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FACTUAL AND COGNITIVE PROBABILITY

*R o la n d o C h u a q u i

AB STRACT. The paper presents a modification of the definition

of probability presented in earlier papers of the author (e.g.

A s em a n t i .c a l: d e f in i t io n of p ro b a b i l i tu , in Non-Classical Logics,

Model Theory and Computability, North Holland, pp.135-167).

This modification separates the two aspects of probability:

probability as a part of physical theories (factual), and as a

basis for statistical inference (cognitive). Factual probabil-

ity is represented by probability structures as in the earlier

papers, but now built independently of the language. Cognitive

probability is interpreted as a form of "partial truth". The

paper also contains a discussion of the Principle of Insuffi-

cient Reason and of Bayesian and classical statistical methods,

in the light of the new definition.

111ispaper presents a rrodifi.cat i on of the semantical definition of probabil-

ity introduced in Chuaqui 1977 and 1980. The new definition presented here

brings forth the two aspects of probability: as a basis for statistical infer-

ence and as a part of physical theories.

The main modification introduced is making independert of the language the

defini tion of the group of transformations that preserve the laws of the phe-

nonenon, Thus, the determination of the probability measure for the simple

probability structures of Chuaqui 1977 becomes independentof linguistic eIe-

nerits , and the simple probability interpretations <)(,8,11> of Chuaqui 1980 may

be considered as models of reality.

The connection with cognitive elements is established via the concept of

probability as degree of partial truth, introduced in earlier papers.

The first section analyzes the different uses of probability, while in the

second, I give a brief account and a classification of theories on probability.

Section 3 introduces the modification of the definition in Chuaqui 1977 and

1980 that pennits to consider probability structures as models of reality.

* This work was partially supported by the Organization of American States

through its Regional Scientific and Technological Development Program.
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'[he fourth section justifies the cognitive uses of probability by considering it

as a Iog i cal concept, whi le the fifth applies these remarks to an analysis of the

P r - in a i .p l» o r T n n u j f i .c i e n t: R e a e o n . 111elast section complements the study in

Chuaqui 1980 of cl ass i ca l and Bayesian s tati s t ica 1 methods.

r would like to thank Professor William Reinhardt, Newton C.A.da Costa, and

lcopo ldo Bertossi for many useful connnents.

1. USES OF PROBABILITY.

['rohabil i ty is used as a basis for stn t i s t i cal inference and as a part of

sc ien ti fic theories. In its firs t use, I shall distinguish tw o different appli-

c.i t ions . One appl i cut i on is to use probability as the very guide of life in the

Lice 0 [ unccr t a i n t .y . 111us , probability is the basis of decision theory in its

c l.is s ica l and Bayesian Iorms. The need for statistical Infe rence arises from our

uncortni nty C IS to how wo ought to behave under ci rcunst ances where w e are igno-

r.in t concerning the state of the world. As Kyburg 1974 says, "w e attempt to de-

velop rules of behavior which w e may follow, whatever the state of the world,

in the cxpcc t a t ion that we are following rules whose characteristics are' gener-

:111v ( I ) dcs i rublo , ,1I1d(2) attainable". The most desirable rule is one tha t

te [ I s us how to discover the true state of the world; the most attainable and

simplest is to forget about the arithmetic and act as we feel like it. A compro-

misc between these two cxt rcmes is to fol Iow what we may k n o w about the probabil-

ities or the different possible states of the world, i.e. about a measure of the

degree of truth of each possible state of the world.

lhc second appLi ca t i on of statistical inference is the evaluation of scien-

tific hypothc sc s , '111isappl i cat i on can be thought of as a case of a decision

"he the r to accept or not a scientific hypothes i s , and thus it can be assimilated

to processes of the firs t kind. However , I believe with R.A. Fischer that ", ..

such processes have a logical basis very different from those of a scientist en-

g:lgcd in g'linin~ from his observations an improved understading of reality".

(fi s h c r 1 9 5 ( ) p .5 ) .

Bcsi dcs these statistical uses, probability statements appear as part of

phys i cal theories such as Statistical ivechanics or QuantumfVlechanics, Also, most

of the theory of stochastic processes serves as basis for scientific theories of

p.rrt.i culu r phenomena, such as Brownian motion and radioactive decay.

Although the word "probab i l i ty" itself might not occur in a sientific theo-

ry, probability concepts arc present as general statements expressing stochastic

rc lat ions .u n o n g random quanr i t i es . For instance, there may be functions express-

i ng cli s t r ibut ions or densities of certain quanti ties under certain circumstances.

.uiywav, probubiLi tics of events a re obtained from them and used in applications.



45

Intuitively, there are other evidences of probabilities as independent of

our knowledge or belief. For instance, if we toss a coin 100 times and in 60 obtain

"heads", it seems natural to believe that this is a property of the coin or rath-

er of the coin together with the mechanism for tossing it.

Since the statistical applications stem from our ignorance of the true state

of the world, I shall call them cognitive uses. On the other hand, the other

uses will be the factual uses.

2. COGNITIVE VERSUS FACTUAL INTERPRETATIONS.

The interpretations of the concept of probability which have been offered

stress either the cognitive or the factual uses of probability. Amongthe first,

I would put the subjectivist and logical views. Amongthe second, the frequent-

ist and propensity views. The subjectivist do not attempt to explain howwe get

our probabilities while the hOlders of the logical views do. On the other side,

the propensity theories do not atten~t to define probabilities but only to mea-

sure them, while the frequentists build models of reality where probability is

defined in terms of other concepts.

Probability, however, has both cognitive and factual aspects. Thus, any in-

terpretation should give an account of both. In order to do this, many scholars

hold a dual view: there is an interpretation of probability as degree of belief

or credence (cognitive) and another as chance or propensity (factual). The con-

nection between the two should be given by a principle of the following form (a

similar principle was formulated in Lewis 1980): let X be the proposition that

the chance, at time t , of A holding equals x , where x is a real rumber of the

mit interval. Let C x be any reasonable "degree of belief" function of a person

that believes X at time t . Then C x (A ) = x .

In this principle, X is supposed to contain the statement about the factual

probability of A . C x (A ) is the cognitive probability of A . The two are supposed

to be connected by the principle.

I believe that any interpretation of probability should explain both the

factual and cognitive uses of probability and justify a principle such as the one

above. I shall attempt to provide such an account by modifying the views espoused

in Chuaqui 1977 and 1980.

3. PROBABILITY STRUCTURES AS MODELS OF CHANCE.

3.1. Simple probability models. In Chuaqui 1977, the theory of simple

probability structures was presented. From the simple probability structures K,

there were obtained probability interpretations of languages, constituted by

triples <K,B,~>, where B is a field of subsets of K and ~ a probability measure.
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Wewant to consider these probability structures as models of reality which de-

termine the probability measure u, However, in myoriginal presentation, the def-

inition of ]1 depended heavily on the language used. I believe this to be a fea-

ture that precludes their use as models of reality. I shall now offer a modifi-

cation of the concept of simple probability structures that wi l I give us a def-

i ni tion of ]1, independent of the language.

There are two elements in < K ,B ,]1 > that are language dependent in Chuaqui

1977. The first is the definition of B as the field of sets generated by all the

sets Mbd
K
(¢) where ¢ is a sentence of the appropriate language (recall that

M o d
K

(¢ ) is the set of models of K in whi.ch ¢ holds). However, B is the algebra

of events and there is no need of choosing it in this way, it can be taken to b e

just the algebra of events that are necessary for an adequate description of the

situation. In case K is finite for instance, B will generally be the power set

of K. A more detailed explanation of B will be given in Section 4.

Jhe other linguistic element is the definition of the group GX' namely condi-

tions (1) (a) and (l)(b). This we have to get rid of.

In order to make the situation clear, I shall begin w ith the same example as

in Chuaqui 1977, the choosing of a sample S of size m from a finite population

of balls P. Whenw e say " S has n red balls" we mean that one of the properties

of the outcome was that the sample had n red balls. The same outcome has many

di ffc rerrt properties. Wecan think of an ideal approximation of an outcome,name-

ly a relational system that represents a possible model of the situation invol-

ved. In the case w e are looking at, w e can schematize the possible outcomes as

systems a s = < P ,R
O

, ... ,R
m

_
1

,S > , where P is the finite set of balls, R
O

, .. ,R
m

_
1

a re fixed subsets of P that represent the properties w e are interested in (for

instance, red), and S is any subset of P of m members (the sample). For 'each

subset S of m rrembers there is a corresponding system O l. S ; the set of possible

outcomes 1(, consist of all models O l: S of the form described above.

Let us analyze a possible out.cone a . S = <P,R
O

" • . ,R
m

_
1

,S > . The properties

R
O

" " ,R
m

-
1

are intrinsic properties of the balls in P. That is, w h e n w e move

the balls around or choose a sample, their properties remain. Also, these prop-

erties are fixed in all a L S ' Wemay thus call < P ,R
O

, • • • ,R
m

_
1
> the in tr in s ic part

o j' X. ()1 the other hand, < P ,S > gi es the structure of the cxperi ment, and is var-

iable in each (J ls . < P ,S > is called the s tr u c tu r a l part of (J lS and denoted

(J ls ,c t. Wemay have different experiments perfonred on the same set of balls P.

The probability structures for these different experurent s might have the same

int r ins i c part but different structure. For instance, i f the experiment con-

sists of the choosing of a sample with tw o RO~balls, the outcome will be of the

fonn < P ,R
O

, .. . ,R
m

_
1

,Q > where Q is a subset of P w ith tw o RO-balls.

The second example I shall give is a modification of Example 3 of Chuaqui

1977. Suppose we have a circular roulette w ith a point for each real number.
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For simplicity, a fixed force is applied but the roulette starts from a variable

position. Each outcome results from beginning at a particular position. The sys-

tems in Ie maybe taken to be of the form

o l. = < C ,r ,f ,I>
I

where C is the set of points in the circle, r reprBsents translations in the cir-

cle (a ternary operation, r (a ,b ,c ) is c rotated by the angle from a to b ) , f is

the continuous unary function that associates each initial position with a final

position, and I is the set containing the initial position (I contains one ele-

ment of C ). Here, < C ,f> constitutes the intrinsic part of Ie, because it is an in-

trinsic property of each point x in C that it yield a final position f(x). With

this f we can express the asymmetryof the roulette, if it is asymmetric. Wecan

n o d e l symmetric roulettes without this f . The s t ructure of the experiment is giv-

en by < C ,r ,I> . I is variable in the different (J [ I ' Howeverl ' is fixed. Thus, we

cannot distinguish between the intrinsic part and the structure by just looking

at the variable part of Ie. Notice that C is not enough for defining a circle. It

is necessary to add an operation between the elements of C. For instance, I have

chosen in this paper r - , 'This operation r should be part of the structure of the

experiment, because it really consists of a rotation of the circle.--If we had

just < C ,I> in the structure, the expe r.irrent would be the choosing of a point in

a set C and not in a circle < c ,» > ,

From these two examples, we see that in order to describe the simple prob-

abili ty structure we need to specify, besides the class of possible outcomes K,

its intrinsic part. Thus, w e define a simple probability structure as a pair

K = <K,a>where IC is a set of relational structures of a fixed similarity type

(called t.he s e t o f o u tc o m e s of K ) and ( f I - is a relational s tructure (called t.he

in tr in s ic p a r t of K ) such that z ]J = (J [ for every Lc K, where J IS the index set

of the s imi Iar.i ty type of ( J f ; (thus, all st.ructure :f.-e::K, have the same universe

say A ) ,

The group of functions G
K

i now determined by K and B without reference to

the language. For 1.-E K, let t..
st

= 1 . t ( I -J ) wh re I is the index set of the sim-

ilari ty type of K. T h a t , is t-strepresents the structure of the exper inent . Also,

for B ,= , K , Est = {i.st : ; t .c B } .

The group of funct icns G
K

that preserve the "laws of the phenomenon" contains

all permut~tjons f of the universe A such that

* -1*
(1 ) For any i.e:: K , f (f...

st
) e:: K

st
and f (L st) e : : K st

(2) For any B £ : B , B f
e : : Band B

r1
e::B,.,here Bf is the unique C s.: K such

t at C = , J t* i .; t . .e B }
st l st '

Condit ion ( I ) can be expressed simply by K
f ,- K a'1dKf -

1
e:.:K.The measure u is a

,

measure invariant under G .lC

In our first exampIe G
K

consists of all rmutations of the universe P. In



48

the second, C
K

contains all autono rphi srrs of < C ,r> . In general, if < A ,P O '" ,Pn-1>

is const~lt in all elements of K and none of the relations PO' ""Pn-1 are in

the in trinsic part of K then G is a subgroup of the automorphisms of
, K 0

< A ,P O "" ,Pn -1> ·

In order to extend the situation to compoundstructures, w e define a sym-

metry relation between subsets A, B of K:

A _ B iff t f = B for a certain f E C K "

K

The measure ]J is now invariant under -K' i.e.Aj(B implies ]J(A) = ]J(B).

Surnmarizing,we have obtained a model of reality < K ,B > that gives a probabil-

ity measure ]J invariant under G
K

. I f this ]Jwere the unique invariant measure,

then < K ,B > would be a sufficient description of the model. Uniqueness is not a

rare phenomenon. A s a matter of fact, all situations I have analyzed yield a

u n ique measure. However, the general conditions for uniqueness that I k n o w of

are rather technical and, hence, they are not natural to add as requirements for

< I( ,B > . Thus, the s im p le p ro b a b ility m o d e ls have to be specifed by the triple

J = < K ,B ,]J > where K = < .K ,a > is a simple probability structure, B a a-algebra

of suhsets of K, and ]J a probability measure invariant under G
K

; K is called

the s e t o f o u tc o m e s o f J .

3.2. Compound probability models.

introduced in Chuaqui 1980 need only minor

However , it may be noted that with the

The compoundprobability structures

modifications.

new definition of simple probability

structures, the compound structures seem much more natural, since now the sym-

rret r i es are independent of the language.

An outline of the definition of compoundprobability structure will help t"a

unders t and the situation. These structures are determined by three elements.

1 . T h e c a u s a l s tru c tu re . The basic elements of the causal structure are

the (causal) trees < T ,~ .T > ' T is a set and < T is a well founded partial ordering

on T such that the successors of any t E T are countable and well ordered by < T '

f \ graphical representation of an example of a tree is:

e--e--e--e--e

where ~ T is in the horizontal irection from left to right.

A tree is a general i zation of the noti n of causal depe dence. TITUS, what

happens 'lt t E T influences what :lappens at a succcding s , i.e. at s T ~ t . If
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of T can be considered tn 1110s-t .cases as time moments, but this is not necessar-

ily so.

A causal structure F consists of a family of trees that. -incIudes all its

subtrees. « T '-< T > is a subtree of <5'<5> if < T c : : <5' and t e : T , B e : 5 and B < s .t

imply B e : T .) In most cases, it is enough to consider all the subtrees of a grv-

en tree < T '< T > '

2 . T h e s e t o f o u tc o m e s . The outcomes are functions f with domain a cer-

tain Te: F. For any t e : T , f( t ) is what happens at t , and is a memberof the

set of outcomes H (f ,t ) of a simple probability structure H (f ,t ) . This simple

probability model is determined by the preceding values of f , i .e . f restricted

to T t = {s :S < T t and B o f t} . Calling H
T

the set of all outcomes with domain T ,

the events are subsets of H T for T e: F. In fact, H (f ,t ) = { j( t ) : j e: H T and

j fT
t

= f fT
t
} is the sure event determined by f r T t , i .e . the set of outcomes

that are possible if f lT t has occurred.

3 . T h e s ym m e tr y r e la t io n . O n each simple probability model H (f ,t ) we co-

tain a symmetry relation t , t as explained above. From these relations, the sym-

metry relation - between compoundevents is obtained. Since now t , t is indepen-

dent of the language, - will also be. The relation - is defined in several

stages.

a) Wefirst define isomorphism between two simple probability models

J = «I,Ol > ,H , u> and J I = «K' .d '>, H : u ' > . Suppose A and A I are the universes

of I .and I' respectively.

J ~ J' if and only if g is a one to one function from A onto Af satisfy-
g

ing:

(i) I f . = K g (i.e. K~t {g * ;e .::! . .< > = I
st

})'

(ii) For any B e: H, Bg e: H'.

(iii) For any Be: H , ].l(B) = u ' (B g ) .

In case ].l is the unique £1<-invariant measure, condition (iii) is implied by the

other two, since then Il' is also the unique £1<,-invariant measure. This is so

because the groups G
K

and G
K

, are related by the isomorphism g as follows:

-1
f e: £1<iff e - r -e EO G I '

Let B e: H , C e: H ', then

B '" C iff J = J ' and B
g

'V'C.
g g "

This definition of isomorphism constitutes the only difference with the defini-

tion in chwqui 1980, Section 5, of compoundprobability structures. Wecould

use the same definition as there, but I believe that the new one is an improve-
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rrerit of the fonner; in particular because

J " 'g J (i.e. with J ' = J ) iff g EO G
K

•

b) Wenow introduce the notion of isomorphism between sets HT and HT, for

T , T ' c F. These isomorphisms are pairs of functions « h J :» such that h is an

isomorphism between < T , ~ T > and < T ' '~ T '> ' and k is a one to one function from

HT onto /- IT ' with the following properties.

(i) I f t E: T , f , f ' E: H
T

and f r T t = f " rT t (i.e. what occurs before t is the

same for f as for ;'), then k ( f ) r T \( t ) = k ( f ') r T 'h ( t ) (i .e . what occurs

before h ( t) c T ' is the same for k e f) as for k ( f ') ) .

(ii) H (f ,t ) and H (k ( f) ,h ( t ) ) are isomorphic (in the sense of (a)) for

f cl1T and t c T . In fact, the corresponding isomorphism g f , t is such that

if L = je t ) for a certain j c HT with j r T t = f r T t , then g J ,t£ .s t = ( k ( j )

(h ( t ) ) ) s t ' Notice that je t ) is an outcome in H (f ,t ) and k ( j ) (h ( t ) ) , an out-

cone in H (k ( f) ,h ( t ) ) .

c) Nowlet A s HT and B S HT, for T , T ' c F. Wesay that A - B .iff there is

an isomorphism h of < T '''T > onto < T ', ~ T '> and there are S , S ' and k such that,

(i) < S ," 'S > is a subtree of < T '~ T > and S ' = h * S .

(ii) H S is isomorphic to H
S
' by < h rS ,k> .

(iii) For every t E: S and f EO H
s

the corresponding parts of A and B by

< h ,k> are equivalent, i.e. if we define A ( f , t ) = { je t ) : j cA and j r T t

fr T t} then A ( f , t ) : : :g r , tB (k ( f ) ,h ( t ) ) .

(iv) For tc T -S and fc BT, A U ,t) is equivalent to the sure event at its

level, i.e. A ( f , t ) - f , tH ( f , t ) .

(v) Similarly, for t ' E: T '-S ' and f ' E: HT" B ( f ' , t ') - f 't ,H ( f ' , t ') .

The measure u on the compound events should be invariant under - c , In Chua-

qui 1980, a procedure for defining such a measure is given. The algebra of corne

pound events consists just of the measurable sets with respect to this measure.

l is a first example of a compoundprobability structure, I shall take the

case of independent trials of the same experiment. Assume that the experiment

is modeled by a simple probability model J = < K ,B , ~ > a n d that there are n inde-

pendent trials where n " w. Weassume a symmetry relation is defined on J , say

The causal structure for the compoundmodel is constituted by the subtrees

of < n , = >. Since the trials are independent, there is no causal relation be-

tween them; thus , we take = for the partial ordering.

111ecompound set of out corres is 1"1<, where K = « ,m > . For every f c nX

and te n , B U ,t) = J . Since < n> is a very simple tree, all < m , = > with m s n
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are subtrees. Also, the only condition for the isomorphism of two such subtrees

is that they have the same cardinality, and any isomorphism can be extended to

an automorphism of < n , = > , i ;e . a pennutation of n .

Events are subsets of "m = "K for m ~ n . For any A ~ A m ' f e : : H and t e : : m

A(f,t) = {jet): j e : : A}; thus A(f,t) is independent of f and "(f,t) = K.

Suppose that H
m

and H m , are given and that h is a one to one function from

m onto m '. Let us analyze which k are such that <h,k> is an isomorphism of H m

onto "m " k should be a one to one function f r o m "m onto l \n . . Since for every

t e : : m, Tt = 0, condition b(i) is always satisfied. Condition b(ii) requires

that there be an isomorphisTIlgt of J onto itself (i.e. gt E G
K
) such that

g;(j(t)st) = (k(j) (h(t)))st for every j E H m o Thus, if B ~ "m and C ~ A m ' then

B - C iff BCf,t)-xBCf,h(t)) for every t e : : m ,

Therefore, the compoundmeasure is given by the product measure, and the

compoundevents are the measurable sets according to this product measure.

As a second example, take T = {to,t,}, a set of two elements, with tO~T t"

and its subtrees, as F. For to' we have the simple probability model JO =

«KO,lno>,BO,lJO>' For each t...e:: KO' we have the simple probability model JL =

«Kt., In > ,B,t, lJ,f? The compoundoutcones are the functions f with DOf = T and such

that f(tO) e:: KO and f(to) e : : Kf(t
o
) ' Suppose, further, that K i.- is not isomorphic

to K t..." for J . . f- J .. ' .

The only subtree of <T'~T> is <{to}'~T>' There is only one automorphism of

<T'''''T>'namely the identity.

I t is clear that H(f,tO) = JO and HCf,t,) = Jf(t
o
) for every outcome f. Let

us see wh ich are the k's for which the pair <identity, k > is an isomorphism of

" T onto " T ' k must be a one to one function from Hj. ontoHT; b(i) can be express-

ed by:

(') if [(to) = f'(tO)' then k(f) (to) = k(f')(tO)'

(b-ii) adds two conditions:

(2 ) g f t e : : G
K, 0

(3 ) g f t E: G
K

, f(to ) '

Thus, if B,C ~"T' then B - C if and only if (i) and (ii), or (i) and (iii) are

satisfied, where

(i) B(f,tO)-KOC(f,tO)

(ii) For every J.. e : : KO' we have B( t. .) -K t..C (:f. .) , where B( : f . . )

f(tO) = t.J.

(iii) For every t.. E: KO' B( t. .) -Kll.'
The compoundmeasure u is defined by

lJ(B) = f lJ(B(t.))dlJ .

B(f, to) 0
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A s an instance of this last example, as surre that KO = { t,1 , t .2 ,'!.:3} where ;(.i

represents the choosing of urn i (i.e. there are three urns 1,2,3). In urn i

there are n. balls with m. white balls. K~. represents the choosing of a ball
1 1 ~l

from urn i. The event "a white ball is chosen" is represent.ed by t.he set of

outcomes f , where f (O ) 0:: K
O

and f ( l ) 0:: K f(O ) is a model where a white ball is

selected. Let us call this event \II.Suppose that IJO(L
1
) = IJO( f .z ) = IJO(1.3) . Then

IJ(W) = f IJL·(W(~)) dlJO
K 1

o
1

= ( 1 Ji...1(W(~))+lJt2(1V(i..z))+IJL3(\II(L3)))·3

4. PROBABILITY AS A LOGICAL RELATION.

The justification of the Connecting Principle is given via the conception

of probability as partial truth that was developed in Chuaqui 1977 and 1980.

This is a logical conception of probability. We, thus, need a language £.

A probability model J = < K,8,IJ> is a p p ro p r ia te fo r ' l if the following t.wo

conditions are satisfied:

(i) The similarity type of the structures in K is t.he same as t.hat.of l .

(ii) B includes the set {NbciK(¢): ¢ a sentence of l}, where MociK(¢) =

{!0:: K : t . . . 1 = ¢}.

If J is an appropriate probabilit.y model for t , we define, as in the ear-

lier paper'j,

IJ(M°ciK(¢)),

for all sentences ¢ of .e.

P provides a logical interpretation of probability as a relat.ion bet.ween

a sentence and a probabilit.y structure J, which is considered as an int.erpre-

t at i on of the sentence. P
J

(¢ ) represent s a measure of t.he "degree of partial

truth of ¢ under the interpretation J " . Notice that J has a dual role. O n one

hand, it is a model of reality. On the other hand, it serves as an int.erpre-

tation of the language. The usual relat.ional structures (or possible models)

of logic can also be seen in this dual role. But. in this lat.t.ercase, reality

is completely specified and, hence, every sentence is eit.her true or false.

Th i s logical interpretation of probability can serve to just i fy the C o n -

n e c t in g P r in c ip le , which is now reformulated as follows:

Let C x be any reasonable "degree of belief" funct.ion of a person who ac-

cepts the proposition X that the probability structure J is an adequat.e des-

cription of the situation involved, and that P
J
(¢) = r', for a certain
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l ' e : : [0,1]. Then

C x C < P J = 4 '_

The person p should believe < f> to the degree PJ(<f», because. l-jebelieves < f> to

be true to this degree. Thus, the connection between factual probabi li ty am' de-

gree of belief is obtained via t ru th. This is very natural because we be-

lievewhat we believe to be true. Thus, we should believe < f> with degree a when

we believe < f> to be true with degree a. This is similar to the relation between

usual logic and belief. I f somebodybelieves < f> and that < f> logically implies 1/J

then he should believe 1/J.

Degrees of belief should be applied to propositions instead of sentences.

Thus, a more accurate description should involve Intensional Logic (s uch as

that of Reinhardt 1980).

Notice that I put Cx(<f» and not C(¢lx). This is so, because I believe the

acceptance of J does not change C by conditionalization (see Kyburg 1980 and

Chuaqui 1980, Section 2).

M y main differences with Bayesians (at least with strict Bayesians) are two.

In the first place, I do not believe that probabilities (or degrees of belief)

can be assigned to all events. O n Iy given a well-defined situation in which the

possible outcomes are determined, it maybe possible to assign probabilities.

In the second place, as it was mentioned before, I do not believe that the only

changes in the probability (or degree of belief) function proceed by condi t i on-

alization. The discussion of these matters would take l~ too far, so they will

be left for another paper.

5. A NOTE ON THE NUNCIPLE OF INSUFFICIENT REASON.

A s an example of the '8ipplication of the ideas given previously, I shall

analyse the P r in c ip le o f In s u f f ic ie n t R e a s o n or P r in c ip le o f In d i j fe r e n o e :

"The Principle of Indifference asserts that if there is no k n o w n reason for

predicating of our subj ect one rather than another of several altemati ves,

then relatively to such knowledge the assertions of each of these altemati ves

have an e q u a l probability" (version of Keynes 1921, p.42).

This principle maybe interpreted in two different ways: cogniti ve and fac-

tual. Wecan say that the equal probability is established when one k n o w s of

no reason or when th e 1 'e a 1 'e in fact no reasons.The Principle as stated by Key-

nes (and also as stated by J. Bemoulli and Laplace) gives the first interpre-

tation. In this form, it is indeed contradictory, as the well-known paradoxes

show. However, a factual interpretation is also possible and maynot be contra-

dictory. fn fact, a careful reading of Laplace 1820, leads me to believe that

his intention was factual, although the actual wording is clearly cogniti ve.
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I believe that my synnnetry relation for events in probability structures is

such a factual interpretation. In order to illustrate these ideas I shall give

an analysis of Bertrand's paradox (Bertrand '889). I t is nore convenient to in-

troduce first the notion of random variable. Let H be the s~t of outcomes of a

probability structure (simple or compound). Then a function X: H.+ R (R the set

of real munbers) is a random variable if and only if X - , * A e::: B (the algebra

of events) for every Borel set A soR.

The experiment for Bertrand's paradox is the choosing of a chord at random

in a circle and determining the probability distribution of the lengths of the

chords. I f the experirnent is not further specified, we would have a simple prob-

ability structure (K,<A» where A is the set of chords and K contains all mod-

e Is of the form <A ,8> where 8 consists of one element of A (the chord selected).

Wedefine the random variable X: K + R by X«A,8» = the length of the chord

in 8. The a-algebra of events B should be {X-'*A: A Borel, As R}. G K is the

set of all permutations of A that transform B into B . In a sense, they are a

counte rpar t of Borelian funct i.ons on R. I t is not difficult to prove that there

is no measure invariant under G X -

So w e should specify the experirnent further. In fact, the origin 0 f Ber-

trand's paradox arises from the fact that we can specify this experirnent in sev-

eral different ways which yield different distributions. Each of these ways can

be put into the framework of my probability structures. I shall indicate how

this can be done for two of these specifications.

(a) Choose two points on the ci rele and draw the chord between them. Wehave

a compolUldprobability structure with a causal structure consisting of the sub-

trees of the tree < {to ,t,} , = >, i.e. T = { to ,t,} consists of two independet'

eIenent s , Let K = < K ,a > where K consists of all structures:tv = < C ,r ,O > with C

the points in the circle, r rotations, and 0 the selected point; a = < c > . The

experiment in question is rodeled by K with the random variable X: TX+ R

where X (f) the distance between the point selected at f(t
O

) and that selected

-,*
at f(t]); B = {x (A ) : A a Borel subset of R}. The group G

X
corresponds to

the rotations of the circle. Thus, there is an invariant rneasure.

(b) Select first a point on the circle and then a point on the radius

through the fi rst point. The chord chosen is the perpendicular to the radius

through the second point. Weare again in front of a compoundprobability struc-

ture consisting of the subtrees of < T '~ T > where T = { to ,t,} has two elements

and to ~ T t,. At to we have the sarneK as in (a). For each to e : : : K we have K =

< K to 'C > where Kto is the set of structures of the form < D ,t,I> , D contains the

points on the radius passing through the point 0, t the translations of the

line modulus the radius, and I the point selected on the radius; C = < D > . In
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order to complete the model we need a random vari.able Y : H ., . R, where H = { f:

D o f = { t
o
,t
1
} , [ ( to ) e:::Kand [ ( to ) e:::K f( to )J is the set of outcomes, and Y ( t)

is the length of the chord perpendicular to the radius selected at f ( tO ) and

through the point selected at f ( t
1
) . The algebra of events is { y -

1
* A : A a Borel

subset of R}.

ihe group of K f..o is the group of translations; so again there is an invar-

iant measure. By the usual analysis (see, e.g. Parzen 1960) we can obtain the

distributions that are expected.

6. CLASSICAL AND BAYESIAN STATISTICAL INFERENCE REVISITED.

"fhe purpose of this section is to improve the analysis of classical and

Bayesian statistical inference given in Sections 3 and 4 of Chuaqui 1980, in the

light of the modifications introduced so far.

First, I shall analyze classical inference. Let us assume that we have an

experiment which can be repeated and we propose a simple probability modeI J =

« K ,O l> ,B ,j1 > for it. This is now a factual model, so we can assume it as a sci-

entific hypothesis. Wethen repeat the experiment I t times for a large I t and ob-

tain a sequence of results. The probability of events consisting of sequences

of results is computed by b u i l.di.ng the compoundprobability structure UX and

proceeding as in Chuaqui 1980. Recall that here we have a compoundprobability

structure, with causal structure F composed of the subtrees of <w, = >, l.e.

all moments in ware independent. Events are subsets of UX, the set of outcomes.

I f a compoundevent A occurs which has a low probability according to "1< and

high according to another structure wK', then we reject the original hypothesis

that J = «K, O l > ,B , u> is the adequate simple probability model.

This account is the same as that of Chuaqui 1980, and can be completed as

there. What I would like to make precise is the type of simple probability

models J that can be taken as hypothetical models. Suppose, 'first, that the ex-

periment is that of tossing a coin. In this case, we have a complete physical

explanation of the phenomenonand the model J can be built accordingly. However,

there are many cases where the only known facts are frequencies observed in se-

quences of repeated experiments. Thus, the only natural J is one that just mim-

ics the choosing of elements of a set. Wehave to assume that there is an un-

knownphysical explanation for this way of choosing.

For instance, suppose that we observe that the relative frequency of the

event is about 1/3. Then we should assume a K with models of the fOTIn O lO =

< A ,E ,O > where A contains three elements, E (the event considered) .contains one

fixed element of A , and 0 (the chosen element) contains one element of A , dif-

ferent for each model. The intrisic part is < A ,E > and the structural part

< A ,O > .
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I f the relative frequency tends to /[/2, for instance, then our structures

in K should be like that of a symmetrical roulette <C,r,f,E,O>, with E a fixed

interval of length /[/2 and 0 the chosen element.

However, these types of models without any physical e~lanation are not com-

pletely satisfactory, because we do not know the mechanism for choosing O.

Thus, in a sense, the assumptions drP. not as well substantiated in the pure-

ly statistical case as when we have physical models. A case in point is the ob-

ser~ d relation between cigarette smoking and cancer. The evidence is almost

purely statistical, since there are no generally accepted physiological models

for this phenorrenon . I believe this is one of the reasons for the difficulties

in accepting this connection as proven. The statistical evidence had to be over-

whelming for the general public to accept that cigarrete smoking increases the

chances of getting cancer.

Something similar is true for Bayesian inference. Here we have the causal

tree <{to,t1} ~T> with to ~T t1, a simple probability model J O = «IC,OlO>'

8
0
, lJO>' and for each ;L <= K

O
' another simple probability model J;[.; Wemay assume

as hypothesis any J
O

' The trouble here is that it is often the case that we

h a v e no evidence for J
O

( J
O

determines what are usually called "a priori" prob-

abilities). Thus, these models might be less justified than the classical ones.

Also, we might have evidence for a simple probability structure that admits no

i nvar iant measure. In this case, Bayesian methods cannot be used. Only if we

haw good evidence for a J
O

that admits a probability measure, the method is

perfectly adequate.

G iv e n such probability models as the JO 's for the prior probabilities or

the J 's based only on frequencies, it is one of the aims of science to replace

them by probability models based on physical laws.
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