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Abstract. This paper investigates fading correlation in space-diversity free-space

optical (FSO) communication systems and its effect on the link performance. We firstly

evaluate the fading correlation in multiple-aperture FSO systems using wave-optics

simulations. The influence of different system parameters including the link distance

and aperture spacing is illustrated under realistic beam propagation conditions. In

particular, we show that at relatively large link distances where the scattering disk

is much larger than the receiver aperture size, the fading correlation coefficient is

almost independent of the apertures’ diameter and depends only on the apertures’ edge

separation. To investigate the impact of fading correlation on the system performance,

we propose an analytical approach to evaluate the performance of the space-diversity

FSO system over correlated Gamma-Gamma (ΓΓ) fading channel. Our approach is

based on approximating the sum of arbitrarily correlated ΓΓ random variables (RVs) by

an α-µ distribution. To validate the accuracy of this method, we evaluate the average

bit-error-rate (BER) performance for the case of multiple-aperture FSO system and

compare it with the BER results obtained via Monte-Carlo simulations.
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1. Introduction

Under clear weather conditions, one of the main challenges in free-space optical (FSO)

communications is to reduce the effect of atmospheric turbulence that can severely

degrade the system performance, especially for relatively long link distances [1]. Efficient

mitigation of the resulting channel fading can be obtained via spatial diversity, which

has been widely adopted for applications in radio and microwave frequency bands. This

can be realized by employing multiple apertures at the receiver and/or multiple beams at

the transmitter [2–7]. However, such techniques lose their efficacy under the conditions

of correlated fading on the underlying sub-channels, i.e., channels between pairs of

transmit-receive apertures [8]. In particular, under strong turbulence conditions, the

required spacing between the apertures at the receiver and/or between the laser beams

at the transmitter is usually too large to ensure uncorrelated fading and unfeasible for

a practical design [5, 6, 9, 10].

In most previous works reported on space-diversity FSO systems, the fading

correlation is either ignored or studied considering a simplified channel model (see

[4, 8, 11, 12]). In this paper, we consider the Gamma-Gamma (ΓΓ) distribution that is

widely adopted for modeling the terrestrial FSO channel due to its excellent agreement

with the experimental data over all turbulence conditions [2]. Under the ideal conditions

of independent ΓΓ fading, the performance of multiple-aperture FSO systems was

studied in [2, 5]. Also, two approximations to the sum of independent ΓΓ random

variables (RVs), based on ΓΓ [13] and α-µ [14] distributions, were used in the

performance analysis of space-diversity FSO systems.

Concerning correlated fading conditions, multi-beam terrestrial and air-to-air FSO

systems were studied in [6] and [15], respectively. In [6], multiple ΓΓ channels were

modeled by a single ΓΓ distribution whose parameters were calculated by approximating

the fading coefficients by correlated Gaussian RVs. However, when employed to

predict the system performance, this solution cannot guarantee sufficient accuracy.

In [15], approximate analytical expressions based on numerical fitting were proposed

to determine the parameters of ΓΓ model taking the fading correlation into account.

However, the proposed expressions depend on the underlying air-to-air system structure

and cannot directly be used to accurately evaluate the BER in general. Also, a

multivariate ΓΓ model with the exponential correlation was proposed in [16], but this

correlation model is not suitable for most FSO system configurations. In a recent

work [17], we proposed the α-µ approximation to the sum of two correlated ΓΓ RVs

for evaluating the performance of a dual-diversity FSO system.

In this paper, we firstly evaluate the fading correlation in a multiple-aperture link

using wave-optics simulations, and study the impact of different system parameters on

the link average correlation coefficient. In contrast to a similar study presented in [6]

for a four-beam single-aperture FSO system, we consider here more practical cases for

the receiver aperture size and link span. To consider different turbulence regimes, we

use different link spans and fix the turbulence strength parameter C2
n. Although, in
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general, C2
n depends on the link distance [18] (because it is altitude dependent), for

horizontal FSO paths that we consider in this work, C2
n can be considered as constant

(irrespective of the link span), which is usually referred to as homogeneous turbulence

conditions [19]. Alternatively, one may consider a fixed link span and consider different

C2
n values (that could correspond to different moments during the daytime [20, 21], for

example) as done in [6].

Note that in a previous work [22] we simply illustrated the effect of link distance and

aperture separation on the fading correlation coefficient and focused on the generation

of correlated ΓΓ RVs in order to evaluate the system BER performance via Monte

Carlo simulations. In contrast to [22], here we present a comprehensive investigation

of the impact of link span, aperture diameter, and aperture separation on the fading

correlation. Furthermore, we explain the presented results using the scintillation theory

and by ascribing the fading correlation to small- and large-scale fading components.

Afterwards, we propose an analytical approach to investigate the impact of fading

correlation on the system BER. For this purpose, we extend the α-µ approximation

method proposed in [17] to the case of multiple diversity by approximating the sum of

arbitrarily correlated multiple ΓΓ RVs by an α-µ distribution. As a matter of fact, the

proposed method in [17] was based on the joint moments of Gamma-distributed RVs.

Therein, we could only find the joint moments of two correlated Gamma RVs in a closed-

form formula. It is worth mentioning that we cannot obtain the joint moments of more

than two correlated Gamma RVs by the same method. To the best of our knowledge,

there is no previous reported work on the analytical performance evaluation of multiple-

diversity FSO systems over arbitrarily correlated ΓΓ fading channels. For this, we derive

joint moments of correlated multiple Gamma RVs based on the moment generating

function (MGF) (as introduced in [23]), and then extend the α-µ approximation method

to deal with the arbitrarily correlated multiple ΓΓ RVs.

The remainder of the paper is organized as follows. After presenting the main

assumptions and a brief introduction on wave-optics simulation tool in Section 2, we

explain our method of approximating the sum of correlated ΓΓ RVs by α-µ distribution

in Section 3. Then, we provide some numerical results to evaluate fading correlation

by considering the case study of a receive-diversity FSO system in Section 4. The

accuracy of α-µ approximation is next investigated in Section 5, where we also contrast

the corresponding analytical performance results with those obtained via Monte Carlo

simulations. Lastly, Section 6 concludes the paper.

2. General assumptions and wave-optics simulations

We assume that the transmitter and the receiver are perfectly aligned. Also, we

reasonably assume that the parameters of the ΓΓ model are the same for all underlying

sub-channels.

We use the split-step Fourier-transform algorithm for the numerical simulation

of optical wave propagation, where the effect of atmospheric turbulence along the
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Table 1. Scale sizes for different Z.

Z(km) σ2
R `1(mm) `2(mm)

1.0 1.29 21.0 11.7

2.0 4.61 14.1 34.9

3.0 9.70 11.2 66.3

4.0 16.43 9.4 104.7

5.0 24.74 8.3 149.4

propagation path is taken into account by considering a set of random phase screens [24].

For each phase screen, we generate random harmonic amplitudes over an Ng ×Ng grid

in the spectral domain based on the modified von Kármán power spectrum, and then,

take the inverse 2-D discrete Fourier transform to obtain the phase fluctuations [2].

To achieve sufficient accuracy at very low spatial frequencies, we perform a spectral

correction in the subharmonic regime and also use the two-dimensional super-Gaussian

function to avoid energy leakage at the edge of each screen [24]. To obtain accurate

results, the grid spacing, grid size parameter Ng, and the number of phase screens are

set appropriately (see [22] for details). Calculating the transmitted and the received

intensities on each receiver aperture, we obtain the channel fading coefficients and then

calculate the Pearson correlation coefficient among them [22].

For the later use, we have provided in Table 1 the spatial coherence radius `1 [2]

and the scattering disk `2 [2], for different link distances Z together with Rytov variance

σ2
R.

3. α-µ approximation method

3.1. ΓΓ and α-µ distributions

Using the ΓΓ model, we consider the normalized received intensity at a receiver aperture

I as the product of two independent Gamma RVs, X and Y , which represent the

irradiance fluctuations arising from large- and small-scale turbulence, respectively. The

PDF of I is [2]:

fI(i) =
2(ab)(a+b)/2

Γ(a)Γ(b)
i
(a+b)

2
−1Ka−b(2

√
a b i), i ≥ 0, (1)

where a and b ≥ 0 denote the effective numbers of large- and small-scale turbulence

eddies, respectively, which can be directly obtained from the link’s parameters [2]. Also,

Γ(.) is the Gamma function and Kυ(.) is the modified Bessel function of the second kind

and order υ. The nth moment of I is [13]:

E{In} =
Γ(a+ n) Γ(b+ n)

Γ(a) Γ(b)
(ab)−n , (2)

where E{.} denotes the expected value.
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The reason behind choosing the α-µ distribution, which is also known as generalized

Gamma, is that it is a flexible distribution that can be reduced to several simplified

distributions such as Gamma, Nakagami-m, exponential, Weibull, one-sided Gaussian,

and Rayleigh [25, 26]. Let us denote the α-µ distributed RV by R. The PDF of R is

given by [26]:

fR(r) =
αµµ rαµ−1

r̂αµ Γ(µ)
exp

(
−µ r

α

r̂α

)
, r > 0, (3)

where α > 0, r̂ = α
√

E {Rα}, and µ is the inverse of the normalized variance of Rα,

defined as:

µ =
(E {Rα})2

Var {Rα}
, (4)

and Var{.} denotes variance. The nth moment of R is given by [26]:

E{Rn} = r̂n
Γ(µ+ n/α)

µn/α Γ(µ)
. (5)

3.2. α-µ approximation to sum of multiple correlated ΓΓ RVs

Let us consider the general case of space-diversity FSO systems with L diversity

branches. The normalized fading coefficient of the ith sub-channel is denoted by Ii,

which is governed by ΓΓ distribution. We approximate the sum Isum =
∑L

i=1 Ii by an

α-µ RV R by setting equal the corresponding first three moments. For the general case of

an M -beam N -aperture FSO system, Isum corresponds to the received signal intensity

after equal gain combining (EGC) [8] when repetition coding (RC) [4] is performed at

the transmitter. In this case, we have L = MN . (Note that EGC has a performance

very close to the optimal maximal ratio combining [8, 11], and RC has been shown to

be the quasi-optimal transmission scheme in transmit-diversity FSO systems [27, 28].)

Then, using the moment-matching method [14,17], we have:

E {R} = E {Isum} = E

{
L∑
i=1

XiYi

}
,

E {R2} = E {I2sum} = E

{(
L∑
i=1

XiYi

)2
}
,

E {R3} = E {I3sum} = E

{(
L∑
i=1

XiYi

)3
}
.

(6)

We notice from (6) that we need the first, second, and third moments of Isum. The

general expression of the nth moment of Isum is given in (7), on the top of this page,

where v1, v2, · · · , vL, and n are non-negative integers [29]. One notes that E {Insum}
depends on the joint moments of the Gamma RVs Xi and Yi. The first, second, and

third joint moments of Xi and Yi can in turn be calculated using (A.5), (A.6) and

(A.17), given in the appendix. Then, setting equal the first three moments of Isum
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E {Insum} = E

{(
L∑
i=1

Ii

)n}
= E

{(
L∑
i=1

XiYi

)n}
=

n∑
v1=0

v1∑
v2=0

· · ·
vL−2∑
vL−1=0

(
n

v1

)(
v1
v2

)
· · ·

(
vL−2
vL−1

)
×E

{
Xn−v1

1 Xv1−v2
2 · · ·XvL−1

L

}
E
{
Y n−v1
1 Y v1−v2

2 · · ·Y vL−1

L

}
(7)

(using (7)) and R (using (5)), we calculate the three parameters of the approximate

α-µ distribution from (6).

Since it is difficult to obtain a closed-form solution for these parameters due to

nonlinear functions in (6), we use numerical methods to calculate α, µ and r̂ (more

specifically, we use the fsolve function of MATLAB) .

Note that to calculate the first three moments of Xi and Yi, we need in (A.5), (A.6),

and (A.17), the correlation coefficients between Xi and Xj and those between Yi and

Yj. These coefficients can be obtained from the correlation coefficients between Ii and

Ij (calculated via wave-optics simulations), as we will explain in Section 5.1.

Finally, note that for the simple case of a single-beam single-aperture FSO system,

where L = 1, the moment matching of (6) can simply be done using (2) and (5).

4. Evaluating fading correlation

4.1. Numerical simulations’ parameters

We consider a diverging Gaussian beam operating at λ = 1550 nm with the beam waist

W0 = 1.59 cm and a curvature radius of the phase front F0 = −69.9 m, corresponding to

a beam divergence θdiv = |2W0/F0| of 0.46 mrad (see Fig. 1(a)). Concerning the FSO

channel, we consider the refractive-index structure parameter C2
n = 6.5×10−14 m−2/3, the

inner scale l0 = 6.1 mm, and the outer scale of turbulence L0 = 1.3 m. Note that these

transmitter and turbulence parameters correspond to the experimental works reported

in [30].

Without loss of generality, we consider a triple-aperture receiver as a case study

(see Fig. 1(b)). Here, due to the specific structure of the receiver, we should have equal

correlation coefficients between the three pairs of sub-channels because we have the

same separation among the corresponding apertures. Therefore, to get more accurate

results, we average the corresponding calculated correlation coefficients and denote it

by ρ. We express the apertures’ diameter and their center and edge separations by DR,

∆C and ∆E, respectively. We limit the total receiver diameter to 250 mm for practical

manufacturing reasons.

For wave-optics simulations, the grid spacing is set to 2 mm, and Ng as well as

the number of phase screens are appropriately set depending on the link span Z.
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(a) (b)

Figure 1. The schematic of the triple-aperture FSO link (a) and its receiver geometry

(b).

To consider practical scenarios, we consider relatively large apertures and long link

spans up to a few kilometers, which leads to too time- and memory-consuming wave-

optics simulations. Nevertheless, the number of samples used for calculating the fading

correlation coefficients was at least 104.

4.2. Study of fading correlation

4.2.1. Fixed aperture diameter DR Let us first fix the aperture size and investigate

the effect of Z and ∆C on ρ. We have shown in Fig. 2 plots of ρ as a function of ∆C

for DR = 50 mm and a range of Z. We have also shown on each calculated point the

error bar corresponding to one standard deviation of the estimation error. As explained

in [2], the reason behind the negative ρ values is that the covariance function of irradiance

fluctuations follows a Bessel function of the first kind and zero order, which has a tail

oscillating around zero. This has also been verified by experiments in [31], and we

confirmed it by wave-optics simulations as well.

We notice from Fig. 2 that, as expected, ρ decreases by increasing ∆C . Also, ρ is

larger for increased Z. The reason is that, with increased Z, there are more atmosphere

eddies that affect the three apertures at the same time. For example, the required

∆C to have almost uncorrelated fading is about 65 and 100 mm, for Z = 1 and 2 km,

respectively. The interesting point is that we notice a non-homogenous increase in ρ

with respect to Z. In fact, by increasing Z, `1 decreases whereas `2 increases. This

means that due to aperture averaging, the large-scale turbulence becomes more and

more predominant. As fading correlation arises partly from small-scale and partly from

large-scale turbulence, for Z & 3 km where DR is quite smaller than `2 and larger than

`1, the increase in ρ by increasing Z becomes relatively slower.

Note that in [22], we had set l0 = 4.6 mm with the other parameters specified here.

Comparing the presented results with those of [22], we conclude that l0 has a negligible

influence on the correlation among sub-channels.
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Figure 2. Average correlation coefficient versus aperture spacing in a triple-aperture

FSO system for different link distances. DR = 50 mm.

4.2.2. Fixed link distance Z Let us now fix Z and see the influence of DR and ∆C

on ρ. Figure 3 shows plots for ρ versus ∆C for Z = 2 and 5 km and a range of DR.

Remember that we limit the total receiver aperture diameter to 250 mm, which confines

the choice of ∆C for a given DR. From Fig. 3 we notice that ρ increases with DR for

a fixed ∆C . In fact, for fixed ∆C , a larger DR leads to a larger aperture area and a

smaller ∆E (see Fig.1). So, there are more turbulent eddies that intervene at the same

time in the scintillation corresponding to the different apertures. (For Z = 2 km and

∆C & 110 mm, ρ is too small and its dependence on DR is not manifest.)

Let us now fix ∆E to observe the effect of increasing DR on ρ. We have rearranged

the results of Fig. 3 in Fig. 4 in order to show plots of ρ as a function of DR. Note that

∆C = ∆E + DR, and hence, increasing DR implies an increase of ∆C for a given ∆E.

We notice that ρ monotonously decreases with increases in DR. In fact, by increasing

DR, the apertures extend outward from the receiver center, therefore encountering more

dissimilar scintillations, which results in a smaller ρ.

We notice from Fig. 4 that ρ is almost independent of DR for sufficiently large ∆E.

To understand this point, we should recall that small scale fading originates mostly from

turbulent eddies of size between l0 and `1, and large-scale fading arises from turbulent

eddies of size between `2 and L0 [2]. Consider first the case of Z = 5 km in Fig. 4(b).

From Table 1, we have `1 = 8.3 mm. Consequently, for ∆E > 10 mm, dissimilar small-

scale scintillations affect the different apertures and the fading correlation mostly arises

from the large-scale fading. Since `2 = 149.4 mm, we receive almost identical large-scale

fading for the different apertures when increasing DR from 30 to 70 mm. Moreover, we

cannot average over large-scale fading at each aperture. Consequently, ρ remains almost

constant by increasing DR. On the other hand, for ∆E . 10 mm, the correlation will

arise also from the small-scale fading; however, due to reduced small-scale fading effect

because of aperture averaging by increasing DR, ρ decreases only slightly by increasing

DR. Note that when ∆E is sufficiently larger than `1, almost no correlation arises from
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Figure 3. Average correlation coefficient for a (1 × 3) system versus the aperture

spacing ∆C for different DR: (a) Z = 2 km, (b) Z = 5 km.

the small-scale turbulence and, hence, ρ is almost independent of DR.

We conclude that for sufficiently large link distances, where `2 � DR, ρ practically

depends on ∆E and is almost independent of DR. This can be important when designing

a practical system.

Concerning the case of Z = 2 km in Fig. 4(a), here we have a larger `1 (14.1 mm)

and a smaller `2 (34.9 mm), and, hence, we notice a more dependence of ρ on DR.

5. Effect of fading correlation on BER performance

For analytical performance evaluation in the case of correlated fading, we use the α-

µ approximation method, described in Section 3. Let us first investigate the accuracy

of approximating the distribution of the sum of correlated multiple ΓΓ RVs by an α-

µ distribution.
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Figure 4. Average correlation coefficient for a (1× 3) system versus DR for different

aperture side-spaces ∆E : (a) Z = 2 km, (b) Z = 5 km.

5.1. Goodness-of-fit test for α-µ approximation

To validate the accuracy of the proposed approximation method, we use the well known

Kolmogorov-Smirnnov (KS) goodness-of-fit test [13,32,33]. We should calculate the KS

test statistic T which represents the maximal difference between the cumulative distri-

bution functions (CDFs) of Isum and R. However, to obtain the CDF of Isum, we need

to randomly generate correlated ΓΓ RVs.

5.1.1. Generating correlated ΓΓ RVs To the best of our knowledge, there is no reported

method to directly generate correlated ΓΓ RVs. Here, we consider the fading correlation

as arising partly from the large-scale and partly from the small-scale turbulence eddies

and denote the corresponding correlation coefficients by ρ
X

and ρ
Y

, respectively. We
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have [22]:

ρ =
aρ

Y
+ bρ

X
+ ρ

X
ρ
Y

a+ b+ 1
. (8)

Remember from Section 2 that we consider the same ΓΓ fading parameters a and b for

different sub-channels. From (8) and for a given ρ, mathematically, we have an infinite

number of solutions for ρ
X

and ρ
Y

. In a recent work [34], we have shown that we can

practically neglect ρ
Y

irrespective of turbulence conditions. Therefore, we generate in-

dependent small-scale fading coefficients and correlated Gamma-distributed large-scale

fading coefficients with ρ
X

= ρa+b+1
b

using the method proposed in [35].

5.1.2. KS test results We consider three multiple aperture FSO cases of (1×3), (1×4),

and (1 × 6) systems. Due to the specific receiver geometry for the (1 × 3) system

(see Fig. 1), we have equal correlation coefficients between each pair of sub-channels.

Although the proposed α-µ approximation method can be applied to an arbitrary

correlation model [33, 36, 37], for the sake of modeling simplicity, let us consider equal

correlation coefficients between all sub-channel pairs for (1×4) and (1×6) configurations

as well. In fact, this corresponds to the worst case correlation scenario [33]. We consider

Z = 2 km and DR = 50 mm and use the correlation coefficients from the results of

wave-optics simulations in Fig. 3(a). For instance, we have ρ1 = 0.12 and ρ2 = 0.21,

corresponding to the aperture edge separations of ∆E = 10 mm and 0, respectively.

To carry out the KS test, we have presented in Table 2(a) the T values for the

considered correlation cases together with the uncorrelated fading case. These results

have been averaged over 100 runs. To obtain these results, we have set the significance

level to α = 5% and generated n = 104 random samples Isum, which corresponds to the

critical value Tmax'
√
− 1

2n
ln α

2
= 0.0136 [13,32]. (Note that this value is independent

of the specific distribution.) This means that the hypothesis that the random samples

Isum belong to the approximate α-µ RV R is accepted with 95% significance when

T < Tmax. The results in Table 2(a) show a good match between Isum and R because

all the values of T are smaller than Tmax. However, we notice that T increases with

ρ, which means less accuracy of the approximation. We have also less accuracy for

increased diversity order. We have further presented the p-values for the corresponding

KS tests in Table 2(b). In fact, if the significance level α is smaller than p, then the

null hypothesis is accepted under the significance level. We notice that all p-values are

larger than α, which confirms the results in Table 2(a).

For the sake of completeness, we have also contrasted in Fig. 5 the probability

density functions (PDFs) of Isum and R for some cases considered in Table 2(a), where

we notice a good fit between them. Lastly, we have provided in Table 3 the values of α,

µ and r̂ after α-µ approximation for the different case studies.
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Table 2. KS test statistic T and p-value for α = 5% and 104 samples.

(a) test statistic T

(1× 3) (1× 4) (1× 6)

ρ = 0 0.0083 0.0082 0.0088

ρ1 0.0090 0.0089 0.0092

ρ2 0.0096 0.0098 0.0101

(b) p-value

(1× 3) (1× 4) (1× 6)

ρ = 0 0.4702 0.5113 0.4261

ρ1 0.4384 0.4596 0.3482

ρ2 0.4101 0.3758 0.2729
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Figure 5. Contrasting the PDFs of the total received intensity Isum obtained

from Monte-Carlo simulations (using the ΓΓ model) and the corresponding α-

µ approximation R with different fading correlation coefficients ρ.

Table 3. Values of α, µ and r̂ for α-µ approximation.

(1× 3) (1× 4) (1× 6)

ρ = 0
α = 0.51, µ = 21.79 α = 0.50, µ = 29.94 α = 0.49, µ = 46.49

r̂ = 2.87 r̂ = 3.87 r̂ = 5.86

ρ
1

α = 0.40, µ = 28.07 α = 0.33, µ = 52.00 α = 0.29, µ = 84.41

r̂ = 2.81 r̂ = 3.77 r̂ = 5.71

ρ
2

α = 0.42, µ = 22.58 α = 0.36, µ = 35.42 α = 0.27, µ = 78.67

r̂ = 2.80 r̂ = 3.74 r̂ = 5.62
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Figure 6. Contrasting BER performance obtained by Monte-Carlo simulation (using

the ΓΓ model) and based on the α-µ approximation method.

5.2. Fading correlation effect on BER performance

We consider uncoded on-off keying modulation and the use of PIN photo-detectors at

the receiver. Neglecting background radiations, we denote the variance of the receiver

thermal noise by σ2
n. EGC is performed on the received signals before demodulation

assuming perfect channel knowledge. Considering Z = 2 km and DR = 50 mm as

before, we evaluate the average BER as a function of the average electrical signal-to-

noise ratio (SNR). Considering a (1 ×N) system, by approximating Isum with R, the

SNR after EGC is given by γ
EGC

≈ R2/(4Nσ2
n), where we have set the optical-to-

electrical conversion coefficient to unity. Then, the average BER can be calculated

as [17]:

Pe ≈
1

2

∞∫
0

p
R

(r) erfc

(
r

2
√

2Nσn

)
dr. (9)

We have contrasted in Fig. 6 the BER performance obtained via Monte Carlo simulations

based on the ΓΓ model and those obtained based on α-µ approximation from (9),

where the average SNR for one branch is taken as the reference. For reference, we

have also shown plots for the (1 × 1) system. Notice that we have generally a good

agreement between the two sets of results. Although quite negligible, the difference is

more considerable for larger ρ: for the (1× 3) system, the SNR difference between the

corresponding curves is around 0.05 and 0.75 dB at the target BER of 10−6 for the cases

of ρ1 and ρ2, respectively. Meanwhile, we notice that there is a performance degradation
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of about 2.1 dB at this BER from ρ1 = 0.12 to ρ2 = 0.21 (see [34] for a more detailed

analysis of the effect of fading correlation on the system performance). We also have a

larger difference for increased diversity order: it is about 1.1 and 1.2 dB for (1× 4) and

(1× 6) systems, respectively, with ρ2 at the BER of 10−6. These results confirm those

of KS test in Table 2(a). For the sake of completeness, we have also shown in Fig. 6

results for the (1 × 6) system with independent fading, where we notice an excellent

match between the BER plots.

Lastly, it is worth mentioning that there is a practical limit on the number of

apertures. This is because the relatively small performance improvement achieved

cannot justify the increased receiver size and specially the system complexity and cost.

6. Conclusions

We investigated the fading correlation in space-diversity FSO systems. Considering

the case study of a (1 × 3) system and realistic system parameters, we illustrated the

effect of the link distance Z, receiver apertures’ size DR and aperture spacing ∆C on

the fading correlation. We showed that for relatively large Z, ρ depends mostly on

the aperture edge separation ∆E and is almost independent of DR. On the other

hand, in order to evaluate analytically the system performance under correlated fading

conditions, we proposed to approximate the sum of arbitrarily correlated ΓΓ RVs by an

α-µ distribution. We verified the accuracy of this method by the KS statistic test and

by contrasting the calculated BER performance with that obtained via Monte Carlo

simulations based on the ΓΓ model. Although we noticed a lower accuracy for increased

correlation coefficient and diversity order, we showed that overall, the accuracy of the

method is quite acceptable.
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Appendix: Derivation of third-order moment of correlated Gamma RVs

We explain here how to obtain the moment generating function (MGF) of multiple

correlated Gamma RVs. Then, using this MGF, we derive the first three joint moments

of L arbitrarily correlated Gamma RVs used in Subsection 3.2.

Lets consider the vector W = [W1,W2, · · · ,WL], whose L elements are arbitrarily

correlated but not necessarily identically distributed Gamma RVs, which have equal
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shape and inverse scale parameters, denoted by m1, m2, ..., mL, respectively. We also

denote the auto-correlation matrix of W by RW. Without loss of generality, we assume

that the elements Wi are arranged in ascending order of their fading parameters, i.e.,

1/2 6 m1 6 m2 6 · · · 6 mL. The MGF of W, denoted by MW(s), can be expressed

as [23]:

MW(s) =MW(s1, s2, · · · , sL) =
L∏
i=1

det(I− SiAi)
−ni , (A.1)

where I represents an (L × L) Identity matrix and det(.) denotes matrix determinant.

Also, S1 = S is a diagonal matrix of diagonal entries s1, s2, · · · , sL, denoted by

diag(s1, s2, · · · , sL). In addition, A1 = A is a positive-definite symmetric matrix that

can be determined given mi and RW. Having S1 and A1, the other matrices Si and Ai

correspond to their lower (L− i+ 1)× (L− i+ 1) sub-matrices:

Ai =

 A(i, i) A(i, i+ 1) · · · A(i, L)
...

...
...

A(L, i) A(L, i+ 1) · · · A(L,L)

 , (A.2)

where A(p, q) is the (p, q)-th entry of A, and

Si = diag(si, si+1, · · · , sL). (A.3)

Also, ni in (A.1) denotes the difference of the fading parameters, defined as:

ni =

{
m1, i = 1

mi −mi−1, i = 2, 3, · · · , L.
(A.4)

The first and the second moments of W are calculated in [23] and are presented below.

E{Wj} = mjA(j, j), (A.5)

E{WjWk} = mjmkA(j, j)A(k, k)

+ min(mj,mk)A(j, k)A(k, j). (A.6)

For the moment matching method explained in Subsection 3.2, we also need the third

moment of W that we calculate via the MGFMW(s). For this, we should first calculate

the matrix A (and Ai). Using (A.5) and (A.6), we can show that the correlation

coefficient ρjk
W

between Wj and Wk, which is the (j, k)-th entry of RW, can be written

as:

ρjk
W

=
min(mj,mk)√

mjmk

A2(j, k)

A(j, j)A(k, k)
. (A.7)

Note that A(κ, τ) = A(τ, κ) due to the symmetry of the correlation matrix. Then,

to determine the matrix A, the diagonal entries, e.g., A(j, j), can be determined from

E{Wj} from (A.5). Consequently, the entries A(j, k) can also be determined from (A.7).

The joint moments of W can be directly calculated by taking the derivatives and

partial derivatives of the MGF in (A.1) [38, Theorem 11.7]. To calculate the third
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moment, let us start by giving the definitions of the first and second moments, given by

(A.5) and (A.6), respectively. We have:

∂MW(s)

∂sj
=MW(s)

j∑
i=1

nihi(s), (A.8)

∂2MW(s)

∂sj∂sk
=
∂MW(s)

∂sk

j∑
i=1

nihi(s)

+MW(s)

min(j,k)∑
i=1

ni
∂hi(s)

∂sk
, (A.9)

where hi(s) is defined as:

hi(s) = tr
{(

I− STi AT
i

)−1
(Ei(j, j)Ai)

T
}
, (A.10)

where tr{.} denotes the trace of matrix, (.)T stands for transposition, and Ei(j, j)

represents an (L− i+ 1)× (L− i+ 1) matrix specified below.

Ei(j, j) = diag(0, · · · , 0︸ ︷︷ ︸
j−i

, 1, 0, · · · , 0︸ ︷︷ ︸
L−j

), j ≥ i. (A.11)

Also, the derivative of hi(s) is given as [23]:

∂hi(s)

∂sk
= tr

{
(Ei(j, j)Ai)

×
[
(I− SiAi)

−1 (Ei(k, k)Ai) (I− SiAi)
−1] }, (A.12)

Now, given the definition of the third moment:

E {WjWkWl} =
∂3MW(s)

∂sj∂sk∂sl

∣∣∣∣
s=0

, (A.13)

we calculate the third order derivative as follows:

∂3MW(s)

∂sj∂sk∂sl
=
∂2MW(s)

∂sk∂sl

j∑
i=1

nihi(s) +
∂MW(s)

∂sk

min(j,l)∑
i=1

ni
∂hi(s)

∂sl

+
∂MW(s)

∂sl

min(j,k)∑
i=1

ni
∂hi(s)

∂sk
+MW(s)

min(j,k,l)∑
i=1

ni
∂2hi(s)

∂sk∂sl
. (A.14)

Using some properties of matrix derivation from [39,40], we can obtain the second-order

partial derivative of hi(s) as shown by (A.15) on the top of this page. In addition, we

have: 

hi(s)|s=0 = A(j, j),

∂hi(s)
∂sk

∣∣∣
s=0

= A(j, k)A(k, j),

∂2hi(s)
∂sk∂sl

∣∣∣
s=0

= A(j, l)A(l, k)A(k, j)

+ A(j, k)A(k, l)A(l, j).

(A.16)



Fading correlation and analytical performance evaluation of FSO systems 17

∂2hi(s)

∂sk∂sl
= tr

{
(Ei(j, j)Ai) (I− SiAi)

−1 (Ei(l, l)Ai)

× (I− SiAi)
−1 (Ei(k, k)Ai) (I− SiAi)

−1

+ (Ei(j, j)Ai) (I− SiAi)
−1 (Ei(k, k)Ai)

× (I− SiAi)
−1 (Ei(l, l)Ai) (I− SiAi)

−1
}
. (A.15)

Using (A.8)-(A.16), the general from of third moment is obtained as

E {WjWkWl} =
∂3MW(s)

∂sj∂sk∂sl

∣∣∣∣
s=0

= mjmkmlA(j, j)A(k, k)A(l, l)

+mjA(j, j) min(mk,ml)A
2(k, l)

+mkA(k, k) min(ml,mj)A
2(l, j)

+mlA(l, l) min(mj,mk)A
2(j, k)

+ 2 min(mj,mk,ml)A(j, k)A(k, l)A(l, j). (A.17)

Other third-order joint moments can be calculated from this general equation. For

instance, to calculate E
{
W 2
jWk

}
= E {WjWjWk}, we should just set k = j and l = k

in (A.17).
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