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Abstract—We investigate the effects of fading correlations in
multielement antenna (MEA) communication systems. Pioneering
studies showed that if the fades connecting pairs of transmit and re-
ceive antenna elements are independently, identically distributed,
MEA’s offer a large increase in capacity compared to single-an-
tenna systems. An MEA system can be described in terms of spa-
tial eigenmodes, which are single-input single-output subchannels.
The channel capacity of an MEA is the sum of capacities of these
subchannels. We will show that the fading correlation affects the
MEA capacity by modifying the distributions of the gains of these
subchannels. The fading correlation depends on the physical pa-
rameters of MEA and the scatterer characteristics. In this paper, to
characterize the fading correlation, we employ an abstract model,
which is appropriate for modeling narrow-band Rayleigh fading
in fixed wireless systems.

I. INTRODUCTION

RECENTLY, multielement antenna (MEA) systems that
use diversity at both the transmitter and the receiver have

drawn considerable attention. Consider an MEA that has
and antenna elements at the transmitter and the receiver,
respectively. It has been shown that, as )
grows toward infinity, for a given fixed average transmitter
power, if the fades between pairs of transmit–receive antenna
elements are independent and identically Rayleigh, the average
channel capacity divided by approaches a nonzero constant
determined by the average signal-to-noise ratio (SNR) [1], [2].
This large capacity growth occurs even if the transmitter has no
knowledge of the channel.

The aforementioned assumption of independent and identi-
cally distributed i.i.d. fading has been made in many previous
works that explore the capacity of MEA (e.g., [1], [3], [4]).
However, in real propagation environments, the fades are not
independent due, for example, to insufficient spacing between
antenna elements. It has been observed [5] that when the fades
are correlated, the channel capacity can be significantly smaller
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than when the fades are i.i.d. The goal of this paper is to analyt-
ically investigate the effects of fading correlations on MEA. To
do this, we first need to determine the fading correlation.

There have been many works that study the characteristics
of spatial fading correlation, mainly motivated by the need to
quantify the effect of fading correlation on the performance
of diversity reception systems ( ). One ap-
proach is to record a large number of typical channel realizations
through field measurements or through ray-tracing simulations,
e.g., [5]–[9]. Another approach is to construct a scatterer model
that can provide a reasonable description of the scattering en-
vironments for the wireless application of interest. The advan-
tage of using abstract models is that with a simple and intuitive
model, the essential characteristics of the channel can be clearly
illuminated, and the insights obtained from the model can then
be utilized in planning the detailed measurements and/or sim-
ulations. For an overview of the numerous scattering models,
see [10]. Examples of the abstract model approach include [6]
and [11]–[14]. It must be noted, however, that abstract models
need to be validated. To our knowledge, the modeling of fading
correlation and its effect on capacity when both the transmitter
and receiver employ multiple antenna elements have not been
addressed by previous works.1

In this paper, to model multipath propagation and fading
correlation, we extend the “one-ring” model first employed
by Jakes [11]. This model is appropriate in the fixed wireless
communication context, where the base station is elevated
and seldom obstructed. The spatial fading correlation of a
narrow-band flat fading channel can be determined from the
physical parameters of the model, which includes antenna
spacing, antenna arrangement, angle spread, and angle of
arrival. In this paper, we will derive the capacity distribution
given the spatial fading correlation; the spatial fading correla-
tion can also be applied in research areas related to other MEA
applications [16].

In order to quantify the effect of fading correlation, we focus
on the information-theoretic channel capacity. In this paper,
the channel capacity is treated as a random quantity, which is a
function of the random channel realization. We will show that
an -input -output multiple antenna system consists of

) subchannels, or eigenmodes. The channel
capacity of the MEA is the sum of the individual subchannel
capacities. Fading correlation determines the distributions
of the subchannel capacities and thus the distribution of the

1Driessen and Foschini [15] studied the deterministic channel when only
line-of-sight channel components exist between the transmitting antenna
elements or their images and the receiving antenna elements.

0090–6778/00$10.00 © 2000 IEEE



SHIU et al.: FADING CORRELATION AND ITS EFFECT ON THE CAPACITY OF MEA SYSTEMS 503

MEA capacity. We formulate the upper and lower bounds of
the MEA capacity and present the distributions of the bounds.
However, the distributions of the exact values of MEA capacity
and subchannel capacities are very difficult to compute, and
we employ Monte Carlo simulations to observe histograms of
these quantities.

The remainder of this paper is organized as follows. In Sec-
tion II, we define the notation for MEA systems and introduce
the necessary mathematical background. We present the abstract
multipath propagation model from which the spatial fading cor-
relation is derived. In Section III, we present the analysis of
MEA capacity, most importantly the closed-form expressions
for the distributions of the bounds on MEA capacity given the
spatial fading correlation. In Section IV we employ Monte Carlo
simulations to obtain the histograms of MEA capacity. Con-
cluding remarks can be found in Section V.

II. DEFINITIONS, ASSUMPTIONS, AND BACKGROUND

A. System Model

An MEA system that employs transmitting and re-
ceiving antenna elements is referred to as an ( ) MEA.
In this paper, we focus on single-user to single-user communi-
cation, i.e., the transmitting antennas are collocated, as are
the receiving antennas. In this paper, we assume that the
communication is carried out using bursts (packets) and that the
channel varies at a rate slow enough that it can be regarded as
essentially fixed during a burst. Under this assumption, an MEA
system is linear time-invariant during a burst transmission. Let
the signal transmitted by theth transmitting antenna element

be denoted by , and the signal received by theth
receiving antenna element be denoted by . The im-
pulse response connecting the input of the channel from
to the output of the channel to is denoted by . The
input/output relation of the MEA system is described by the fol-
lowing vector notation:

(1)

where denotes convolution, ,
, , and

is additive white Gaussian noise (AWGN). We useto denote
the conjugate of a number, and and to denote the trans-
pose and conjugate transpose of a vector, respectively. If the
communication bandwidth is narrow enough that the channel
frequency response can be treated as flat across frequency, the
discrete-time system corresponding to (1) is

(2)

where is the discrete-time index.
A real Gaussian random variable with meanand variance
is denoted as . A circularly symmetric complex

Gaussian random variable, denoted by , is
a random variable in which and are i.i.d.

. When the fading is Rayleigh, the channel gain
is modeled as [17]. The noise components

of are assumed to be i.i.d. . The average transmitted

Fig. 1. Illustration of the abstract “one-ring” model. The size of the antenna
sets are exaggerated for clarity.TA : transmitting antennap. RA : receiving
antennal. S(�): the scatterer at angle�. �: angle spread.D : the distance
from object X to object Y.

power, which is equal to the average SNR with this normaliza-
tion of noise power and channel loss, is limited to be no greater
than , regardless of .

B. Abstract Scatterer Model

Fig. 1 shows the “one-ring” model. This model will be em-
ployed to determine the spatial fading correlation of the channel

. As we mentioned in the introduction, this model has been
employed in several studies with some minor variations. The
“one-ring” model is appropriate in the fixed wireless communi-
cation context, where the base station (BS) is usually elevated
and unobstructed by local scatterers, and the subscriber unit
(SU) is often surrounded by local scatterers. For notational con-
venience, in this paper, the BS and the SU assume the roles of
transmitter and receiver, respectively. This designation of roles
does not affect the capacity because the expression for the MEA
capacity is invariant under transposition of, as will be shown
in Section III. The parameters in the model include the distance

between BS and SU, the radiusof the scatterer ring, the
angle of arrival at the BS, and the geometrical arrangement
of the antenna sets. As seen by a particular antenna element, the
angles of incoming waves are confined within .
We refer to as the angle spread. Sinceand are typically
large compared to the antenna spacing, .
The “one-ring” model is basically a ray-tracing model. The fol-
lowing assumptions are generally made in this model [6], [12].

• Every actual scatterer that lies at an angleto the receiver
is represented by a corresponding effective scatterer lo-
cated at the same angle on the scatterer ring centered on the
SU. Actual scatterers, and thus effective scatterers, are as-
sumed to be distributed uniformly in. The effective scat-
terer located at angleis denoted by . A phase is
associated with ; represents the dielectric prop-
erties and the radial displacement from the scatterer ring
of the actual scatterer that represents [6]. Therefore,
rays that are reflected by are all subject to a phase
change of . Statistically, is modeled as uniformly
distributed in and i.i.d. in . The radius of the
scatterer ring is determined by the root-mean-square (rms)
delay spread of the channel [6].

• Only rays that are reflected by the effective scatterers ex-
actly once are considered.

• All rays that reach the receiving antennas are equal in
power.
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Fig. 2. Parameters used to derive the approximations forE[H H ] in the “one-ring” model.

Suppose that there are effective scatterers ,
. The properly normalized complex path gain

connecting transmitting antenna element and receiving an-
tenna element is

(3)

In (3), is the distance from object to object , and
is the wavelength. By the central limit theorem, in the limit of
infinitely many scatterers, constructed from (3) is .
Therefore, in the limit case, the channel constructed according
to the model is purely Rayleigh fading [17], [18]. To study the
fading correlation, we use the following notation. If is an

matrix, then we use vec to denote the
vector formed by stacking the columns ofunder each other;
that is, if , where is an vector
for , then

(4)

The covariance matrix of is defined as the covariance matrix
of the vector vec( ): .
(Note that for a zero-mean complex Gaussian vector, the
autocovariance is specified as the autocovariance matrix of
the vector . Here, because it can be verified
that vec( ) constructed from the “one-ring” model is special
complex Gaussian, the second-order statistics of vec() are
completely specified by [19]. The covariance
between and is

(5)

In general, (5) needs to be evaluated numerically. Fortunately,
when is small, which is often the case in fixed wireless appli-
cations, an approximation exists that offers useful insights. The
approximation is derived using the notation illustrated in Fig. 2.
In a two-dimensional plane, let the-axis be parallel to the line
that connects the BS and the SU. Let denote the dis-
placement between and , and and
denote the projections of on the - and -axis, respec-
tively. Similar notations, , , and ,

apply to the SU side. Let denote the angle at which
is situated, as viewed from the center of the BS antenna relative
to the -axis. When is small

, and
Substituting these ap-

proximations into (5)

(6)

We evaluate (6) for the following special cases (note that
, where is the

Bessel function of the first kind of the zeroth order):

• from one BS antenna element to two SU antenna elements,
as

• from two BS antenna elements aligned on the-axis to
one SU antenna element

• from two BS antenna elements aligned on the-axis to
one SU antenna element

A well-known result for diversity reception systems derived in
[12] states that when maximal-ratio combining is employed the
degradation in capacity is small even with fading correlation co-
efficients as high as 0.5. Here, to attain a correlation coefficient
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lower than 0.5, the minimum antenna element separations em-
ployed by the three cases are , , and ,
respectively.

If the minimum SU antenna spacing is sufficiently greater
than half wavelength, the correlation introduced by finite SU
antenna element spacing is low enough that the fades associ-
ated with two different SU antenna elements can be considered
independent. Mathematically, if the SU antenna spacing is large
enough, we will see that therows of can be approximated
as i.i.d. complex Gaussian row vectors with covariance matrix

, where . Assuming that the rows of
are i.i.d. complex Gaussian vectors with covariance, the

channel covariance matrix is2 . Simi-
larly, if the SU and BS switch their roles as the transmitter and
the receiver, under this approximation .
Note that if , the statistical proper-
ties of are identical to those of the product matrix
where the matrix contains i.i.d. entries,

, and . In summary, if the fades ex-
perienced by different SU antenna elements can be considered
independent, the following approximations can be used to ana-
lyze the MEA capacity:

in the downlink (BS to SU) and

in the uplink (SU to BS) (7)

In (7), the notation means that “the distribution of is
identical to the distribution of .” In Section IV, we use Monte
Carlo simulations to verify that (7) is a good approximation
in the sense that the distribution of the eigenvalues of is
closely approximated.

III. A NALYSIS OF MEA CAPACITY

A. Capacity

In the introduction, we mentioned that communication is car-
ried out using bursts (packets). The burst duration is assumed to
be short enough that the channel can be regarded as essentially
fixed during a burst, but long enough that the standard informa-
tion-theoretic assumption of infinitely long code block lengths
is a useful idealization. These assumptions are expected to be
met in, for instance, many fixed wireless and indoor wireless
applications. In this quasi-static scenario, it is meaningful to as-
sociate a channel capacity with a given realization of channel
matrix . Because the channel capacity is a function of the
channel matrix, the channel capacity is a random quantity whose
distribution is determined by the distribution of. An impor-
tant measure for the channel capacity of an MEA operating in
a quasi-static fading environment is the channel capacity at a
given outage probability, denoted by . To be precise, the
channel capacity is less than with probability .

2The Kronecker product of matricesM andN is defined as

M 
N =

M(1; 1)N M(1; 2)N � � �

M(2; 1)N M(2; 2)N � � �

� � � � � � � � �

:

The channel capacity of a communication system described
by (2) given the channel realization under an average trans-
mitter power constraint is [19], [20]

bits/channel use (8)

where is the covariance matrix of and is the maximum
normalized transmit power. The MEA is an -input -output
linear system with i.i.d. AWGN. With linear operations at both
the transmitter and the receiver, the MEA can be transformed
into an equivalent system consisting of
decoupled single-input single-output (SISO) subchannels. To
show this, let the singular value decomposition of the channel
matrix be . The transmitter left-multiplies
the signal to be conveyed by the unitary matrix . Sim-
ilarly, the receiver left-multiplies the received signal by by

. That is, , , and . Sub-
stituting these into (2), the input–output relationship between

and is

(9)

where the components of the noise vectorare i.i.d. .
Denote the diagonal entries of the nonnegative diagonal matrix

by . Writing (9) component-wise, we
get

(10)

Therefore, the multiplication of unitary matrices and
transforms an ( ) MEA into SISO subchannels with
(power) gains . Note that are the eigenvalues of be-
cause . The MEA capacity is the sum of the
capacities of the subchannels [19]. Suppose that a transmit
power is allocated to the th subchannel, the MEA capacity
is

(11)

The overall transmit power constraint requires that
. The strategy for distributing the power affects the MEA ca-

pacity in (11). Given , the power allocation that maximizes the
MEA capacity is calculated through the “water-pouring” algo-
rithm [20]. In many applications, however, it is more practical to
allocate equal power to these subchannels [21], i.e., .
The channel capacity with a uniform power allocation constraint
is

(12)
Note that if the uniform power distribution is employed, the
MEA capacity is independent of . This property makes uni-
form power allocation a good choice for systems in which the
transmitter cannot acquire the knowledge of. Henceforth, in
this paper, we will assume that uniform power allocation is em-
ployed.
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B. Bounds on MEA Capacity

The distribution of MEA capacity can be calculated given the
distribution of . However, for a general spatial fading covari-
ance and a finite spatial dimensionality, the distribution of
can be very difficult to compute. The exact distributions of
and MEA capacity will be studied using Monte Carlo simula-
tions in the next section. Here, we formulate lower and upper
bounds on MEA capacity based on the fading statistics (7). To
derive these bounds, we need the following mathematical tools.

a) Let be an matrix whose entries are i.i.d.
. The subscript is used to mean “white.” De-

note the decomposition of by , where
is an unitary matrix and is an upper triangular matrix.

The upper diagonal entries ofare statistically indepen-
dent of each other. The magnitude squares of the diag-
onal entries of , say , are chi-squared distributed
with degrees of freedom. The off-diagonal
entries of are i.i.d. . These can be proved by
applying the standard Householder transformation to the
matrix [22], [23]. Clearly,
for any unitary matrices and .

b) For any diagonal matrix and any upper-triangular ma-
trix

c) For any nonnegative definite matrix
.

d) For any unitary matrix and any square matrices and
, and

.
Next, we examine the following two special cases. In the fol-

lowing, we assume that .
Case I: The fades are i.i.d. Substituting into (12),

the MEA capacity can be lower and upper bounded by, respec-
tively

(13)

and

(14)

From a), is chi-squared distributed with
degrees of freedom. Also because is chi-

squared distributed with degrees of freedom,
is chi-squared distributed with

degrees of freedom. In short, the MEA capacity is lower-
bounded by the sum of the capacities of subchannels whose

power gains are independently chi-squared distributed with de-
grees of freedom , and is
upper bounded by the sum of the capacities ofsubchannels
whose power gains are independently chi-squared distributed
with degrees of freedom ,

. The difference between the mean values of
the upper and the lower bounds is no greater than 1 b/s/Hz per
spatial dimension. The lower bound was first derived by Fos-
chini in [21]. In fact, Foschini has proved that the mean values
of the exact MEA capacity and its lower bound, both normal-
ized to perspatial dimension quantities, converge to the same
limit when [21].

Case II: or . We have
shown in Section II that in the “one-ring” model, if the antenna
array inside the scatterer ring (usually the SU) employs a suf-
ficiently large antenna element spacing, the fading covariance
matrix can be approximated by in the downlink (BS
to SU) and in the uplink (SU to BS), and the approxi-
mations in (7) apply. Note that if for
some nonnegative definite, the distributions of and hence
the distribution of MEA capacity can be exactly calculated using
the techniques developed for Wishart matrices [22]. However,
the calculation is generally very difficult because it involves the
zonal polynomials, which are notoriously difficult to compute.
Furthermore, the actual computation does not give us as much
insight into the problem.

Substituting by into (12), we have

(15)

Here and are diagonal matrices whose diagonal
elements are the singular values ofand , respectively. The
diagonal entries of both and are ordered in descending
order of their magnitudes down the diagonal. Substituting

and in (15), the capacity in the downlink
can be bounded by

(16)

and

(17)

Similar to the case when the fades are i.i.d., the MEA capacity
is still lower and upper bounded by the total capacity of
independent SISO subchannels, and the difference between
the mean values of the upper and the lower bound is less
than 1 b/s/Hz per spatial dimension. Due to the spatial fading
correlation, the power gain of theth subchannel is scaled



SHIU et al.: FADING CORRELATION AND ITS EFFECT ON THE CAPACITY OF MEA SYSTEMS 507

by a factor of (or, on decibel scale, augmented by
dB). Note that because the trace of is

equal to , when compared to the situation in which the fades
are i.i.d., the path gains of some subchannels are scaled up
while others are scaled down.

When the number of antenna elements is large, determining
the MEA capacity through simulation is very computation-in-
tensive. The upper bound in (17) can be employed to investigate
the capacity when the number of antenna elements is large. Let

denote the mean value of MEA capacity at a fixed av-
erage total power constraint. For any concave function ,

. Thus, an upper bound of , denoted
by , in the downlink direction can be derived from (17) by
substituting the mean values of chi-squared random variables
for them

(18)

Note that due to the normalization used in this paper, the mean
value of a chi-squared random variable with degrees of
freedom is .

For example, we employ (18) to investigate the effect of angle
spread on the relation between and the number of antenna
elements . The result is displayed in Fig. 3. (The
definitions of broadside and inline linear antenna arrays will be
given in Section IV.)

C. Effective Degrees of Freedom

We have shown in (11) that an ( ) MEA can be
decomposed into an equivalent system of
SISO subchannels whose path power gains are the eigenvalues
of . Based on this decomposition, one would intuitively
expect that the capacity of an ( ) MEA system should grow
roughly linearly with for a given fixed transmitted power,
because if for , (12) can be
approximated by

(19)

However, this high SNR condition may not be met in prac-
tice. For an ( ) MEA, if is much smaller than one
for some , the capacity provided by theth subchannel is
nearly zero. This may occur when the communication system
operates in a low SNR setting, e.g., in long-range communi-
cation application or transmission from low-power devices. On
the other hand, it may occur if with significant probability is
very small, which is a direct result of severe fading correlation.
Here we introduce the concept of effective degrees of freedom

Fig. 3. The effect of angle spread� on the relationship between the upper
bound of mean capacityEEE(C) and the number of antenna elementsn = n =
n . The fixed overall power constraint is� = 18 dB.

(EDOF), which is a parameter that represents the number of sub-
channels actively participating in conveying information under
a given set of operating conditions. It is well known that for
an SISO channel, at high SNR, a-fold increase in the trans-
mitter power results in an increase in the channel capacity of

b/s/Hz. If a system is equivalent to EDOF SISO chan-
nels in parallel, the capacity of the system should increase by
(EDOF ) b/s/Hz when the transmitter power is raised by
a factor of . In light of this, we define EDOF at a given transmit
power and outage probability to be

(20)

We note that EDOF is a real number in . Although the
channel matrix has rank with probability one in

general, the power allocated to (EDOF) out of the dimen-
sions is very poorly utilized. EDOF is determined by the fading
correlation. It is also affected by SNR; the value of EDOF is
higher when SNR is increased.

For an example of how fading correlation affects EDOF, con-
sider the fading correlation in the “one-ring” model when the
angle spread approaches zero. In such a case,
. Therefore, the columns of are perfectly correlated, and

only one of the eigenvalues of has significant proba-
bility of being practically nonzero. The overall effect is that as
the angle spread approaches zero, EDOF approaches one. An
( ) MEA thus degenerates to a ( ) MEA.

IV. SIMULATION RESULTS

In this section, we present the capacity of multielement an-
tenna systems obtained from Monte Carlo simulations. Simula-
tion is necessary because computing the distributions of MEA
capacity, subchannel gains, and subchannel capacities analyti-
cally is very difficult. The results in this section illustrate the
effect of the antenna geometry and the physical dimensions of
the scattering environment on the statistics of MEA capacity.
Another goal is to verify that (7) is a good approximation to the
exact channel distribution.
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(a)

(b)

Fig. 4. Antenna set arrangement. Note the definitions of the angle of arrival
� and the minimum antenna element spacingd. (a) Linear-array MEA and (b)
hexagon MEA.

A. Simulation Algorithm

Fig. 4 shows the arrangement of antenna elements. We have
chosen a fixed number of antenna elements . In
Fig. 4(a), seven antenna elements are equally spaced along an
axis. This is referred to as a linear-array MEA. In Fig. 4(a) we
also define the angle of arrival at the BS for the linear-array
MEA. Following conventional notation [6], we use the term
“broadside” and “inline” to refer to the situations when
and , respectively. In Fig. 4(b), seven antennas are
arranged on a hexagonal planar array. This is referred to as
the hexagon MEA. For planar antenna sets, the hexagonal ar-
rangement achieves the highest antenna density per unit area
for a given nearest-neighbor antenna spacing. Furthermore, the
effects of the angle of arrival are not significant, due to the
symmetry of the hexagon. Three configurations are considered:
broadside and inline linear-array antenna set at the BS with in-
line linear-array antenna set at the SU, and hexagon antenna sets
at both the BS and the SU. The nearest-neighbor separations be-
tween antenna elements of the BS and the SU antenna sets are
denoted by and , respectively. Again, the BS and the SU
assume the roles of the transmitter and the receiver, respectively.

Given , , and , one way to generate the channel realiza-
tion is to randomly select the angular positions and phases of the
equivalent scatterers and computeusing ray tracing. When
the number of scatterers is large, an equivalent way is as follows.
First, compute the channel covariance matrix from
(6). Let and . The in-
stances of can then be generated by premultiplying a white
channel by . That is

(21)

We generated 10 000 instances of channel and collected the
statistics of MEA capacity and ordered eigenvalues of .
The average received SNR is chosen to be 18 dB. For
comparison purposes, the 10% outage channel capacities
of , and systems over i.i.d. Rayleigh-fading

channels given dB are 2.94, 7.99, and 32.0 b/s/Hz,
respectively.

B. Simulation Results

The physical parameters in the “one-ring” model include the
angle spread, angle of arrival, antenna spacing, and antenna
arrangement. First, we investigate the effect of angle spread

. Fig. 5(a) shows the complementary cumulative distribution
function (c.c.d.f.) of channel capacity of the hexagon MEA
versus . The support of the transition region of the c.c.d.f.
curve moves toward lower capacity values as the angle spread
decreases. Note that when the angle spread is extremely small
( ), the c.c.d.f. of the (7, 7) MEA is identical to
that of a (1, 7) diversity reception system with maximal-ratio
combining. Fig. 5(b) shows for the three configurations of
MEA versus . For all three, decreases monotonically as
the angle spread decreases. Intuitively, because the difference
in path lengths from two transmitting antenna elements to
any scatterer becomes smaller as decreases, it becomes
increasingly difficult for the receiver to distinguish between
the transmissions of the various transmitting antenna elements.
Mathematically, the correlation between the columns ofin-
creases as decreases. Fig. 5(c) shows that the EDOF of each
type of MEA indeed decreases as the angle spread decreases.

The simulation also provides the probability density func-
tions (pdf’s) of the ordered eigenvalues of . The magnitude
of is best displayed in decibel units. Let ,
and let denote the pdf of . Fig. 6 displays . As
the angle spread decreases, the following is observed: a) the
median of increases slightly; b) the medians of
decrease; and c) the difference between the medians ofand

increases for all . These observations indicate that sta-
tistically, as decreases, the disparity among, i.e., the dis-
parity among the subchannels in (10), increases. The pdf’s
also provide a convenient way to estimate the EDOF. The av-
erage received SNR necessary to obtain a certain EDOF can be
estimated from Fig. 6 as follows. For a natural number, the av-
erage received SNR necessary for EDOF is approximately

, where is determined by .
Second, we investigate the effect of the BS antenna

spacing . Fig. 7(a) shows the c.c.d.f. of channel capacity
of the hexagon MEA in the large angle spread setting
( ). We find that the channel
capacity increases greatly asincreases. In Fig. 7(a), similar
to Fig. 5(a), the support of the transition part of the c.c.d.f.
curve moves toward higher capacity values asincreases.
Fig. 7(b) and (c) displays the relation between and for
the three types of MEA in the large and small ( ,

) angle spread settings, respectively.
Given a fixed , the capacity of a (7, 7) broadside linear-array
MEA is always higher than that of a (7, 7) hexagon MEA,
which in turn is always higher than that of a (7, 7) inline
linear-array MEA. In Section II, we showed that the effective-
ness of reducing the fading correlation by increasing the BS
antenna spacing along the axes perpendicular and parallel to
the direction of wave arrival are different. To attain zero fading
correlation with inline linear-array MEA’s, the BS antenna
spacing must be times of the spacing required when using
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(a) (b)

(c)

Fig. 5 (a) The c.c.d.f. of channel capacity for hexagon MEA given various angle spreads.dt = dr = 0:5�. The reference curves are the c.c.d.f.’s of channel
capacity when assumingH is a7�7; 1�7, and1�1matrix with i.i.d. ~N(0; 1) entries, respectively. (b)C versus angle spread. (c) EDOF versus angle spread.

(a) (b)

(c)

Fig. 6. The pdf’s of the ordered eigenvalues ofHH based on the “one-ring” model. Here," is thekth largest eigenvalue ofHH andp(� ) is the pdf of
� = 10 log " . The pdf’s are normalized to have the same height for display purpose: (a) (7, 7) MEA with i.i.d. fades; (b) (7, 7) hexagon MEA with a large
angle spread (� = 60 ); and (c) (7, 7) hexagon MEA with a small angle spread (� = 0:6 ).
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(a) (b)

(c)

Fig. 7. (a) The c.c.d.f. of capacity of (7, 7) hexagon MEA with� = 15 ; dr = 0:5�. (b) C versusdt for large angle spread (� = 15 ; dr = 0:5�). (c)
C versusdt for small angle spread (� = 0:6 , dr = 0:5�). In (b) and (c), we use to mark the smallestdt with which the maximum fading correlation
coefficient is 0.5. After the maximum fading correlation coefficient is reduced to under 0.5, the benefit of increasingdt starts to saturate.

broadside linear-array MEA’s. The difference in effectiveness
is confirmed here by simulation. Note that because the Bessel
function governing the relation between antenna spacing and
fading correlation is not monotonic, the MEA capacity does
not decrease monotonically asis decreased. This can be seen
in Fig. 7(b).

Third, we examine the effect of the SU antenna spacing.
Fig. 8(a) shows the c.c.d.f. of channel capacity of the hexagon
MEA in the large angle spread setting (

). Fig. 8(b) and (c) displays versus in
the large and small ( , )
angle spread settings, respectively. The c.c.d.f. curves of MEA
capacity become steeper asincreases. This results in an im-
provement in , but such an improvement is not nearly as sig-
nificant as the capacity improvement while increasing. The
analysis in Section II explains the striking difference between
increasing the antenna spacing at the BS and at the SU, in terms
of effectiveness in improving MEA capacity. Once the antenna
spacing at the SU is more than a half wavelength, the correla-
tion coefficient between any two entries on a column ofis
generally lower than 0.5. The fading correlation is already low
and therefore cannot be reduced significantly by increasing.

We conclude that the angle spread and the BS antenna spacing
perpendicular to the direction of wave arrival at the BS domi-
nates the channel correlation and thus the channel capacity. If
the direction of wave arrival is known to a reasonable accuracy,
it is advantageous to deploy a broadside linear-array MEA. On
the other hand, if omnidirectional coverage is the goal, an MEA
with a symmetric shape, such as the hexagon MEA, is clearly
the better choice.

Fig. 9 compares the eigenvalue distributions of and
given the parameters and

and . Very good agreement is observed. The re-
sults in Fig. 8 also show that the overestimate of channel ca-
pacity caused by assuming the rows ofare uncorrelated is not
substantial. These results demonstrate that (7) is a valid approx-
imation in the downlink if the SU employs an antenna spacing
sufficiently large.

V. SUMMARY

In previous studies that analyzed MEA capacity, a common
assumption is that the fades between pairs of transmit–receive
antenna elements are independent. However, in real propagation
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(a) (b)

(c)

Fig. 8. (a) The c.c.d.f. of capacity of (7, 7) hexagon MEA at various values ofdr with � = 15 ; dt = 0:5�. (b) C versusdr for large angle spread
(� = 15 ; dt = 0:5�). (c)C versusdr for small angle spread (� = 0:6 ; dt = 5�).

(a)

(b)

Fig. 9. The distributions of the eigenvalues ofHH (thick, elevated curves)
andH B (H B ) (thin curves) given the parametersdt = dr = 3� and
� = 15 (a) and0:6 (b).

environment, fading correlation does exist and can potentially
lead to a capacity lower than that predicted with the i.i.d. fading
assumption. In this paper, we started by modeling the multi-
path propagation environment with an abstract model. From the
model, we determine the spatial fading correlation and its effect
on the MEA capacity.

The “one-ring” model can reasonably represent a scattering
environment in which one of the communicating parties, the SU,
is surrounded by local scatterers. The channel correlation based
on the “one-ring” model is a function of antenna spacing, an-
tenna arrangement, angle spread, and the angle of arrival. When
the angle spread is small, expressions for approximate fading
correlation can be formulated to highlight the differences be-
tween how the SU antenna element spacing and the BS antenna
element spacing (both parallel to and perpendicular to the direc-
tion of wave arrival) contribute to the fading correlation.

We showed that an ( ) MEA consists of
SISO subchannels, or eigenmodes.

The MEA capacity is the sum of the individual subchannel
capacities. The gains of these subchannels are thelargest
eigenvalues of . The distribution of these gains is deter-
mined by the fading correlation.
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To investigate the effect of fading correlation on MEA ca-
pacity analytically, we considered the situations in which the
antenna element spacing at the SU is sufficient that the corre-
lation among the entries on any column of the channel matrix
is negligible. We showed that the capacity of an ( ) MEA
can be lower (upper) bounded by the sum of the capacities of

decoupled subchannels with independent path power gains
that are scaled chi-squared distributed random variables with

degrees of freedom. The scaling
factors depend on the fading correlation. The stronger the fading
correlation, the higher the disparity between the capacities of
these subchannels. As the fading correlation becomes more se-
vere, more and more subchannels have gains too small to convey
information at any significant rate. We defined the parameter
EDOF to represent the number of subchannels that actively con-
tribute to the overall MEA capacity.

We performed Monte Carlo simulations to study quantities
that are very difficult to compute analytically, such as the distri-
butions of the eigenvalues of and the MEA capacity. The
results confirm our analysis. The angle spread is a key param-
eter; the MEA capacity generally decreases as the angle spread
decreases. The BS antenna separation perpendicular to the di-
rection of wave arrival is also a very important factor. If the
direction of wave arrival is known approximately, it is advan-
tageous to deploy a broadside linear-array MEA with a large
antenna spacing; but if omnidirectional coverage is the goal, an
MEA with a symmetric shape, such as the hexagon MEA, is
clearly the best choice.
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