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FACTUAL AND COGNITIVE PROBABILITY

Rolando Chuaqui *

ABSTRACT. The paper presents a modification of the definition
of probability presented in earlier papers of the author (e.g.
A semantical definition of probability, in Non-Classical Logics,
Model Theory and Computability, MNorth Holland, pp.135-167).
This modification separates the two aspects of probability:
probability as a part of physical theories (factual), and as a
basis for statistical inference (cognitive). Factual probabil-
ity is represented by probability structures as in the earlier
papers, but now built independently of the language. Cognitive
probability is interpreted as a form of "partial truth". The
paper also contains a discussion of the Principle of Insuffi-
cient Reason and of Bayesian and classical statistical methods,
in the light of the new definitiom.

This paper presents a modification of the semantical definition of probabil-
ity introduced in Chuaqui 1977 and 1980. The new definition presented here
brings forth the tweo aspects of probability: as a basis for statistical infer-
ence and as a part of physical theories.

The main modification introduced is making independat of the language the
definition of the group of transformations that preserve the laws of the phe-
nomenon. Thus, the determination of the probability measure for the simple
probability structures of Chuaqui 1977 becomes independent of linguistic ele-
ments, and the simple probability interpretations <K,B,p> of Chuaqui 1980 may
be considered as models of reality.

The connection with cognitive elements is established via the concept of
probability as degree of partial truth, introduced in earlier papers.

The first section analyzes the different uses of probability, while in the
second, I give a brief account and a classification of theories on probability.
Section 3 introduces the modification of the definition in Chuaqui 1977 and
1980 that permits to consider probability structures as models of reality.

* This work was partially supported by the Organization of American States
through its Regional Scientific and Technological Development Program.
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[he fourth section justifies the cognitive uses of probability by considering it
as a logical concept, while the fifth applies these remarks to an analysis of the
Ppineiple  of Insuffietent Reason. The last section complements the study in

(huagqui 1980 of classical and Bayesian statistical methods.

I would like to thank Professor William Reinhardt, Newton C.A.da Costa, and

leopoldo Bertossi for many useful comments.

1. USES OF PROBABILITY.

Probability is used as a basis for statistical inference and as a part of
scientific theories, In its first use, [ shall distinguish two different appli-
cations, One application is to use probability as the very guide of life in the
face of uncertainty, Thus, probability is the basis of decision theory in its
clas<ical and Bayesian forms. The need for statistical inference arises from our
wcertainty as to how we ought to behave under circumstances where we are igno-
rant concerning the state of the world. As Kyburg 1974 says, "we attempt to de-
velop rules of behavior which we may follow, whatever the state of the world,
in the expectation that we are following rules whose characteristics are’ gener-
allv (1) desirable, and (2) attainable". The most desirable rule is one that
tells us how to discover the true state of the world; the most attainable and
simplest 1s to forget about the arithmetic and act as we feel like it. A compro-
mise between these two extremes is to follow what we may know about the probabil-
ities of the different possible states of the world, i.e. about a measure of the
degree of truth of cach possible state of the world.

lhe second application of statistical inference is the evaluation of scien-
tific hypotheses. This application can be thought of as a case of a decision
whether to accept or not a scientific hypothesis, and thus it can be assimilated
to processes of the first kind. However, 1 believe with R.A. Fischer that "...
such processes have a logical basis very different from those of a scientist en-
eaved in gaining from his observations an improved understading of reality'.
(Fisher 1950 p.5).

Besides these statistical uses, probability statements appear as part of
phvsical theories such as Statistical Mechanics or Quantum Mechanics. Also, most
of the theory of stochastic processes serves as basis for scientific theories of
particular phenonena, such as Brownian motion and radioactive decay.

Although the word "probability'" itself might not occur in a sientific theo-
rv, probability concepts are present as general statements expressing stochastic
relations among random quantities. For instance, there may be functions express-
ing distributions or densities of certain quantities under certain circumstances.
Anyway, probabilities of events are obtained from them and used in applications.



Intuitively, there are other evidences of probabilities as independent of
our knowledge or belief. For instance, if we toss a coin 100 times and in60 ohtain
"heads'', it seems natural to believe that this is a property of the coin or rath-
er of the coin together with the mechanism for tossing it.

Since the statistical applications stem from our ignorance of the true state
of the world, T shall call them cognitive uses. On the other hand, the other
uses will be the factual uses.

2. COGNITIVE VERSUS FACTUAL INTERPRETATIONS.

The interpretations of the concept of probability which have been offered
stress either the cognitive or the factual uses of probability. Among the first,
I would put the subjectivist and logical views. Among the second, the frequent-
ist and propensity views. The subjectivist do not attempt to explain how we get
our probabilities while the holders of the logical views do. On the other side,
the propensity theories do not attempt to define probabilities but only to mea-
sure them, while the frequentists build models of reality where probability is
defined in terms of other concepts.

Probability, however, has both cognitive and factual aspects. Thus, any in-
terpretation should give an account of both. In order to do this, many scholars
hold a dual view: there is an interpretation of probability as degree of belief
or credence (cognitive) and another as chance or propensity (factual). The con-
nection between the two should be given by a principle of the following form (a
similar principle was formulated in Lewis 1980): 1let X be the proposition that
the chance, at time ¢, of 4 holding equals =, where x is a real number of the
wit interval. Let Cy be any reasonable 'degree of belief" function of a person
that believes X at time t. Then Cy(4) = a.

In this principle, X is supposed to contain the statement about the factual
probability of A. Cy(4) is the cognitive probability of 4. The two are supposed
to be connected by the principle.

I believe that any interpretation of probability should explain both the
factual and cognitive uses of probability and justify a principle such as the one
above. I shall attempt to provide such an account by modifying the views espoused
in Chuaqui 1977 and 1980.

3. PROBABILITY STRUCTURES AS MODELS OF CHANCE.

3.1. Simple probability models. In Chuaqui 1977, the theory of simple
probability structures was presented. From the simple probability structures K,
there were obtained probability interpretations of languages, constituted by
triples <K,B,u>, where B is a field of subsets of K and y a probability measure.
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We want to consider these probability structures as models of reality which de-
termine the probability measure u. However, in my original presentation, the def-
inition of u depended heavily on the language used. I believe this to be a fea-
ture that precludes their use as models of reality. I shall now offer a modi i -
cation of the concept of simple probability structures that will give us a def-
inition of p, independentof the language.

There are two elements in <K,B,u> that ave language dependent in Chuaqui
1977. The first is the definition of B as the field of sets generated by all the
sets Mody(®) where ¢ is a sentence of the appropriate language (recall that
Modg(¢) is the set of models of K in which ¢ holds). However, B is the algebra
of events and there is no need of choosing it in this way, it can be taken to be
just the algebra of events that are necessary for an adequate description of the
situation. In case K is finite for instance, B will generally be the power set
of K. A more detailed explanation of B will be given in Section 4.

Ihe other linguistic element is the definition of the group 6](’ namely condi-

tions (1)(a) and (1)(b). This we have to get rid of.

In order to make the situation clear, I shall begin with the same example as
in Chuaqui 1977, the choosing of a sample 5 of size m from a finite population
of balls 7. When we say "¢ has n red balls" we mean that one of the properties
of the outcome was that the sample had » red balls. The same outcome has many
different properties. We can think of an ideal approximation of an outcome, name-
ly a relational system that represents a possible model of the situation invol-
ved, In the case we are looking at, we can schematize the possible outcomes as
systems (& o = <P,Hy,... By 1097, where P is the finite set of balls, Ryseesfin g
are fixed subsets of P that represent the properties we are interested in (for
instance, red), and 5 is any subset of P of m members (the sample). For each
subset 7 of m members there is a corresponding system (L o; the set of possible
outcomes K, consist of all models & . of the form described above.

let us analyze a possible outcome A= <P'R{1""’Rm-1’3>' The properties
Ayyee-sfiy ¢ are intrinsic properties of the balls in P. That is, when we move
the balls around or choose a sample, their properties remain. Also, these prop-
erties are fixed in all (JZS. We may thus call <E’,R0,...,Rm_1> the intringic part
o/ K. (n the other hand, <p,5> gives the structure of the experiment, and is var-
iable in each 5. <P,5> is called the structural part of O 5 and denoted
D'E:"-,.-.-s' We may have different experiments performed on the same set of balls P.
The probability structures for these different experiments might have the same
intrinsic part but different structure. For instance, if the experiment con-
sists of the choosing of a sample with two Ro-balls, the outcome will be of the
form <P,Ry,...,R 4,Q> where @ is a subset of P with two Ry-balls.

The second example I shall give is a modification of Example 3 of Chuaqui
1977, Suppose we have a circular roulette with a point for each real number.
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For simplicity, a fixed force is applied but the roulette starts from a variable
position. Each outcome results from beginning at a particular pesition. The sys-
tems in K may be taken to be of the form

0, = <Cyx,f,1>

where ¢ is the set of points in the circle, r represents translations in the cir-
cle (a ternary operation, r(a,b,c) is ¢ rotated by the angle from a to &), [ is
the continuous unary function that associates each initial position with a final
position, and I is the set containing the initial position (I contains one ele-
ment of C). Here, <C,f> constitutes the intrinsic part of K, because it is an in-
trinsic property of each point x in ¢ that it yield a final position f(z). With
this f we can express the asymmetry of the roulette, if it is asymmetric. We can
model symmetric roulettes without this f. The structure of the experiment is giv-
en by <C,r,7>, I is variable in the different ULI. However » is fixed. Thus, we
cannot distinguish between the intrinsic part and the structure by just looking
at the variable part of K. Notice that C is not enough for defining a circle. It
is necessary to add an operation between the elements of C. For instance, I have
chosen in this paper ». This operation »r should be part of the structure of the
experiment, because it really consists of a rotation of the circle. If we had
just <,I> in the structure, the experiment would be the choosing of a point in
a set ¢ and not in a circle <C,r>.

From these two examples, we see that in order to describe the simple prob-
ability structure we need to specify, besides the class of possible outcomes K,
its intrinsic part. Thus, we define a simple probability structure as a pair
k = <K,d>where K is a set of relational structures of a fixed similarity type
(called the set of outcomes of X) and 00 is a relational structure (called the
intrinsic part of X) such that L]J = 0L for every £« K, where J is the index set
of the sumilarity type of @@ (thus, all structure L« K, have the same universe
say 4).

The group of functions G is now determined by K and B without reference to
the language. For Le K, let I.S,( = L} (Z-J) where I is the index set of the sim-
ilarity type of K. That, is I;r_t represents the structure of the experiment. Also,
for Bc K, By~ {a';St o P L

The group of functicns &p that preserve the '"laws of the phenomenon' contains
all permutations f of the universe 4 such that

(1) For any Be K, £ @) Ky and [ ) © K

(2) For any B« B, B-f‘c B and B“‘Hc B, here Bf is the unique C € K such

that C,, = {fl:l< B}
Condition ! 1) can be expressed simply by K"p < K and Kf-1 < K. The measure 1 isa

measure invariant under Gy.
In our first example " consists of all permutations of the univer.c F. In
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the second, G contains all automorphisms of <C,r>. In general, if <4,Py,...F,_ ¢
is constant in all elements of K and none of the relations PD""’Pn-I are in

the intrinsic part of K, then G is a subgroup of the automorphisms of

<A, F P >
sbQasematyiq®e y )
In order to extend the situation to compound structures, we define a sym-

metry relation between subsets A, B of K:
A L Bff N'= B for a certain f e Gy

The measure y is now invariant under ~y, i.e.AiB implies u(A) = u(B).

Summarizing,we have obtained a model of reality <K,B> that gives a probabil-
ity measure u invariant under e If this u were the unique invariant measure,
then <K,B> would be a sufficient description of the model. Uhiqueness is not a
rare phenomenon. As a matter of fact, all situations I have analyzed yield a
unique measure. However, the general conditions for uniqueness that I know of
are rather technical and, hence, they are not natural to add as requirements for
<K ,B>. Thus, the simple probability models have to be specifed by the triple
J = <K,B,u> where K = <K,d@ > is a simple probability structure, B a o-algebra
of subsets of K, and y a probability measure invariant under Gg; K is called

the set of outcomee of J.

3.2. Compound probability models. The compound probability structures
introduced in Chuaqui 1980 need only minor modifications.

However, it may be noted that with the new definition of simple probability
structures, the compound structures seem much more natural, since now the sym-
metries are independent of the language.

An outline of the definition of compound probability structure will help to
understand the situation. These structures are determined by three elements.

1. The eausal structure. The basic elements of the causal structure are

* the (causal) trees <T,&p>. T is a set and s, 15 a well founded partial ordering

on 7 such that the successors of any £<T are countable and well ordered by <.
A graphical representation of an example of a tree is:

g
-——-o"'/

where g, is in the horizontal direction from left to right.
A tree s a generalization of the notion of causal dependence. Thus, what

happens at t € T influences what lhappens at a succeding s, i.e. at 8, > t. If

p >t



¢ and ¢ are not related by <, then they are independent moments. The elements
of T can be considered in mest cases as time moments, but this is not necessar-
ily so.

A causal structure F consists of a family of trees that includes all its
subtrees. (<T,~$T" is a subtree of <5,<5> if Sp € €5 and t €T, g5 and & <.t
imply s = T.) In most cases, it is enough to consider all the subtrees of a giv-
en tree «:T,e;:,).

2. The set of outecomes. The outcomes are functions f with domain a cer-
tain T« F. For any ¢ « 7, f(¢) is what happens at ¢, and is a member of the
set of outcomes H(f,¢) of a simple probability structure H(f,t). This simple
probability model is determined by the preceding values of f, i.e. [ restricted
to Ty = {s:2 <pt and & # t}. Calling H; the set of all outcomes with domain 7,
the events are subsets of Hy for € F. In fact, H(f,z) = {j(¢): J = Hr and
j[‘Tt = f[‘Tt} is the sure event determined by ﬂTt’ i.e. the set of outcomes
that are possible if ,r“Iit"b has occurred.

3. The symmetry relation. On each simple probability model H(f,¢) we cb-
tain a symmetry relation ¥, 85 explained above. From these relations, the sym-
metry relation ~ between compound events is obtained. Since now }‘,t is indepen-
dent of the language, ~ will also be. The relation ~ is defined in several

stages.

a) We first define isomorphism between two simple probability models
J = <K,d>,B,1> and J' = <<K',00 >, B\u'>. Suppose 4 and A' are the universes
of K and K' respectively.

J = J' if and only if ¢ is a one to one function from 4 onto A' satisfy-
ing:

1) K=k (ie K, = g% 2= K D).

(ii) For any B= B, B9 = B'.

(ifi) For any B< B, u(B) = u'(89).
In case p is the unique Gg-invariant measure, condition (iii) is implied by the
other two, since then p' is also the unique Gk,—invari.ant measure. This is so
because the groups G and G+ are related by the isomorphism g as follows:

f e Gy iff gofog | « G
Let B B, C = B', then
B ~gC iff J agJ' and B "K'C'

This definition of isomorphism constitutes the only difference with the defini-
tion in Cfluaqui 1980, Section 5, of compound probability structures. We could
use the same definition as there, but 1 believe that the new one is an improve-
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ment of the former; in particular because

J =g Jd (i.e. with J' =d) iff g :GK.

b) We now introduce the notion of isomorphism between sets Hp and Hy, for
T, " e F. These isomorphisms are pairs of functions <k, k> such that h is an
isomorphism between <I', <,> and <I",<,, >, and & is a one to one function from
H; onto H,, with the following properties.

(i) Ifter, f, fle H, and _-‘ri"r; = ft th (i.e. what occurs before t is the

same for f as for f'), then k(f) rT'h(c) = k{f‘)fi"'h{b) (i.e. what occurs

before h(t) € T' is the same for k(f) as for k(f')).

(ii) a(f,t) and H(k(f),h(t)) are isomorphic (in the sense of (a)) for
f el and £ €. In fact, the corresponding isomorphism 9pt is such that
if L = j(¢) for a certain j € Hy with i1, = fIT;, then g;’tf.st = (k5]
f‘l{t]]]qt. Notice that ,j(#) is an outcome in H(f,¢) and k(j) (h(¢)), an out-

come in H(%(/,k(¢t)).

¢) Now let A< Hy and B ¢ Hp, for 7, 7' e F. We say that A~B iff there is
an isomorphism 4 of <T',¢p> onto <1, 5> and there are 5, 5' and k such that,

(i) <8,84> is a subtree of <Ty&p> and 5' = h*g,

(ii) Hg is isomorphic to Hg, by <hls,k>.

(iii) For every t = Sand f e H, the corresponding parts of A and B by
<h,k> are equivalent, i.e. if we define A(f,t) = {j(£): § = A and ert =
flrgl then A(F,t) =ng BR(S),A(2)).

(iv) For ¢€T-5 and fe H,, A(f,%) is equivalent to the sure event at its
level, i.e. A[.r‘,t}»lr,t}i(f,b}. .
(v) Similarly, for t' e 7'-5' and ' « Hyy, B(",8)~p o HU ).

The measure y on the compound events should be invariant under ~. In Chua-
qui 1980, a procedure for defining such a measure is given. The algebra of com
pound events consists just of the measurable sets with respect to this measure.

As a first example of a compound probability structure, I shall take the
case of independent trials of the same experiment. Assume that the experiment
is modeled by a simple probability model J = <K,B,p> and that there are n inde-
pendent trials where # < w. We assume a symmetry relation is defined on J, say
oo

The causal structure for the compound model is constituted by the subtrees
of <1, =>. Since the trials are independent, there is no causal relation be-
tween them; thus, we take = for the partial ordering.

The compound set of outcomes is 'K, where X = <K,q>. For every f e 'K
and t en, H(f,t) = J. Since <n> is a very simple tree, all <m, =>with me n
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are subtrees. Also, the only condition for the isomorphism of two such subtrees
is that they have the same cardinality, and any isomorphism can be extended to
an automorphism of <n, =>, i.e. a permutation of n.

Events are subsets of H = "™ for m = n. For any A cH , feH and tem
A(f,t) = {j(t): = A}; thus A(f,£) is independent of f and H(f,£) = K.

Suppose that H,, and H,,, are given and that & is a one to one function from
m onto m'. Let us analyze which k are such that <h,k> is an isomorphism of H,
onto llm.. % should be a one to one function from Hm onto H,,. Since for every
t € my Ty = @, condition b(i) is always satisfied. Condition b(ii) requires
that there be an isomorphism g, of J onto itself (i.e. g, € G such that
g3 (8) ) = (R (h(£))), for every j e H . Thus, if BgH, and CcH,, then
B~ C iff B(,f‘,t'j~xB{J*‘,h(t]) for every t € m.

Therefore, the compound measure is given by the product measure, and the
compound events are the measurable sets according to this product measure.

As a second example, take T = {to,t1}, a set of two elements, with #y<, £,
and its subtrees, as F. For ty, we have the simple probability model Iy =
<Ky,0 >,B(,1y>. For each L =K;, we have the simple probability model Jf =
<<K¢,,0L >,Bg,ug> The compound outcomes are the functions f with Do_f‘ = T and such
that f(t,) = and f(t,) =K . Suppose, further, that Ky is not isomorphic
to Ky, gor ixg I, : ol

The only subtree of <I',&;> is <ft0},~$T>. There is only one automorphism of
T,5p%, namely the identity.

It is clear that H(f,¢;) = J;; and B(f,t)) = Jf{to) for every outcome f. Let
us see which are the k's for which the pair <identity, k> is an isomorphism of
Hp onto Hp. k must be a one to one function from Hp ontoHg; b(i) can be express-
ed by:

(1) if F(tg) = £'(5g), then k(£ (tg) = k(7" (%),

(b-i1i) adds two conditions:

(2) gf’toc ('x

@ ot = K-

Thus, if B,C € Hp, then B ~ C if and only if (i) and (ii), or (i) and (iii) are
satisfied, where
(1) B(f,tg]"xocffatg.}
(ii) For every L K,, we have B(i'.}thci.], where B() = {f(¢;):f B,
f(tg] = 4},
(ii]) For every & e K, B(.f.]-&l[y_.
The compound measure u is defined by

u(B) = uBE)d, .
[B(f.tn) Bo
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As an instance of this last example, assume that K, = {Zi ’LZ’I'S} where ""i
represents the choosing of um i (i.e. there are three urns 1,2,3). In um i

there are n; balls with m; white balls. Ky, represents the cheoosing of a ball
from urn i. The event "a white ball is chosen" is represented by the set of

outcomes f, where f(0) « K; and f(1) K‘(n} is a model where a white ball is
selected. Let us call this event W. Suppose that (&) = uy@,) = Hy@3). Then

(W) jxﬂmi(w(tin%

n

(1t (W) iy V() it (9 ) -

4. PROBABILITY AS A LOGICAL RELATION.

The justification of the Connecting Principle is given via the conception
of probability as partial truth that was developed in Chuaqui 1977 and 1980.
This is a logical conception of probability. We, thus, need a language L.

A probability model J = <K,B,u> is appropriate for L if the following two
conditions are satisfied:
(i) The similarity type of the structures in K is the same as that of L.
(ii) B includes the set {Modxw]: ¢ a sentence of L}, where Mde(@ =
L <KL = ¢}.

If J is an appropriate probability model for L, we define, as in the ear-
lier papers,
2,(8) = u(0dy(9)),

for all sentences ¢ of £.

P provides a logical interpretation of probability as a relation between
a sentence and a probability structure J, which is considered as an interpre-
tation of the sentence. P, (¢) represents a measure of the "degree of partial
truth of ¢ under the interpretation J''. Notice that J has a dual role. Onone
hand, it is a model of reality. On the other hand, it serves as an interpre-
tation of the language. The usual relational structures (or possible models)
of logic can also be seen in this dual role. But in this latter case, reality
is completely specified and, hence, every sentence is either true or false.

‘This logical interpretation of probability can serve to justify the Con-
neeting Prineiple, which is now reformulated as follows:

let Cy be any reasonable "degree of belief' function of a person who ac-
cepts the proposition X that the probability structure 4 is an adequate des-
cription of the situation involved, and that P;(¢) = r, for a certain



r e [0,1]. Then
Cy(9) = =,

The person p should believe ¢ to the degree PJ(¢J, because he believes ¢ to
be true to this degree. Thus, the connection between factual probability and de-
gree of belief is obtained via truth. This is very natural because we be-
lieve what we believe to be true. Thus, we should believe ¢ with degree o when
we believe ¢ to be true with degree «. This is similar to the relation between
usual logic and belief. If somebody believes ¢ and that ¢ logically implies
then he should believe y.

Degrees of belief should be applied to propositionsinstead of sentences.
Thus, a more accurate description should involve Intensional Logic (such as
that of Reinhardt 1980).

Notice that T put Cy(¢) and not C($]X). This is so, because I believe the
acceptance of J does not change C by conditionalization (see Kyburg 1980 and
Chuaqui 1980, Section 2).

My main differences with Bayesians (at least with strict Bayesians) are two.
In the first place, I do not believe that probabilities (or degrees of belief)
can be assigned to all events. Only given a well-defined situation in which the
possible outcomes are determined, it may be possible to assign probabilities.
In the second place, as it was mentioned before, I do not believe that the only
changes in the probability (or degree of belief) function proceed by condition-
alization. The discussion of these matters would take ns too far, so they will
be left for another paper.

5. A NOTE ON THE PRINCIPLE OF INSUFFICIENT REASON.

As an example of the application of the ideas given previously, I shall
analyse the Prineiple of Insufficient Reason or Principle of Indifference:

"The Principle of Indifference asserts that if there is no known reason for
predicating of our subject one rather than another of several alternatives,
then relatively to such knowledge the assertions of each of these alternatives
have an equal probability" (version of Keynes 1921, p.42).

This principle may be interpreted in two different ways: cognitive and fac-
tual. We can say that the equal probability is established when one knows of
no reason or when there are in fact no reasons.The Principle as stated by Key-
nes (and also as stated by J. Bernoulli and Laplace) gives the first interpre-
tation. In this form, it is indeed contradictory, as the well-known paradoxes
show. However, a factual interpretation is also possible and may not be contra-
dictery. fn fact, a careful reading of Laplace 1820, leads me to believe that
his intention was factual, although the actual wording is clearly cognitive.
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1 believe that my symetry relation for events in probability structures is
such a factual interpretation. In order to illustrate these ideas I shall give
an analysis of Bertrand's paradox (Bertrand 1889). It is more convenient to in-
troduce first the notion of random variable. Let H be the set of outcomes of a
probability structure (simple or compound). Then a function X: H > R (R the set
of real numbers) is a random variable if and only if X~ 1*1e8 (the algebra
of events) for every Borel set 4 = R.

The experiment for Bertrand's paradox is the choosing of a chord at random
in a circle and determining the probability distribution of the lengths of the
chords. If the experiment is not further specified, we would have a simple prob-
ability structure (K,<4>) where 4 is the set of chords and K contains all mod-
els of the form <4,5> where 5 consistsof one element of A4 (the chord selected).
We define the random variable ¥: K + R by X(<4,5>) = the length of the chord
in 5. The o-algebra of events B should be {.i.’-”;;: A Borel, 4  R}. GK is the
set of all permutations of 4 that transform B into B. In a sense, they are a
counterpart of Borelian functions on R. It is not difficult to prove that there
is no measure invariant under G-

So we should specify the experiment further. In fact, the origin of Ber-
trand's paradox arises from the fact that we can specify this experiment in sev-
eral different ways which yield different distributions. Each of these ways can
be put into the framework of my probability structures. I shall indicate how
this can be done for two of these specifications.

(a) (hoose two points on the circle and draw the chord between them. We have
a compound probability structure with a causal structure consisting of the sub-
trees of the tree <{Ln,t1} , i.e. T= {tu,t1} consists of two independet
elements, let K = <K, > where K consistsof all structures 10 = <C,r,0> with C
the points in the circle, r rotations, and O the selected point; ¢ = <¢>. The
experiment in question is modeled by K with the random variable X: xR
where X(f) = the dlstam.e between the point selected at f(¢,) and that selected
at f(t,); B = {X [A) A a Borel subset of R}. The group Cx corresponds to

the rotations of the circle. Thus, there is an invariant measure.

(b) Select first a point on the circle and then a point on the radius
through the first point. The chord chosen is the perpendicular to the radius
through the second point. We are again in front of a compound probability struc
ture consisting of the subtrees of <T,:5T> where T = {tn,t.l} has two elements
and ¢, $ptq. At ©y we have the same X as in (a). For each g € K we have X =
%’Ch where Kiu is the set of structures of the form <D,t,I>, D contains the
points on the radius passing through the point 0, ¢ the translations of the
line modulus the radius, and I the point selected on the radius; ¢ = <p>. In
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order to complete the model we need a random variable Y: H + R, where H = {J:
Dof = {to,t1}, f(tg) =K and f(t;) Kf[to)] is the set of outcomes, and Y(f)
is the length of the chord perpendicular to the radius selected at f (to) and
through the point selected at _f‘(t1). The algebra of events is {1"1*;1: A a Borel
subset of R}.

the group Ofl\'ta is the group of translations; so again there is an invar-
iant measure. By the usual analysis (see, e.g. Parzen 1960) we can obtain the
distributions that are expected. i

6. CLASSICAL AND BAYESIAN STATISTICAL INFERENCE REVISITED.

The purpose of this section is to improve the analysis of classical and
Bayesian statistical inference given in Sections 3 and 4 of Chuaqui 1980, in the
light of the modifications introduced so far.

First, I shall analyze classical inference. Let us assume that we have an
experiment which can be repeated and we propose a simple probability model J =
<<K,0>,B,u> for it. This is now a factual model, so we can assume it as a sci-
entific hypothesis. We then repeat the experiment n times for a large n and ob-
tain a sequence of results. The probability of events consisting of sequences
of results is computed by building the compound probability structure “K and
proceeding as in Chuaqui 1980. Recall that here we have a compound probability
structure, with causal structure F composed of the subtrees of <w, = >, 1.e.
all moments in w are independent. Events are subsets of “K, the set of outcames.
If a compound event A occurs which has a low probability according to “K and
high according to another structure “K', then we reject the original hypothesis
that J = <<K,d >,B,p> is the adequate simple probability model.

This account is the same as that of Chuaqui 1980, and can be completed as
there. What I would like to make precise is the type of simple probability
models J that can be taken as hypothetical models. Suppose, first, that the ex-
periment is that of tossing a coin. In this case, we have a complete physical
explanation of the phenomenon and the model J can be built accordingly. However,
there are many cases where the only known facts are frequencies observed in se-
quences of repeated experiments. Thus, the only natural J is one that just mim-
ics the choosing of elements of a set. We have to assume that there is an un-

known physical explanation for this way of choosing.

For instance, suppose that we observe that the relative frequency of the
event is about 1/3. Then we should assume a K with models of the form GEO=

4

<4,E,0> where A contains three elements, ¥ (the event considered) contains one
fixed element of 4, and 0 (the chosen element) contains one element of 4, dif-
ferent for each model. The intrisic part is <4,E> and the structural part

<A,0>.
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If the relative frequency tends to vZ/2, for instance, then our structures
in K should be like that of a symmetrical roulette <C,r,f,E,0>, with E a fixed
interval of length vZ/2 and 0 the chosen element.

However, these types of models without any physical e.\qglanation are not com-
pletely satisfactory, because we do not know the mechanism for choosing 0.

Thus, in a sense, the assumptions «re not as well substantiated in the pure-
ly statistical case as when we have physical models. A case in point is the ob-
served relation between cigarette smoking and cancer. The evidence is almost
purely statistical, since there are no generally accepted physiological models
for this phenomenon. 1 believe this is one of the reasons for the difficulties
in accepting this connection as proven. The statistical evidence had to be over-
whelming for the general public to accept that cigarrete smoking increases the
chances of getting cancer.

Something similar is true for Bayesian inference. Here we have the causal
tree -rf':u,:]} €p> with ty Sp tq, @ simple probability model dy = <K, >,
Byaug™s and for cach Le KO’ another simple probability model dy. We may assume
as hypothesis any J,. The trouble here is that it is often the case that we
have no evidence for J, (J; determines what are usually called "a priori" prob-
abilities), Thus, these models might be less justified than the classical ones.
Also, we might have evidence for a simple probability structure that admits no
invariant measure. In this case, Bayesian methods cannot be used. Only if we
have good evidence for a I that admits a probability measure, the method is
perfectly adequate.

Given such probability models as the Jy's for the prior probabilities or
the J's based only on frequencies, it is one of the aims of science to replace
them by probability models based on physical laws.
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