demonstrate how it may be filled by the elaboration of a

system of underlying competence in one domain of human intel-

ligence.

As in the case of Skinner, the thesis set forth by Chomsky is breath-

taking in its dogmatic simplicity. It could be said that it seems dog-

matically simple only because I am quoting the introduction of a long

and complex empirical or theoretical argument. Substantial formal

arguments and substantial empirical data are offered subsequently, and

I have distorted the analysis by restricting myself to the quotation

just given. Although in the pages that follow, Chomsky amplifies the

views about competence set forth in this paragraph, he does not amplify

them in a way that satisfies the humean standards stated at the beginning

of this lecture. Because a number of psychologists Who have influence

in education have been much impressed by Chomsky's notion of competence,

it will be useful to examine what he has said and the concept itself in

somewhat more detail. It is the most elegant of the fantasies I have

evoked and therefore the appropriate one for final consideration.

Let me begin with a key sentence of Chomsky's remarks that is

characteristic of conceptual fantasies. After describing the netwe
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of behavioral psychology, he says, "but a generative grammar cannot

be characterized in these terms." He goes on to say that behavioral

psychology has accepted methodological restrictions that do not permit

the study of systems of the appropriate complexity. The fantasy con-

sists in this negative claim that a generative grammar cannot be charac-

terized within the framework of behavioral psychology. I have on another

occasion (Suppes, 1968) criticized a similar claim by Bever, Fodor and

Garrett (1968), who attempted to offer what they consider a formal proof

of the limitations of associationism as a basis for language learning.

In criticizing their work I characterized it as an example of negative

dogma as contrasted to negative proof.

The fantasy claim is especially appropriate in matters of this kind,

because of the long and classical tradition in mathematics of convertih,;

.negative dogma into negative arguments and establishing thereby a subject

of much intellectual richness. To transpose the situation slightly, I

can imagine without difficulty the sardonic grin with which a mathematician

at Alexandria in, let us say, 100 B.C. would have greeted the unsupported

claim that it is obvious that the trisection of an angle cannot be charac-

terized in terms of operations performable by a straightedge and compass

alone. A two-word response would have been sufficient: Prove it. Tim

austerity and precision of negative mathematical arguments are too re-

straining and perhaps puritanical in their methods for Chomsky and his

ardent followers.

To give a negative proof, we must first have a much clearer idea

of what is meant by the theory of competence than the characterizations

given by Chomsky or his cohorts. If we are talking about language, for



example, it is strange and wonderful to find only ;:rammar and not semantics

mentioned in the discussion of competence. zly example we are told that

generative grammars provide a model for theories of competence, but what

is the model of semantic competence? On the one hand, we are urged not

to consider arbitrary grammars and permit thereby the generation of any

recursively enumerable set; rather, we should pick grammars with appro-

priate restrictions. On the other hand, we are told that it is no part

of a theory of competence to build in a model of human memory and per-

ception and to deal with it in terms of competence ideas. Reflection

on the passages cited and similar writings by linguists in the Chomsky

tradition does not give one confidence that a serious intellectual body

of ideas is being developed under the heading of the theory of competence.

As my final remark on this, let us even assume that there is such a

body of serious ideas to be developed. While there are certain mathematical

areas in which one can conceive of formulating what would seem to be a

theory of competence, one is struck by how irrelevant it is to any educa-

tional or psychological problems.

The mathematical example I want to deal with is that of mathematical

proofs. In principle, it is quite straightforward to give a simpleminded

theory of competence for mathematical proofs; namely, we know that we can

formulate within first-order logic almost all current mathematical ideas,

and we can then enumerate the theorems of the subject by enumerating the

proofs. The enumeration of the proofs will constitute a kind of theory

of competence. Any proof that exists will eventually turn up in the list

after only a finite number of predecessors. We have thereby a simple



algorithm for the production of any proof, and we can show that abstractly,

simply as an algorithm, we can do no better than this.

Pio one thinks that this formal theory of competence has anything

serious to do with the psychology of students' discovering elementary

mathematical proofs in elementary mathematical courses or in mathematicianr

at work in unknown territory discovering new and complex proofs. On the

one hand, we give a clear and simple theory
of competence, one that we

can state much more about in a sharp mathematical
fashion than we can

in the case of the relation of
generative grammars to language; yet on

the other hand, we can all recognize at once the essential irrelevance

of this theory of competence to the
psycholo;;ical problems of under-

standing how someone finds a proof or to the educational problem of

providing instruction to students in giving proofs.

It seems to me that there is some reason to conjecture that the

relation of this theory of competence for proofs that I have given may

bear as close a relation to the
proper performance theory of proofs as

does current work on generative
grammars, especially with a complex

transformational component, to correct performance models of language

usage. In any case, we certainly need something much more definite and

intellectually precise than Chomsky's historical ruminations on the

decline and fall of rationalism and its new resurrection under a linguistic

flag.

With some regret, I terminate my remarks on fantasies about competence

at this point and return to my general theme.
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4. Research and the Belief Structures of Education

I could easily have seized upon a host of lesser targets to provide

further case material. Because education is of such universal concern

in our society, everyone feels free and often competent to speak about

it in general terms. The body of literature full of unsubstantiated gen-

eral ideas and principles is now overwhelming. Its authors run from the

new romantics like Friedenberg and Holt to a bevy of journalists turned

sometime scholars. Characteristic of this literature is the lack of

intellectual discipline, either in terms of rigorous analysis of gen-

eral principles or in the presentation of detailed factual evidence to

support the principles stated. Unfortunately, this kind of literature

represents nothing new in education. The history of educational change

is awash with firm prejudices and soggy arguments. I am not, however,

an advocate of pessimism or skepticism. I think that it is possible to

improve education, and that research can make an increasingly important

contribution to this improvement. Let me try to sketch some of the ways

I think this can happen.

First of all, it is important to recognize that the belief struc-

ture of education, the basis on which decisions about policy and practice

are taken, represents an accretion of many years of experience and fantasy.

Many of the beliefs are interwoven with other strongly held beliefs about

how individual, family and societal life should be organized. If nothing

else, the data of the Coleman report have shown us how difficult it is

to isolate any particular effects of education from the broad spectrum

of family and cultural influences. A central problem of research is to

attack that belief structure where it is unsupported by data or systematic
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is due to the closeness of the subject matter to the layman's own experience.

The man in the street does not expect to be able to give a serious opinion

about how one should build a better television set or a nuclear fuel plant

that will reduce pollution. He recognizes, of course, that both of these

things are worth having, but he seldom has opinions about how they can be

accomplished. In contrast, ask the mother in the street who has a first

grader about reading and you are likely to hear some definite views on

the teaching of reading.

The nearness of the subject matter is one aspect of the problem, but

the other aspect, I think, is a problem about the research itself. Even

a casual scientific inspection of the process the child goes through in

learning to read quickly demonstrates its complexity. The perceptual,

cognitive, linguistic and motivational aspects of the process are each

enormously complicated, and a detailed conception of how the visual per-

ception of what the child sees is related to the spoken language he al-

ready knows is far from available. If we compare this situation to

the task of improving television sets, the picture is rather dismal.

The fundamental physics of the processes involved in projecting a tele-

vised image on a screen are well understood; many of the fundamental

concepts go back to classical electromagnetic theory of the nineteenth

century.

We have in psychology no comparable fundamental theory of perception,

nor do we have a comparable theory of spoken language comprehension or

production. At the present time, in solving problems of learning to

read, we are more in the position of bridge builders before the theory

of statics was developed than we are in the position of designers of
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television sets. It is my own view that no matter how beautiful the

Latin squares of experimental design, purely empirical studies of dif-

ferent methods of teaching reading will not solve the problem of giving

us the best possible methods, any more than a similarly purely empirical

approach would ever have led us from the nonelectronic world of 1870 to

the electronic marvels of the 1970s. By this remark I do not mean to

denigrate the many good empirical studies that have been made of reading,

but I do wish to put in perspective the severe limitations we face in

practice in the absence of a deeper running theory of the processes

involved.

To build such a theory is a good example of a major relevant problem

for research in education. Like most research problems in education, the

solution cannot depend upon the work sclely of persons working in educa-

tion, but rather it must draw upon scientific results from many disciplines,

in this case ranging from neurophysiology through psychology to linguistics.

What I consider important as a first step is the recognition that we do

not have a fundamental theory of the reading process, and in all likeli-

hood we shall not for some time to come. Let me be a little more explicit

about what I mean by a fundamental theory of the reading process. I have

in mind a theory that not only can predict errors or difficulties of stu-

dents, but a theory that postulates structures rich enough to process in-

formation in the same sequence of steps a student does. Put another way,

the models of the fundamental theory should be complete models of the

student,, and the sense of completeness I use can be given precision by

using concepts from logic and computer science.
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What I have said about reading applies to most other skills and

subjects taught in our schools and colleges. I emphasize that I mean

to sound a note of honesty, not of pessimism. Above all, I think the

time has come to call for a much deeper theoretical orientation of

research in education in order thereby to increase its relevance. In

many areas, ranging from the teaching of reading to the teaching of civics,

the greatest limitation on research is not the absence of hard-data studies,

but the absence of serious and sophisticated theory. Of course, we cannot

hope to build a mathematical and quantitative theory of educational pro-

cesses over night. We can begin, however, to recognize clearly the ab-

sence of fundamental theory and to insist on the kind of intellectual

discipline in the training of our graduate students that will give them

the tools not merely to make well-designed experimental studies, but to

construct well-put-together theories that have definite and precise as-

sumptions and deductive consequences that bear on behavior and the way

students learn.

In important ways a good beginning already exists. I would mention

especially the statistical theory of tests, the theory of measurement,

some parts of learning theory, and recent economic work on productivity

in education. Most pressingly needed are mathematical and quantitative

theories applicable to major areas of curriculum. In certain areas I

see the possibility of rapid advance once a cadre of sufficiently so-

phisticated research workers is available. In elementary-mathematics

education the well-defined structure of the subject and the long tradi-

tion of good empirical studies, as well as the modern theory of algorithms

and abstract machine processes, make available a welter of concepts and
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intellectual tools for the development of a fundamental theory of mathe-

matics learning and performance at the elementary-school level. To

some extent, the same is true of second-language learning, although

there is not the same tradition of fifty years of careful studies as

there is in the case of elementary mathematics. Other areas that in-

volve complex perceptual or cognitive processes are less amenable to any

direct theoretical attack as yet, and it will undoubtedly be some time

before even reasonable looking theories, let alone correct ones, are

formulated.

5. A Research Example from Elementary Mathematics

I recognize, as does everyone else, that it is much easier to

criticize than to produce definite constructive results in any area

of scientific investigation. My original intention was to give as a

final example of a fantasy some excerpts from my own past writings,

because the sins of fantasy I have charged others with I have also

committed myself in the past. Even worse, I forecast that I shall

commit them again in the future.

After further reflection, I decided it would be more useful, and

in a deeper sense, expose better my own biases and weaknesses, to sketch

in a constructive fashion how a precise theoretical attack on problems

of educational relevance can be made. The curriculum I consider is

standard and elementary, namely, the algorithms children are taught

for performing the basic arithmetical operations of addition, subtrac-

tion, multiplication and division. Also, I first consider performance

data and only later say something about learning. Since the detailed

theory of these matters is relatively technical, I have put the formal

developments in the Appendix.
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The psychological study of arithmetic skills, like most other parts

of psychology, has a relatively recent history--only a few systematic studies

were made before 1890. The real impetus was provided by E. L. Thorndike's

analysis of the learning of arithmetic in his Educational Psychology (1913,

1914) and later in his The Psychology of Arithmetic (1922). In an attempt

to account for the acquisition of arithmetic skills in terms of his three

psychological laws--the law of readiness, the law of exercise and the law

of effect--he tried to justify and analyze the reason for the traditional

importance attached to drill and practice in arithmetic; for him the psy-

chological purpose of drill is to strengthen the bonds between stimuli

and appropriate responses. He moved on from such fundamental questions

to the more practical ones of amount and distribution of practice. He

emphasized the advantages of distributed practice and criticized the

actual distribution of practice in textbooks of his time. Some effects

of his work on the revisions of textbooks in the 1920s and later are

documented in Cronbach and Suppes (1969, pp. 103-110).

In the twenties and thirties there were a large number of good empir-

ical studies of arithmetic skills, many of which were concerned with de-

tailed questions that had to be answered in any complete psychological

theory of arithmetic. For example, Buckingham (1925) studied student

preferences and aptitudes for adding up or down in column addition prob-

lems. An extensive review of this literature may be found in Suppes,

Jerman and Brian (1968).

Empirical studies like those of Buckingham were not designed to

develop an overall theory of, arithmetic skills; nor, it is probably fair

. to say, was Thorndike completely sensitive to the gap that existed between



his theoretical ideas and the actual algorithms students were taught

to solve problems. There are many stages to work through in developin.'

an adequate theory, and so far as I can see, there is no one point at

which one can say the theory is now complete in all respects. If, for

example, the theory is adequate at some conceptual level of information

processing, then it is possible to move on to additional perceptual

questions. Moreover, once a perceptual theory of a certain level of ab-

straction is successfully developed, it is possible to go on to still

more detailed perceptual questions, such as requiring the theory to

include eye movements of students as well as their numerical responses.

It is for me an important methodological precept that at no foreseeable

point shall we reach a fixed and firm bottom beyond which we cannot pro:';:

for further details and a more refined theory.

I would like to briefly sketch the history of some work of mine and

my younger collaborators over the past six or seven years. Rather than

attempt a general coverage, I have decided to select a singular example- -

the simple one of column addition--to illustrate how we have tried con-

tinually to deepen the theory, and then to discuss what I see as yet

undone, but practically possible in the near future.

The data referred to are all taken from our work in computer-assisted

instruction, but I shall not enter into any of the details. The kinds

of models discussed can be applied to students using pencil and paper.

The first question we tried to answer was how can one predict the

relative difficulty of different exercises of column addition? If, for

example, we consider problems up to the size of three columns and three

rows, we are confronted with approximately one billion problems. A



meaningful theory must drastically reduce this large number of exercises

to a small number of classes in which all members of a class are essen-

tially the same in difficulty.

Our first approach (Suppes, Hyman and Jerman, 1967) was to identify

a small number of structural features that would permit us to apply

linear regression models to predict either probability of correct re-

sponse or expected latency of response. Additional applications of

such regression models may be found in Suppes, Jerman and Brian (1968)

and Suppes and Morningstar (1972). The application of such regression

models is exemplified in equation (3) of the Appendix. As can be seen

from the information given there, the fit of the regression model to

mean student-response data on column addition exercises is not bad.

Conceptually, however, there are obvious lacunae. The regression model

that predicts response probabilities does not really postulate a specific

process by which students apply an algorithm to solve an exercise.

The next level of theory developed is aimed precisely at offering

such process models, models that satisfy the information-processing

requirements laid down for reading models in the earlier discussion.

Without doubt, providing an adequate information-processing model for

column addition is a much simpler affair than providing one for reading,

and I have no illusions about the difference in complexity. Thy: nakural

theoretical tools for providing process models of algorithmic tasks are

automata, and for most of elementary arithmetic, simple finite aut:mata

are satisfactory. There is, however, one weakness in finite autom&ta

as ordinarily defined, namely, they have no place for a probabilistic

theory of error, so the natural step is to move from finite determindstic

automata to probabilistic automata.
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An automaton becomes probabilistic by making the transition func-

tion from state to state probabilistic in character. Thus, from a given

input and a given internal state there is a probability of going to any

one of several different states. In general one wants to make the output

function probabilistic aiso. This means that given an internal state

and an input there is a probability distribution over the next output.

(These ideas are made formally definite in Definitions 1 and 2 of the

Appendix.) By drastically reducing the source of error to a small num-

ber of parameters, we can develop and apply manageable probabilistic

automata to student-response data. A detailed example including maximum-

likelihood estimates of tne three parameters of the automaton are given

in the Appendix.

Such a probabilistic automaton model takes a definite step beyond

a regression model in providing in an abstract sense an adequate

information-processing model. From a psychological standpoint, on

the other hand, the automaton models described in the Appendix are

unsatisfactory in that they lack any perceptual components, and there-

fore they do not deal directly with how the student actually processes

the format of written symbols in front of him.

Our current work is very much directed at this point. In prin-

ciple, it would be possible to continue the development of automaton

models with an abstract concept of state to represent the student's

perceptual processing. A weakness of this extension of the automaton

models is that when the states are left in a general abstract formula-

tion it is natural to end up designing a different automaton for each

of the different tasks in elementary mathematics, and a plethora of
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models results. Closer examination of the algorithmic tasks of arith-

metic facing the student in solving exercises indicates ti...Lt the vari-

ous tasks have much in common. This commonality suggests a somewhat

different approach, an approach via register machines with perceptual

instructions.

Register machines were first introduced by Shepherdson and Sturgis

(1963) to give a natural representation of computable functions in terms

chat are closer to the idea of a computer accepting instructions than to a

Turing machine. In the case of the representation of computable function.,

a rather simple set of arithmetic instructions is sufficient. In parti'nalar,

an unlimited register machine has a denumerable sequence of registers, 1:0,0;

any given program only uses a finite number of these registers and the

machine accepts six basic instructions: add one to a register, subtract

one, clear a register, copy from one register to another, and two jump

instructions, one conditional and one not. (This set of six instruc-

tions is not minimal, but it is convenient.) Obviously, for the per-

ceptual processing that a student does we want a different register

machine and a radically different set of instructions. In addition,

it is natural to postulate only a finite fixed number of registers that

the student can use.

The basic idea of this approach is to drastically simplify the

perceptual situation by conceiving each exercise as being presented

on a grid. The student is represented by a model that has instructions

for attending to a given square on the grid; for example, in the stan-

dard algorithms of addition, subtraction and multiplication we begin

in the upper right-hand corner and then have instructions to move
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downward through each column %nd ,ran right to left across columns.

Additional instructions for storing the restlts of an operation, for

outputting the last di Tit of a stored numeral, ex.., are needed. SOMP

further details are given in the Appendix, but the discussion is not

as complete as that for automaton models.

The basic idea of register machines is that the different algo-

rithms are represented by subroLtines. One subroutine may be called

in another, as complex routines are built up. The procedure is famil-

iar to most of us, even if the language I am using is not. For example,

in performing column multiplication we use the algorithm of addition,

Which in this case means the subroutine for addition; in long

division we call the su!routines for subtraction and multiplication,

as well as for addition. Each basic subroutine is represented

by a program in terms of the primiti7e instructions. The problem from

a psychological standpoint is to find instructions that provide not only

a realistic description of that the student does, a description that can

be fitted to data in the same way that the automaton models have been

applied to data, but also a fuller account of how the student processes

the exercise.

At the first stage of analyzing register-machine models we can

get results similar to those for the automaton models by postulating

error parameters for execution of main subroutines of the routine for

a given algorithm. More is said about this in the Appendix. However,

the real purpose of the register machines, in addition to providing

some explicit analysis of perceptual processing, is to provide a nat-

ural method for analyzing learning.
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The approach we have adopted is this. At each given stage, the student

has command of a certain set of subroutines or procedures. To master more

complex exercises and concepts the student must expand these subroutines or

imbed them in more complex ones. A plausible approach is that the student

builds up these more complex routines by verbal instruction received from the

teacher and by interpretation, especially
perceptual interpretation, of

examples. When the verbal instruction by the teacher, or say, a computer-

assisted instruction program, is explicit, and the link to the necessary

internal instructions is close, a surprisingly simple theory of learn-

ing within a classical framework can be given. For example, the

kind of determinate reinforcement for obtaining finite automata from

stimulus-response models, as developed theoretically in Suppes (1969),

can without much modification provide the theory for the buildup of

the appropriate subroutines.

I emphasize, however, that we are only beginning the detailed

analysis of learning in this complex setting, and I am describing the

conceptual situation. I shall have to wait until later to report on

the actual empirical accuracy of the learning models we have developed.

The empirical results obtained with automaton models of performance

have been good enough to encourage us to push on as rapidly as possible

to the deeper problems of learning.

In this section I have tried to sketch an example of how one can

pursue a systematic theory of relevance to education. It should be

apparent to everyone that the example 1 have chosen is exceedingly

limited, and from many people's standpoint it is an almost trivial

part of the curriculum. On the other hand, it should be equally
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apparent that the psychological theory of learning and performance in

a subject matter as simple even as elementary arithmetic is not in it-

self simple. In fact, a detailed learning theory of elementary arith-

metic is far more complex than the usual kind of theory psychologists

consider. One of the problems we have to face in education is the too

great willingness of psychologists and others to generalize from quite

simple tasks to complex ones.

What I hope to have brought out in the present discussion, which

is developed technically in the Appendix, is that the problems of subject-

matter learning require conceptual developments in their own right that

do not fall naturally out of general ideas of current psychological

theories. Yet, with proper use of the variety of conceptual tools

now available, it does seem possible to provide anoincreasingly adequate

theory of learning for at least the basic skills, for instance, the

basic skills of mathematics and language, that constitute a fair

portion of school curriculum everywhere in the world.

6. Conclusion

I would like to conclude with a final remark about theory construc-

tion relevant to eecation. The times have probably never been so pro-

pitious for luring some of the ablest young minds into the problems of

educational research. There exists already a body of methods and results

of which we can be proud; but it is also clear, especially when we turn

to the construction of systematic theories of learning or instruction,

that we have as yet scarcely scratched the surface. While we are scratching

that surface those of us in educational research must impose exacting stan-

dards not only on ourselves, but also on our neighbors, be they linguists



-4o-

or psychologists. We must demand of them, as well as of ourselves, the

best possible effort in theory construction. We must above all reject

the attitude that has in the past sometimes been prevalent that second-

rate theories and second-rate efforts in. the development of theory will

suffice for education, and that we are lucky to get small crumbs from the

occasional psychologist or linguist or economist who happens to become

interested in education. We do not need ill-worked-out theories from

other disciplines. We do not need fantasies of abstractions and plati-

tudes unsupported by serious and rigorous development. What we need for

relevance in education are theories of intellectual power and rigor, and

we should not rest until we get them.
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2

In this appendix I give some (but by no means all) of the technical

details of our research in the psychology of arithmetic. The first

three sections deal with performance models and the last section deals

with a learning model. Each section attempts to dig a step deeper than

its predecessor into the skills of arithmetic. For simplicity I have

restricted the analysis in this appendix to the simple case of column

addition, but the methods either already have been or in principle can

be extended to essentially the entire domain of elementary-school mathe-

matics (in addition to the references in the main text, see Groen &

Parkman, 1972; Suppes & Groen, 1967). On the other hand, a good many

additional developments will be needed to extend this work even to rou-

tine parts of the undergraduate college mathematics curriculum. (Some

very empirical first steps at this college level are to be found in

Goldberg & Suppes, 1972; Kane, 1972; Moloney, 1972.)

Linear regression models. As mentioned in the main text I begin

with regression models that use as independent variables structural

features of individual arithmetic exercises. I denote the jth .

s'cruc-

tural feature of exercise i in a given set of exercises by fij. The

parameters estimated from the data are the values attached to each

structural feature. (In previous publications we have referred to these

structural features as factors, but this can lead to confusion with

the concept of factor as used in factor analysis.) I denote the
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.th
coefficient assigned to the j structuralfeaturebya.,and

emphasize that the structural features
themselves, as opposed to their

coefficients, are objectively identifiable by the experimenter in terms

of the exercises themselves, independent of the response data.

Let pi be the observed proportion of correct responses on exer-

cise i for a given group of students. The natural linear regression

in terms of the structural features f.. and the coefficients a. isij

simply

p. = E a
j
f
i j

.

0

Unfortunately, When the regression is put in this form, there is no

guarantee that probability will be presrved as the structural features

are combined to predict the observed proportion of correct responses.

To guarantee conservation of probability, it is natural to make the fol-

lowing transformation and to define a new variable zi.

(1)

1 - P1.

z. = log
1 Pi

and then to use as the regression model

(2) z. = a
j
fi

j
+a0.

1 j 0

The numerator of equation (1) contains 1 - pi rather than pi, so

that the variable z. increases monotonically rather than decreases

monotonically with the magnitude of the structural features fij.

In Chapter 3 of Suppes and Morningstar (1972), the following struc-

tural features were defined for column-addition exercises.

The feature SUMR is the number of columns in the largest addend.

For three-row exercises SUIT is defined as 1.5 times the number of

columns, plus .5 if a column sum is 20 or more. For example,
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a

( + b ) = 1

a
1.5 if de < 20

SUMR ( ) =

2 if de > 20
de

SUMR (ab + c = de) = 2 .

This structural feature reflects the number of columns of addition,

with greater weight being given to columns in three-row exercises than

in two-row exercises.

The second structural feature is CAR, which represents the number

of times the sum of a column, including any numbers carried to it, ef-

seeds nine. For exampl:>,

a

CAR ( b ) = 0

CAR (a + b = cd) = 1

ab 0 if b + d < 9
CAR( +cd) =

ef 1 if b + d > 9

ab
11 if b + d + f < 9, a + c + e > 9cd )

+ ef
if b + d + f > 9, a + c + e > 9 .ghi

The third structural feature VF reflected the vertical format

of the exercise. The vertical exercises with one -digit responses were

given the value O. Multicolumn exercises with multidigit exercises and

one-column addition exercises with a response of 11 were given the value

1. One-column addition exercises with a multidigit response other 'Iv.,

11 were given the value 3. ?or example,

1



ab

VF ( - cd ) = 0

e

abc

VF ( def ) = 1

gh i

a

VF ( b ) = 3 .

cd

This structural feature is meant to reflect the likelihood of the

mistake of reversing the digits of the correct response, especially in

a one-column addition exercise. In the camputer-assisted instruction

environment where students were responding at teletype terminals, re-

sponses to vertical exercises were typed from right to left, while

responses to'izontal exercises were typed from left to right. Thus,

it was possible for a student to have in mind the correct answer,4ut

id)(
.1

to err by typing the digits in the reverse order. It is fair to say

that this structural feature is of more importance in working at a

computer-based terminal than when using paper and pencil.

Table 1 shows a pretest on column addition given to third graders.

The following regression equation was obtained for the mean response

Insert Table 1 about here

data of 63 students taking the test.

( 3) p.=.53SMIER.4.93CAR.4.31 VF - 4.06 .

The multiple R was .74 and R
2

was .54, which reflects a reasonable

fit to the data. I shall not enter into further details of the regres-

sion model, but shall move on to the next level of analysis of these

same response data. As should be obvius, I am not attempting anything



`TABLE 1

Pretest Exercises in Column Addition

1)

2)

17

+ 2

8)

9)

11

22

+ 14

27

±4

15)

16)

5267

+ 283

6

+ 5

46

75

+ 23

3) 14 10) 8 17) 3986
4- 15 4- 32 4. 4735

4) 6 11) 639 18) 27
+13 +212 46

+ 88

5) 363 12) 66
+ 214 + 14 19) 7657

+ 1875

6) 416 13) 378
+ 212 I- 125 20) 69

36

+ 48
12 14) 557

31 4- 256

10



like a s:ystematic presentation of data, but chly enough to give a sense

of how some of the models do fit.

Three-state automaton model. The central weakness of the regressicn

models is that they are not process models. They do not provide even a

schematic analysis of the aliwrithmic steps the student uses to find

answer. Automaton models are process models and therefore their use

represents a natural extension of the regression analysis. For the

exercises in column addition we may restrict ourselves to finite autom-

ata, but as ordinarily defined they have no place for errors. However,

this is easily introduced by moving from deterministic state transitions

to probabilistic ones.

I begin with the definition of a finite deterministic automaton,

and then generalize. These developments follow Suppes (1969).

Definition 1. A structure 91= (A' VI' V0"MQ' s0 ) is a finite

(deterministic) automaton with output if and only if

(i) A is a finite, r:onempty set,

(ii) V
I

and V
0

are finite nonempty sets (the input and output

vocabularies, respectively),

(iii) M is a function from the Cartesian product A X V_ to A

(M defines the transition table),

(iv) Q is a function from the Cartesian product A X VI to VC

(Q is the output function),

(v) so is in A (so is the initial state).

As an example of a finite automaton with output, that is, a finite

automaton in the sens,1 of this definition, we may characterize an automaton

that will perform two-row column addition.
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A = (0,13 ,

V
I
= ((m n) 0 < m, n < 9)

V0 = (0
, 9] ,

0 if m n k < 9 ,

M(k,(m,n)) =

1 if m n k > 9 , for k = 0,1

Q(k,(m,n)) = (k m n) mod 10 ,

s
0

= 0 .

Thus the automaton operates by adding first the ones' column, storing

as internal state 0 if there is no carry, 1 if there is a carry, out-

putting the sum of the ones' column modulus 10, and then moving on to

the input of the two tens' column digits, etc. The initial internal

state s
0

is 0, because at the beginning of the exercise there is

no 'carry'.

Definition 2. A structure 2i= (A,VI,V0,p,q,s0) is a (finite)

probabilistic automaton if and only if

(i) A is a finite, nonempty set,

(ii) V
I

and V
0

are finite, nonempty sets,
---

(iii) p is a function on AXVXA to the interval [0,1] such that for

each s in A and a in V, ps, is a probability density over A, i.e.,

(a) for each s' in A,
ps,a

(s') > 0,

(b) E ps a(s') = 1,

s'eA '

(iv) q is a function on A X VI X V0 to [0,1] such that for each s in

A qand a in V, is a probability density over V0,
s,a

(v) s
0

is in A.
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In the probabilistic generalization of the automaton for column

addition, the number of possible parameters that can be introduced is

uninterestingly large. Each transition M(k,(m,n)) may be replaced

by a probabilistic transition 1 - c
k,m,n

and ck
m n,

and each

output Q(k(m,n)), by 10 probabilities for a total of 2200 parameters.

A three-parameter automaton model structurally rather close to

the regression model is easily defined. First, two parameters, e

and 11, are introduced according to whether there is a 'carry' to the

next column.

P(M(k,(m0)) = 0 ik + m + n < 9) = 1 - c

and

P(M(k,(mln)) = 1 1k + m+ n> 9) = 1 -
1l .

In other words, if there is no 'carry', the probability of a correct

transition is 1 - e and if there is a 'carry' the probability of

such a transition is 1 - 1. The third parameter, y, is simply

the probability of an output error. Conversely, the probability of

a correct output is:

P(Q(k,(m,n)) = (k + m + n) mod 10) = 1 y .

Consider now exercise i with C. carrys and Di digits. If

we ignore the probability of two errors leading to a correct response

(e.g., a transition error followed by an output error), then the proba-

bility of a correct answer is just

D. C. D.-C.-1
(4) P(Correct Answer to Exercise i) = (1 y) 1(1 - 11) '(1 - E)

As already indicated, it is important to realize that this equation is

an approximation of the 'true' probability. However, to compute the
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exact probability it is necessary to make a definite assumption about

how the probability y of an output error is distributed among the

nine possible wrong responses. A simple and intuitively appealing

one-parameter model is the one that arranges the 10 digits on a circle

in natural order with 9 next to 0, and then makes the probability of

an error j steps to the right or left of the correct response 6'.

For example, if 5 is the correct digit, then the probability of re-

sponding 4 is 6, of 3 is 62, of 2 is 63, of 1 is 64, of 0 is

6
5
, of 6 is 6, of 7 is 6

2
, etc. Thus in terms of the original

model

y = 2(6 62 63 64) + 65

Consider now the exercise

47

th
Then, where d = the response,

P(di = 2) = (1 - y)

P(d2 = 6) = (1- .0(1 - 11) 116 .

Here the additional term is 116, because if the state entered is 0

rather than 1 when the pair (7,5) is input, the only way of obtaining

a correct answer is for 6 to be given as the sum of 0 + 1 + 1, which

has a probability 6. Thus the probability of a correct response to

this exercise is (1 - y)[(1 y)(1 - 11) 116]. Hereafter we shall

ignore the To (or e6) terms.

Returning to (4) we may get a direct comparison with the linear

regression model defined by (3), if we take the logarithm of both sides

to obtain:
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(5) log pi = Di log (1 y) Ci log (1 - 11) (Di - Ci - 1) log (1 - e) ,

and estimate log 1 - y, log 1 - T, and log 1 - e by regression with

the additive constant set equal to zero. We also may use sane other ap-

proach to estimation such as minimum x
2

or maximum likelihood. An

analytic solution of the standard maximum-likelihood equations is

difficult, but the maximum of the likelihood function can be found

numerically.

The automaton model naturally suggests a more detailed analsis of

the data. Unlike the regression model, the automaton provides an immedi-

ate analysis of the digit-by-digit responses. Ignoring the e8-type terms,

we can in fact find the general maximum-likelihood estimates of y, el

and 11 when the response data are given in this more explicit foam.

Let there be n digit responses in a block of exercises. For

1 < i < n let x. be the random variable that assumes the value 1

if the i
th

response is correct and 0 otherwise. It is then easy to

see that

(1 - y) if i is a ones'-column digit,

(1 - y)(1 - e) if it is not a ones' column and there
P(x = 1) =

is no carry to the ith digit,

(1 - y)(1 - 11) if there is a carry to the ith digit,

granted that 5 -type terms are ignored. Similarly for the same three

alternatives

P(xi = 0) = [1 - (1 - y)(1 - E)

- (1 - y)(1 - TI) .
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So for a string of actual digit responses xl,...lx
n

we can write the

likelihood function as:

oaybo._ oco._ vdr.,(6) Axi, ...,xn) - 0(1- C)]e[1^ (1- 0(1-

where a = number of correct responses, b = number of incorrect responses

in the ones' column, c = number of correct responses not in the ones'

column when the internal state is 0, d = number of correct responses

when the internal rtate is 1, e = number of incorrect responses not

in the ones' column when the internal state is 0, and f = number of

incorrect responses when the internal state is 1. (In the model sta-

tistical independence of responses is assured by the correction pro-

cedure.) It is more convenient to estimate yi = 1 - y, el = 1 - e,

and = 1 - ii. Making this change, taking the logarithm of both sides of

(6) and differentiating with respect to each of the variables, we ob-

tain three equations that determine the maximum-likelihood estimates

of y', e', and 11':

aL a b ec'

W yi 1 - 7' 1 - yfe 1 -
- 0

dL
=

c e
- 0

dEl El 1 - yfEl

aL d
_ 0 .

= 1

Solving these equationsye obtain as estimates:

a - c d

Yr -a+b-c-d2

c(a b - c - d)

(c e)(a - c - d) 2
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Estimates of the parameters fnr th- third-,17rade data already described,

as well as a granh of the (3i-served anc.: pre,:icted response probabilities

for the exercises shown in ral.le ar- ,-i:en in 3hapter 4 of Suppes and

Morningstar (197::). (This chapter was written in collaboration with

Alex Cannara and he in respznsitle fc,r the data analysis.) The esti-

mates are: .0C5 and The graph of

response probabilities Li: reprodt.ced as Figure 1. A detailed discussion

Insert Fi,:ure 1 alcut here

of the fit of the model and flArther analysis of some of the discrepancies

are to be found in the chapter mentioned. Here I have tried caly to give

a sense of how this kind of model can be brought into direct confronta-

tion with data.

Register machines with ner,i!eptual instructions. To introduce

greater generality and to deepen the analysis to include specific ideas

about the perceptual processing of a olumn-addition exercise, I move

on to register machines for the reasons described in Section 4 of the

main text. This research is being conducted in collaboration with

Lindsay L. Flannery.

For column addition three registers suffice in our scheme of analysis.

First there is the stimulus-supported register [SS] that holds an encoded

representation of a printed symbol to which the student is perceptually

attending. In the present case the alphabet of such symbols consists

of the 10 digits and the underline symbol As a new symbol is at-

tended to, previously stored symbols are lost unless transferred to a
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data
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Fig. 1. Predicted and observed probability correct for 3-parameter

automaton model.
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non-stimulus-supported register. The second register is nhe non-stimulus-

supported register [NSS]. It provides long-term storage for computational

results. The third register is the operations register [ON that acts as

a short-term store, both for encodings of external stimuli and for results

of calculations carried out on the contents of other registers. It is also

primarily non-stimulus-supported.

As already stated in the main text, we drastically simplify the per -

Ceptual situation by conceiving each exercise as being presented on a

grid with at most one symbol in each square of the grid. For column

addition we number the coordinates of the grid from the upper right-hand

corner. Thus, in the exercise

15

24

37

the coordinates of the digit 5 are (1,1), the coordinates of 4 are (2,1),

the coordinates of 7 are (3,1), the coordinates of 1 are (1,2) and so

forth, with the first coordinate being the row number and the second

being the column number.

The restricted set of instructions we need for column addition are

the following 10.

Attend (a,b): Direct attention to grid position (a,b).

(±a, ±b): Shift attention on the grid by (±a,dEb).

Readin [SS]: Read into the stimulus-supported register

the physical symbol in the grid position

addressed by Attend.

Lookup [R1] + (R2]: Look up table of basic addition facts for

adding consents of register [R1] and [R2]

and store the result in [R1].
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Copy [R1] in [R2]: Copy the content of register [R1] in

register [R2].

Deleteright [R]: Delete the rightmost symbol of register [R].

'Jump L: Jump to line labeled L.

Jump (val) R,L: Jump to line labeled L if content of register [R]

is val.

Outright [R]: Write (output) the rightmost symbol of

register [R] at grid position addressed

by Attend.

End: Terminate processing of current exercise.

Exit: Terminate subroutine processing and return

to next line of main program.

Of the 10 instructions only Lookup does not have an elementary character.

In our complete analysis it has the status of a subroutine built up from

more primitive operations such as those of counting. It is, of course,

more than a problem of constructing the table of basic addition facts

from counting subroutines; it is also a matter of being able to add a

single digit to any number stored in the non-stimulus-supported register

[NSS] or [OP], as, for example, in adding many rows of digits in a given

column. I omit the details of building up this subroutine.

It should also be obvious that the remaining nine instructions are

not a minimal set; for example, the unconditional jump instruction is

easily eliminated. We do think the nine are both elementary and psy-

chologically intuitive for the subject matter at hand.

To illustrate in a simple way the use of subroutines, we may con-

sider two that are useful in writing the program for column addition.
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The first is the vertical scan subroutine, which is needed for the fol-

lowing purpose. In adding rows of numbers with an uneven number of

digits, we cannot simply stop when we reach a blank grid square on the

left of the topmost row. We must also scan downward to see if there

are digits in that column in any other row. A second aspect of this

same problem is that in our model the student is perceptually t_ocessing

only one grid square at a time, so that he must have a check for finding

the bottom row by looking continually for an underline symbol. Otherwise

he could, according to an apparently natural subroutine, proceed indefi-

nitely far downward encountering only blanks and leaving entirely the

immediate perceptual region of the formatted exercise. Here is the sub-

routine. In the main program it is preceded by an Attend instruction.

Vertical Scan Subroutine

V-scan )

Rd Readin

Jump (0-9,__) SS, Fin

Attend (+1,71)

Readin

Jump (__) SS, Fin

Attend (+0,+1)

Jump Rd

Fin Exit

The labels Rd and Fin of two of the lines are shown on the left.
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The second subroutine is one that outputs all the digits in a register

working from right to left. For example, in column addition, after the

leftmost column has been added, there may still be several digits remain-

ing to print out to the left of this column in the 'answer' row.

Output [R]

Put Outright [R]

Deleteright [R]

Jump (0-9) R, Put

Exit

Using these two subroutines the program for vertical addition is relatively

straightforward and requires 26 lines. I number the lines for later ref-

erence; they are not a part of the program.

Vertical Addition

1. Attend (1,1)

2. Readin

3. Copy (SS] in [OP]

1;. Attend (+1,4-0)

5. Readin

6. Opr Lookup [OP] + [SS]

7. Rd Attend (+1,0)

8. Readin

9. Jump (0-9) SS, Opr

10. Jump (Blank) SS, Rd

Attend (+1,0)11.
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12. Outright (OP]

13. Deleteright [OP]

14. Copy (OP] in (NSS)

15. Attend (11+1)

16. V-scan (0-9, )

17. Jump ( ) SS, Fin

18. Jump (0-9) SS, Car

19. Copy [SS] in [OP]

20. Jump Rd

21. Car Copy (NSS] in [OP)

22. Jump Opr

23. Fin Jump (Blank) NSS, Out

24. Attend (+1,0)

25. Output [NSS]

26. Out End

To show how the program works, we may consider a simple one-column addition

exercise. I show at the right of each line the content of each register

just before the next row is attended to, i.e., after all operations have

been performed.



-59-

[ss] [OP] [Nss]

4 4 4

5 5 9

3 3 12

8 8 20

20

0 0 2

This kind of analysis can be generalized to prove that the program is

correct, i.e., will output the correct answer to any column-addition

exercise, but this aspect of matters will not be pursued further here.

By attaching error parameters to various segments of the program,

performance models are easily generated. For comparative purposes we

may define a performance model essentially identical to the two-state

probabilistic automaton already introduced for column addition restricted

to two rows. To lines 6-12 we attach the output error parameter y, and

to lines 13-19 we attach the 'carry' error parameter 11 if there is a

carry, and the error parameter e if there is not. Given this charac-

terization of the error parameters the two performance models are be-

haviorally identical. On the other hand, it is clear that the program

for the three-register machine is much more general than the two-state

probabilistic automaton, since it is able to solve any vertical addition

exercise. It is also obvious that other performance models can easily be

defined for vertical addition by introducing error parameters attached to

different segments of the program.
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Learning. In an earlier article (Supped, 1969), I proved that

given any connected finite automaton there is a stimulus-response model of

learning that is asymptotically isomorphic to the automaton, i.e., as the

number of trials approaches infinity, and initially all stimuli may be

unconditioned to any of the desired responses. In one clear sense, how-

ever, the theorem proved is too weak because of the special character of

the reinforcement schedule. What is required is reinforcement of the

transitions from each response-stimulus pair to the next response, where

the responses, internal or external, constitute the states of the automaton.

The response on trial n must become conditioned to the pair consisting

of the response of trial n - 1 and the stimulus on trial n. A complete

matching of the reinforcement schedule to such conditioning connections

is often not experimentally feasible.

At the other end of the scale, Rottmayer (1970) proved the following

theorem. Let C be a classification scheme for dividing a possibly

infinite set of stimuli or stimulus patterns into two classes, such that

the classification of any pattern can be accomplished by a finite automaton.

Then there is a stimulus-response model that can learn the classification

scheme C given as reinforcement only the information of whether its

classification of successively presented patterns is correct or incorrect.

The weakness of this theorem is that the learning is very slow, and

machinery for building up a hierarchy of concepts is not directly provided.

The shift from automata to register machines seems promising not only

for the development of performance models, but also for the construction

of learning models. Learning in this framework consists of building

internal programs of increasing complexity. The reinforcement procedures
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realistically fall between the two extremes described above. Verbal

directions and corrections correspond closely, but not exactly, to

segments of an appropriate program (I emphasize an because the internal

program constructed is not necessarily unique).

I restrict myself here to an example of this approach. I take as

the class of exercises single-column addition, but with an indefinite

number of rows. The program is simpler than the general one given

above, and it is easy to see the relation between what is said to the

student by the teacher or computer to the desired internal program.

In Figure 2 I show the verbal instructions on the right with the physical

Insert Figure 2 about here

pointing to the relevant part of the displayed exercise indicated in

parentheses. When errors are made, still more detailed instructions,

tailored to the particular error, can be given, but I do not consider

such error messages here.

In Figure 2, learning parameters el, c2, c3 and c4 are shown

for the four segments of the program. Various learning models can be

formulated in terms of these four parameters. The simplest is the one

that assumes independence of the four parts. If we treat the probability

of successive errors combining to yield a correct response as having

probability zero, then the mean probability for a correct response on

trial n for the independence model is simply:

Pn(Correct Response) = / (1 (1 - ci)n-1)

c=1



Internal Program

Attend (1,1)

Readin

Transfer (SS] to (OP]

Attend ( +1,0)

Readin

Opr Lookup [OP] + (SS]

Attend ( +1,0)

Readin

Jump (0-9) SS, Opr

Attend ( +1,0)

Output [OP]

End
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Verbal Instructions

1
Start here (pointing).

c2 Add first two digits (pointing)

Now add again (pointing) (if conditional

jump satisfied)

c

3
or

Notice end of column (pointing at )

(if conditional jump not satisfied7

Write answer here (pointing)

Rkg. 2. Single-column addition.



At the other extreme a hierarchical model postulates that the ith

segment of the program cannot be learned until the i
_1st

segment is

learned. This hierazchical model leads to the following transition

matrix, where state 0 represents all segments as unlearned, state 1

represents the first segment only as learned, etc.

4 3 2 1 0

1 0 0 0 0

3
ell 1-cu

0 0 0

2 o c3 1-c3 0 0

1 0 0 c
2

1-c
2

0

0 0 0 0 c
1

1-c
1

Detailed comparison of these two models, especially for testing against

data, requires considerable further development, but the relevant mathe-

matical and probabilistic techniques are familiar in the literature of

mathematical learning theory.

What is missing from a theoretical standpoint is a deeper conceptuali-

zation of the relation between verbal instructions and reinforcements on

the one hand and the construction of appropriate segments of internal

programs on the other. In the example given above, the crucial concept

of iteration or recursion embodied in the conditional jump instruction is

presumed to be learned from the instruction "Now add again," with again

mainly carrying the force of the recursion. I hope to have something more

to say in the near future about this difficult and important problem.
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Footnotes

1
Roger Brown puts the natter nicely, ". . . one naturally falls

into the habit of speaking of stage I and stage II and so on. There is

no harm in that so long as we recognize that these are imposed stages,

laid upon continuous data by the ihvestigator as an analytic convenience

(Psycholinguistics, 1970, p. 100)."

?The research reported in the Appendix has been supported by the

National Science Foundation Grant NSFGJ-443X and U. S. Office of Education

Grant 0EG-970-0024(057).
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