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Abstract

We investigate the structure of heavy baryons containing a charm or a bottom

quark. We employ a constituent quark model successful in the description of

the baryon-baryon interaction which is consistent with the light baryon spec-

tra. We solve exactly the three-quark problem by means of the Faddeev

method in momentum space. Heavy baryon spectrum shows a manifest com-

promise between perturbative and nonperturbative contributions. The flavor

dependence of the one-gluon exchange is analyzed. We assign quantum num-

bers to some already observed resonances and we predict the first radial and

orbital excitations of all states with J = 1/2 or 3/2. We combine our results

with heavy quark symmetry and lowest-order SU(3) symmetry breaking to

predict the masses and quantum numbers of six still non-measured ground-

state beauty baryons.
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I. INTRODUCTION

Since the hypothesis at BNL [1] and posterior confirmation at Fermilab [2] of the existence
of charmed baryons, an increasing interest on heavy baryon spectroscopy arose. It became
evident that baryons containing heavy flavors c or b could play an important role in our
understanding of QCD. In the early 90’s the first beauty baryon, Λb, was discovered at the
CERN e+e− collider LEP [3]. Since then, several new hadrons containing a single charm
or bottom quark have been identified [4], they are resumed in Table I. Recent years have
been specially fruitful in discovering heavy baryon states [5–9], and new states will be soon
reported [10]. In many cases signals for the production of charmed and beauty baryons have
been observed, the definitive measurement of the mass awaiting confirmation. This is, for
example, the case of Ξb and Ωb baryons already produced in Z0 → bb decays [11]. Thus,
there are more states still to be found [12].

While the mass of these particles is usually measured as part of the discovery process,
other quantum numbers such as the spin or parity often prove more elusive. For heavy
baryons, no spin or parity quantum numbers of a given state have been measured directly.
These properties can only be extracted by studying angular distributions of the particle
decays, but these are available only for the lightest and most abundant species. For excited
heavy baryons the data set are typically one order of magnitude smaller than for heavy
mesons. Besides, knowledge of orbitally excited states is very much limited. Therefore, a
powerful guideline for assigning quantum numbers to new states or even to indicate new
states to look for is required by experiment.

All these reasons make heavy baryon spectroscopy an extremely rich and interesting
subject. On the one hand it represents a three-body problem that may be solved exactly
within the Faddeev formalism. On the other hand, it allows to study how the interaction
between quarks evolves from light to heavy systems. Understanding baryon spectroscopy
is expected to improve our knowledge about basic properties of QCD. In particular, heavy
baryons provide with an excellent and perhaps even dramatic way of testing the approximate
flavor independence of confinement forces. Besides, heavy baryons provide an excellent
laboratory to study the dynamics of a light diquark in the environment of a heavy quark,
allowing the predictions of different theoretical approaches to be tested.

After the discovery of the first charmed baryons, several theoretical works [13–15] based
on potential models developed for the light baryon or meson spectra started analyzing prop-
erties of the observed and expected states. Later on, charmed and beauty baryons were
studied with different Bhaduri-like potentials [16], calculating the ground state by a Fad-
deev method in configuration space and the excited states by diagonalization in a harmonic
oscillator basis up to eight quanta. The charmed baryon spectrum has also been recently
analyzed by means of a relativistically covariant quark model based on the Bethe-Salpeter
equation in the instantaneous approximation [17]. Finally, the ground states of charmed
and beauty baryons have been calculated by means of lattice techniques [18].

Nowadays, we have to our disposal realistic quark models accounting for most part
of the one- and two-body low-energy hadron phenomenology. Among the several quark
models proposed in the literature [19], either they were designed to study the baryon-baryon
interaction [20–24] or the baryon spectra [25–30]. To our knowledge, the ambitious project
of a simultaneous description of the baryon-baryon interaction and the baryon (and meson)
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spectra has only been undertaken by the constituent quark model of Ref. [19]. It was
originally designed to study the nonstrange sector and it has been recently generalized to
all flavors [31]. The success in describing the properties of the strange and non-strange
one and two-hadron systems encourages its use as a guideline in order to assign parity and
spin quantum numbers to already determined heavy baryon states as well as to predict still
non-observed resonances.

This is why in this work we pursue the study of heavy baryons containing a charm or
a bottom quark making use of the constituent quark model of Ref. [31]. Consistency with
the baryon-baryon interaction and the light-baryon spectrum will be required. For the first
time a Faddeev calculation in momentum space is done for the ground and excited states of
baryons made of a heavy c or b quark. This is also the first time we study systems made of
three distinguishable particles. The paper is organized as follows, we will start in the next
section resuming the basic properties of the constituent quark model and describing the
Faddeev method in momentum space for three distinguishable particles. Section III will be
devoted to present and discuss the results in comparison to other models in the literature.
Finally, in Sec. IV we will summarize our conclusions.

II. WORKING FRAMEWORK

A. Constituent quark model

Let us first outline the basic ingredients of the constituent quark model of Ref. [31].
Since the origin of the quark model hadrons have been considered to be built by constituent
(massive) quarks. Nowadays it is widely recognized that the constituent quark mass appears
because of the spontaneous breaking of the original chiral symmetry of the QCD Lagrangian,
which gives rise to boson-exchange interactions between quarks (Vχ).

QCD perturbative effects are taken into account through the one-gluon-exchange (OGE)
potential [32]. The δ-function, arising as a consequence of the nonrelativistic reduction of
the one-gluon exchange diagram between point-like particles, has to be regularized in order
to perform exact calculations. This regularization, controlled by a parameter r0, has to be
flavor dependent [33]. As this will be a central issue of our discussion, we will make explicit
the expressions concerning the OGE. It reads,

VOGE(~rij) =
1

4
αs

~λc
i · ~λc

j

{

1

rij
−

1

6mimj
~σi · ~σj

e−rij/r0

rij r2
0

}

, (1)

where λc are the SU(3) color matrices, αs is the quark-gluon coupling constant, and r0
is a flavor-dependent parameter to be determined from data. The scale-dependent strong
coupling constant [34] is given by [31],

αs(µ) =
α0

ln [(µ2 + µ2
0)/γ

2
0 ]
, (2)

where µ is the reduced mass of the interacting qq pair and α0 = 2.118, µ0 = 36.976 MeV
and γ0 = 0.113 fm−1.
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Finally, any model imitating QCD should incorporate confinement (CON). Lattice cal-
culations in the quenched approximation derived, for heavy quarks, a confining interaction
linearly dependent on the interquark distance. The consideration of sea quarks apart from
valence quarks (unquenched approximation) suggests a screening effect on the potential
when increasing the interquark distance [35].

Once perturbative (one-gluon exchange) and nonperturbative (confinement and chiral
symmetry breaking) aspects of QCD have been considered, one ends up with a quark-quark
interaction of the form

Vqiqj
=

{

qiqj = nn/sn⇒ VCON + VOGE + Vχ

qiqj = cn/cs/bn/bs/cc/bb⇒ VCON + VOGE
. (3)

Notice that for the particular case of heavy quarks (c or b) chiral symmetry is explicitly
broken and therefore boson exchanges do not contribute. For the explicit expressions of the
interacting potential and a more detailed discussion of the model we refer the reader to Refs.
[31,36]. For the sake of completeness we resume the parameters of the model in Table II.

We have not considered the noncentral contributions arising from the different terms
of the interacting potential. Experimentally, there is no evidence for important effects of
the noncentral terms on the light baryon spectra. This is clearly observed in the almost
degeneracy of the nucleon ground states with JP = 1/2− and JP = 3/2−, or their first
excited states with the nucleon ground state with JP = 5/2−. The same is observed around
the whole baryon spectra except for the particular problem of the relative large separation
between the Λ(1405), JP = 1/2−, and the Λ(1520), JP = 3/2−, related to the vicinity of
the NK threshold [37].

Theoretically, the spin-orbit force generated by the OGE has been justified to cancel with
the Thomas precession term obtained from the confining potential [38]. This is not however
the case for the two-baryon system where, by means of an explicit model for confinement,
it has been demonstrated that the strong cancellation in the baryon spectra translates into
a constructive effect for the two-baryon system [39]. One should notice that the scalar
boson-exchange potential also presents a spin-orbit contribution with the same properties
as before, it cancels the OGE spin-orbit force in the baryon spectra while it adds to the
OGE contribution for the nucleon-nucleon P−waves and cancels for D−waves [40], as it is
observed experimentally. Such a different behavior in the one- and two-baryon systems is
due to the absence of a direct term in the OGE spin-orbit force (due to the color of the
gluon only quark-exchange diagrams are allowed), while the spin-orbit contribution of the
confining interaction in Ref. [39] and that of the scalar boson-exchange potential in Ref.
[40] are dominated by a direct term, without quark exchanges. Regarding the tensor terms
of the meson-exchange potentials, they have been explicitly evaluated in the light-baryon
case (in a model with stronger meson-exchange potentials) finding contributions not bigger
that 25 MeV [41]. This is due to the fact that the tensor terms give their most important
contributions at intermediate distances (of the order of 1−2 fm), due to the direct term in
the quark-quark potential. The regularization of the boson-exchange potentials below the
chiral symmetry breaking scale suppresses their contributions for the very small distances
involved in the one-baryon problem. This allows to neglect the noncentral terms of the
interacting potential that would provide with a fine tune of the final results and would make
very much involved and time-consuming the solution of the three-body problem by means
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of the Faddeev method in momentum space we pretend to use. The same result has been
obtained in Ref. [17] in the study of the noncentral terms of instanton induced interactions
for charmed baryons.

The noncentral terms are relativistic corrections whose effect is known to decrease for
heavy baryons [17,42], either due to the absence of the interaction (boson exchanges) or to
the fact that they are 1/m2 corrections (OGE). In particular, the noncentral terms have
also been explicitly evaluated in the past by the present authors, demonstrating that their
contribution is already very small in the light baryon sector. The tensor potential of the one-
pion exchange potential has been explicitly evaluated in Ref. [43], obtaining contributions
smaller than 20 MeV. Spin-orbit terms have been calculated in Ref. [44] by means of a
relativistic treatment of the spin variables, obtaining corrections one order of magnitude
smaller than those due to the use of relativistic momentum variables.

B. Three-body equations

After partial-wave decomposition, the Faddeev equations are integral equations in two
continuous variables as shown in Ref. [36]. They can be transformed into integral equations
in a single continuous variable by expanding the two-body t-matrices in terms of Legendre
polynomials as shown in Eqs. (32)−(36) of Ref. [45]. One obtains the final set of equations

ψnℓiλiSiTi

i;LST (qi) =
∑

j 6=i

∑

mℓjλjSjTj

∫ ∞

0
q2
jdqj K

nℓiλiSiTimℓjλjSjTj

ij;LST (qi, qj;E)

×ψ
mℓjλjSjTj

j;LST (qj), (4)

with

K
nℓiλiSiTimℓjλjSjTj

ij;LST (qi, qj;E) =
1

2
< SiTi|SjTj >ST

∑

r

τ ℓiSiTi

i;nr (E − q2
i /2νi)

×
∫ 1

−1
dcosθ

Pr(x
′
i)Pm(xj)

E − p2
j/2ηj − q2

j /2νj
A

ℓiλiℓjλj

L (p′iqipjqj). (5)

Pr(x
′
i) and Pm(xj) are Legendre polynimials, x′i = (p′i − b)/(p′i + b), xj = (pj − b)/(pj + b),

and b a scale parameter. τ ℓiSiTi

i;nr (E − q2
i /2νi) are the coefficients of the expansion of the

two-body t−matrices in terms of Legendre polynomials defined by Eq. (34) of Ref. [45]. Si

and Ti are the spin and isospin of the pair jk while S and T are the total spin and isospin.
ℓi is the orbital angular momentum of the pair jk, λi is the orbital angular momentum
of particle i with respect to the pair jk, and L is the total orbital angular momentum.
The reduced masses ηi and νi, the spin-isospin recoupling coefficients < SiTi|SjTj >ST ,

and the orbital angular momentum recoupling coefficients A
ℓiλiℓjλj

L (p′iqipjqj), including the
momentum variables p′i and pj, are defined by Eqs. (8)−(13) of Ref. [36].

The integral equations (4) couple the amplitude ψi to the amplitudes ψj and ψk. In the
cases when the three particles are identical or when two are identical and one is different the
equations can be reduced to integral equations involving just one of the three amplitudes
as it has been shown in Ref. [36]. In contrast, when the three particles are different, by
substituting the equation for ψi into the corresponding equations for ψj and ψk, one obtains
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at best integral equations that involve two independent amplitudes which means that in
that case the numerical calculations are more time consuming.

We will now describe the application of the Faddeev method to the case of three dis-
tinguishable particles. If one represents in Eq. (4) the integration over dqj by a numerical
quadrature [46], then for a given set of the conserved quantum numbers L, S, and T , Eq.
(4) can be written in the matrix form

ψi =
∑

j 6=i

Bij(E)ψj , (6)

where ψi is a vector whose elements correspond to the values of the indices n, ℓi, λi, Si, Ti,
and r, i.e.,

ψi ≡ ψnℓiλiSiTi

i;LST (qr), (7)

with qr the abscisas of the integration quadrature. The matrix Bij(E) is given by

Bij(E) ≡ q2
swsK

nℓiλiSiTimℓjλjSjTj

ij;LST (qr, qs;E), (8)

where the vertical direction is defined by the values of the indices n, ℓi, λi, Si, Ti, and r
while the horizontal direction is defined by the values of the indices m, ℓj , λj, Sj, Tj , and s.
qs and ws are the abscisas and weights of the integration quadrature.

Substituting the Eq. (6) for i = 1 into the corresponding equations for i = 2 and i = 3
one obtains

[B21(E)B12(E) − 1]ψ2 + [B21(E)B13(E) +B23(E)]ψ3 = 0, (9)

[B31(E)B12(E) +B32(E)]ψ2 + [B31(E)B13(E) − 1]ψ3 = 0, (10)

so that the binding energies of the system are the zeroes of the Fredholm determinant

|M(E)| = 0, (11)

where

M(E) =
(

B21(E)B12(E) − 1 B21(E)B13(E) +B23(E)
B31(E)B12(E) +B32(E) B31(E)B13(E) − 1

)

. (12)

III. RESULTS AND DISCUSSION

The results we are going to present have been obtained by solving exactly the Schrödinger
equation by the Faddeev method in momentum space as we have just described.

Our results are shown in Tables III and IV for charmed and beauty baryons, respec-
tively. As we are asking for consistency with the light baryon spectra, let us note that the
corresponding results for light baryons are given in Fig. 2 of Ref. [36]. Comparing the
gross structure of the known experimental states and the theoretical spectrum we find a
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good overall agreement. One can observe that, in general, the supposed orbital excitations
(negative parity states) are predicted lower than experiment, we will return to this point at
the end of this section. Note that the radial excitation of 1/2+ baryons is always around 350
MeV above the ground state, both for charmed and beauty baryons. The only exception is
the Ξi(1/2

+) (i = c or b) with an excitation energy around 80 MeV. This resonance is not
indeed a radial excitation. The ground state corresponds to a us pair in a singlet spin state
while the excited one corresponds to the same pair in a triplet spin state. These two levels
are often denoted in the literature as Ξi(1/2

+) and Ξ′
i(1/2

+).
Let us first stress the flavor independence of the confining interaction. It was fixed in

Ref. [36] to drive the nucleon Roper resonance to its correct position and this is the value,
denoted as (A) in Table II, we will use all along this work except for the results shown in
Fig. 3. Once confinement is fixed in the nucleon sector it provides with the needed strength
for baryons of different flavor.

Another interesting feature arising from our results is the clear flavor dependence of the
regularization of the delta function appearing in the OGE. In the first calculations of the
heavy baryon spectra this regularization was done by calculating the δ−function perturba-
tively in a properly cut Hilbert space [13]. When dealing with exact solutions, as those based
on Faddeev equations, the delta function has to be regularized. This regularization has to be
flavor dependent if one wants to obtain the experimentally observed spin splitting, i.e., mass
difference between the ground 3/2+ and 1/2+ states. In the case of pairs of quarks of similar
mass one can use for the regularization parameter r0 a formula depending on the reduced
mass of the system as has been proved in the past [16,31,36]. However, in the case of heavy
baryons the masses of the interacting quarks may be quite different, such that a reduced
mass based formula will give the same result for a light-charm than for a light-bottom pair.
As the color-magnetic term of the one-gluon exchange interaction depends on the inverse
of the product of the masses of the interacting quarks, such a potential will be strongly
reduced for the heavier pair producing a too small spin-splitting. This is the reason why
Refs. [16,47] predict a small spin-splitting for beauty baryons (see the AL1 results in Table
V), because the parameters were adjusted on the charm sector and a reduced mass based
formula was used to move to beauty baryons.

The interplay between the pseudoscalar and the one-gluon exchange interactions is a
key problem for both the baryon spectra and the two-nucleon system [48]. This can be
illustrated noting that while the Σi(3/2

+) − Λi(1/2
+) mass difference varies slowly from

the strange to the bottom sector, the Σi(3/2
+) − Σi(1/2

+) mass difference varies very fast
(see Table V). The former mass difference is given by the pseudoscalar and one-gluon
exchange forces (see columns V1 and V3 of Table III in Ref. [36]), but the last one is only
provided by the one-gluon exchange interaction between the light and the heavy or strange
quark. This is very easy to understand when the wave function is explicitly constructed.
In the case of Λ baryons the two light quarks are in a flavor antisymmetric spin 0 state,
the pseudoscalar and the one-gluon exchange forces being both attractive. For Σ baryons
they are in a flavor symmetric spin 1 state. The pseudoscalar force, being still attractive, is
suppressed by one order of magnitude due to the expectation value of the (~σi · ~σj)(~λi · ~λj)
operator [36] and the one-gluon exchange between the two light quarks becomes repulsive.
Therefore, the attraction is provided by the interaction between the light and the heavy
or strange quarks, which for heavy quarks c or b is given only by the one-gluon exchange
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potential. In Table VI we have calculated the mass of Σi and Λi (i = s or b) baryons with
and without the pseudoscalar contribution. As can be seen the effect of the pseudoscalar
interaction between the two-light quarks is approximately the same independently of the
third quark. As the mass difference between the Σi(3/2

+) and Σi(1/2
+) states decreases

when increasing the mass of the baryon, being almost constant the effect of the one pion-
exchange, the remaining mass difference has to be accounted for by the one-gluon exchange.
When using an ad hoc combination of gluon and boson exchanges one may generate a too
large Σi(3/2

+)−Λi(1/2
+) (i = c or b) mass difference and a too small Σi(3/2

+)−Σi(1/2
+)

mass difference (see the AL1χ results in Table V). This rules out any ad hoc recipe for
the relative strength of both potentials, in any manner consistent with experiment. An
incorrect scaling of the regularization parameter or a wrong balance between pseudoscalar
and one-gluon exchange contributions drive incorrect results. This reinforces the importance
of constraining models for the baryon spectra in the widest possible set of experimental data.

Let us therefore face the problem of the regularization parameter of the OGE, r0. As
mentioned in Sec. II this parameter must vary with the masses of the interacting quarks.
The larger the system (the lighter the masses of the quarks involved) the larger the value of
r0 that can be used without risk of collapse. In Fig. 1 we plot the mass of the Ξ(1/2+)[nss],
Ξc(1/2

+)[nsc] and Ξb(1/2
+)[nsb] ground states as a function of the regularization parameter

of the one-gluon exchange potential for the ns subsystem, rns
0 , for a fixed value of the other

two, rnb
0 and rsb

0 . We observe how the variation of the energy is very similar in all three cases.
It seems that the dynamics of any two-particle subsystem is not affected by the nature of
the third particle. In particular, the unstable area for the one-gluon exchange interaction
starts exactly at the same value. It is one of the Faddeev amplitudes that becomes unstable
independently of the other two. Therefore the regularization parameter should depend
on the interacting pair, independently of the baryon the pair belongs to. The values of r0
reproducing the experimental data are quoted in Table VII. They obey a formula depending
on the product of the masses of the interacting quarks that can be represented by

r
qiqj

0 = Aµ
(

mqi
mqj

)−3/2
(13)

being A a constant and µ the reduced mass of the interacting quarks. While working with
almost equal or not much different masses this law can be easily replaced by a formula
depending on some inverse power of the mass (or reduced mass) of the pair as obtained
in Ref. [31], but this is not any more the case for quarks with very different masses, like
those present in heavy baryons. This is one of the reasons why these systems constitute an
excellent laboratory for testing low-energy QCD realizations. For the sake of completeness
we have plotted in Fig. 2 the mass of the Ξc(1/2

+) and Ξb(1/2
+) states as a function of the

r0 values of the two subsystems with a heavy and a light quark. We observe how the value
where the unstable region starts is greatly reduced in going from the nc (sc) to the nb (sb)
subsystem, what should rule out a reduced mass dependent law that would imply a similar
value of r0 in both cases.

This behavior of the regularization parameter for large mass differences of the interacting
quarks was not known, and therefore not taken into account in Ref. [49], predicting a very
small 3/2+ − 1/2+ spin splitting for double charmed baryons. This is exactly the same
problem observed in the calculations of Refs. [16] and [47]. When the calculation of Ref.
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[49] is repeated with the scaling law of the regularization parameter derived in this work,
the spin splitting augments up to

Ξcc(3/2
+) − Ξcc(1/2

+) = 66 MeV
Ωcc(3/2

+) − Ωcc(1/2
+) = 54 MeV . (14)

Apart from the spin-splitting, the structure of the spectra is not significantly modified. In
the case of the triply charmed baryons the results would remain the same as in Ref. [49].

A widely discussed issue on the light baryon spectra has been the so-called level ordering
problem, the experimentally opposite order of the N∗(1440) JP = 1/2+ and the N∗(1535)
JP = 1/2− compared to the harmonic limit. Theoretically, this situation in the light baryon
spectra has been cured by means of appropriate phenomenological interactions as it is the
case of anharmonic terms [38], scalar three-body forces [27], or pseudoscalar interactions
[29,50]. For heavy baryons these mechanisms are not expected to work or their strength
is strongly diminished in such a way that the level ordering problem may not be present.
In the case of the scalar three-body force of Ref. [27], a simultaneous exchange of a scalar
particle among the three quarks, if existing in nature, should not be active in the presence
of a heavy quark due to the explicit breaking of chiral symmetry. In the case of the chiral
pseudoscalar interaction, its (~σi · ~σj)(~λi · ~λj) structure gives attraction for symmetric spin-
flavor pairs and repulsion for antisymmetric ones. The reduction of the strength of the
pseudoscalar potential, acting only between the two light quarks, makes this level ordering
inversion highly not probable for heavy baryons. This effect was already noticed in the
strange baryon spectra. We observed how the one pion exchange is very much reduced in
the case of Σ(1/2+) states (see Table III of Ref. [36]), its role being replaced by the kaon
exchange between the light and heavy (strange in that case) quarks. Even then, the strength
is not enough to reverse the ordering of the states (see Fig. 3 of Ref. [36]). When the SU(3)
symmetry is broken and one puts a heavy quark (c or b) the situation is clearly favored for
having a first negative parity excited state below the Roper resonance. The presence of the
heavy quark will also diminish the importance of relativistic effects, being responsible for
most part of the level ordering problem [51]. We consider that the determination of the
position of the first radial excitation of the Σc could help in understanding this problem.

Our results allow to predict quantum numbers to the experimentally observed resonances.
These assignments are not mandatory. At this point we have to return to the observation
that the orbital excitations are predicted lower than observed. This is a consequence of
fitting the confinement strength in the light baryon sector such as to reproduce the nucleon
Roper resonance instead of the negative parity states. If we modify the confinement strength
to reproduce the negative parity states in the light baryon sector (this would only imply to
loose the description of the nucleon Roper resonance that it is known to be highly sensitive
to relativistic kinematics [51]) and recalculate the spectra with the new confining strength,
denoted by (B) in Table II, we obtain the results shown in Fig. 3. Let us notice that all
our previous discussion and the conclusions derived hold for the new confinement strength.
In Fig. 3, column [A] represents the results of the smaller confinement strength and [B]
those of the larger confinement strength in Table II. A much better agreement is observed
with the model reproducing the orbital excitations of the light baryon sector. There is no
experimental state that we do not predict and there is no low-lying theoretical resonance
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that has not been observed. The smaller confinement strength would give rise to several
states still not observed. The recently discovered Σc(2800) [5] would correspond to an
orbital excitation with JP = 1/2− or 3/2− (they are degenerate in our model), any other
correspondence being definitively excluded. For Λc baryons, the recently confirmed as a
Λc state, Λc(2880) [6], and the new state Λc(2940) [6] may constitute the second orbital
excitation of the Λc baryon. Finally, there is an state with a mass of 2765 MeV reported in
Ref. [9] as a possible Λc or Σc state and also observed in Ref. [5]. While the first reference
(and also the PDG) are not able to decide between a Λc or a Σc state, the second one prefers
a Λc assignment. As seen in Fig. 3, this state may constitute the second member of the first
orbital excitation of Σc states or the first radial excitation of Λc baryons. An experimental
effort to confirm the existence of this state and its decay modes would help on the symbiotic
process between experiment and theory to disentangle the details of the structure of heavy
baryons.

Let us finally note that heavy quark symmetry (HQS) and chiral symmetry can be
combined together in order to describe the soft hadronic interactions of hadrons containing
a heavy quark [52]. In the limit of the heavy quark mass mQ → ∞ HQS predicts that all
states in the 6 SU(3) representation (those where the light degrees of freedom are in a s = 1
state) would be degenerate. If one considers HQS and lowest order SU(3) breaking [53] one
obtains an equal spacing rule similar to the one that arises in the decuplet of uncharmed
JP = 3/2+ baryons. The equal spacing rule obtained for charmed baryons is

Ξ′
c(1/2

+) − Σc(1/2
+) = Ωc(1/2

+) − Ξ′
c(1/2

+) =

= Ξc(3/2
+) − Σc(3/2

+) = Ωc(3/2
+) − Ξc(3/2

+) (15)

These relations are satisfied by experimental data as seen in the second column of Table VIII,
the first three spacings being of the order of 123 MeV. This prediction is clearly sustained
by our model giving rise to a spacing of 127 MeV (third column of Table VIII) and also by
the results of OGE based models (fourth column of Table VIII). Lattice calculations based
on HQS fulfill exactly this equal spacing rule (fifth column of Table VIII). However, the
relativistically covariant quark model of Ref. [17] strongly violates this rule, contradicting
the expectations of HQS. All these results allow to confirm the prediction of a Ωc(3/2

+)
state at around 2770 MeV.

This equal spacing rule should also held in the beauty baryon sector, giving rise to the
relations

Ξ′
b(1/2

+) − Σb(1/2
+) = Ωb(1/2

+) − Ξ′
b(1/2

+) =

= Ξb(3/2
+) − Σb(3/2

+) = Ωb(3/2
+) − Ξb(3/2

+) . (16)

Once again this equal spacing rule is strictly fulfilled by our model, generating an spacing
of 124 MeV in all four cases. If we now make use of the existing indications of experimental
data for Σb(1/2

+) and Σb(3/2
+), then we can predict the existence of the following states: a

Ξ′
b(1/2

+) with a mass of 5920 MeV, a Ωb(1/2
+) with a mass of 6044 MeV, a Ξb(3/2

+) with
a mass of 5976 MeV, and finally a Ωb(3/2

+) with a mass of 6100 MeV.
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IV. SUMMARY

We have used a constituent quark model incorporating the basic properties of QCD
to study the heavy baryon spectra. Consistency with the baryon-baryon interaction and
the light baryon spectra is asked for. The model takes into account the most important
QCD nonperturbative effects: chiral symmetry breaking and confinement as dictated by un-
quenched lattice QCD. It also considers QCD perturbative effects trough a flavor dependent
one-gluon exchange potential.

The three-body problem has been exactly solved by means of the Faddeev method in mo-
mentum space. For the first time we have studied baryons made of three different quarks,
what makes the calculation time consuming, but providing an excellent test of our nu-
merical method. We have found that the key interplay between pseudoscalar and one-gluon
exchange forces, already observed for the light baryons, constitutes a basic ingredient for the
description of heavy baryons. The final spectra results from a subtle but physically meaning-
ful balance between different spin-dependent forces. The baryon spectra make manifest the
presence of two different sources of spin-dependent forces that can be very well mimic by the
operatorial dependence generated by the pseudoscalar and one-gluon exchange potentials.

While the flavor dependence of the regularized one-gluon exchange potential for equal
mass quarks can be nicely described by the inverse of the reduced mass of the system, we
have found that this is not the case for interacting quarks with large mass differences. It is
instead a mass dependence considering explicitly the masses of the two quarks that provides
with a nice agreement with data.

Heavy baryons constitute an extremely interesting problem joining the dynamics of light-
light and heavy-light subsystems in an amazing manner. This is due to the remnant effect of
pseudoscalar forces in the two-light quark subsystem. Models based only on boson exchanges
cannot explain in any manner the dynamics of heavy baryons, but it becomes also difficult
for models based only on gluon exchanges, if consistency between light and heavy baryons
is asked for. One-gluon exchange models would reduce the problem to a two-body problem
controlled by the dynamics of the heaviest subsystem, and we find evidences in the spectra
for contributions of both subsystems.

Our results contain the equal mass spacing rules obtained for heavy baryons by means
of heavy quark symmetry and lowest order SU(3) chiral symmetry breaking. The obtained
spacing is almost the same for charmed and beauty baryons. Making use of the available
experimental data we can predict the existence of six new beauty baryons, their masses and
quantum numbers, as well as we can confirm the prediction of a charmed baryon made some
time ago. We also make predictions for the orbital and radial excitations of all quantum
numbers that, if confirmed, would definitively prove the flavor independence of the confining
interaction.

Finally, although we do not believe that explanations based on constituent quark models
may rule out or contradict other alternative ones, one should acknowledge the capability of
constituent quark models for a coherent understanding of the low-energy phenomena of the
baryon spectroscopy and the baryon-baryon interaction in a simple framework based on the
contribution of pseudoscalar, scalar and one-gluon-exchange forces between quarks.
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TABLES

TABLE I. Experimentally known charmed and beauty baryons. The J and P quantum num-

bers have not been measured and we have quoted, when existing, the values given by the PDG

that correspond to the quark model expectations. We have omitted the very small error bars in

the mass. We have quoted in the last column the quark content of the different symbols used to

denote the baryons, n stands for a light quark u or d. We have also included two charmed baryons

recently reported in Refs. [5] and [6], but not appearing for the moment in the PDG. Finally, we

also quote two beauty baryons suggested in Ref. [7]. For completeness, in the bottom part of the

table we have included two double charmed baryons that will appear along the text.

State JP Mass (MeV) Status Quark content

Λc 1/2+ 2285 ∗ ∗ ∗∗ udc

Λc(2593) 1/2− 2594 ∗ ∗ ∗

Λc(2625) 3/2− 2627 ∗ ∗ ∗

Λc or Σc(2765) ?? 2765 ∗

Λc(2880) ?? 2881 ∗∗

Λc(2940) ?? 2940 Ref. [6]

Σc(2455) 1/2+ 2452 ∗ ∗ ∗∗ nnc

Σc(2520) 3/2+ 2518 ∗ ∗ ∗

Σc(2800) 3/2− 2800 Ref. [5]

Ξc 1/2+ 2469 ∗ ∗ ∗ nsc

Ξ′
c 1/2+ 2577 ∗ ∗ ∗

Ξc(2645) 3/2+ 2646 ∗ ∗ ∗

Ξc(2790) 1/2− 2790 ∗ ∗ ∗

Ξc(2815) 3/2− 2816 ∗ ∗ ∗

Ωc 1/2+ 2698 ∗ ∗ ∗ ssc

Λb 1/2+ 5625 ∗ ∗ ∗ udb

Σb(5796) 1/2+ 5796 Ref. [7] nnb

Σb(5852) 3/2+ 5852 Ref. [7]

Ξb 1/2+ ? ∗ nsb

Ωb ssb

Ξcc ?? 3519 ∗ ucc

Ωcc scc
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TABLE II. Quark-model parameters. (A) and (B) stand for two different confinement strengths

and charm quark masses used along this work.

mu = md (MeV) 313

Quark masses ms (MeV) 500

mc (MeV) (A) 1650 / (B) 1740

mb (MeV) 5024

mπ (fm−1) 0.70

mσ (fm−1) 3.42

mη (fm−1) 2.77

Boson exchanges mK (fm−1) 2.51

Λπ = Λσ (fm−1) 4.20

Λη = ΛK (fm−1) 5.20

g2
ch/(4π) 0.54

θP (o) −15

ac (MeV) (A) 230 / (B) 340

Confinement µc (fm−1) 0.70

OGE r0 (fm) see text

TABLE III. Masses, in MeV, for baryons with a charm quark with the set (A) of parameters

compared to experiment. Note that we have included a possible assignment of the state with a

mass of 2765 MeV as a Λc or Σc state.

JP = 1/2+ JP = 3/2+ JP = 1/2− JP = 3/2−

Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

Λc 2285 2292 2940a 2906 2593 2559 2625 2559

2765b 2669 − 3061 2880b 2779 2880b 2779

Σc 2455 2448 2520 2505 2765b 2706 2765b 2706

− 2793 − 2825 2800c 2791 2800c 2791

Ξc 2468 2496 2645 2633 2790 2749 2815 2749

2576 2574 − 2951 − 2829 − 2829

Ωc 2697 2701 − 2759 − 2959 − 2959

− 3044 − 3080 − 3029 − 3029

aRef. [6]
bRef. [9]
cRef. [5]
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TABLE IV. Masses, in MeV, for baryons with a bottom quark compared to experiment.

JP = 1/2+ JP = 3/2+ JP = 1/2− JP = 3/2−

Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

Λb 5624 5624 − 6246 − 5890 − 5890

− 5996 − 6406 − 6132 − 6132

Σb 5796a 5789 5852a 5844 − 6039 − 6039

− 6127 − 6158 − 6142 − 6142

Ξb − 5825 − 5967 − 6076 − 6076

− 5913 − 6275 − 6157 − 6157

Ωb − 6037 − 6090 − 6278 − 6278

− 6367 − 6398 − 6373 − 6373

aRef. [7]

TABLE V. Mass difference (in MeV) between Σi and Λi states for different flavor sectors.

Mass difference Exp. This work AL1χ [47] AL1 [16]

Σ(3/2+) − Λ(1/2+) 269 260 − −

Σ(3/2+) − Σ(1/2+) 195 169 − −

Σc(3/2
+) − Λc(1/2

+) 235 223 395 253

Σc(3/2
+) − Σc(1/2

+) 65 57 78 79

Σb(3/2
+) − Λb(1/2

+) 228 220 394 239

Σb(3/2
+) − Σb(1/2

+) 56 55 28 31

17



TABLE VI. Masses, in MeV, of different beauty baryons with two-light quarks with (Full) and

without (Vπ = 0) the contribution of the one-pion exchange potential. The same results have been

extracted from Table III of Ref. [36] for strange baryons. ∆E stands for the difference between

both results.

State Full Vπ = 0 ∆E

Σb(1/2
+) 5789 5802 −13

Σb(3/2
+) 5844 5854 −10

Λb(1/2
+) 5624 5804 −180

Λb(3/2
+) 6246 6246 < 1

State VCON + VOGE + Vπ VCON + VOGE ∆E

Σ(1/2+) 1408 1417 −9

Σ(3/2+) 1454 1462 −8

Λ(1/2+) 1225 1405 −180

TABLE VII. r
qiqj

0 in fm.

(qi, qj) r
qiqj

0

(n, n) 0.35

(s, n) 0.2845

(n, c) 0.0347

(s, c) 0.0285

(n, b) 0.0074

(s, b) 0.0060

TABLE VIII. Equal spacing rule of Eq. (15) for different models in the literature. Masses are

in MeV.

Mass difference Exp. This work Ref. [16] Ref. [17] Ref. [18]

Ξ′
c(1/2

+) − Σc(1/2
+) 121 126 112 136 110

Ωc(1/2
+) − Ξ′

c(1/2
+) 121 127 108 93 110

Ξc(3/2
+) − Σc(3/2

+) 125 128 112 112 110

Ωc(3/2
+) − Ξc(3/2

+) − 126 103 70 110
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FIGURES

FIG. 1. (a) Ξb(1/2
+)[nsb], (b) Ξc(1/2

+)[nsc], and (c) Ξ(1/2+)[nss] ground state masses as a

function of the regularization parameter of the light-strange subsystem, rns
0 .
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FIG. 2. (a) Ξb(1/2
+)[nsb] ground state mass as a function of the regularization parameters rnb

0

and rsb
0 . (b) Ξc(1/2

+)[nsc] ground state mass as a function of the regularization parameters rnc
0

and rsc
0 .
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FIG. 3. (a) Spectra of Λc for two different confinement strengths compared to experiment. (b)

Same as (a) for Σc states.
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