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Fading Memory and the Problem 
of Approximating Nonlinear 

Operators with Volterra Series 

STEPHEN BOYD AND LEON 0. CHUA, FELLOW, IEEE 

Ahsfract-Using the notion of fading memory we prove very strong 

versions of two folk theorems. The first is that any time-inuariant (TZ) 

con~inuou.r nonlinear operator can be approximated by a Volterra series 

operator, and the second is that the approximating operator can be realized 

as a finiie- dimensional linear dynamical system with a nonlinear readout 

map. While previous approximation results are valid over finite time 

inlero& and for signals in compact sets, the approximations presented here 

hold for all time and for signals in useful (noncompact) sets. The discrete- 

time analog of the second theorem asserts that nny TZ operator with fading 

memory can be approximated (in our strong sense) by a nonlinear 

moving- average operator. 

Some further discussion of the notion of fading memory is given. 

A 
I. INTRODUCTION 

Volterra Series Operator is one of the form 

and is a generalization of the convolution description of 
linear time-invariant (LTI) operators to time-invariant (TI) 
nonlinear operators. The usefulness of Volterra series hinges 
on their ability to model a very wide class of nonlinear 
operators. Two general approaches can be taken to estab- 
lish this. 

First, one can demonstrate that many explicitly de- 
scribed systems have input/output (I/O) operators given 
by Volterra series. Sandberg [l] has established that a wide 
class of systems have I/O operators which are given by 
Volterra series, the requirement being, roughly speaking, 
that the nonlinearities are analytic. Thus an op-amp (with 
transistors modeled by the Ebers-Moll equations, which 
are analytic) has an I/O operator expressible, at least for 
small inputs, as a Volterra series. 

But many common nonlinear systems are modeled with 
nonanalytic nonlinearities. For example the I/O operator 
of a control system containing an ideal saturator, that is, a 
memoryless nonlinearity with characteristic 
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(which of course is not analytic) can easily be shown not to 
have a Volterra series representation valid for any inputs 
for which the saturator threshold is exceeded.l One could 
reasonably argue that even though the I/O operator of 
such a control system does not have an exact representa-. 
tion as a Volterra series operator, it could be approximated 
by one, for example by replacing the saturator with a 
polynomial approximation. But exactly what do we mean 
by approximate here, that is, over what set of signals a.nd 
in what sense can the I/O operator be approximated by a 
Volterra series operator? This is one of the questions 
addressed in this paper. 

The second approach to establishing the generality of 
Volterra series is axihmatic in style, and conceptually more 
satisfying. Here one demonstrates that under only a few 
physically reasonable assumptions about an operator N 
(such as causality, time-invariance, and some form of con- 
tinuity) there is a Volterra series operator fi which ap- 
proximates, in some sense, N. No assumption whatever is 
made concerning the internal structure or realization of N. 

The idea of such an approximation is not new, and in 
fact is discussed in the original work of Volterra [3], who 
cites Frechet 141. Even in this early work one can find the 
basic idea (clouded by archaic mathematics): there is an 
analogy between ordinary polynomials and finite Volterra 
series, and hence some analog of the Weierstrass approxi- 
mation theorem should apply to approximating general 
nonlinear operators with finite Volterra series. 

Wiener rekindled interest in this problem at MIT in the 
forties and fifties [5]-[7], and since then various researchers 

have considered the problem [8]-[ll]. A clear discussion of 
a typical approximation result can be found on pages 
34-37 of Rugh’s book [12]. The result presented there is: 

Theorem: Let K be a compact subset of L’[O, T] and 
suppose N: K --j C[O, T] is a TI causal continuous oper- 
ator. Let z > 0. Then there is a Volterra series operator fi 
such that for all u E L and 0 < t < T 

INu(t)-&(t)l<e (1.1) 

(the notation will be precisely defined soon). 
Roughly speaking, all of this work has the following 

problems: 
(1) The input signals are nonzero only on a finite time 

interval [0, T], 

‘A Volterra series operator which is linear for small inputs is in fact 
linear for all inputs; see Boyd et al. [2]. 
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(2) The approximation is always on a compact subset of 
the input space, 

(3) The approximation only holds over a finite time 
interval [0, T]. 

While demonstrating that Volterra series operators can, 
at least in a very weak sense, approximate a general TI 
causal continuous operator, these results are not really 
satisfying. (l), (2) and (3) are severe restrictions: we would 
really like an approximation which allows input signals 
defined on infinite time intervals and which approximates 
the operator N over an infinite time interval. Problems 
(l)-(3) preclude, for example, periodic forcing signals which 
start at t = 0. Rugh concludes his discussion with the 
following comments concerning (2): “. . . I should point out 
that the main drawback is in the restrictive input space K. 
The compactness requirement rules out many of the more 
natural choices for K.” 

The compactness requirement (2) and the finite time 
interval requirements (1) and (3) come from the use of the 
Stone-Weierstrass theorem, which underlies all of these 
approximation results, and so might seem unavoidable. 
Indeed we will see an example which demonstrates that 
without additional assumptions we cannot find an ap- 
proximation for which (1.1) holds for all t E IR. But we will 

demonstrate that all of these drawbacks can be overcome if 
the usual continuity assumption on N is strengthened 
slightly to ensure that N has fading memory. In particular, 
our approximation results (I) will hold over useful (non- 
compact) sets of signals, possibly nonzero for all t E Iw, 
and (II) will hold for all time, not just on an interval [0, T]. 

The structure of this paper is as follows: Section II 
contains the preliminaries, Section III introduces the fad- 
ing memory concept, Sections IV and V contain the main 
approximation theorems. In Section VI we give discrete- 
time approximation results, one of which concerns ap- 
proximation by nonlinear moving average (NLMA) oper- 
ators. In Section VII we consider a simple illustrative 
example, in Section VIII we give two other applications of 
the notion of fading memory, and in Section IX we men- 

tion how the results of this paper can be put in a cleaner 
(but less concrete) mathematical form. 

II. NOTATION, DEFINITIONS, AND PRELIMINARY 

DISCUSSION 

2.1. Notation and Definitions 

C([w) will denote the space of bounded continuous func- 
tions :lR + Iw, with the usual norm \]u]] ~5 supIER]U(t)(. lF_ 
will denote { tl t I 0}, and C(W) will denote the space of 
bounded continuous functions on Iw --) with the usual norm 
l]ullA sup,I,,]u(t)]. A function F from C(Iw-) into aB is 
called a functional on C(Iw -), and a function N from 
C([w) into C(lR) is called an operator. we will usually drop 
the parentheses around the arguments of functionals and 
operators, writing, e.g., Fu for F(U) and Nu( t) for N(u)(t). 

U, will denote the r-second delay operator defined by 

(u,u)(t) A u(t - r). 

We say an operator N is time-invariant (TI) if U,N = NU, 
for all 7 E R. N is causal if u(r) = v(r) for r 5 t implies 

Nu(t) = Nu(t). N is continuous if it 

tion : C(W) + C(lR). 
With each TI causal operator N 

tional F on C(lR _ ) defined by 

Fu p Nu,(O) 

for u E C(lR _ ), where 

ue( 1) A 
i 

u(t), 
4% 
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is a continuous func- 

we associate a func- 

(2.1.1) 

tso 

t>o 

is just a continuous extension of u to C(R) (any other 
would do). In words, F maps the past input to N (which is 
an element of C([w _ )) into the present output of N (which 
is in [w). N can be recovered from its associated functional 
F via 

Nu( t) = FPU-,u (2.1.2) 

where P: C(a) --+ C(lR -) truncates an element u E C(lR) 
into an element of C(Iw _ ): 

Pu(t) c u(t) for t10. (2.1.3) 

It is easy to see that N is continuous if and only if F is, 

so equations (2.1.1) and (2.1.2) establish a one-to-one cor- 
respondence between TI causal continuous operators N 
and continuous functionals F on C(lR _ ). For this reason 
we often see nonlinear functionals studied, where we are 
really interested in their associated TI operators. This has 
caused some confusion; some authors have mistakenly 
used the word functional to refer to what are really oper- 
ators. 

We can reexpress causality and continuity as follows: 
A TI operator N is causal and continuous iff for each 
u E C(R) and e > 0 there is a 6 > 0 such that for all v 

suplu(t)-v(t)J<6+Nu(O)-Nv(O)I<e. 
f<O 

(2.1.4) 

That is, a TI operator N satisfying (2.1.4) is causal and 
continuous, and a TI causal continuous operator satisfies 
(2.1.4). 

2.2. Finite Volterra Series 

Definition: A (finite) Volterra Series Operator N:C(R) 
-+ C(lR) is one of the form 

Nu(t)=h,+ 5 jm...~“h,,(~l,~..,~~) 
n=l 0 

.u(t-71)...u(t-7,)d71...d7,, (2.2.1) 

where h n E L1(lR : ), that is, * 

I 

(Sometimes a finite Volterra series operator is called a 

‘Volterra series with integrable kernels might be called srcrhle Volterra 
series; there is another interpretation of (2.2.1) which could be called 
finite-time Volterra series. For finite-time Volterra series the kernels are 
required to be locally integrable, but the inputs are restricted to be zero 
for negative time. Roughly speaking, this allows unstable systems to be 
considered. 
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polynomial operator.) That such an N is a TI causal 
continuous operator is easily verified; a proof can be found 
in Boyd et al. [2]. 

III. THE FADING MEMORY CONCEPT 

Roughly speaking, an operator is continuous if input 
signals which are close (meaning, the peak deviation of the 

signals over all past time is small) have present outputs 
which are close. We will see that a slight strengthening of 
continuity is much more useful. Intuitively, an operator has 
fading memory if two input signals which are close in the 
recent past, but not necessarily close in the remote past 
yield present outputs which are close. For dynamical sys- 
tems, fading memory is related to the notion of a unique 
steady state (see Section 8.2). 

The concept of fading memory has a history at least as 
long as Volterra series themselves. Indeed we find it in 
Volterra [3, p. 1881: 

A first extremely natural postulate is to suppose that 
the influence of the (input) a long time bef&e the 
given moment gradually fades out. 

and in Wiener [5, p. 891: 

We are assuming (the output) of the network does 
not depend. on the infinite past. If the response of 

this apparatus depends on the remote past, then the 
Brownian motion is not a good approximation be- 
cause we shall always have to consider the remote 
past. So we are considering networks in which the 

output is asymptotically independent of the remote 
past input.. . 

and in various other work over the years [13], [6]. In [14] 
Root mentions operators with finit? memory. The fading 
memory assumption, then, is by no’ means a new stronger 
restriction on the operators to be approximated. It is 
simply an old assumption whose full power has not been 
used. 

How should we define fading memory? The problem is 
that in (2.14) we want Nu(0) to depend less and less on the 
input when elapsed time - t is large. To do this we simply 

introduce a weight in (2.1.4). 
Definition: N has Fading Memory (FM) on a subset K 

of C(R) if there is a decreasing function w: Iw + -+ (O,l], 
lim f ~ mw( t) = 0, such that for each u E K and e > 0 there 

is a 6 > 0 such that for all u E k 

suplu(t)-v(t)lw(-t)G-,INu(O)-Nv(0)I-x 
110 

(3.1) 

(This should be compared to (2.1.4).) 
w will be called the weighting function; we will say that 

N has a w-fading memory, for example if w(t) = e-” then 
we might say N has a h-exponentially fading memory on 
K. Note that since w(t) 11, an operator with FM is 
continuous, so FM is indeed stronger than continuity.3 

3 Our requirements on the weighting function w are more stringent than 
necessary. All we really need is w > 0 and lim,, j w(r) = 0; our ad- 
ditional assumptions simplify some of the proofs m &e sequel. 

The FM property can be clearly expressed in terms of 
the functional F associated with N as follows: On C(W _ ) 
define the weighted norm 

Ilull, e llu(t)w(- t)ll= ;~~l”(‘)w( 7 t)l. (3.2) 

Then N has FM on K if and only if F is continuous with 
respect to the weighted norm II.(Iw on PK 2 { Pulu E K}. 

Remark I: As in (2.1.4) ,above, if a TI N has fading 
memory, then N is causal. 

Remark 2: It is interesting to note that this is very close 
to Volterra’s “definition” of fading memory given on p. 
188 of [3] (which unfortunately is not clear enough to be a 
real definition). 

Remark 3: For LTI operators, having a fading memory 
is equivalent to having a convolution representation; see 
Section 8.1. 

Remark 4: It can be shown that all finite Volterra series 
operators have fading memory on all of C(R) 

Perhaps the best way to appreciate the notion of fading 
memory is to consider an example of a continuous operator 
which does not have fading memory. 

Example (Peak-Hold Operator): Define Npk: C(Iw) ---) 

C(R) by 

Npku(t) p supu(~) 
711 

that is, Npk is a peak-hold operator. Npk is continuous, 

since for all u, u E C(Iw) 

llNp,u - Np,ulI 5 Ilu - 4. 

Nevertheless Npk does not have a fading memory.4 
Let us consider the pr?blem of .approximating Npk by a 

Volterra series operator N. Consider the signal 

1 l- ItI, 
Uo(‘P 0 

ItI I1 

> ItI >l. 

Then 

t<-1 
t 2 0. 

Now for any Volterra series operator A we have 

I&+,(t) = h, for t-c-1 

and 

Iim i?;ruo( t) = ho. 
r-00 

(This is a consequence of the steady-%tate theorem [2].) 
Hence for any Volterra series operator N 

llNpkuO - ho(I 2 max { lh,l, II- h,(} 2 4. 

Thus we may conclude no Volterra series operator can 
approximate N, within 0.1 over all time, even for the single 
input uO. In fact the same argument holds for any operator 
fi with fading memory, if we substitute $0 (which must be 
a constant) for ho. In particular, Npk itself does not have 
fading memory. 

4T’here are also continuous LTI operators which don’t have fading 
memory, but they are quite pathological; see Section A3. 
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This example suggests that approximation results which 

rely only on the continuity of the operator, and no fading 
memory assumption, will be very weak. In particular, the 
approximations need not hold for all time, even on com- IL .mvo 

+=-” ” 1=-I t=o 
pact sets of signals (in this example, the signal set has only 
one element, u,,, and so is compact). And yet a very strong 

Fig. 1. A sequence of signals in K- which contains no (C(W- ). i.e., 
uniformly) convergent subsequence. But in the weighted norm, U, + 0. 

approximation is possible for operators with fading mem- 

ory- Lemma I: Consider the weighted norm II.II w on C(R _ ) 

IV. APPROXIMATION BY VOLTERRA SERIES defined above in (3.2). K- is compact with the weighted 

Theorem 1 (Approximation by Volterra Series): Let e > 0 norm II* IIW. 

and 
The proof uses the Arzela-Ascoli theorem and a diago- 

K 4 {u E C(lw)]]]u]] 5 MI, ]]U,u - u]] I I&T for 7 2 O}. 
nal argument and is in the Appendix, Section Al. Since 
Lemma 1 is the key to obtaining approximations valid for 

(4.1) 
all time and on noncompact sets, some discussion is in 

Suppose that N is any TI Operator with fading memory on 
order. Note that K- is not compact with the standard 
nOrm Il. lI To see this let 

K. Then there is a finite Volterra series operator N such 
3 

that for all u E K uo( t) A max (0, Mi - M21tl} 
A 

IlNu - Null I 6. (4.2) and consider the sequence v, A PU-,u, in KM (see Fig. 1). 

Remark 1: The assumption on N is extremely weak. As With the standard norm, this sequence has no convergent 
mentioned earlier, it does not in any way concern the subsequence, and hence K- is not compact in C(R _ ). Yet 
internal structure or realization of N. For example, N intuitively, to a device with fading memory the sequence v, 
could arise from a nonlinear PDE, but even this is not should appear to be converging to zero, and this is indeed 
necessary. true: (Iv,I(, -+ 0 as n -+ cc. The idea of lemma 1 is that the 

Remark 2: We can reexpress K as fading memory makes K- “appear” compact to our func- 

K= {uEC(OB)]]u(t)]lMI, tional F. 

I,(,)-.(t)lIM,(s-t)fortss}. 
Continuing our proof, we define a set of functionals G 

on KM which are continuous with respect to the weighted 
Thus K can be described as those signals bounded by M, 
and having Lipschitz constant M2, that is, slew-limited by 

Iv*.5 

Remark 3: The signals in K are not “time-limited” (i.e., 
zero outside of some interval such as [0, T]), and the 
approximation, ]Nu(t)- &u(t)] 5 f holds for all t E R, not 
just in some interval [0, T] (cf. the theorem in Section I, 

(l-1)). 

norm ll-llw. 

GA (G]Gu=l=&)u(--7)dq 

J m]g(7)]w(+‘d,r <co 
0 

Rem&k 4: K is not a compact subset of C(R)! 
Before starting the proof of Theorem 1, we state the 

Stone-Weierstrass theorem in a convenient form (see, e.g., 
Dieudonne [ 151): 

Note that since 0 < w(t) < 1, the condition g/w E L’(lR + ) 
implies g E L’(tR + ). The fact that any G E G is continuous 
with respect to the weighted norm 11. llw follows from 

(Gu - Gv( 

Suppose E is a compact metric space and G a set of 
continuous functionals on E which separate points, that is, 
for any distinct U, v E E there is a GE G such that 
Gu # Gv. Let F by any continuous functional on E and 
c > 0. Then there is a polynomial p: ‘lRM + IF8 and 

G,; . -7 G, E G such that for all u E E 

IFu-p(G,u;..,G,u)l<~. 

~I~m(l~(t)lw(t)~‘)(lu(-f)-v(-f)lw(f))df 

I I SUP I+ t)- u(- t)lw(t)jfwlg(t)lw(t)‘dl 
t20 

= Ilu - vll,jowls(t)lw(t)-‘d~ 

Lemma 2: The functionals G separate points in K-. 
Proof: Let U, u E K-, u # u. Define 

Proof of Theorem 1: Suppose K is given by (4.1) and 
N has fading memory on K, with weighting function w. 
Let F be the functional associated with N, given by 
(2.1.1), and define K- p PK, that is 

K-= {Pulu~K} 

g,(t)P(u(-t)-v(-t))w(t)e-‘. 

Then 

/mlgo(th(t)-ldf 2 Ilull+ Il4I <* 
0 

(P is the projection (2.1.3).) so let Go be the functional in G associated with go as in 
(4.3). Then 

‘In fact K can be any bounded equicontinuous set in C(R); the K 
defined in (4.1), while far from the most general, has a nice engmeering 
description. 

Gou-Gov=/m(u(-t)-v(-t))2w(t)e-‘dt>0 
0 



1154 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-32, NO. 11, NOVEMBER 1985 

since u and v are continuous and u # v. This proves 

Lemma 2. 

Now by Lemmas 1 and 2 and the Stone-Weierstrass 
theorem, we conclude that there is a polynomial p: IF8 M -+ Iw 
and G,; . 0, G, E G such that for all u E K- 

(Fu-p(G,u;..,G,u)l<~. (4.4) 

Explicitly writing out p: 

p(G,u; . .,G,u) 

K 

=cu,+ C C ai,...inG;,u*..G,n~ 

n=l il,.‘.,i”lM 

=h,+ 5 /-..* /-h,,(q;..,qJ 
n=l” 

r 

.~(-7~)...u(--~)d7~...dr, 

where ho p a0 and 

K 

and the g, are the kernels of the functionals G, as in (4.3). 
We mentioned above that the g,‘s are in L’(R +), so 

h, E L’(R : ), and thus they are the kernels of a finite 
Volterra series operator which we call 8. We finally show 
that $ is the desired finite Volterra series approximator of 
N. Let UE K and t ElR. Then PU-,UE K_, hence by 

(4.4) 

IFPU-,u - p(G,PU-,u; . ‘,G,PUp,u)( 

=jNu(t)-@u(t)J<c. (4.5) 

Since (4.5) is true for all t E IF!, we conclude for all u E K 
n 

IlNu - Null < c 

which proves Theorem 1. 

V. APPROXIMATION BY FINITE-DIMENSIONAL 

DYNAMICAL SYSTEMS 

5.1. Linear-Dynamic Polynomial Readout Approximators 

The block diagram of fi is shown in Fig. 2. Note that it 
consists of a single-input multi-output linear time-invariant 

operator followed by a multi-input single-output memory; 
less nonlinearity. One question arises immediately: can the 

LTI block be realized as a finite dimensional linear 
dynamical system? We will now show that it can. 

In the proof of the approximation theorem we used only 
two properties of the set G of functionals: first, that each 
G E G has a w-fading memory, and second, that G sep- 
arates points in K_. 

Let us examine the first property. For a functional G on 
C(lR _ ) given by 

Gu= 
J 

“g(+(- ,r)dT (5.1.1) 
0 

(where g E L’(R + )) the necessary and sufficient condition 
that it have w-fading memory, that is, be continuous with 
respect to the w-weighted norm, is 

/ 
CCIg(*)(w(+1d7<m. 

0 
(5.1.2) 

r---------j 
I 

- *g1 I 
I 

1 -32 / 
n 

” 
I . Pi.1 Nu . 

. 

. 1 : 

Single-Input Multi-Output Multi-Input Single-Output 

LTI Msmarylcss Nonlinearity 

Fig. 2. Structure of the Volterra series approximator. 

Now we make the observation that if a TI operator N has 
a w-fading memory, then it has a &fading memory for any 
weighting function ii, which dominates w (i.e., E(t) 2 w(t)). 
By using the weight 

k(t) A max{ w(t), (l+ t)-‘} 

(and relabeling it w) we may simply assume that the weight 
satisfies w(t)-’ < lt t. Under this assumption if follows 
that every G which comes from a finite dimensional (ex- 
ponentially stable) linear dynamical system has a w-fuding 
memory, since the integrand on left-hand side of (5.1.2) is 
exponentially decaying, that is, 

~~lg(7)IW(7)-1d7_CjOliMe-h’(l+t)dtcm 

if Ig(t)l I Me-“. In the next subsection we will show that 
the G’s which come from finite-dimensional linear dynami- 
cal systems separate points in C(R _ ). From this discussion 
we conclude: 

Theorem 2 (Approximation by Finite-Dimensional 
‘Dynamical Systems): Let e > 0 and K be given by (4.1). 
Suppose that N is any TI operator with fading memory on 

K. Then there is a finite Volterra series operator I’? such 
that for all u E K 

A 
11 Nu - Null I E 

where fi is the I/O operatbr of the dynamical system 

i=Ax+bu y=p(x) (5.1.3) 

where A is the exponentially stable M X M matrix and p: 
IR M + R is a polynomial. 

We have shown that under one extremely weak condi- 
tion on a TI operator, namely that it have fading memory, 

it can be approximated in the strong sense of (4.2) by the 
I/O operator of a finite-dimensional linear dynamical 
system with a nonlinear (indeed, polynomial) readout map, 
as shown in Fig. 3. In principle, then, a dynamical system 
of the form (5.1.3) can always be used as a macro-model’6 
of a complicated or large-scale nonlinear system, as long as 
the system has a fading memory. Whether an acceptable 
approximation is possible with M reasonably small is, of 
course, a harder question. 

5.2. Wiener’s Laguerre System 

The idea that a system of the form (5.1.3), shown in Fig. 
3, could be used to approximate a very wide class of TI 
operators is not new. Wiener considered the case where the 

LTI block in Fig. 3 consists of a set of Laguerre filters, that 
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where z E Iw r (usually r is much larger than M) and 
z(0) = 0. In fact this is a special case of an exercise in 
Rugh’s book [12, p. 1301; here is a simple way to see it. 
Suppose the polynomial p in (5.1.3) is of degree n. 

Let z be a vector consisting of all 

Linear Memoryless Nonlinear 

M+k-1 
k 

Dynamic System Readout MaP 

Fig. 3. Approximator consisting of linear dynamical system with poly- 
monomials of degree I n formed from xi; . ., x,. Clearly 

nomial readout map. we can write y = p(x) in the form (5.3.2), where H con- 
tains the coefficients of p. 

We will now verify that z satisfies an equation of the 

Fig. 4. Wiener and Lee’s Laguerre lattice filter. All components have 
value 1. 

is, (5.3.4) 

(+A)-‘b=fi 1 ~ . . . 
[ 

l-s (l-4 
M-l T 

l+s’ (l+s)2’ ’ (l+s)M 1 
(5.1.4) 

which Lee realized with the lattice filter shown in Fig. 4 
(see Wiener [5, p. 92]).6 

To see that Wiener’s Laguerre system can approximate 
any TI causal oberator with fading memory in the strong 
sense of Theorems 1 or 2 (a result evidently unknown to 
Wiener and his coworkers), we need to establish that the 
baguerre functionals {L,, L,, . . . } given by 

L,u +% 
/ 

“r,(t)u(-t)dt 
0 

where i,(s) = a(1 - ~)~+‘(l+ s)-~, separate points in 
C([w _ ). If not, there are ui, u2 E C(R -) such that L,u, = 
L,u, for all k. Let u = ui - u2, so that L,u = 0 for all k. 
We will show that u = 0, which will prove that the Laguerre 
functionals separate points in C(lR _ ). Note that lk(t)e’12 
EL~(IW+) and ~(-tt)e-‘/~~L~(lR+) and 

L,u=J~((,(t)e”2)(u(-t)e-“2)~~=0 
0 

for all k. But the span of the functions lk(t)e’12 is dense in 
L2(lR + ), so we conclude u( - t)e-‘j2 = 0 and hence u = 0. 
This proves that the Laguerre functionals separate points 
in C(lR _ ); since they are a subset of the functionals which 
come from finite-dimensional linear dynamical systems, 
a fortiori these functionals separate points, a fact used in 
the previous subsection. Of course there are many other 
sequences of functionals which separate points in C(iR _ ). 

5.3. A Note on Approximation by Bilinear Systems 

The dynamical system approximator (5.1.3) can be real- 
ized as a bilinear system, that is, one of the form 

i = Ez + Fzu + Gu (53.1) 

y=Hz (5.3.2) 

6The only real difference between (5.1.4) and (5.1.3) is that in (5.1.4) we 
require the minimal polynomial of A to be (S + l)“, since a change of 
coordinates can change the numerator polynomials. See, e.g., Section 7.2. 

m,k=l 

M 

+ C imxc . . . xk-1 . . . x&bmu (5.3.5) 
m = 1 

using (5.1.3). Since each monomial in (5.3.4) and (5.3.5) 
has degree (in x) I n, we can reexpress this as 

i,= c E,,z, + c F,PzP +G,u 
p=l p=l 

which is of the form (5.3.1). 

In (5.3.1) the readout map is linear, but the vector field 
contains the product term Fzu (cf. (5.1.3)). 

Approximation by bilinear systems has received much 
attention, but in a context different from that considered 
here. Usually (but not always) the systems to be approxi- 
mated are dynamical systems with analytic vector fields. 
The approximation is generally not in an I/O sense, but 
rather in the sense of a perturbational expansion of x in u, 
meaning the input-to-state maps agree to order r in a. See, 
for example, Fliess [17], Sussman [18], or Brockett [19]. 

The discrete-time analog of bilinear systems are state- 
affine systems, Which have been used to model complicated 
processes, e.g., in [20]. 

VI. DISCRETE-TIME THEOREMS 

6.1. Approximation by Discrete -Time Volterru Series 

In this section we present analogous results for discrete- 
time systems. H will denote the integers, h + (h-) the 
nonnegative (nonpositive) integers. Our signal space C(W) 
is replaced by P, the space of bounded sequences (i.e., 
functions : Z + I%) with norm 

II4 A sWu(k)l. 
k 

The definitions of time-invariance, causality, and fading 
memory for discrete-time systems require only notational 
changes. For example a TI operator N: I” -+ I” has fading 
memory on a subset K of 1” if there is a decreasing 
sequence w: Z + -+ (O,l], lim, ,,w(k) = 0, such that for 
each u E K and c > 0 there is a 6 > 0 such that for all 
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, 

PC.1 

Fig. 5. Block diagram of the nonlinear moving-average (NLh4A) opera- 
tor. 

UEK 

sup lu(k)-u(k)(w(-k)<6+Nu(O)-Nu(O)I<e 
ks0 

(cf. (3.1)). 
A (finite) discrete-time Volterra series operator N: 1” -+ 

1” is one of the form 

Nu(k)=h,+ ; 
n=l it,..~~>oh,(il,...~i,) 

.u(k-i,)...u(k-i,) 

where h n E I ‘(Z : ), that is, 

c Ih,,(il,-~~,i,)l<~ 
I~, , i, 2 0 

(cf. (2.2.1)). 
Theorem 3 (Discrete-Time Approximation Theorem): Let 

z > 0 and 

KA {u~l~llluI[~M~} 

Suppose that N is any TI operator : I” + I” with fading 
memory on K. Then there is a finite Volterra series oper- 
ator i? such that for all u E K 

,. 
(JNu - Null I E. 

Remark: In the discrete-time theorem there is no “slew- 
limit” requirement on the signals in K; K here is just the 
ball of radius Mi in I*. 

In the next subsection we will see a stronger form of 
Theorem 3, so we omit the proof. 

6.2. Approximation by Nonlinear Moving-Average 
Operators 

As in Section V, the Volterra series approximator $ can 
be realized as a finite-dimensional LTI dynamical system 
with a polynomial readout map. But for discrete-time 
systems we can choose the LTI dynamical system to have a 
particularly simple form: its transfer function can be sim- 

PlY 

H,,(z) = [l, z-l;. ., z-,+~]? 

(This should be compared to the Laguerre system de- 
scribed in Section, 5.2.) The approximator has the block 
diagram shown in Fig. 5; & is simply a nonlinear moving- 
average operator. To summarize: 

Theorem 4 (NLMA Approximation Theorem): Let e > 0, 
K be any ball in I”, and suppose N is any TI operator: 
P-1” with fading memory on K. 

Then there is a polynomial p: Iw M -+ [w such that for all 
UEK 

n 
IJNu - Null I E 

where fi is the NLMA operator given by 

rju(k)Ap(u(k),u(k-l);..,u(k-M+l)). 

The proof is in Section A2. Note that this theorem 
implies Theorem 3, since every NLMA operator with poly- 
nomial nonlinearity is also a finite Volterra series operator. 

VII. A SIMPLE EXAMPLE 

In this section we consider a simple example, one which 
illustrates some of the previous ideas and results. We 
consider the simple RMS detector N shown in Fig. 6(a), 
and show how a Volterra series approximation and a 
Laguerre system approximation can be found. More pre- 
cisely, N is given by 

Nu(t) A 0.1Jme~o~1(‘-7)( Jme-(‘-‘)u(s) ds)‘d7) 
( 

l/2 
. 

0 0 

We chose this example for several reasons. First, N has 
no Volterra series representation. To see this, suppose N 
were a Volterra series operator with kernels h,. Let u(t) = 
(Y, a constant. For any Volterra series operator N, Na is 
also a constant, in fact an analytic function of a (see Boyd 
et al. [2]). But in this case Na = ICY], which is not even 
differentiable at (Y = 0, let alone analytic. So our RMS 
detector N is not given (exactly) by a Volterra series. Yet it 
can be shown to have a fading memory on any set K of the 
form (4.1), and hence our approximation theorems hold for 
this N. 

Another reason for choosing this example is that it is 
typical of the operators for which the Laguerre system 
approximation requires very many terms, that is, N is hard 
to approximate with a Laguerre system. Roughly speaking, 
this is because N has its nonlinearity near the input, and 
we seek to approximate N with a system with nonlinearity 
at the output. 

7.1. Finding a Volterra Series Approximation 

To find a Volterra series approximation of N on the set 
K given by (4.1), we find a polynomial q(x) such that 
lq(x)- Jlxll < c for 1x1 I M:.7 

The mean-square operator Ni shown in Fig. 6(b) is a 
Volterra series operator, its only nonzero kernel 

j&, 72) 49-l(el.9”‘i~h.~2) -l)e-h+Tz). 

(7.1.1) 

-It follows that the operator G”,, shown in Fig. 6(c) is.a 
Volterra series operator, whose kernels could be computed, 
if desired, from (7.1.1) and the composition formula [2]. 
For u E K we have 0 < Niu < M: and hence, 

n 
IINu - Nv,,ull I c, for MEK. 

‘For example, let qw be the even polynomial of degree 2M which 
agrees with fi at the points 0, M:/M,... , Mf. Then for M large 
enough, q,,., will work. 
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is dense in L2(iR: ), we can find M and pij’s such that 

(4 

(.f 1 ’ 1 - 
N,u 

1 I+Ios 

(b) 

n 

/I 

q($ T2)- f pij7:-171’-1e--(T1+T2)/2 s--. 
i,j=l II 

; 

2 
1 

(7.2.1) 

Now we claim that for u E K we have IINiu - fi,,,ulj I z. 
To see this, 

ww- kp(d 

(4 

Fig. 6. (a) RMS operator N. (b) Mean square operator NI, piyen by a 
Volterra series. (c) Approximating Volterra series operator N,,,. 

” 

m co 

-!- 
Xl = 

S+I 
I! iii 

q(y,7*)- 

i,j=l 
Ezl’ - 9 

pt.) Ej ho” .; -O e (T1tT2)/2~( t - T,) u( t - TV)) dT, dr, 
. . 
. . 

WA-;I! 
. so by (7.2.1) and the Cauchy-Schwarz inequality: 

(S+IP 
*&I 

Fig. 7. Laguerre system approximator fiilag. 

7.2. Finding a Laguerre System Approximation 

We will now show how a Laguerre approximation to N 
can be found. It will suffice to find a Laguerre system lle-(T1+T2)/2u(f - ~~)z.d(t - -r2))12 I Ml. 

approximation to the mean-square operator Ni shown in 
Fig. 6(b), since passing its output through a polynomial 

Thus for u E K we have \INiu - Njlagz411 5 E. 

q( .) which approximates the squareroot operator will yield VIII. FURTHER DISCUSSION OF FADING MEMORY 
a Laguerre system approximation of the overall operator 
N, as in the previous subsection. 

We have seen that the notion of fading memory is quite 

Consider the system Njlag shown in Fig. 7, where the 
useful in establishing various approximation theorems. In 

readout polynomial p is homogeneous of degree two, that 
this section we discuss briefly two other topics which 

is 
involve fading memory. 

Ph. . ., x,) = 5 pijxixj. 
i,j=l 

This fi,,s can be transformed to a Laguerre system via 
the change of coordinates X = TX, where T is the (constant, 
invertible) matrix such that 

fiTlag is a Volterra series operator whose only nonzero 
kernel is 

i22(~1,72) = $J PIj7;-172j~1e-(T1+T2). 

8.1. Linear Time-Invariant Operators and Fading Memory 

There is a folk theorem that every LTI causal continuous 
operator has a convolution representation. Unfortunately 
this folk theorem is false, since there are LTI causal 
continuous operators which have no convolution represen- 
tation. But in fact these operators are unlikely to occur in 
engineering; for example they do not have fading memory 
(see Section A3 for an example of such an operator). 

However, if “continuous” is strengthened to “FM”, our 
folk theorem becomes true. 

Theorem 5 (Convolution Theorem): 
(I) A: C(R) + C(R) is LTI FM iff A has a convolution 

representation 

Au(t) = i-u(t - T)h(dT) (8.1.1) 

i,j=l 

We will now show that by proper choice of p (that is, M 
where h is a bounded measure on R +. 

(II) A: 1” + I” is LTI FM iff A has a convolution 
and the pij’s) Nlag approximates N on K. Define representation 

q(71, k2) =19-1(,1.9min(3,9) -1)e-(71+72)/2 
Au(n) = Eh(k)u(n -k) (8.1.2) 

so that h2(T1, T2) = q(T1, r2)exp -(ri + r2)/2. Since q E 0 

L2(R : ) and the span of the functions rir2jexp -(pi + r2)/2 where h E l’(Z + ). 
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Remark: Equation (8.1.1) may be more familiar to the fading memory to: 

reader in the form N has fading memory if it is continuous with respect 

Au(t)=l”h(.‘)u(t-T)dT to the compact-open topology. 

For continuous-time systems, this is the topology of uni- 
where in this equation h is to be interpreted as a measure, form convergence on compact sets; for discrete-time sys- 
e.g., may contain S-functions. terns, this is the topology of pointwise convergence. The 

The proof of Theorem 5 is in Section A4. Theorem 5 definition of fading memory given in this chapter, in terms 
shows that for LTI causal systems, having a fading mem- of a weighting function w( . ), implies fading memory in this 
ory is equivalent to having a convolution representation. sense. Our Lemma 1 of Section IV can be generalized to: 

8.2. Fading Memorj, and Unique Steady State in Dynamical A closed bounded equicontinuous subset of C(R _ ) is 

Systems compact in the compact-open topology. 

The notion of fading memory is strictly an input/output 
property, that is, it refers only to the operator N which 
maps inputs into outputs; the realization of N (there need 
not even be one) is irrelevant. But if N does have a 
realization as a dynamical system, then the fading memory 
property is related to the unique steady-state property for 
dynamical systems [21]. In this section we elaborate this 
point. 

Consider the system 

rn=f(x,u) (8.2.1) 

x(0) = 0 (8.2.2) 

where x(t)~lR”, UEC(R+), and f: R”XR +R”. Sup- 
pose f is such that (8.2.1) and (8.2.2) define an operator N: 
C(k!+)-,C(Iw+)” given by x= Nu. 

Theorem 6: Suppose N has FM on K c C(Iw + ), where 
K is closed under concatenation. Let X denote the set of 
all states reachable with inputs in K, that is, 

X= {Nu(t)ltkO, UEK}. 

Then the system (8.2.1) , (8.2.2)‘has a unique steady state, 
for inputs in K and initial conditions in x. 

More precisely, let x0, Z. E X, and let x and 2 denote 
the solutions (8.2.1), but with initial conditions x0 and Zo, 
respectively. Then 

lim ]]x(t)--Z(t)]] = 0. 
f-+cc 

Thus the fading memory assumption implies that the 
state will be “asymptotically independent” of the initial 
condition, to use Wiener’s phrase. 

The proof of Theorem 6 is in Section A5. We have 

presented Theorem 6 only to demonstrate that there is a 
connection between the ideas of fading memory and unique 
steady state; far stronger theorems can be proved. 

The conditions under which a dynamical system has a 
fading memory is a very important topic itself. To mention 
perhaps the simplest condition, if an equilibrium point is 
well behaved (meaning, the vector field is continuously 
differentiable there and the linearized system is exponen- 
tially stable and controllable) then for inputs small enough 
the input-to-state map will have a fading memory. 

IX. A MATHEMATICALFORMULATION 

For the discrete-time case: 

A closed bounded subset of IM is compact in the 
compact-open topology. 

Since in I” the compact-open topology is the weak-* 
topology, this last assertion is just an instance of a classic 
theorem of functional analysis: the closed unit ball is 
weak-* compact [22]. 

With these extended definitions, all of the approxima- 
tion theorems presented still hold. 

X. CONCLUSION 

We have shown that any operator with fading memory 
can be approximated in a strong sense by a (finite) Vol- 
terra series operator which can be realized as a finite 
dimensional linear dynamical system with a polynomial 
readout map. For discrete-time systems, the approximating 
operator can simply be a nonlinear moving-average oper- 
ator. The approximation holds over any bounded set of 
signals K; in the continuous-time case we must add a 
slew-rate limitation as well. The approximation is in the 
sense of peak error, worst case for all signals in K. 

Since the original work of Volterra there has been much 
research on this topic, but none has yielded the strong 
approximations presented here. The reason is related to a 
remark in Section 2.1 concerning the difference between TI 
causal operators and functionals on C(W _ ). Intuitively it 
would seem that this correspondence implies that an ap- 
proximation of a functional (perhaps, via the Stone- 
Weierstrass theorem) should also yield an approximation 
of the corresponding TI causal operator. This is true, if the 
set of signals K c C(!R _ ) over which the approximation 

holds is also time-invariant, i.e., U,K = K for all t 2 0. But 
here’s the catch: TI subsets of C(R -) are generally not 
compact,’ and hence the Stone-Weierstrass theorem can- 
not be used to approximate the functional. Our solution to 
this problem was to observe that while a set such as K-, 
while not compact, should “appear” compact to an oper- 
ator whose memory fades with elapsed time. 

We close with some remarks concerning the practical 
application of the material presented here. While the ap- 
proximations are certainly strong enough to be useful in 
applications like macro-modeling of complicated systems 

It is possible to generalize the results of this paper to a 
clean and simple mathematical form, at the cost of some *For example, if K contains at least one compactly supported element, 

engineering intuition. First, we extend our definition of 
then it is not compact. There are TI compact subsets of C(R- ), for 
example { U,flr > 0}, where f is almost periodic. 
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or in universal nonlinear system identifiers, we know of no 

general procedure, based only on input/output measure- 
ments, by which an approximation can be found. Perhaps 
an adaptive scheme can be made to work in practice. 

APPENDIX 

Al. Proof of Lemma 1 

We must show that 

K-= {uEC(R~)~IU(t)llM~, 

124(s)-u(t)llM2(s-t) for trs<O} 

is compact with the weighted norm ]I. ]Iw in C(R -). Let u,, 
n=1,2;.* be any sequence in K-. We will find a u0 E K- 
and a subsequence of { u, } converging in the 1). I] w norm to 
uO, which will establish Lemma 1. 

Let K- [ - n,O] denote K- restricted to [ - n,O], that is 

K-[-n,O]A { u=[--n,Olllu(~)ll4, 

124(s)-u(t)1 4 M*(s - t) 

for --nlt<slO}. 

For each n, K- [ - n,O] is uniformly bounded (by Mi) and 
equicontinuous (by the slew-limit M2), hence compact in 
C[ - n, 0] by the Arzela-Ascoli theorem (see e.g. 
Dieudonne [15]). Since K- [ - l,O] is compact in C[ - LO], 
we can find a us) E K- [ - l,O] and an infinite subset 
N, c N such that 

sup ]u.(t)-z@(t)] + 0 as n + cc, n=N,. 
-11tso 

Viewing (u,]n E l+4,} as a sequence in K- [ -2,O], we 
conclude that there is a ~6’) E K-[-2,0] and an infinite 
subset N 2 c N i such that 

sup ]a.(?)-uh*)(t)]-0 as n+cc, rIEN*. 
-21150 

Clearly us) extends u. , (l) that is, us)(t) = us)(t) for - 15 r 
5 0. 

Continuing in this way we find a u. E K- and a se- 
quence of decreasing infinite subsets N 1 N, 1 . . . such 
that for each k 

sup ]u.(t)-uo(t)]-0 as n+cc, PIEN,. 
-ksfsO 

(Al .l) 

We now choose any increasing subsequence nk such that 
nk E N,. Then from (Al.l) we have for each k, 

sup ]u,,(t)-u,(t)]+0 as k+ca 
-kostsO 

that is, the sequence u,~ converges to u. uniformly on 
compact subsets. 

Now we claim that unk converges to u. in the weighted 
norm, that is, lim,,,l]u,*- uoJ] w = 0. To prove our claim, 
let E > 0. Since w(t) + 0 as t + co, we can find k, E N 
such that w(k,) < c/2M,; since unk, u. E K- we have 

sup ~u,,(t)-uo(t)~~(-r)~2Mlw(ko)~~. 
ts-k, 

(Al .2) 

Now find k, such that 

sup‘ . lunkw- u&N 5 c, for k >k,. 
-k,I.tsO 

(Al .3) 

From (A1.2) (A1.3), and w(t) 5 1 we conclude 

kk --ollw~~, for k 2 k, 

which concludes the proof of Lemma 1. 

A2. Proof of NLMA Approximation Theorem 

We start with the analog of Lemma 1: 
Lemma Al: 

K-p {uW’(Z-)~~~U~~IM~) 

is compact with the weighted norm 11. ]Iw given by 

IMlw d sup lu(k)lw( - k). 
ks0 

Proof: We give an abbreviated proof since it is similar 
to, and in fact simpler than, the proof of Lemma 1 given in 
Section Al. 

Let {u(“)} be a sequence in K-. Since la’“)(O)] I M,, 
find a subsequence along which u(“)(O) converges; let us 
call the limit u(‘)(O). Now find a subsequence of this 
subsequence along which ucn)( - 1) converges; .call this 
limit u(O)( - 1). 

Just as in proof of Lemma 1 we continue this process, 
defining the element u co) E K - as we go. Take a diagonal 

subsequence n k; u (“k) converges pointwise to u(O) as k + 00, 
and exactly as in Lemma 1 we can show 

Ilu(‘Q)- u(~)II~ + 0 as k -+ co 

which proves that K- is compact. 
Now consider the set of functionals 

GA {G,,G,,~~~} 

where G,u e u( - k), that is, G, is the functional associ- 
ated with the k-delay operator ZJ, (transfer function zpk). 

It is easy to verify that the G,‘s are continuous with 
respect to the weighted norm )I. ]Iw and that G separates 
points in rm(Z!!_). Applying the Stone-Weierstrass theo- 

rem as in Theorem 1 yields an approximation by a NLMA 
operator. 

A3. Causal Continuous LTI Operator with no Convolution 
Representation 

Here is a brief description of one such operator (see 
Kantorovich [23, p. 581 for details). It is possible to find a 
linear functional LIM: 1” + R such that 

lLIM4 G Ilull 
and if lim ,,+,u(k)exists, then LZMu=lim,,-,u(k). 
Thus LIM assigns a “pseudo-limit” LIMu to every ele- 
ment of I” (the vast majority of which do not converge as 
k + - cc). Consider the operator A: I” + I” given by 

Au(n) = LIMu. 

Thus for every u E I”, Au is the constant sequence LIMu. 
A is LTI causal continuous, but has no convolution 

representation since its response to a unit sample is zero, 
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and yet it is not the zero operator. Note that A is a LTI 
causal operator which does not have fading ‘memory. Of 
course, an operator like A is not likely to occur in engineer- 
ing. 

A4. Proof of Theorem 5 (Convolution Theorem) 

We will prove (II), and then indicate some of the changes 
necessary to prove the continuous-time version (I). 

First suppose Au = h*u where h E C’(Z + ). We will show 
that A has fading memory (that it is LTI causal is clear). 
Consider the weighting function 

w(n) e llhll;“* { ;nlh(k)l}1’2- 644.1) 

We claim that A has a w-fading memory. As in (51.2) we 
need only establish 

Sk f Ih(n)lw(n)-‘< m. 
n=O 

In fact S Q 2, which we now prove. Define 

e(nJa ? Ih( 

so that 

k=n 

m e(n)-d(n +1) 
s= e(o)-“” c 

n-0 B(n)l’* 

=1+8(o)-‘/* f B(n+l) 
n=O 

.(e(n+l)-“*-B(n)-“*). (A4.2) 

Since 0 G e(n + 1) Q e(n) we have 

ecn +l)(@(n +i)-“2- e(n)-l12) 

< f9(n)-1’2 - d(n +1)-l’* (A4.3) 

(the ratio of the two is /e( n + l)/e( n) G 1). From (A4.2) 
and (A4.3) 

s&i+ e(o)-‘/* n~o(e(n)+2- e(n +1)-l/*) = 2 

which proves that A has a w-fading memory. 
Remark: If h happens. to be exponentially decaying 

then we may use the weight w(n) = (1+ n)-‘, but of 
course not all h E I ‘(Z _ ) are exponentially decaying, and 
then the more complicated weight (A4.1) is necessary. 

Now we prove the converse. Let A be any LTI operator 
with, say, a w-fading memory.’ Let h be the response of A 
to a unit sample, i.e., h(n) 2 Ae( n) where e(n) = S,,. 

We will show (1) h E f’(Z + ) (at the moment we know 
only h E P(Z + )), and (2) Au = h*u for all u E I”. 

Let F be the functional associated with A via (2.1.1). 
Using linearity and FM we conclude there is an M < 00 
such that for all u E P(Z _ ). 

IF4 G Mllullw. (A4.4) 

‘This w has nothing to do with the w defined in (A4.1). 

Now for any u: Z -+ Iw define 

#iv(k) = u(k), -N<k<O 

0, kc-N. 

We now use a standard argument. From time-invariance 
and linearity we have 

Fu,= : h(k)u,(-k)= : h(k)u(-k). 
k=O k=O 

(A4.5) 

Consider u(k) 2 w(k)-’ sign h(k); from (A4.4) and (A4.5) 
we conclude 

f w(k)-‘Ih(k)I< M 
k=O 

for all N and thus hw-’ E I’@+), which implies h E 

w + )- 
Now (2): for any u E P’(Z-) we have from (A4.4) 

IFu - FuNI< Mllu - u,,rllw 

<Mw(N+l)+O as N+co. 

Thus (noting that h(*)u( - a) E I’@+)) 

Fu= Jim,FuN= E h(k)u(-k) 
k=O 

which finishes our proof. 
To show that a LTI operator A: C(R) + C(Iw) which has 

a convolution representation (8.1.1) has a fading memory, 
we use the weight 

w(t) A (/Ih(d$‘*{ jalh(d.,)l)1’2. 
I 

Then by a change of variables we have 

jWlh(dt)lw(t)-‘= 2 
0 

so that A has a w-fading memory. 
To prove that a LTI FM operator has a convolution 

representation is technically more involved since we cannot 
directly apply an impulse input 8(t). But the idea is the 

same. 

A5 Proof of Theorem 6 

Assume the hypotheses of Theorem 6. Since x0 and Z. 
are reachable with inputs in K, let T E R and us, ii, E K 
be such that 

Nu,(T) =x0 N&(T) = 1,. 

Thus u, and ii, steer x from 0 to x0 and Zo, respectively, 
over the interval [0, T]. 

Define 

u(t) A 
USW~ O<t<T 

u(t + T), t>T 

and similarly, 

a(t) p 
k(t), .O<t<T 

iqt + T), t > T. 
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Since K is closed under concatenation, u, 0 E K. In fact 
x(t) = Nu(t + T) and Z(t) = NZ(t + T), so it will suffice 
to prove u(t) + i;(t) as t + co. 

Let E > 0. Using our fading memory assumption, there is 
a S > 0 such that for all t E Iw 

sup lu(t)- a(t)iw(t - 7) < 6 --j IjNu(t)-Ne(t)\l <e. 
.0<74t 

(A5 .l) 

Since u(t) = 8(t) for t > T, 

sup I,(t)-fi(t)lw(f-+2Mlw(t-T). 
O<T<? 

Using w(t) -+ 0 as t + cc, find TO >, T such that w(T,) < 
6/(3M,). Then for t > To the right-hand side of (A5.1) is 
satisfied and hence 

Il4+wll -=C? 

which proves Theorem 6. 

for t > TO 
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