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Abstract. A fast algorithm(fade) for the 2D drawing, geometric cluste-
ring and multilevel viewing of large undirected graphs is presented. The
algorithm is an extension of the Barnes-Hut hierarchical space decom-
position method, which includes edges and multilevel visual abstraction.
Compared to the original force directed algorithm, the time overhead is
O(e + n logn) where n and e are the numbers of nodes and edges. The
improvement is possible since the decomposition tree provides a syste-
matic way to determine the degree of closeness between nodes without
explicitly calculating the distance between each node. Different types of
regular decomposition trees are introduced. The decomposition tree also
represents a hierarchical clustering of the nodes, which improves in a
graph theoretic sense as the graph drawing approaches a lower energy
state. Finally, the decomposition tree provides a mechanism to view the
hierarchical clustering on various levels of abstraction. Larger graphs can
be represented more concisely, on a higher level of abstraction, with fewer
graphics on screen.

1 Introduction

Force-directed algorithms are often used for graph drawing due to their flexibility,
ease of implementation and their often pleasant resultant drawings. Numerous
graph drawing systems have been developed based on such force directed algo-
rithms [9,36,8,5]. The flexibility of the force directed approach allows for many
kinds of constraints [16,3,31,13]. However, one common feature of most force
directed methods, is their inability to scale to handle large graphs. The problem
stems from the high computational cost of computing a force between every pair
of nodes.

This paper introduces a fast algorithm for the drawing of large undirected
graphs based on the force directed approach. This algorithm hierarchical groups
nodes. The nonedge force on an individual node from other nodes close by is,
on average, evaluated by direct node-to node interaction, whereas the force due
to more distant nodes is included as a group contribution. The reduction in the
computational cost of the force directed approach allows larger graphs to be
drawn in real-time.
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The fact that larger graphs can be drawn using this method is not enough
for visualization. It is easy to draw a great deal of graphical information but the
limits on both the available screen space and more importantly human cognition
are quickly reached [35,34,33,20].

The rest of this paper is organized as follows. In section 2, we review the
concepts of Graph Theoretic Clustering and Geometric Clustering and how they
relate to the visualization of large graphs. In section 3 we outline hierarchical
space decomposition and tree codes. Our algorithm fade is described in section
4. Section 5 describes the progressive cycle of clustering, based on a step-wise
improvement in the drawing. We discuss the generation of the visual abstraction
in section 6. And finally, in section 7 our results for performance, error rates and
clustering are presented.

2 Clustering

2.1 Graph Theoretic Clustering

A clustering of a graph, G = (V, E) consists of a partition V = V 1 ∪ V 2 ∪....∪
V k of the node set of G. Graph theoretic clustering is the process of forming
clusters based on the structure of the graph [22,29,23,6,24,30]. The usual aim is
to form clusters that exhibit a high cohesiveness and a low coupling ; these may be
measured, for example, by the number of intra-cluster edges and the number of
inter -cluster edges respectively. For example, the graph with the adjacency table
in Figure 1 has been divided into two clusters with only one edge coupling them.
Methods for graph theoretic clustering, motivated by applications in parallel
computing, data mining, and VLSI design are well developed [6,24,30].

Fig. 1. Graph Theoretic, single linkage clustering example

One of the main problems for graph theoretic clustering methods is selecting
a threshold of coupling, without some a priori knowledge of the data. A low
threshold results in too many clusters with too few elements. A high threshold
results in large tree-like clusters (dendograms), with the degenerate case of all
the nodes collapsing into a single cluster.
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2.2 Clustered Graphs

A clustered graph is a graph with a recursive clustering, or partitioning, of the
node set of G [26]. Graph drawing algorithms have been developed to draw
clustered graphs [37,19,27,7,26]. Recently, methods have been developed that
exploit clusters to improve the performance of the underlying drawing algorithm.
Harel et al. [11,10] show how a force directed method can use the graph theoretic
structure to approximate long range force interactions; here node to cluster forces
are computed rather than node to node forces. However, approximating forces
based on the graph theoretic structure has some drawbacks:

1. The computational cost in discovering the recursive clustering can quickly
dominate as the graphs become large.

2. If the graph theoretic clustering is poor, then there is no time saving from
such an approximate force scheme.

3. The resultant graph drawing can be distorted, based on the clustering scheme
chosen; this may adversely affect its usefulness in visualization.

The partitioning scheme chosen in [11] may be improved by the use of multi-
level partitioning schemes [21,22] where the graph is coarsened, then the smaller
graph is partitioned, and then uncoarsened to construct a partitioning of the
original graph. It should be noted, that the scheme introduced in [11], produces
nice drawings of large graphs that exhibit good graph theoretic clusters. For
graphs, such as trees, it is noted that a post-processing beautification step, on
the entire graph, must be performed.

2.3 Geometric Clustering

A geometric clustering of a set S of points in k-dimensional space is a partition
of S = S1 ∪ S2 ∪ .... ∪ Sp into subsets. The usual aim of a geometric clustering
method is to have points which are close to each other sharing a cluster and
points that are far apart in different clusters. Geometric clustering is used in a
wide variety of data mining applications; the k attributes of an entity are mapped
to a point in k-dimensional space, and an appropriate distance function is used
[32,6,24,30]. One such function is the K-means algorithm, which is based on a
distance metric where the attributes are scaled so that the Euclidean distance
between sites is appropriate [12].

In many circumstances, a geometric clustering is defined by a space decom-
position, such as the Voronoi diagram in Figure 2. Geometric clustering may be
applied to the location of nodes in a graph drawing; however, unlike graph theo-
retic clustering, the edges are not used to determine the geometric clustering.

2.4 Graph Drawing and Clustering

A Geometric clustering method [32,6,24] applied to a graph drawing induces a
graph theoretic clustering, but it may have low quality in terms of coupling and
cohesion [21]. To ensure that the graph theoretic clustering has high quality, the
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Fig. 2. Voronoi diagram based on pseudnodes, real nodes shown as points

graph drawing must exhibit a strong relationship between geometric and graph
theoretic distance between nodes.

Our graph drawing method (fade) uses a fast recursive space decomposition,
which induces a geometric clustering of the locations of the nodes; this in turn
induces a graph theoretic clustering. This graph theoretic clustering is then used
in a force directed algorithm that improves the relation between Euclidean and
graph theoretic distances in the drawing, and this in turn improves the graph
theoretic clustering. Iterating this process improves both the drawing and the
clustering. Viewing the graph drawing on different abstraction levels, of the
cluster tree, gives a set A=A1,A2,A3...Ax of abstractions, where x is the height
of the decomposition tree.

3 Hierarchical Space Decomposition

Modeling large numbers of interacting particles has interested physicists for cen-
turies. Typical examples include celestial mechanics, plasma simulations and the
vortex method in fluid dynamics [25,14,18,15]. Such numerical simulations are
referred to as the N -body problem and typically involve 1012 - 1023 particles. In
classical systems, the potential (or force) has the form:

φ = φshort + φlong + φexternal, (1)

where φshort is a rapidly decaying function of distance (such are the Van der
Waals potential in chemical physics), φexternal is a function which is independent
of the number and relative positions of the particles (such as a magnetic field);
these forces can be computed in time O(N). However, the computation of φlong,
the particle to particle interactions, takes time O(N2). The φlong force can be
thought of as an electrical repulsion force in the classical force-directed methods
(Chapter 10 [9]) for graph drawing. The cost of O(N2) is excessive in most cases,
and prohibitive in others. When using the force-directed approach for graph
drawing the same limitations apply. In Physics different approaches have been
developed to reduce the computational effort in calculating the long range φlong
forces by means of approximation or estimation.

One such method is called particle-in-cell (PIC): a regular grid is laid over
the simulation area and the particles contribute their masses to create a source
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density. These source densities are used in the estimation of the forces on a
particular particle. PIC codes have been popular in particle simulations but
have difficulties dealing with non-uniform particle distributions, that is, where
the particle distribution is clustered [25]. The modified force directed algorithm
of Fruchterman and Reingold [8] follows the PIC approach. PIC based methods
prove unsuitable for approximating the forces in graph drawings which do not
exhibit a uniform node distribution.

3.1 Tree Codes

A systematic and recursive division of space into a series of cells, called a tree
code in the astrophysics literature [2,25,18,4,1], can be used to speed up n-body
force calculations. The force on an individual particle from other particles close
by is, on average, evaluated by direct particle-to-particle interaction, whereas the
force due to more distant particles is included as a group contribution. Tree codes
were first developed in the context of galactic simulations involving hundreds of
billions of bodies. Tree codes may be based on regular (Quad-tree, Oct-tree) and
irregular (Voronoi) space decompositions. A nono-tree (a nine-way recursive
decomposition), is illustrated in Figure 3. Regular trees such as this can be built
in linear time.
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Fig. 3. Nono-tree space decomposition and data structure

Unlike PIC codes building a decomposition tree does not suffer from a non-
uniform distribution of particles.

3.2 Tree-Codes and Clustering

The decomposition of the nodes of a graph drawing based on a tree-code method
generates a recursive geometric clustering of the vertices of the graph. The recur-
sive clustering, represented as sub-trees, does not directly produce a high quality
geometric clustering of the node positions, nor is it necessarily a high quality
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graph theoretic clustering. However the clustering does facilitate an improve-
ment in the performance of force directed algorithms, as in shown in Section 4.1
below. Further, it allows for multi-level viewing of huge graphs at various levels
of abstraction. Finally, as the quality of the drawing improves (that is, it reaches
a lower energy state of the force system), the quality of suggested clustering,
exhibited by the decomposition tree, improves.

4 FADE Algorithm

The main idea of the fade algorithm is the following. Using the decomposition
tree the nonedge force on an individual node from other nodes close by is, on
average, evaluated by direct node-to-node interaction, whereas the force due to
more distant nodes is included as a node cluster contribution. The main diffe-
rence with the graph theoretic cluster approach of Harel et al. [11,10] is that we
approximate forces based on actual geometric information, rather than prepro-
cessed approximate forces. This difference allows our force directed method to
be applied to large scale graphs, without distorting the resultant drawing due to
the underlying graph structure.

4.1 Implementation

We have implemented fade, a drawing algorithm for undirected graphs, in two
dimensions, using a simple force model and a quad-tree space decomposition.
Force directed algorithms, such as those in [16,3,13,9,36,8] often have two kinds
of forces: edge-forces such as Hooke’s law spring forces, and non-edge forces, such
as magnetic repulsion. Typical graphs in graph drawing applications have O(n)
edges and Ω(n2) non-edges, where n is the number of nodes. The fade algorithm
computes node-node forces for edges, and approximates non-edges forces using
a tree-code approach. Where the tree is reconstructed ab initio for every new
iteration of the force directed algorithm fade.

Roughly speaking, fade works as follows:

REPEAT:
Construct geometric clustering using a space decomposition
Compute edge forces
Compute nonedge forces (node-node and node-pseduonode)
Move nodes

UNTIL convergence

The tree structure, provided by a recursive space decomposition such as
a quad-tree, provides a systematic way to determine the degree of closeness
between nodes without explicitly calculating the distance between each node,
see for example Figure 8. The nonedge force between near nodes is calculated
directly whereas more distant nodes are grouped together into super-nodes or
pseudonodes.
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The most basic means for determining closeness is a tolerance criterion [25,
2]. We test s/d ≤ θ, where s is the width of the cell, d is the distance between the
current node and the center of mass of the cell and θ is the fixed-tolerance para-
meter. If s/d ≤ θ, then the internal nodes are ignored and the force contribution
of the pseudonode is added to the cumulative force for that node. Otherwise,
the pseudonode is resolved into its daughter pseudonodes (sub-trees), each of
which is recursively examined. Pseudonodes are resolved by continuing the de-
cent through the tree until either the tolerance criterion is satisfied or a leaf node
is reached.

Using a quad-tree space decomposition and a value of 1.0 for θ the fixed-
tolerance parameter, some examples are given for the node set shown on the left
of Figure 4.

Fig. 4. Comparing node 5 and 6 with the North-West pseudonode, where s/d=0.80
and s/d=1.46 respectively

In Figure 4, the leaf node 5 is compared with the pseudo particle in the
North-West quad. The weight of the pseudonode is the cumulative weight of the
leaves in its sub-tree, in this case 4. The s value is the width of the cell the
pseudonode covers and d1 is the distance between the node and the pseudonode.
s
d = 0.80 in this case. Based on the value 1.0 for θ the fade algorithm computes
the nonedge force between this pseudonode and node 5, it then adds this force
to the cumulative nonedge force for node 5.

Leaf node 6, is compared with the pseudo particle and d2 is the distance
between the node and the pseudonode in the North-West quad to get, sd = 1.46.
Here the value does not fulfill the criterion s/d ≤ θ, hence the pseudonode is
resolved into its sub-nodes (in this case leaf-node 1 and the pseudonode represen-
ting 2,3,4). The algorithm continues by testing s/d ≤ θ for the pseudonode(2,3,4)
and if it fulfills the criterion then a node to pseudonode force calculation is per-
formed. The interaction list for a given node, is the list of pseudonodes (twig
nodes) and nodes (leaf nodes) involved in the calculation of its nonedge force.

For nonzero θ the time required to compute the force in a single iteration
of fade scales as O(n log n) [4,14]. The actual interaction list for a given node
depends strongly on the choice of the tolerance parameter θ. The case θ = 0
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is equivalent to computing all node-node nonedge forces, which is the classical
approach in O(N2) force-directed methods. However a very large θ results in the
calculation of only forces between nodes and very large pseudonodes. It would be
very quick, approaching O(N) but very inaccurate. The high level of inaccuracy
exhibits itself as a poor drawing of the graph, based on a force computation.

There is a cross-over point in the number of nodes where hierarchical tree
codes becomes more efficient than the direct method. Optimizing the tree con-
struction and the force calculations by vectorisation or parallelization lowers this
cross-over point. When the number of dimensions in the force law is low this can
be in the order of a few hundred to several thousand nodes [25].

5 Progressive Cycle

The space decomposition tree generated at each timestep in the fade algorithm
represents a recursive geometric clustering of the nodes of the graph. The dra-
wing typically moves to a lower energy state from timestep to timestep. This
is as a result of the edge and nonedge forces. Overall, the drawing improves as
nodes with an edge between them, are on average drawn closer than nodes with-
out. The geometric clustering generated also improves as the drawing improves;
this process in referred to as the progressive cycle. Various geometric measures
of clustering can be applied to each recursive clustering, and this allows for a
measure of how the clustering improves as the forces are applied.

Results from such a measure can be seen in figure 5, the measure here is the
number of inter-cluster edges vs intra-cluster edges. Here we show this measure
applied to different levels in the hierarchical geometric clustering over 100 ite-
rations of fade for a graph of 1020 nodes. This measure shows the result of the
drawing reaching a stable state, which induces an improvement in the quality of
the clustering over time, measured in terms of the coupling.

6 Visual Abstraction

If the drawing of the graph cannot easily be viewed on screen, for example due
to poor resolution, or the sheer volume of graphical information, then the vi-
sualization can no longer be considered useful to the user. Numerous viewing
schemes have been proposed to overcome this problem [17,9,28,16,7]. fade fol-
lows the clustered graph drawing approach. It has been shown, that the tree
built by the fade algorithm produces a hierarchical clustering of the vertices of
the graph. Similar to other cluster graph drawing techniques, a particular level
in the cluster tree (an abridgement) can be drawn on screen. The choice of level
allows the graph to be concisely (i.e. more abstractly) represented with fewer
graphics on screen.

The abridgement of the graph drawing results in a loss of precision. This
has to be measured against the fact that a greater understanding of the overall
graph is now possible. A visualization scheme based on a multi-level viewing
still has the ability to mix levels of abstraction, allowing greater detail in certain
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areas of interest, while maintaining an abstract view of the rest of the graph
drawing. The amount of graphical elements presented to the user in Figure 6(left
side) (16 pseudonodes and 33 edges) is approximately 0.67% of that displayed
in drawing of the underlying graph on the right side in Figure 7 (2500 nodes
and 4900 edges). The first drawing can be easily be drawn in realtime and it
still provides a visual approximation to the overall shape of the graph, and if
varying pseudonode sizes were used, to the node distribution. Several examples
of multi-level viewing, based on a regular recursive decomposition of space, are
shown in the Appendix.

7 Experimental Results

We ran our experiment based on a Parlance implementation running on a Pen-
tium III 500 Mhz processor. The performance results were as expected, from
the physics literature [4,25], with a large improvement over the classical direct
approach per iteration. The error rate is a vector measure computed from the
direct non-edge forces and the approximate non-edge forces computed in the
fade algorithm. It is important to note the error rates, which are less than 1%,
do not grow as the graphs get larger. The error rate is further damped when the
edge forces are considered.

Table 1. Experimental Comparison of tree-code Vs direct force calculation

Nodes Direct (sec) fade (sec) % Error
512 0.455 0.04 0.513
1020 1.82 0.088 0.592
1442 3.61 0.168 0.675
2500 10.88 0.202 0.622
6000 62.66 0.676 0.673
10510 192 1.704 0.449
22800 920 3.36 0.561
30000 1593 3.546 0.517
40960 2979 5.592 0.567
49284 4316 6.730 0.628
105233 19604 13.371 0.481

8 Conclusions and Future Work

fade is an algorithm for the drawing and multi-level visualization of large undi-
rected graphs. It is based on an extension of tree-codes for the N-body problem
in physics. The algorithm is effective in drawing large graphs and the use of the
space decomposition tree provides a new and novel method for the multi-level
viewing of large graphs and provides a geometric clustering of the nodes of the
graph. Future work will investigate the use of other quality measures for graph
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Fig. 5. Cluster measure for levels 4, 6, 8 in the clustering

clustering and what affects other regular and irregular space decompositions
have on these measures and on the visual abstraction.

Finally, approaches to data mining based on the generation of clusters from
a hierarchical space decomposition have been developed [39,38]. These methods
analyze weights of sub-trees to discover candidate clusters and then compose
adjacent sub-trees, based on various measures, to form the clusters. The decisions
are based on the weights of the sub-trees, which are inherently localized. For
geometric graph cluster analysis, it should be possible, to integrate the force
model into the decision process, thereby taking global information into account.
Not only the size of the sub-tree but also how often this sub-tree is considered
to be a pseudonode in the force computation.
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9 Appendix

Fig. 6. Graph of 2500 nodes shown on levels 3 and 5 of the decomposition tree
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Fig. 7. Graph of 2500 nodes shown on level 6 and the lowest level of the decomposition
tree

Fig. 8. Cycle of 400 nodes shown on levels 2 and 3 with the space decomposition
overlaid

Fig. 9. Cycle of 400 nodes shown on level 5 and the lowest level, with the space de-
composition overlaid
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Fig. 10. Graph of 4700 nodes shown on levels 3 and 5 of the decomposition tree

Fig. 11. Graph of 4700 nodes shown on level 8 and the lowest level of the decomposition
tree

Fig. 12. Graph of 1400 nodes shown on levels 4 and 6 of the decomposition tree

Fig. 13. Graph of 1400 nodes shown on level 8 and the lowest level of the decomposition
tree
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