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Abstract
The biomedical literature can be seen as a large integrated, but unstructured data repository. Extracting facts from
literature and making them accessible is approached from two directions: manual curation efforts develop onto-
logies and vocabularies to annotate gene products based on statements in papers.Text mining aims to automatically
identify entities and their relationships in text using information retrieval and natural language processing techni-
ques. Manual curation is highly accurate but time consuming, and does not scale with the ever increasing growth
of literature. Text mining as a high-throughput computational technique scales well, but is error-prone due to the
complexity of natural language. How can both be married to combine scalability and accuracy? Here, we review
the state-of-the-art text mining approaches that are relevant to annotation and discuss available online services
analysing biomedical literature by means of text mining techniques, which could also be utilised by annotation
projects. We then examine how far text mining has already been utilised in existing annotation projects and
conclude how these techniques could be tightly integrated into the manual annotation process through novel
authoring systems to scale-up high-quality manual curation.
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MOTIVATION
Controlled vocabularies allow scientists to commu-

nicate in a defined and unambiguous way, where all

partners agree on the same usage of language to

minimise the chances for misunderstanding leading

to a better transfer of information. Ontologies [1, 2]

additionally define relationships between the con-

cepts used. Taxonomic relations enable scientists

to communicate on different levels of granularity

choosing the level suiting their purposes best. While

one scientist might only refer to the ‘cell’ as a whole,

others will specify the location as ‘organelle’ or even

more specifically as ‘endosome’. Other relations in

ontologies allow to formulate complex statements

such as temporal dependencies during development,

causes of changes of state, or even periodically

re-occurring events, which can be used to describe

and evaluate data. The Gene Ontology (GO) [3], for

example, provides concepts describing biological

processes, molecular functions and cellular compo-

nents, which are used to annotate gene products.

Under the umbrella of the Open Biomedical
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Ontologies (OBO) consortium [4], dozens of other

ontologies have emerged, which follow shared

design principles.

Many of the abovementioned ontologies are used

to manually annotate gene products with ontology

concepts based on evidence in literature, as, for

example, done in the Gene Ontology Annotation

(GOA) project [5]. Part of the GO consortium are

numerous annotation projects for all important

model organisms concerned with creating specific

annotation repositories such as the Mouse Genome

Informatics (MGI) [6], FlyBase for Drosophila [7],

Wormbase for C. elegans [8], the Rice Genome

Annotation project [9], or The Arabidopsis

Information Resource TAIR [10]. Besides using

and working on GO, many of these efforts also

develop ontologies such as the Mammalian

Phenotype Ontology at MGI, development and

anatomy vocabularies in FlyBase, and the ontology

used by Textpresso in Wormbase. Figure 1 describes

such a typical annotation process and shows where

automated text mining methods can support the

human curator. As a prerequisite for the retrieval of

relevant literature for genes of interest, e.g. of a

certain species, genes and gene products have to

be automatically identified in text. This task is

equivalent to the question that most biomedical

literature search engines are trying to answer. Thus,

the underlying text mining approaches in both

scenarios are the same. In addition, ontology

concepts co-occurring in these texts can be recog-

nised, which are then proposed to the human curator

in relation to the identified genes. The human

curator chooses from all proposed gene annotations

those which she or he regards as correct and most

precise, discards false predictions, and adds further

annotations where appropriate. The curated annota-

tions are typically entered to a database given the

corresponding publication as reference. Linking gene

products and ontology concepts supports users in

finding gene products by querying the ontology [11]

and allows for statistical analyses of large sets of

gene products from high-throughput experiments to

identify significantly enriched annotations [12, 13].

Although manual curation of gene products with

ontology concepts ensures the highest possible

quality, three problems arise: (i) Scalability. With

progress in sequencing technology and the growth of

literature, manual curation cannot keep pace with

the growth of gene products requiring annotation.

Baumgartner etal. [14] applied a software engineering
metric for evaluating the curation progress and the

Figure 1: Integration of textmining and ontology development to curation process: the curator reads papers (1) and
identifies gene products (2) and terms from ontologies (3), which have been proposed by textminingmethods (A^C).
Annotations (4) are formulated and added to a database (5), which can be queried by the end user (6).
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completeness of biomedical knowledge bases, and

concluded that completion time for reliable manual

curation ranges up to decades for some organisms.

(ii) Evolution. Ontologies change over time between

several releases [15]. Concepts may be added,

replaced, or moved in the graph, being assigned to

new parent nodes. Concepts used in a former

annotation may not be valid or specific enough

any more. Annotation efforts like GOA ensure

backward compatibility of annotations. However,

they do not ensure completeness, especially with

new concepts, and not all gene products may

necessarily be annotated with all relevant concepts.

To ensure completeness and the consistent use of old

and new concepts, it is necessary to re-annotate all

gene products with new concepts added. This is an

important prerequisite for searching and clustering

related genes in one organism or across species.

Example (taken from [15]): since May 2005, node

GO:0031399 (regulation of protein modification)

exists, with two qualifying child nodes (positive/

negative regulation) and one specialising node

(regulation of protein ubiquitination). GO:0043538

(regulation of actin phosphorylation) was introduced

as a child node to GO:0031399 half a year later. For

some of the gene products, which were annotated

with the general term GO:0031399, the newly

introduced term might be more precise. However,

contemplable gene products have to be identified,

and a decision has to be made on an individual basis.

(iii) Inter-annotator agreement. Manual annotation is

subjective. Dependent on their scientific background

or experience, different curators might choose more

or less specific concepts for the annotation of a gene

product or make their decision on different aspects

mentioned in the literature. In an inter-annotator

agreement study for manual GO curation of the

GOA project, Camon et al. [16] showed that there is

only a 39% chance of three curators selecting the

same GO concept for a gene product.

Automated methods from natural language

processing (NLP) and information retrieval (IR) do

not suffer from these problems. They are fast and can

be applied to large sets of text. Most problems con-

cerning evolution can be overcome by re-computing

annotations at any time, reporting changes

in comparison to previous versions. The inter-

annotator problem can be addresses by systems

like the BioCreative MetaServer [17], which aims

at unifying results from various automated text

mining approaches for the annotation of PubMed

abstracts. However, it has to be stated that auto-

mated systems do not yield as high quality results

as manual annotation. In the remainder, we review

how automated text mining methods can support

manual curation with the goal of combining the

quality of the latter with the scalability of the former.

We follow the scheme depicted in Figure 1. First,

we will review how text mining can help to build

ontologies from text (Figure 1A), next how to

identify gene products (Figure 1B), ontology con-

cepts (Figure 1B), and their relations (Figure 1C) in

text. Then, we briefly discuss online text mining

tools, and we conclude by outlining how text

mining integrated into authoring tools could pave

the way to large-scale high-quality annotation.

ONTOLOGY LEARNING
Since designing an ontology is a cost- and labour-

intensive process, automating parts of the design

process is important. Ontology learning [18, 19] aims

to solve this problem by supporting the discovery

of terms, synonyms, concepts, and taxonomic and

non-taxonomic relationships. By terms we refer

to phrases from natural language which can be

simple nouns as ‘cell’ or ‘growth’, or noun phrases

like ‘early endosome’, ‘epidermal growth factor’,

which are essentially single grammatical units con-

taining a noun as a main word, and here, ‘endosome’

and ‘factor’. More complex terms can be composed

of several noun phrases like ‘endosomal sorting

complex required for transport proteins’ or ‘tran-

scription factors involved in the regulation of

endocytosis’. The concept, as used here, groups a

number of terms and corresponding synonyms to

a semantic unit, which can be referred to by all

assigned terms. Concepts are defined by a natural

language definition, and have a representative label

(usually but not necessarily identical to one of the

terms). (i) Terms. To find the vocabulary, automatic

term recognition methods help to find single words

and compound nouns, e.g. ‘early endosome’ and

‘epidermal growth factor’. However, they fail to find

multi-word phrases with definitional character, like

‘hydrolase acting on ester bonds’, ‘endosomal sorting

complex required for transport proteins’ and ‘chro-

mosome migration to spindle pole during meiosis’,

which are commonly used throughout the GO.

Fortunately, the majority of biomedical terms consist

of compound nouns, e.g. almost 90% of the

biomedical terms in the GENIA corpus [20] are
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compounds [21, 22]. Therefore, many term recog-

nition methods retrieve multi-word phrases as

candidate terms using noun phrase chunking.

The likelihood for terms being domain relevant is

estimated using overall corpus frequencies [23, 24] or

the internal structure of the terms themselves [24].

Apart from compounds, named entities such as gene

or protein names certainly play an important role in

biomedical terminology and are usually found using

dictionaries [25, 26]. Here, disambiguation plays an

important role, as [27] reported ambiguities from

gene names to general English in the range from 2%

to 32% depending on organisms and nomenclatures

studied. A third and very specialised approach uses

handcrafted syntactic rules to find terms. Manual

creation of syntactic rules can work very well for

small-scale examples. During the tasks of collecting

cellular component specific or cell type specific

terminology one could search for words ending with

‘‘some’’ aiming to find ‘‘endosome’’, ‘‘lysosome’’

etc., or for words ending with ‘‘blast’’ to find the

terms ‘‘osteoblasts’’ and ‘‘cytoblasts’’ respectively.

Nevertheless the creation of such patterns is usually

very time consuming and lacks transferability to

other domains. In a use case, Alexopoulou et al. [23]
compared four different term generation tools and

showed that they produce over 80% relevant terms

within the first 50 and over 70% within the first 200

predicted candidate terms. In general, there will

always be an upper limit to term recognition, as not

all suitable terms will appear anywhere in text. As an

example we found, that less than 20% of GO terms

appear in PubMed abstracts and could hence be

predicted. Out of the remaining terms, some could

possibly be predicted because they have a definitional

character, such as hydrolase acting on ester bonds,

which comprises two noun phrases and a relation.

For 53% of GO terms, the contained noun phrases

appear in a sentence in PubMed. Currently, no

mature methods exist for finding such composite

terms from text. For the GO, methodologies are

available for exploiting the structure of existing

concepts to successfully propose new terms [28].

An overview about term recognition was given

in [21]. (ii) Synonyms, abbreviations and definitions.

Concepts are identified in text by finding associated

terms (a preferred term, which acts as a representative

label for the concept, synonyms, and abbreviations as

a special class of synonyms). Synonyms are important

as authors and annotators may use equivalent, but

different terminology. For example, authors might

refer to the concept fever in different ways. Some

texts will mention the term fever itself, others the

Latin name pyrexia. Furthermore, apoptosis and

programmed cell death are used synonymously in

literature. Often—as in these examples—the terms

are not exact synonyms, but have slightly broader or

narrower senses. A qualitatively good source for

synonyms is WordNet [29], a lexical database

of English where nouns, verbs, adjectives, and

adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct concept. Auto-

matically finding such synonyms without such a

resource is a difficult task. Mccrae and Collier [30]

reported for a small-scale experiment on learning

regular expression patterns for synonymy a very low

recall of 7% at 100% precision when validating

against WordNet. The same experimental results

validated against the UMLS showed over 40% recall

at 90% precision. For their own automatic pattern

discovery method, the authors reported 29% recall at

73% precision, which corresponds to a study in [31]

reaching 21–27% coverage at a precision greater than

70%. Unlike synonyms, abbreviations [32], e.g. the

technique RNAi standing for RNA interference or

more precisely for Ribonucleic acid interference, can

be accurately identified: References [1, 33, 34] report

all precision and recall above 90% and Okazaki et al.

[35] reported of 78% and 85%, respectively. There is

little work on the generation of definitions. How-

ever, Klavans and Muresan [36] developed a rule-

based system extracting definitions from online

resources. They report a precision and recall of

87% and 75%, respectively. We conclude that

automatic methods can play an important role in

finding synonyms, abbreviations or definitions and

will be included in appropriate ontology engineering

tools soon. (iii) Finding taxonomic relationships.

Comparing annotations with different levels of detail

requires the taxonomic structure of an ontology.

There are lexico-syntactic and statistical methods to

extract taxonomic relationships such as is-a and

part-of from text. In general, the most challenging

problem for such methods is the fact that many

relationships are not made explicit in text. An

example for a lexico-syntactic method is Hearst

patterns [37], like ‘X such as Y’. With these patterns

one can infer, e.g. from the text fragments ‘organelles

such as mitochondria’, that mitochondria are organ-

elles. Pattern-based methods show typically

high precision around 90%, but a low recall of

10%. An example for the statistical methods
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is reported in [38]. Here, the decision on the

existence of a relationship between two concepts

depends on the measured co-occurrence of the

concepts. The concept that shows more indepen-

dence of the other will be suggested as parent

in that relation. Another approach, which can

generate ontologies from the concept usage in docu-

ments, is formal concept analysis [39, 18] reach-

ing an f-measure of 39–45%. Generally, statistical

approaches reach an f-measure of below 50%

[40, 41].

The above success rates suggest that ontology

learning methods are not and will not be able

to create ontologies fully automatically as (1) the

selection of relevant text is an equally hard problem as

the learning process itself, (2) not all terms used in

ontologies are contained in texts nor are intended to

be contained, and (3) relationship extraction remains

a hard problem. Nevertheless, ontology learning is

able to improve the manual ontology creation process

significantly as it is able to suggest terminology with

direct evidence in literature and can discover rules or

statistical relationships between concepts. The useful-

ness of an ontology learning method itself strongly

depends on the final step - its integration in ontology

editing tools. Tools such as Text2onto [42] already

address many subtasks of the ontology learning

process and can save a lot of time when serving as

a starting point for subsequent manual refinements.

NAMEDENTITYAND CONCEPT
IDENTIFICATION
Annotating gene products with ontology concepts

based on evidence in literature requires the identi-

fication of entities such as the gene products and

concepts from an ontology in text. Two problems

can be distinguished: automatically recognising a text

passage mentioning an entity or concept and

identifying the entity/concept itself.

Gene name identification
Gene name recognition and identification are

difficult, as there is an immense variety of gene

names and naming conventions. For example,

human genes have on average 5.55 different names

[43]. Names are often abbreviations, database

identifiers, or functional descriptions. Especially,

abbreviations and functional descriptions lead to

problems of ambiguity. Fundel and Zimmer [44]

found that 2.4% of gene names in FlyBase are

ambiguous as they are common English words

such as ‘and’, ‘the’, or ‘this’. Other examples of

ambiguity arise from functional descriptions such as

denoting a protein by its weight. The name p54

indicates that this protein has a peak at 54 kDa in a

mass spectrum. However, this is the case for other

proteins as well, and the name p54 refers in human

alone to five different proteins [45]. Furthermore,

usage patterns for protein names change over time.

Tamames and Valencia [46] report a gene that is

mostly referred to as PVR from the mid-1990s and

as CD155 from 2000 onwards. Although there are

standardisation bodies assigning official gene names,

authors sometimes introduce their own names to

emphasise a certain function of the gene. In [47], the

authors refer to the yeast genes SRC1 and

YDR458C as HEH1 and HEH2 to reflect their

helix-extension-helix secondary structure. Besides

variety and ambiguity of names, basic natural

language processing problems arise such as conjunc-

tions like freac-1 to freac-7, which mention two

genes explicitly and five implicitly. Baumgartner etal.
[48] found that about 8% of gene names in a

representative dataset contained some form of

conjunctions.

Recently, substantial progress has been made

in the field of gene name recognition and identifica-

tion. The BioCreative challenges [49, 50] defined

benchmark data sets for both tasks in fruit

fly, human, mouse, and yeast. The best results for

gene name identification range from success rates

of around 80% for mouse, human, and fruit fly to

over 90% for yeast. For a simple problem of gene

name recognition, results are around 87% [51–53].

Concept identification and gene
annotation
Identifying ontology concepts by finding their

associated terms in text is equally challenging as

gene name identification, but for different reasons.

As discussed in section Ontology learning, ontology

terms often do not appear literally in text even if

techniques such as stemming are applied. Searching

in PubMed for an exact match of the GO term

‘alkaline phosphatase activity’ retrieves 10 times less

documents than a search for alkaline phosphatase.

Very long and descriptive terms such as for the GO

term GO:0016706 ‘oxidoreductase activity, acting

on paired donors, with incorporation or reduction of

molecular oxygen, 2-oxoglutarate as one donor, and

incorporation of one atom each of oxygen into both
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donors’ cannot be found literally in text. However,

there are some approaches on identifying such

ontology concepts, such as the following four:

Doms and Schroeder [55] developed a method

based on sequence alignment. Terms and text are

seen as sequences of stemmed words, which have

to be aligned. Matches of words are weighted by the

words frequency in the ontology. A similar approach

is used in [56] neglecting the sequence information

and representing text and term as bag of words. For

the task of finding GO annotations for proteins

their system achieved precision rates between 7% and

15% on the BioCreative I task 2.1 data set. Another

approach by Ruch [57] uses regular expressions over

part-of-speech tags and a vector space model, which

computes a cosine distance between a term and

a text based on the word stems. The system achieved

comparable results to other systems used for the

GO annotation task of the first BioCreative

challenge. Cakmak and Ozsoyoglu [54] combined

textual patterns with the use of WordNet. The initial

patterns have a left and a right end around a token

or phrase that is part of the label of the GO term

and occurs frequently in text. On a set of 40 GO

terms, their system achieved a precision of 78% at

a recall rate of 46% annotating genes in GenBank.

The integration of data from other resources can

further improve precision of the automatic annota-

tion process. Jaeger et al. [58] integrate conserved

protein interactions to assign known functional

annotations to yet uncharacterised orthologs. The

service SherLoc integrates text and sequence-based

features to predict the subcellular localisation of

eukaryotic proteins [59].

The problem of ambiguity applies to terms as

well. Examples are GO terms such as development,

spindle, cell, envelope, which all have different

senses. One approach to tackle such ambiguities uses

co-occurring terms for disambiguation [60], which

can achieve success rates of 80%.

Figure 2 summarises to which extend automated

methods can fulfil tasks relevant for annotation work.

With regard to ontology learning, relevant terms can

be generated with acceptable accuracy, abbreviations

can be found with high accuracy, whereas identifica-

tion of synonyms and definitions, as well as finding

taxonomic relationships are still open problems. The

recognition of gene names in text can be solved

with 80% and better success rates, thus approaching

human inter-annotator agreement. Identifying con-

cepts in text is more challenging since ontology

concept labels or associated terms often do not

appear literally or approximately in text. However,

the integration of data from other resources can

significantly help to solve specific tasks such as the

annotation of gene products. These theoretical

results indicate that text mining is suitable for

practical tasks and systems. The next section

summarises such a growing number of text

mining-based web servers.

BIOMEDICAL SEARCH ENGINES
Information retrieval
Database curators face the problem of collecting

the current state of knowledge about entities to be

entered from peer-reviewed literature. Thus, the first

step in this process is to retrieve all relevant

documents, i.e. by querying a biomedical literature

database by means of a literature search engine.

In Figure 3, we compare currently available online

biomedical search engines, which are all suitable to

support this first step of the manual curation process.

Literature retrieval
Assuming that a database curator cannot know all

synonyms of biological entities, there is a high

probability that relevant publications will be missed

when performing simple keyword searches on

indexed documents. To overcome this problem

most engines implicitly extend the tokens of the

query by lexical variants, word stems, synonyms,

and abbreviations, which is already supported by the

standard PubMed web interface. Some systems

 Problem  Benchmark F-measure
A  term generation  300 documents on lipoprotein metabolism best of four different term generation tools [26] 80% (in top 50)

 synonym detection  based on news articles [34] 13-55%
 abbreviation detection  abbreviation databases from Medline [36,37] and [38] 81-90%
 definitions detection  definition of biomedical terms from Medline [39] >80% (precision)
 finding taxonomic relations  Hearst-patterns [40], statistical method [41], formal concept analysis [42,21] <50%

B  gene name recognition  BioCreative I + II data sets on human, mouse, fruit fly, yeast [52,53] 80-90%
C  gene annotation  subset of genes and 40 GO concepts from GenBank [59] 60%

Figure 2: State-of-the-art textmining approaches relevant to annotation tasks (A) ontology generation, (B) named
entity and term recognition, (C) annotation, and their current success rates.
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PubMed 1
14, 15, 

16
23, 24, 

25 41

ReleMed [68] 7 15 23, 25 31 36!
PubMed 

PubReMiner 8! 15 26 47!

ClusterMed 1 15
23, 24, 

25 31, 34 36 44!

BioMetaCluster 9! 28 31, 34 36 44!

PubFocus [71] 1 23, 24 38! 42 47! 60

HubMed [61] 7, 10
23, 24, 
25, 29! 32, 33 36 41! 48!

67, 68, 
69 57 59

63, 64, 
65

BioIE [67] 1 26, 27 31 47 72

CiteXplore 2,7!
23,24, 
25, 26 32, 33 43 67, 68 72 74 57 64, 65

iHOP [62] 2, 7 18!
25, 26, 

27! 32! 37, 38! 46 67 72! 83.84 60

Info-PubMed 12 26, 27! 32!
46, 47, 

48 67 72! 90

EBIMed [63]
24, 25, 
26, 27 47 67.68 72! 83 57

GoPubMed [55]
1, 2, 3, 

8
15, 16, 

17!
23, 24, 

25 31, 33! 36, 37 41 45!
67, 68, 

69 71!, 72 74, 76! 78! 81, 82 89
62, 63, 
64, 65

AliBaba [64] 1 18
25, 26, 

27! 32 46!,49 67 72 75! 90 58

XplorMed [69] 6 15 23, 25 34 36! 44! 72 78 58

GOAnnotator [70] 12 23, 26 38! 47 68! 72 58, 60

Textpresso [65] 17
23, 24, 

25 34 36 41 67,68! 72 62, 65

Chilibot [66] 11 27 31, 32 39 46, 49 67 72! 84! 90 92!

Information Retrieval Knowledge Retrieval

(23) Title, (24) Abstract, (25) external Links, (26) PMID, (27) Evidence sentence, (28) Text snippets, (29) Call external web services

(14) Search in UMLS, (15) Search in MeSH, (16) Search in Gene Ontology, (17) Browse within Taxonomy/Ontology hierarchy, (18) Browse within identified text occurences, (19) 
Query history, (20) Permanent profile, (21) Session clipboard

(1) PubMed query expansion/refinment: expands MeSH headings and additional vocabularies such as drugs or chemicals, citation metadata, (2) expands gene/protein names with 
synonyms, (3) offers narrowing/expanding with ontology concepts, (4) language translation of terms, (5) full natural language questions handled, (6) querying with other 
documents/database cross-references, (7) alternative full text index (Lucene/MySQL), (8) refinement based on metadata derived from initial resultset, (9) meta search in separate 
databases, (10) refinement based on keywords derived from initial resultset, (11) bypassed normal PubMed query expansion/special PubMed queries, (12) entity specific 
(genes/proteins)

Literature 
retrieval Result processing Semantic processing

Tools 
integration

(44) hierarchical classification based on distance metrics, (45) hierarchical classification using taxonomies/ontologies, (46) 2D concept graph, (47) tabular statistics, (48) Call 
external service

(41) Cosin similarity based, (42) based on co-authorship, (43) via author name

(36) Re-ranking based on concurrence of keywords, (37) Re-ranking based on concurrence of identified entities, (38) Re-ranking based on external database references or 
precomputed statistics, (39) Language structure (e.g. conclusive sentences)

(31) highlighted keywords from query, (32) highlighted biomedical entities/relations, (33) highlighted ontology concepts detected, (34) highlighted vocabular (cluster labels/significant 

(62) XML, (63) RDF, (64) BibTex, (65) Endnote (RIS)

(58) import literature references from external databases curations, (59) visualization using an external tool, (60) external large scale experimental metadata used

(57) external markup tool

(50) graphical sliders, (51) email communication, (52) social tagging, (53) special query language, (54) batch processing, (55) drag&drop GUI

(78) is-a generalization

(74) disambiguation for bio-entities, (75) disambiguation for taxonomy/ontology terminology, (76) disambiguation for authors

(71) within abstracts, (72) within sentences

(67) biomedical entities (e.g. gene/proteins), (68) Taxonomy/Ontology terminology, (69) Wikipedia terminology

(92) explicit hypothesis generation

(89) question categories, (90) graphical interaction
(87) explicit question answering
(80) significant strings, (81) significant taxonomy/ontology concepts, (82) expert profiles, (83) significant bio-entities, (84) textual synopsis

Figure 3: Online available biomedical search engines for advanced information retrieval.The table does not intent
to rank the systems according to the number of features.
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allow the user to re-define the query according

to controlled vocabulary, like GoPubMed [55]

linking identified terminology to hierarchical back-

ground knowledge allowing for specialisation or

generalisation of queries. However, not all identified

entities can be browsed, e.g. gene/proteins are not

part of a classification.

Result processing
The results to a query (e.g. for a gene) are presented

within the web interface of the search engine. In case

of the baseline system Pubmed, only the matching

papers are subsequently listed. However, most

tools specifically provide single textual evidences

for detected tokens or providing a link out to

the relevant text passage in the original publica-

tion (HubMed [61], iHOP [62], EBIMed [63],

GoPubMed, AliBaba [64], Textpresso [65], Chilibot

[66] and BioIE [67]). Some systems explicitly

highlight those sentences of a publication, which

provide evidences for identified entities or proposed

relationships (iHOP, AliBaba and Chilibot), aiding

the curator in immediately deciding whether a

document is relevant or not, e.g. if the detected

term is only a homonym to the term of interest.

Besides presenting results to a query within their

own web interface, most search engines also provide

links out to the underlying publication, e.g. a link to

the abstract in PubMed or to the full text publication

via the corresponding Digital Object Identifier

(DOI). This allows for easily continuing more

detailed curation work on the full text probably in

a different tool. The support of re-ranking docu-

ments based on identified terminologies like MeSH

or GO (ReleMed [68], XplorMed [69], GoPubMed

and GOAnnotator [70]) and external database

references or pre-computed statistics (PubFocus

[71], iHOP), allows for sorting the articles by

relevance and level of confidence. Features aggre-

gating information from document sets are

well supported. Results are grouped based on

distance metrics (ClusterMed, BioMetaCluster and

XplorMed) or hierarchies (GoPubMed). Two-

dimensional graphs visualise conceptual relationships

(AliBaba, Chilibot) and tabular statistics reveal key

aspects (PubMed, PubReMiner and PubFocus),

which in summary give a first characterisation of

the queried term. An ideal search engine would

rank the retrieved documents according to the

curation guidelines, but this exceeds the capability

of standard biomedical search engines.

Knowledge retrieval
The information retrieval techniques described

above are already sufficient to retrieve documents

at a high recall but the advances in text mining have

also sparked the development of novel biomedical

search engines, aiding to collect even more relevant

documents at a higher precision. Alex et al. [72]

report how much NLP techniques help the curators

during assisted curation and conclude that a system

must adapt to the curator as well as to the text.

Engines like Textpresso were specifically developed

to support manual curation, but others also provide

functionality, which exceeds pure literature retrieval,

and are as such appropriate for curation tasks. In

summary, the text mining driven semantic processing

of the retrieved articles identifies genes and gene

products from text and relates them explicitly to

each other and to additionally identified ontology

concepts.

Semantic processing
Biomedical entity recognition identifies gene/

protein mentions (HubMed, iHOP, EBIMed,

GoPubMed, AliBaba, Textpresso, Chilibot).

Furthermore, taxonomy/ontology terminology is

detected, (HubMed, EBIMed, GoPubMed,

Textpresso) as well as community dictionaries such

as Wikipedia entries (HubMed, GoPubMed). A

group of biomedical search engines employ semantic

processing, i.e. establishing links to formally defined

terms, typically in ontologies, with entities from the

retrieved documents and reason over them, to

support Knowledge Retrieval. These proposed

annotations and relations can be used as starting

point for the manual curation process of the entities

in focus. However, for the precise assignment of

entities or ontology concepts to terms found in text

disambiguation mechanisms are important (AliBaba,

GoPubMed), e.g. for distinguishing between the

development of an embryo and the development

of an algorithm. Some tools make existing database

curations available for further knowledge retrieval

(AliBaba, XplorMed), which is a useful feature for

bootstrapping the curation process.

Tools that employ some form of relation

detection between biomedical entities within single

sentences are iHOP, EBIMed, AliBaba, XplorMed,

Textpresso and Chilibot. The used taxonomies/

ontologies hierarchies are rather small (XplorMed,

Textpresso) or sparsely identified (HubMed,

EBIMed). With such limited linking to rich
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biomedical ontologies reasoning support must be

limited. However, Chilibot and iHOP offer textual

synopses for detected relations and Chilibot sup-

ports hypothesis generation for indirect relations of

bio-entities. Although the latter feature might be less

interesting in standard curation scenarios where

only wet lab supported facts are to be considered,

it is nevertheless extremely valuable to extract

such tentative or hypothesized information, which

would be a starting point for follow up studies.

Unfortunately, none of the systems offer argumenta-

tion mechanisms, e.g. incorporating external positive

and negative evidence. Such mechanisms would

be extremely useful for curators on the one hand

to eliminate false positives and on the other hand

to be aware of which facts are already known for

the given entity.

Integration of external tools
More complex text mining methods may increase

the automatically extracted information. As long

running algorithms can not be applied on huge

subsets of documents on-the-fly, external web

services analyse single documents, which is a

practicable procedure especially if the list of docu-

ments is already sorted. Alternatively, top ranked

documents can be exported via batch export

function (ReleMed, PubMed PubReMiner,

ClusterMed, BioMetaCluster, HubMed,

CiteXplore, GoPubMed, Textpresso) for the sub-

sequent processing in an alternative environment.

To conclude, search engines can help to reveal

unknown facts but it is up to the curator and the

curation guidelines to select relevant facts to be

stored in a structured schema. Although advanced

search engines provide entity recognition, relation

extraction and hypothesis generation, ideally sup-

ported by external evidences, the extracted knowl-

edge is still error-prone and thus needs to be

confirmed by the curators. According to the curation

guidelines or depending on the experience of the

individual curator, a system generating a high recall,

for complex texts about new facts, or high precision

for redundant texts about asserted facts might be

advantageous. We assume combining the strengths

of different search engines increases recall during

the document retrieval phase of the curation process.

Idealwise, the results of different tools could be

combined with each other for further processing,

e.g. via the export into various exchange formats.

EVALUATIONOFASSISTED
CURATION
We define assisted curation as the transfer from

unstructured information (typically text) into struc-

tured information (typically databases or ontologies)

by human curators, who are assisted by computa-

tional methods based on text mining. There are three

reasons, why so far only little text mining is used

to support manual curation: first, although the results

for gene name identification approach the levels

of human inter-annotator agreement, relationship

extraction still remains an open problem. Second,

apart from directly extracting annotations from

text, in many cases annotations can very effectively

be inferred indirectly from information such

as functional domains, motifs, and other supple-

mentary information as discussed in [16]. In theses

cases, the ontology term chosen for annotation will

not appear in the text at all. Third, so far the

focus of biomedical text mining has not been on

including the user dynamically in the discovery

process [73].

Nonetheless, some examples of systems that

support the integration of text mining with manual

annotation are Textpresso [65], PaperBrowser [11],

GOAnnotator [70] and PreBIND [74]. They can

provide the curators with decision support, such

as highlighting entities of relevance in text, pre-

populating curation front-end fields, controlled

vocabularies and ontologies, on-the-fly error-

correction, and the removal of redundancies.

Textpresso, the ontology-based system for extracting

and retrieving information from biomedical text is

used by the curators of the model organism C.

elegans project. Textpresso is both curation tool and

search engine. It is designed to work on its own

ontology, based on the GO and expanded by a con-

trolled vocabulary for specific gene names, pheno-

types, etc. PaperBrowser has been developed for the

drosophila reference database FlyBase. It highlights

identified gene names in full text as well as putative

relations between noun phrases and these genes. The

curator can decide if suggested tokens are actually

gene names or not and by this allowing for active

learning of the named entity recogniser. Besides GO,

Flybase provides own ontologies, e.g. for the

description of the anatomy of the fly or develop-

ment. According to the model curation process

(Figure 1), PaperBrowser can be seen as a typical

curation tool. GOAnnotator was developed to

provide textual evidences for gene products which

474 Winnenburg et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/9/6/466/224242 by guest on 21 August 2022



have already uncurated automatically generated

annotations. The tool links the uncurated annota-

tions to texts extracted from literature thus support-

ing GO curators in choosing the correct terms.

GOAnnotator is utilising the hierarchical structure of

GO and can also suggest alternative, i.e. more precise

annotations. In contrast, PreBIND is dedicated to the

extraction of protein–protein interaction data from

the literature. The tool was developed to support the

curation of the former Biomolecular Interaction

Network Database (BIND) [75], now part of

BOND.

The concluding question is how to measure the

effectiveness of text mining support for database

curation? A first intuitive way would be to evaluate

the improvement of speed: [11] reported that

FlyBase records were completed faster by about

20% when curators were working on an article in the

interactive PaperBrowser, whereas [72] showed, that

a maximum reduction of one-third in curation time

can be expected, if text mining output is perfectly

accurate. The PreBIND system is reported to have

reduced the curation time for specific tasks by 70%.

Apart from speed, text mining has proven to be

especially helpful in retrieving new relevant articles

which would not have been detected by manual

literature research using standard literature search

engines. Thus systems are triggered to attain a high

recall although this is only possible at the cost of

a lower precision. Consequently, false positive

documents will be presented, which the curator has

to identify and remove from the list of candidate

articles. A good cut-off between recall and precision

has to be found if text mining results are supposed

to be useful for curators. GOAnnotator was assessed

on a set of 66 UniProt/SwissProt proteins and

provided correct evidence text at 93% precision.

Alex et al. [72] show quite diverse results for different

curators, indicating that the usability depends on

both the information in the text and the scientific

background of the individual curator.

Several shortcomings have to be overcome in

automated curation tools. The access to the full text

of journal articles, which are critical for comprehen-

sive database annotation by text mining [76], is still

problematic for both technical and legal reasons.

The incorporation of feedback from authors, which

could be established in wiki-based solutions [77],

is a reasonable but yet an extremely time-extensive

approach. As part of the GeneWays project, a system

of supervised machine learning algorithms was

developed, which aims to imitate human curation

of automatically extracted molecular interactions

with a performance close to that of human curators

[78]. However, the feasibility was only shown on

one specific problem. While Baumgartner et al. [14]
argue that current manual proteome annotation

processes take far too long even for the most

important model organisms, Burkhardt et al. [79]

suggest that manual curation will always be neces-

sary. As a conclusion, it seems that a reasonable and

reliable approach for database annotation can only

be established by the well-balanced combination of

manual and automatic annotation methods, where

the task of text mining methods is to speed up and

standardise the curation process.

AUTHORING SYSTEMS
At present, journal articles are not well suited for

automated information retrieval due to the complex-

ity of natural language they are composed of.

This shortcoming has a negative impact not only

on in-silico analysis approaches relying on informa-

tion from literature. It also influences the daily work

of a researcher when using literature search engines.

In order to make the content of articles machine

readable, the technical editors of Royal Society of

Chemistry (RSC) Publishing use text mining to

annotate chemical compounds in texts and to

formulate relationships between two biological

entities as structured digital abstracts (SDA). The

fact that subsequent information extraction from

already published articles is time consuming and still

error prone suggests changes regarding the structure

of journal articles in the future [80]. In the so-called

FEBS Letters experiment [81], which was set up

in March 2008 in a collaboration between the

editorial board of FEBS Letters, researchers from

the MINT database [82] and text mining experts,

the authors themselves were involved in adding

additional structured summaries to their manuscripts,

reporting protein interactions. The question is how

software tools can aid authors of scientific papers

in making the essential facts machine accessible.

Envisaged are interactive, semi-automated

authoring systems, which incorporate computation-

ally guided paper annotation as an integral part of

the editorial process as proposed by Leitner and

Valencia [83]. Text mining and data integration

techniques can be used to create a first generation

of electronically annotated information, which is
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normalised and interlinked with data repository

identifiers. In an iterative process, the authors correct

generated annotations, and add missing facts, which

were not found automatically. The modifications

of the authors are checked on-the-fly against exist-

ing data repositories to ensure the correct usage of

controlled vocabularies and identifiers. The direct

feedback from the authors can be utilised to

automatically further improve the incorporated

text mining and machine learning techniques.

Inconsistencies in data sources or missing terms,

which could potentially be identified during the

curation process, should be automatically reported

to the correspondent developing communities. New

entities like genes, proteins, or protein interactions

should be uploaded to suitable databases on

acceptance of the paper. Additional relevant infor-

mation such as sequences or experimental evidence

should be supplied by the authors.

If such a process is convenient enough, it might

become mandatory for authors. This would even-

tually lead to a paradigm shift, awarding authors for

the explicit retrieval of knowledge in addition to

the full text publication itself. As an alternative

to the author centred approach, semantic wikis could

be the system of choice for removing noise and false

positive data produced from automated extraction

tools in a community-wide collaborative way.

An example for controlled natural language is

reported in [84], where a limited form of statements

on protein interactions can be interpreted formally.

CONCLUSIONS
If the richness of data characterising scientific text

will ever be completely captured in a structured

format, then at least manual curation seems neces-

sary. Human curators have the ability like no

available software tool to intuitively distinguish

relevant data from irrelevant data regarding a given

area of interest. Thus, the combination of human

expertise and automatic text mining systems has

several advantages over purely automated informa-

tion extraction and is indispensable for achieving

best reliability. To achieve a good trade-off between

the quality and the quantity, the guiding principle

should be as much automated guidance as possible

and as little manual curation as necessary. However,

the chance that curators will accept automated tools

aiding them in their annotation and ontology

creation work depends heavily on their performance.

In any case, it is of immense importance to process

hidden information from literature to make it

integrable with data from structured data sources

by means of data integration. The more information

can be made available from literature and the more

new hypotheses can be created by modern bioinfor-

matics methods on top of it.
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