
Faerie: Efficient Filtering Algorithms for Approximate
Dictionary-based Entity Extraction

Guoliang Li Dong Deng Jianhua Feng
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

liguoliang@tsinghua.edu.cn; buaasoftdavid@gmail.com; fengjh@tsinghua.edu.cn

ABSTRACT
Dictionary-based entity extraction identifies predefined en-
tities (e.g., person names or locations) from a document. A
recent trend for improving extraction recall is to support
approximate entity extraction, which finds all substrings in
the document that approximately match entities in a given
dictionary. Existing methods to address this problem sup-
port either token-based similarity (e.g., Jaccard Similarity) or
character-based dissimilarity (e.g., Edit Distance). It calls for
a unified method to support various similarity/dissimilarity
functions, since a unified method can reduce the program-
ming efforts, hardware requirements, and the manpower. In
addition, many substrings in the document have overlaps,
and we have an opportunity to utilize the shared compu-
tation across the overlaps to avoid unnecessary redundant
computation. In this paper, we propose a unified framework
to support many similarity/dissimilarity functions, such as
jaccard similarity, cosine similarity, dice similarity, edit sim-
ilarity, and edit distance. We devise efficient filtering algo-
rithms to utilize the shared computation and develop effec-
tive pruning techniques to improve the performance. The
experimental results show that our method achieves high
performance and outperforms state-of-the-art studies.

Categories and Subject Descriptors:H.2 [Database Man-
agement]: Database applications; H.3.3 [Information Search
and Retrieval]

General Terms: Algorithms, Experimentation, Performance

Keywords: Approximate Entity Extraction; Unified Frame-
work; Filtering Algorithms; Pruning Techniques

1. INTRODUCTION
Dictionary-based entity extraction identifies all the sub-

strings from a document that match the predefined entities

∗
This work is partly supported by the National Natural Science

Foundation of China under Grant No. 61003004, the National
Grand Fundamental Research 973 Program of China under Grant
No. 2011CB302206, and National S&T Major Project of China under
Grant No. 2011ZX01042-001-002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

in a given dictionary. For example, consider a document
“An Efficient Filter for Approximate Membership Checking.
Venkaee shga Kamunshik kabarati, Dong Xin, Surauijt Chad-
huriSIGMOD”, and a dictionary with two entities “Surajit
Chaudhuri”and“Dong Xin”. Dictionary-based entity extrac-
tion finds the predefined entity “Dong Xin” from the docu-
ment. This problem has many real applications in the fields
of information retrieval, molecular biology, bioinformatics,
and natural language processing.

However, the document may contain typographical or or-
thographical errors and the same entity may have different
representations [22]. For example, the substring “Surauijt
Chadhuri” in the above document has typographical errors.
The traditional (exact) entity extraction cannot find this
substring from the document, since the substring does not
exactly match the predefined entity “Surajit Chaudhuri”.
Approximate entity extraction is a recent trend to address
this problem, which finds all substrings from the document
that approximately match the predefined entities.

To improve extraction recall, we study the problem of ap-
proximate dictionary-based entity extraction, which, given
a dictionary of entities and a document, finds all substrings
from the document similar to some entities in the dictionary.
Many similarity/dissimilarity functions have been proposed
to quantify the similarity between two strings, such as jac-
card similarity, cosine similarity, dice similarity, edit similar-
ity, and edit distance. For instance, in the above example,
suppose we use edit distance and the threshold is 3. Ap-
proximate entity extraction can find the substring “Surauijt
Chadhuri” which is similar to entity “Surajit Chaudhuri”.

Although there have been some recent studies on approx-
imate entity extraction [22, 4], they support either token-
based similarity (e.g., Jaccard Similarity) or character-based
dissimilarity (e.g., Edit Distance). It calls for a unified method
to support different similarity/dissimilarity functions, since
the unified method can reduce not only the programming ef-
forts, but also the hardware requirements and the manpower
needed to maintain the codes for different functions.

In addition, we have an observation that many substrings
in the document have overlaps. For example, consider the
above document, many substrings (e.g.,“Surauijt Chadhuri”,
“urauijt ChadhuriSIG”,“rauijt ChadhuriSIGMOD”) have over-
laps (e.g., “Chadhuri”). We have an opportunity to utilize
this feature to avoid the redundant computation across over-
laps of different substrings. For example, we can share the
computation on “Chadhuri” for different substrings.

To remedy the above problems, we propose a unified frame-
work to support various similarity/dissimilarity functions.

529

To avoid redundant computation across overlaps, we develop
efficient filtering algorithms for approximate dictionary-based
entity extraction, called “Faerie”. To summarize, we make
the following contributions.

• We propose a unified framework to support many sim-
ilarity/dissimilarity functions, such as jaccard similar-
ity, cosine similarity, dice similarity, edit similarity,
and edit distance.

• We devise efficient filtering algorithms, which can uti-
lize the shared computation across the overlaps of mul-
tiple substrings of the document.

• We develop effective pruning techniques and devise ef-
ficient algorithms to improve the performance.

• We have implemented our method, and the experimen-
tal results show that our method achieves high perfor-
mance and outperforms state-of-the-art approaches.

The remainder of this paper is organized as follows. We
propose a unified framework to support various similarity
functions in Section 2. Section 3 introduces a heap-based fil-
tering algorithm to utilize shared computation. We develop
pruning techniques in Section 4 and introduce our algorithm
Faerie in Section 5. We conduct extensive experimental stud-
ies in Section 6. Related works are provided in Section 7.
Finally, we conclude the paper in Section 8.

2. A UNIFIED FRAMEWORK
We first formulate the problem of approximate (dictionary-

based) entity extraction (Section 2.1), and then introduce a
unified method to support various similarity/dissimilarity
functions (Section 2.2). Finally we introduce a concept of
“valid substrings”to prune unnecessary substrings (Section 2.3).

2.1 Problem Formulation

Definition 1 (Approximate Entity Extraction).

Given a dictionary of entities E = {e1, e2, . . . , en}, a docu-
ment D, a similarity function, and a threshold, it finds all
“ similar” pairs 〈s, ei〉 with respect to the given function and
threshold, where s is a substring of D and ei ∈ E.

This paper focuses on token-based similarity, character-
based similarity, and character-based dissimilarity.

Token-based Similarity: It includes Jaccard Similarity, Co-
sine Similarity, and Dice Similarity. The token-based simi-
larity takes a string as a set of tokens. Let jac, cos, and
dice respectively denote the jaccard similarity, cosine sim-
ilarity, and dice similarity. Given two strings r and s, let

|r| denote the number of tokens in r. jac(r, s) = |r∩s|
|r∪s| ,

cos(r, s) = |r∩s|√
|r|·|s| , and dice(r, s) = 2|r∩s|

|r|+|s| . For exam-

ple, jac(“sigmod 2011 conference”, “sigmod 2011”) = 2
3
,

cos(“sigmod 2011 conference”, “sigmod 2011”) = 2√
6
, and

dice(“sigmod 2011 conference”, “sigmod 2011”) = 4
5
.

Charater-based Dissimilarity: It includes Edit Distance. The
charater-based dissimilarity takes a string as a sequence of
characters. The edit distance between two strings r and
s, denoted by ed(r, s), is the minimum number of single-
character edit operations (i.e., insertion, deletion, and sub-
stitution) needed to transform string r to string s. For ex-
ample, ed(“surajit”, “surauijt”) = 2.

Table 1: A dictionary of entities and a document.
(a) Dictionary E

ID Entity e len(e) |e| (# of q-grams with q = 2)
1 kaushik ch 10 9
2 chakrabarti 11 10
3 chaudhuri 9 8
4 venkatesh 9 8
5 surajit ch 10 9

(b) Document D
an efficient filter for approximate membership checking. venkaee
shga kamunshik kabarati, dong xin, surauijt chadhurisigmod.

Charater-based Similarity: It includes Edit Similarity. The
edit similarity between two strings r and s is defined as

eds(r, s) =1− ed(r,s)

max
(
len(r),len(s)

) , where len(s) denotes the length
of s. For instance, eds(“surajit”, “surauijt”) =1− 2

8
= 3

4
.

In this paper two strings are said to be similar, if their
(jaccard, cosine, dice, edit) similarity is no smaller than a
given similarity threshold δ, or their edit distance is no larger
than a given edit-distance threshold τ . For instance, con-
sider the document D and dictionary E in Table 1. Suppose
the edit-distance threshold τ = 2. 〈“venkaee sh”,“venkatesh”〉,
〈“surauijt ch”,“surajit ch”〉, and 〈“chadhuri”,“chaudhuri”〉
are three example results. Especially, although the sub-
string “chadhurisigmod” in the document misses a space be-
tween “chadhuri” and “sigmod” (a typographical error), our
method still can find“chadhuri”(similar to entity“chaudhuri”).

It has been shown that approximate entity extraction can
improve recall [22]. For example, the recall can increase
from 65.4% to 71.4% when performing protein name recog-
nition. In this paper, we emphasize on improving the perfor-
mance. We focus on extracting textual entities. We assume
the thresholds (δ and τ) are pre-defined and take the selec-
tion of such thresholds as a future work.

2.2 A Unified Method
In this section, we propose a unified framework to support

various similarity/dissimilarity functions.
We model both the entity and document as a set of tokens.

Especially for edit distance and edit similarity, we take q-
grams of an entity as tokens. A q-gram of a string s is a
substring of s with length q. The q-gram set of s, denoted
by G(s), is the set of all of s’s q-grams. For example, the
2-gram set of “surajit_ch” is {su, ur, ra, aj, ji, it, t_,
_c, ch}. If the context is clear, we use token to denote
token/gram; for edit distance and edit similarity, we use e
to denote G(e), e∩s to denote G(r)∩G(s), and |e| to denote
|G(e)| (i.e., |e| = len(e)− q + 1).

Given an entity e and a substring s, we transform different
similarities/dissimilarities to the overlap similarity (|e ∩ s|)
and use the overlap similarity as a unified filtering condition:
if e and s are similar, then |e ∩ s| must be not smaller than
a threshold T > 0, where T can be computed as follows.

• Jaccard Similarity: T = �(|e|+ |s|) ∗ δ
1+δ

	.
• Cosine Similarity: T = �√|e| · |s| ∗ δ	.
• Dice Similarity: T = �(|e|+ |s|) ∗ δ

2
	.

• Edit Distance: T = max(|e|, |s|)− τ ∗ q.
• Edit Similarity:

T = �max(|e|, |s|)− (
max(|e|, |s|)+ q− 1

) ∗ (1− δ) ∗ q	.

530

The correctness of these thresholds is stated in Lemma 1.
Lemma 1. Given an entity e and a substring s, we have1,

• Jaccard Similarity : If jac(e, s) ≥ δ, |e∩s|≥�(|e|+|s|)∗ δ
1+δ

	.

• Cosine Similarity : If cos(e, s) ≥ δ, |e∩s|≥�√|e| · |s|∗δ	.
• Dice Similarity : If dice(e, s) ≥ δ, |e∩s|≥�(|e|+|s|)∗ δ

2
	.

• Edit Distance : If ed(e, s) ≤ τ , |e∩s|≥max(|e|, |s|)−τ∗q.
• Edit Similarity : If eds(e, s) ≥ δ,

|e∩s| ≥ �max(|e|, |s|)−(
max(|e|, |s|)+q−1

)∗(1−δ)∗q	.
In this way, we can transform various similarities/dissimilarities

to the overlap similarity, and develop a unified filtering con-
dition: if |e ∩ s| < T , we prune the pair 〈s, e〉.

Note that given any similarity function and a threshold, if
we can deduce a lower bound for the overlap similarity of two
strings, our method can apply to this function. Specially, the
five similarity/distance functions we studied are commonly
used in information extraction and record linkage [22, 4].

2.3 Valid Substrings
We have an observation that some substrings in D will not

have any similar entities. For instance, consider the dictio-
nary and document in Table 1. Suppose we use edit distance
and τ = 1. Consider substring “surauijt chadhurisigmod”
with length 23. As the lengths of entities in the dictionary
are between 9 and 11, the substring cannot be similar to any
entity. Next we discuss how to prune such substrings.

Given an entity e and a substring s, if s is similar to e,
the number of tokens in s (|s|) should be in a range [⊥e,e],
that is ⊥e ≤ |s| ≤ e, where ⊥e and e are respectively the
lower and upper bound of |s|, computed as below:

• Jaccard Similarity: ⊥e = �|e| ∗ δ	 and e = � |e|
δ
�.

• Cosine Similarity: ⊥e = �|e| ∗ δ2	 and e = � |e|
δ2
�.

• Dice Similarity: ⊥e = �|e| ∗ δ
2−δ

	 and e = �|e| ∗ 2−δ
δ

�.
• Edit Distance: ⊥e = |e| − τ and e = |e|+ τ .

• Edit Similarity: ⊥e = �(|e| + q − 1) ∗ δ − (q − 1)	 and

e = � |e|+q−1
δ

− (q − 1)�.
where δ is the similarity threshold and τ is the edit-distance
threshold. The correctness of the bounds is stated in Lemma 2.

Lemma 2. Given an entity e, for any substring s, we have

• Jaccard Similarity : if jac(e, s) ≥ δ, �|e| ∗δ	≤|s|≤� |e|
δ
�.

• Cosine Similarity : if cos(e, s) ≥ δ, �|e|∗δ2	≤|s|≤� |e|
δ2

�.

• Dice Similarity : if dice(e, s)≥δ, �|e|∗ δ
2−δ

	≤|s|≤�|e|∗ 2−δ
δ

�.

• Edit Distance : if ed(e, s) ≤ τ , |e| − τ ≤ |s| ≤ |e|+ τ .

• Edit Similarity : if eds(e, s) ≥ δ,

�(|e|+q−1)∗δ−(q−1)	 ≤ |s| ≤ � |e|+ q − 1

δ
−(q−1)�.

Based on Lemma 2, given an entity e, only those sub-
strings with token numbers between ⊥e and e could be
similar to entity e, and others can be pruned. Especially,
let ⊥E = min{⊥e|e ∈ E} and E = max{e|e ∈ E}. Ob-
viously the substrings in D with token numbers between
⊥E and E may have a similar entity in the dictionary E,
and others can be pruned. Based on this observation, we
introduce the concept of “valid substring.”
1
In this paper, we omit the proof due to space constraints.

Definition 2 (Valid Substring). Given a dictionary
E and a document D, a substring s in D is a valid substring
for an entity e ∈ E if ⊥e ≤ |s| ≤ e. A substring s in D is
a valid substring for dictionary E if ⊥E ≤ |s| ≤ E.

For instance, consider the dictionary and document in Ta-
ble 1. Suppose we use edit similarity, and δ = 0.8 and q = 2.
Consider entity e5 = “surajit ch”, ⊥e5 = �(|e5| + q − 1) ∗
δ − (q − 1)	 = 7 and e5 =� |e5|+q−1

δ
− (q − 1)�= 11. Only

the valid substrings with token numbers between 7 and 11
could be similar to entity e5. As ⊥E = 7 and E = 12, only
the valid substrings with token numbers between 7 and 12
could have similar entities in the dictionary, and all other
substrings (e.g., “surauijt chadhurisigmod”) can be pruned.

We employ a filter-and-verify framework to address the
problem of approximate entity extraction. In the filter step,
we generate the candidate pairs of a valid substring in doc-
ument D and an entity in dictionary E, whose overlap sim-
ilarity is no smaller than a threshold T ; and in the verify
step, we verify the candidate pairs to get the final results,
by computing the real similarity/disimilarity. In this paper,
we focus on the filter step.

3. HEAP-BASED FILTERING ALGORITHMS
In this section, we propose heap-based filtering algorithms

to utilize the shared computation across overlaps. We first
introduce an inverted index structure (Section 3.1), and
then devise a multi-heap-based algorithm (Section 3.2) and
a single-heap-based algorithm (Section 3.3).

3.1 An Inverted Index Structure
A valid substring is similar to an entity only if they share

enough common tokens. To efficiently count the number of
their common tokens, we use the inverted index structure.
We build an inverted index for all entities, where entries
are tokens (for jaccard similarity, cosine similarity, and dice
similarity) or q-grams (for edit similarity and edit distance),
and each entry has an inverted list that keeps the ids of
entities that contain the corresponding token/gram, sorted
in ascending order. For example, Figure 1 gives the inverted
list for entities in Table 1 using q-grams with q = 2.

ka
au
us
sh
hi
ik

ab
ba
ar
rt
ti

te
es
su

aj
ji
it
t_

1 4
1 3
1
1 4
1
1

1
1 5
1 2 3 5
2 3

2 3
3 5

5

2
2
2

2
2 2

3
3

4

4
4

5
5
5
5

k_
_c
ch
ha
ak
kr

dh
hu
ur
ri
ve

32 5ra ud

4at

4en
4nk

Figure 1: Inverted indexes for entities in Table 1.

For each valid substring s in D, we first get its tokens
and the corresponding inverted lists. Then for each entity
in these inverted lists, we count its occurrence number in the
inverted lists, i.e., the number of inverted lists that contain
the entity. Obviously, the occurrence number of entity e is
exactly |e ∩ s|2. For each entity e with occurrence number
no smaller than T (|e ∩ s| ≥ T), 〈s, e〉 is a candidate pair.

For example, consider a valid substring “surauijt ch”. We
first generate its token set {su, ur, ra, au, ui, ij, jt, t_, _c,
ch} and get the inverted lists (the italic ones in Figure 1).
Suppose we use edit distance and τ = 2. For entity e5,
T = max(|e5|, |s|)−τ ∗ q = 6. As e5’s occurrence number
is 6, 〈“surauijt ch”, e5=“surajit ch”〉 is a candidate pair.

2
In this paper, we take e and s as multisets, since there may exist

duplicate tokens in entities and substrings of the document. Even if
they are taken as sets, we can also use our method for extraction.

531

Figure 2: A heap structure for “surauijt ch”3.

For simplicity, given an entity e and a valid substring s, we
use e’s occurrence number in s (or s’s inverted lists) to de-
note e’s occurrence number in the inverted lists of tokens in
s. To efficiently count the occurrence numbers, we propose
heap-based filtering algorithms in the following sections.

3.2 Multi-Heap based Method
In this section, we propose a multi-heap based method to

count the occurrence numbers.
We first enumerate the valid substrings in D (with token

number between⊥E andE). Then for each valid substring,
we generate its tokens and construct a min-heap on top of
the non-empty inverted lists of its tokens. Initially we use
the first entity of every inverted list to construct the min-
heap. For the top entity on the heap, we count its occurrence
number on the heap (i.e., the number of inverted lists that
contain the entity). If the number is not smaller than T ,
the pair of this valid substring and the entity is a candidate
pair. Next, we pop the top entity, add the next entity of the
inverted list from which the top entity is selected into the
heap, adjust the heap, and count the occurrence number of
the new top entity. Iteratively we find all candidate pairs.

For example, consider a valid substring “surauijt ch”. We
first generate its token set and construct a min-heap on top
of the first entities of every inverted list (Figure 2). Next
we iteratively adjust the heap and get the entities {1, 1,
1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 5} in ascending order. We
count the occurrence numbers of each entry. For example,
the occurrence numbers of e1, e2, e3, and e5 are respectively
3, 2, 3, and 6. Suppose we use edit distance and τ = 2.
For entity e5, T = max(|e5|, |s|) − τ ∗ q = 6. The pair of
the substring and entity e5 is a candidate pair. Finally, we
verify the candidate pair and get the final result.

Complexity: For a valid substring with l tokens, its corre-
sponding heap contains at most l non-empty inverted lists.
Thus the space complexity of the heap is O(l). As we can
construct heaps one by one, the space complexity is the space
of the maximum heap, i.e., O(E) (Table 2(a)).
The time complexity for constructing a heap of a valid

substring with l tokens is O(l). As there are |D|− l+1 valid
substrings with l tokens, the heap construction complexity
for such valid substrings is O(

(|D|− l+1)∗ l), and the total

heap construction complexity is O(∑�E
l=⊥E

(|D| − l + 1) ∗ l
)

(Table 2(b)). In addition, for each entity, we need to adjust
the heap containing the entity. Consider such heap with l
inverted lists. The time complexity of adjusting the heap
once is O(log(l)). There are l such heaps that contain the
entity (Figure 3). Thus for each entity, the time complexity

of adjusting the heaps is O(∑�E
l=⊥E

log(l) ∗ l
)
. Suppose N

is the total numbers of entities in inverted lists of tokens
in D. The total time complexity of adjusting the heaps is
O(∑�E

l=⊥E
log(l) ∗ l ∗N)

(Table 2(b)).

3
For ease of presentation, we use a loser tree to represent a heap

structure in our examples.

l|D|-l+ l tokens

D i, l

… …

D i, lD i-l+ , l
l l e i.e., D i-l+ , l , , D i l

tokens

inverted lists
D i, l l

i-l+1

…
Figure 3: A multi-heap structure.

Table 2: Complexity of multi-heap based methods.

(a) Space Complexity

Maximum Heap O(E)

(b) Time Complexity

Heap Construction O
(∑�E

l=⊥E
(|D| − l + 1) ∗ l

)

Heap Adjustment O
(∑�E

l=⊥E
log(l) ∗ l ∗N

)

The multi-heap based method needs to access inverted
lists multiple times and does large numbers of heap-adjustment
operations. To address this issue, we propose a new method
which accesses every inverted list only once in Section 3.3.

3.3 Single-Heap based Method
In this section, we propose a single-heap-based method.

We first tokenize the document D and get a list of tokens.
For each token, we retrieve the corresponding inverted list.
We use token[i] to denote the i-th token, and IL[i] to denote
the inverted list of the i-th token. We construct a single min-
heap on top of non-empty inverted lists of all tokens in D,
denoted by H, and use the heap to find candidate pairs.

For ease of presentation, we use a two-dimensional array
V [1 · · · |D|][⊥E · · · E] to count an entity’s occurrence num-
bers in every valid substring’s inverted lists. Formally, let
D[i, l] denote a valid substring of D with l tokens starting
with the i-th token. Given an entity e, we use V [i][l] to
count e’s occurrence number in D[i, l]’s inverted lists, i.e.,
V [i][l] = |e ∩ D[i, l]|. We compute V [i][l] as follows. V [i][l]
is initialized as 0 for 1 ≤ i ≤ |D| and ⊥E ≤ l ≤ E .

For the top entity e on the heap selected from the i-th in-
verted list, we increase the values of relevant entries in the
array by 1 as follows. Without loss of generality, firstly con-
sider the heap with l tokens. Obviously only D[i−l+1, l],. . .,
D[i, l] contain the i-th inverted list (Figure 4), thus V [i −
l + 1][l], . . . , V [i][l] are relevant entries. Similarly for ⊥E ≤
l ≤ E , V [i − l + 1][l], . . . , V [i][l] are relevant entries. We
increase the value of each relevant entry by 1. If V [i][l] ≥ T ,
〈D[i, l], e〉 is a candidate pair. Then, we pop the top entity,
add the next entity in IL[i] into the heap, adjust the heap
and get the next entity, and count the occurrence number of
the new entity. We repeat the above steps, and iteratively
we can find all candidate pairs.

Actually, for entity e, only the valid substrings with token
numbers between ⊥e and e could be similar to entity e.4

Thus we only need to maintain array V [1 · · · |D|][⊥e · · · e].
Next, we give a running example to walk through the

single-heap-based method. For example, in our running ex-
ample, consider a document “venkaee shga kamunshi”, we
construct a single heap on top of the document as shown in
Figure 5. Suppose we use edit distance and τ = 2. ⊥E = 6
and E = 12. For the entity e4 selected from the first to-
ken, we only need to increase its occurrence numbers in valid

4
Note that, we can get entity e’s token number |e| using a hash map,

which keeps the pair of an entity and its token number, thus we can
get the token number of an entity in O(1) time complexity.

532

……

……

……

……

e

i

|e D i, l

e
+ + +

+ + +
l

+

+ +
Te

+++

tokens

Inverted lists

occurrence numbers

occurrence numbers

occurrence numbers

|e D i-l+ , l

i-l+

Te

Figure 4: A single-heap structure.

Table 3: Complexity of single-heap based methods.
(a) Space Complexity

Single Heap O(|D|)
Counting Occurrence Numbers O(|D| − ⊥E + 1|)

(b) Time Complexity
Heap Construction O(|D|)
Heap Adjustment O(

log(|D|) ∗N)
Counting Occurrence Numbers O(

N ∗max{∑�e
l=⊥e

l|e∈E})

substringsD[1, l] for ⊥E ≤ l ≤ E , i.e., D[1, 6], . . . , D[1, 12].
We increase the values of V [1][6], . . . , V [1][12] by 1. For the
next entity e4 selected from the second token, we increase
its occurrence numbers in valid substrings D[1, l], D[2, l] for
⊥E ≤ l ≤ E . Similarly, we can count all occurrence
numbers. For instance, the occurrence number of entity e4
(“venkatesh”) inD[1, 9] is 5. As the occurrence number is no
smaller than T = max(|e4|, |D[1, 9]|)−τ∗q = 9−2∗2 = 5, the
pair of D[1, 9] (“venkaee sh”) and entity e4 (“venkatesh”)
is a candidate pair. Actually as ⊥e4 = 6 and e4 = 10, we
only need to consider the entries in V [1 · · · 20][6 · · · 10].
Complexity: The space complexity of the single heap is
O(|D|) (Table 3(a)). To count the occurrence numbers of an
entity, we do not need to maintain the array and propose an
alternative method. We first pop all entities with the same
id from the heap (with |D| space to store them). Suppose
the entity is e. Then we increase e’s occurrence numbers in
V [1 · · · |D|− l+1][l] by varying l from ⊥e to e. In this way,
we only need to maintain a one-dimensional array. Thus
the space complexity for counting the occurrence number is
O(max{|D|−⊥e+1|e ∈ E}) = O(|D|−⊥E+1) (Table 3(a)).

The time complexity of heap construction is O(|D|) (Ta-
ble 3(b)). To compute the occurrence numbers of each en-
tity, we need to adjust the heap, and the total time complex-
ity of adjusting the heap is O(log(|D|) ∗N), where N is the
total number of entities in every inverted list. In addition,
for each entity, we need to increase its occurrence numbers.
For entity e, there are

∑�e
l=⊥e

l entries needed to be increased
by 1 (Figure 4), and the maximum number of such entries

(for any entity) is max{∑�e
l=⊥e

l|e∈E}. Thus the total time

complexity is O(
N ∗max{∑�e

l=⊥e
l|e∈E}) (Table 3(b)).

Note that the single-heap-based method has used the shared
computation across the overlaps (tokens) of different valid
substring, since it only needs to scan each inverted list once.
It has much lower time complexity than multi-heap-based
method, and achieves much higher performance (Section 6).

4. IMPROVING THE SINGLE-HEAP-BASED
METHOD

In this section, we propose effective techniques to improve

ve en nk ka ae ee e_ _s sh hg ga a_ _k ka am mu un ns sh hi

1
4

1
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
4

D[1, 9] venkaee_sh and entity e4 venkatesh have 5 common tokens

4 3 2 2 1 1 1 1 2 1 1 1 1 2 1
4 3 3 2 1 1 1 2 2 1 1 1 2 2
4 4 3 2 1 1 2 2 2 1 1 2 2
5 4 3 2 1 2 2 2 2 1 2 2
5 4 3 2 2 2 2 2 2 2 2

5 4 4 3 2 2 2 3 3

6
7
8
9
10
11
12

Length

D

5 4 3 3 2 2 2 2 3 2

1
4

1

Less than l tokens

|e4|= E= TE= e4= Te4=

4 4 4

Occurrence numbers

Figure 5: An example for the single-heap-based
method on a document “venkaee shga kamunshi”.

the performance of the single-heap-based method. Li et
al. [18] have studied efficient heap-merge algorithms to find
similar entities for a single substring. In this paper, we pro-
pose effective algorithms to simultaneously find similar enti-
ties for multiple substrings (with large number of overlaps),
which are orthogonal to the heap-merge algorithms.

4.1 Pruning Techniques
In this section, we propose several pruning techniques by

estimating the lower bounds of |e ∩ s|.
Lazy-Count Pruning: For each top entity on the heap, we will
not count its occurrence numbers for every valid string im-
mediately. Instead, we count the numbers in a lazy manner.
We first count its occurrence number in the heap, and if the
number is small enough, we can prune the entity.

Formally, given an entity e, we use a sorted position list
Pe = [p1, · · · , pm] to keep its occurrences in the heap (in
ascending order). Each element in Pe is the position of the
corresponding token whose inverted list contains entity e.
We can easily get the position list using the heap structure.
Then we count e’s occurrence number in the heap, i.e., the
number of elements in Pe (|Pe|). If the number is smaller
than a threshold, denoted as Tl, we prune the entity; other-
wise we count its occurrence number in its valid substrings
with token numbers between ⊥e and e (Section 3.3). For
example, in Figure 5, Pe1 = [4, 9, 14, 19, 20] and |Pe1 | = 5.

Next we discuss how to compute the threshold Tl. Recall
the threshold T for the overlap similarity (Section 2.2). T
depends on both |e| and |s|. To derive a lower bound of T
which only depends on |e|, we use ⊥e to replace |s| and the
new bound Tl is computed as below.

• Jaccard Similarity: Tl = �|e| ∗ δ	.
• Cosine Similarity: Tl = �|e| ∗ δ2	.
• Dice Similarity: Tl = �|e| ∗ δ

2−δ
	.

• Edit Distance: Tl = |e| − τ ∗ q.
• Edit Similarity: Tl = �|e| − (

(|e|+ q − 1) ∗ (1−δ)
δ

∗ q)	.
Obviously Tl ≤ T . If |Pe| < Tl ≤ T , e cannot be similar

to any substring, and thus we can prune e (Section 2.2). For
instance, in Figure 5, consider e1. Suppose τ = 1. |e1| = 9.
Tl = |e1| − τ ∗ q = 9 − 2 = 7. As |Pe1 | = 5 < Tl, e1 can be
pruned. The correctness is stated in Lemma 3.

Lemma 3. Given an entity e on the single heap, if its
occurrence number in the heap (|Pe|) is smaller than Tl, e
will not be similar to any valid substring.

533

Bucket-Count Pruning: Consider an entity e. If a valid sub-
string s is similar to e, s must have at most e tokens and
shares at least Tl tokens with e. In other words, if s is simi-
lar to e, they must have no larger than e − Tl mismatched
tokens. We can use this property for effective pruning.

Formally, given two neighbor elements in Pe, pi and pi+1,
any substring containing both the two tokens (token[pi]
and token[pi+1]) has at least pi+1 − pi − 1 mismatched
tokens. If pi+1−pi−1 > e−Tl, any substrings containing
both the two tokens cannot be similar to e. Thus we do not
need to count e’s occurrence numbers for any substrings.

To use this feature, we partition the elements in Pe into
different buckets. If the number of elements in a bucket is
smaller than Tl, we can prune all the elements in the bucket
(lazy-count pruning); otherwise we use the elements in the
bucket to count e’s occurrence number for valid substrings
with token numbers between ⊥e and e (Section 3.3).
Next we introduce how to do the partition. Initially, we

create a bucket b1 and put the first element p1 into the
bucket. Then we consider the next element p2. If p2 − p1 −
1 > e − Tl, we create a new bucket b2 and put p2 into
bucket b2; otherwise, we put p2 into bucket b1. Iteratively
we can partition all elements into different buckets.

We give a tighter bound for different similarity functions.
For example, consider edit distance. We can use pi+1 − pi −
1 > τ ∗ q for pruning, since there exists at least τ ∗ q + 1
mismatched tokens between pi and pi+1, which need at least
τ+1 single-character edit operations to destroy these τ ∗q+1
mismatched tokens. Similarly for edit similarity, we can use

pi+1 − pi − 1 > � (|e|+q−1)
δ

∗ (1− δ) ∗ q� for pruning.
For example, in Figure 5, suppose we use edit distance and

τ = 1. Consider Pe4 = [1, 2, 3, 4, 9, 14, 19]. Tl = |e4|−τ ∗q =
8− 1 ∗ 2 = 6. Obviously, e4 can pass the lazy-count pruning
as |Pe4 | ≥ Tl. Next we check whether it can pass the bucket-
count pruning. We first partition Pe4 into different buckets.
Initially, we create a bucket b1 and put p1 into the bucket.
Next for p2 = 2, as p2 − p1 − 1 ≤ τ ∗ q = 2, we put p2 into
bucket b1. Similarly p3 = 3 and p4 = 4 are added into b1.
For p5 = 9, as p5 − p4 − 1 > τ ∗ q, we create a new bucket
b2 and add p5 into bucket b2. We repeat theses steps and
finally get b1 = [1, 2, 3, 4], b2 = [9], b3 = [14], and b4 = [19].
As the size of each bucket is smaller than Tl, we can directly
prune the elements in each bucket. Thus, we do not need to
count the occurrence number of e4 in any valid substrings.
Moreover, we can generalize this idea: Given two elements

pi and pj (i < j), if pj−pi−(j−i) > e−Tl, any substrings
containing both the two tokens (token[pi] and token[pj])
cannot be similar to entity e. Next we will introduce how to
use this property to do further pruning.

Batch-Count Pruning: We have an observation that we do
not need to enumerate each element in the position list Pe

to count the occurrence numbers for every valid substring.
Instead, we check sublists of Pe and test whether the sublists
can produce candidate pairs. If so, we find candidate pairs
in the sublists; otherwise we prune the sublists.

Formally, if a valid substring s is similar to entity e, they
must share enough common tokens (|e ∩ s| ≥ Tl). In other
words, we only need to check the sublist with no smaller than
Tl elements. Consider a sublist Pe[i · · · j] with |Pe[i · · · j]|=j−
i+ 1≥Tl. Let D[pi · · · pj] denote the substring exactly con-
taining tokens token[pi], token[pi+1], · · · , token[pj] (Figure 6).
If |D[pi · · · pj]|=pj−pi+1>e, any valid substring contain-

e ………… ……
i j m

p1 p2 pi pj pm

Pe i… j if Tl Pe i…j Te

Pe i … j is a
if Tl Pe i … j Te and e D pi … pj Te

……
pjpi

lo=max pj-Te+ pi-1

…… ………… ……

up=min pi+Te- pj+1

Candidates of e are in D lo … up

D pi pj

Pe i j

Figure 6: Candidate window and Valid window.

ing all tokens in D[pi · · · pj] has larger than e tokens. Thus
we can prune Pe[i · · · j]. On the contrary, D[pi · · · pj] may
be similar to e if ⊥e ≤ |D[pi · · · pj]| ≤ e. This pruning
technique is much power than the mismatch-based pruning,
since if pj−pi−(j−i) > e−Tl, then pj−pi+1 > e; on the
contrary if pj−pi+1 > e, pj−pi−(j−i) > e−Tl may not
hold. In addition, as |Pe[i · · · j]| ≤ |D[pi · · · pj]|, |Pe[i · · · j]|
should be not larger than e, thus Tl ≤ |Pe[i · · · j]| ≤ e.

Based on this observation, we can first generate sublists of
Pe with sizes (number of elements) between Tl and e, i.e.,
Tl ≤ |Pe[i · · · j]| ≤ e. Then for each such list Pe[i · · · j], if
|D[pi · · · pj]| > e, we prune the sublist; otherwise if ⊥e ≤
|D[pi · · · pj]| ≤ e, we find candidates of entity e (a substring
s is a candidate of e if |e ∩ s| ≥ T and ⊥e ≤ |s| ≤ e). For
each candidate s of entity e, 〈s, e〉 is a candidate pair.

Next we discuss how to find candidates of e based on Pe.
For ease of presentation, we first introduce two concepts.

Definition 3 (valid window and candidate window).

Consider an entity e and its position list Pe = [p1 · · · pm]. A
sublist Pe[i · · · j] is called a window of Pe for 1 ≤ i ≤ j ≤ m.
Pe[i · · · j] is called a valid window, if Tl ≤ |Pe[i · · · j]| ≤ e.
Pe[i · · · j] is called a candidate window, if Pe[i · · · j] is a valid
window and ⊥e ≤ |D[pi · · · pj]| ≤ e.

The valid window restricts the length of a window. The
candidate window restricts the number of tokens of a valid
substring. If a valid substring is a candidate of entity e,
it must contain a candidate window (Figure 6). For exam-
ple, consider the document and entities in Table 1. Pe4 =
[10, 17, 33, 34, 43, 58, 59, 60, 61, 66, 71, 76, 81, 86]. Suppose we
use edit distance and τ = 2. |e4| = 8, Tl = |e4| − τ ∗
q = 4. ⊥e4 = |e4| − τ = 6 and e4 = |e4| + τ = 10.
Pe4 [1 · · · 4] = [10, 17, 33, 34], Pe4 [1 · · · 5] = [10, 17, 33, 34, 43],
and Pe4 [6 · · · 9] = [58, 59, 60, 61] are three valid windows.
Pe4 [1 · · · 4] is not a candidate window as p4−p1+1=34−10+
1 > e4 . The reason is that D[p1 · · · p4] contains more than
e4 tokens and any substring containing Pe4 [1 · · · 4] must
have more than e4 tokens. Although p9 − p6 + 1 ≤ e4 ,
Pe4 [6 · · · 9] is not a candidate window as p9 − p6 + 1 < ⊥e4 .

Notice that we can optimize the pruning condition for jac-
card similarity, cosine similarity, and dice similarity, since
they depend on |e ∩ s|. Given a valid window Pe[i · · · j], let
s = D[pi · · · pj]. |Pe[i · · · j]| ≥ |e ∩ s|5. Take jaccard sim-

ilarity as an example. If s and e are similar, |e∩s|
|e∪s| ≥ δ.

|D[pi · · · pj]| = |s| ≤ |e ∪ s| ≤ |e∩s|
δ

≤ min(|e|,|Pe[i···j]|)
δ

. Thus
we give a tighter bound of |D[pi · · · pj]|. For jaccard similar-

ity, ⊥e ≤ |D[pi · · · pj]| ≤ min(|e|,|Pe[i···j]|)
δ

; for dice similarity,

5
As D[pi · · · pj] may contain duplicate tokens, |Pe[i · · · j]| ≥ |e ∩ s|

and |Pe[i · · · j]| may also be larger than |e|.

534

⊥e ≤ |D[pi · · · pj]| ≤ min(|e|, |Pe[i, j]|) ∗ 2−δ
δ

; for cosine sim-

ilarity, ⊥e ≤ |D[pi · · · pj]| ≤ min(|e|,|Pe[i···j]|)
δ2

.
Now we introduce how to find candidates of e from can-

didate windows Pe[i · · · j]. The substrings that contain all
tokens in D[pi · · · pj] may be candidates of e. We can find
these substrings as follows. As these substrings must contain
token[pi], the“maximum start position”of such substrings is
pi and the “maximum end position” is up=pi +e − 1. Sim-
ilarly, as these substrings must contain token[pj], the “min-
imum start position” is lo = pj −e + 1 and the “minimum
end position” is pj . Thus we only need to find candidates
among substrings D[pstart · · · pend] where lo ≤ pstart ≤ pi,
pj ≤ pend ≤ up. Substring s = D[pstart · · · pend] is a candi-
date of e if ⊥e ≤ |s| = pend−pstart+1 ≤ e and |e∩s| ≥ T .
(Here we use threshold T as s = D[pstart · · · pend] is known.)

However this method may generate duplicate candidates.
For example, suppose pj −e +1 < pi−1 +1. D[pi−1,e] =
D[pi−1 · · · (pi−1 + e − 1)] could be a candidate generated
from Pe[i · · · j]. In this case, as ⊥e ≤ pj−pi+1 ≤ pj−pi−1+
1 ≤ e and Tl ≤ |Pe[i · · · j]| ≤ |Pe[i− 1 · · · j]| = pj − pi−1 +
1 ≤ e, Pe[(i − 1) · · · j] is also a candidate window. Thus
Pe[(i−1) · · · j] also generates the candidate D[pi−1,e]. For
Pe[i · · · j], to avoid generating duplicates with Pe[i−1· · · j]
and Pe[i · · · j+1], we will not extend Pe[i · · · j] to positions
smaller than pi−1+1 and larger than pj+1 − 1, and set lo =
max(pj−e+1, pi−1+1), up = min(pi+e−1, pj+1−1). In
this way, our method will not generate duplicate candidates.

In summary, to find all candidates for an entity, we first
get the entity’s position list, and then generate the valid
windows and candidate windows. Next we identify its can-
didates from candidate windows. Finally the pair of each
candidate and the entity is a candidate pair. The correct-
ness and completeness of our method is formalized as below.

Theorem 1 (Correctness and Complexness). Our
method finds the candidate pairs completely and correctly.

4.2 Finding Candidate Windows Efficiently
Given an entity e, as there are larger numbers of valid

windows (
∑�e

l=Tl
|Pe| − l + 1), it could be expensive to enu-

merate the valid windows for finding all candidate windows.
To improve the performance, this section proposes efficient
methods to find candidate windows.

Span and Shift based method: For ease of presentation, we
first introduce a concept “possible candidate windows.” A
valid window Pe[i · · · j] is called a possible candidate window
if pj −pi+1 ≤ e. Based on this concept, we introduce two
operations: span and shift. Given a current valid window
Pe[i · · · j], we use the two operations to generate new valid
windows as follows (Figure 7).

• span: If pj − pi + 1 ≤ e, for k ≥ j, Pe[i · · · k] may
be a possible candidate window. We span it to gen-
erate all possible candidate windows starting with i:
Pe[i· · · (j+1)], . . . , Pe[i · · ·x], where x satisfies px −
pi + 1 ≤ e and px+1−pi+1>e. For j ≤ k ≤ x,
if pk − pi + 1≥⊥e, Pe[i · · · k] is a candidate window.
On the contrary, if pj − pi + 1 > e, for k ≥ j, as
pk−pi+1≥pj −pi+1>e, Pe[i · · · k] cannot be a can-
didate window. Thus we do not need to span Pe[i · · · j].

• shift: We shift to a new valid window Pe[(i+1)· · · (j+1)].

We use the two operations to find candidate windows as
follows. Initially, we get the first valid window Pe[1 · · ·Tl].

We do span and shift operations on Pe[1 · · ·Tl]. For the
new valid windows generated from the span operation, we
check whether they are candidate windows; for the new
valid window generated from the shift operation, we do span
and shift operations on it. Iteratively we can find all can-
didate windows from Pe[1 · · ·Tl]. We give an example to
show how our method works. For e4(“venkatesh”), Pe4 =
[10, 17, 33, 34, 43, 58, 59, 60, 61, 66, 71, 76, 81, 86]. Suppose τ=2.
|e4| = 8, Tl = |e4| − τ ∗ q = 4, ⊥e4 = |e4| − τ = 6,
e4 = |e4|+ τ = 10. The first valid window is Pe4 [1 · · · 4] =
[10, 17, 33, 34]. As p4 − p1 + 1 = 34 − 10 + 1 > e4 , we
do not need to do span operation. We do a shift operation
and get the next window Pe4 [2 · · · 5]. As p5 − p2 + 1 = 43−
17+1 > e4 , we do another shift operation. When we shift
to valid window Pe4 [6 · · · 9], as p9−p6+1=61−58+1<⊥e4 ,
Pe4 [6 · · · 9] is not a candidate window. We do a span oper-
ation. As p10−p6+1=9≤e4 and p11−p6+1=14>e4 , x =
10. We get a valid window Pe4 [6 · · · 10], which is a candidate
window. Next we shift to Pe4 [7 · · · 10]. Iteratively we find all
candidate windows: Pe4 [6 · · · 10] and Pe4 [7 · · · 10] (Figure 8).

Given a valid window Pe[i · · · j], if pj − pi + 1 > e, the
shift operations can prune the valid windows starting with
i, e.g., Pe[i · · · k] for j < k ≤ i + e − 1. However this
method still scans large numbers of candidate windows. To
further improve performance, we propose a binary-search-
based method which can skip many more valid windows.

Binary Span and Shift based method: The basic idea is as
follows. Given a valid window Pe[i · · · j], if pj − pi +1 > e,
we will not shift to Pe[(i + 1) · · · (j + 1)]. Instead we want
to directly shift to the first possible candidate window after
i, denoted by Pe[mid · · · (mid + j − i)], where mid satisfies
pmid+j−i − pmid + 1 ≤ e and for any i ≤ mid′ < mid,
pmid′+j−i − pmid′ + 1 > e. Similarly, if pj − pi + 1 ≤ e,
we will not iteratively span it to Pe[i · · · (j+1)], Pe[i · · · (j+
2)], . . . , Pe[i · · ·x]. Instead, we want to directly span to the
last possible candidate window starting with i, denoted by
Pe[i · · ·x], where x satisfies px − pi + 1 ≤ e and for any
x′ > x, px′ − pi + 1 > e.

If the function F (x) = px−pi+1 for span and F ′(mid) =
pmid+j−i − pmid + 1 for shift are monotonic, we can use a
binary-search method to find x and mid efficiently.

For the span operation, obviously F (x) = px − pi + 1 is
monotonic as F (x + 1) − F (x) = px+1 − px > 0. Next we
give the lower bound and upper bound of the search range.
Obviously x ≥ j. In addition, as pi + j ≤ pi+j , we have
px ≤ pi + e − 1 ≤ pi+�e−1 and x ≤ i + e − 1. Thus we
find x by doing a binary search between j and i+e − 1.

However F ′(mid) = pmid+j−i − pmid + 1 is not mono-
tonic. We have an observation that F ′′(mid) =

(
pj+(mid−

i)
)−pmid+1 is monotonic, since F ′′(mid−1)−F ′′(mid) =

pmid − pmid−1 − 1 ≥ 0. More importantly for i ≤ mid ≤ j,
F ′′(mid) < F ′(mid) as

(
pj + (mid − i)

) ≤ pmid+j−i. Thus
if F ′′(mid − 1) > e, F ′(mid − 1) > e and Pe[(mid −
1) · · · (mid − 1 + j − i)] cannot be a candidate window. If
F ′′(mid) ≤ e, Pe[(mid) · · · (mid + j − i)] could be a can-
didate window. In this way, we can find mid by doing a
binary search between i and j such that F ′′(mid− 1) > e

and F ′′(mid) ≤ e. If F ′(mid) ≤ e, we have found the
last possible candidate window; otherwise, we continue to
find mid′ between mid+ 1 and mid+ 1+ j − i. Iteratively,
we can find the last possible candidate window.

535

i i+ j j+ m
pi

Shift Shift Pe i…j Pe i … j

…… …… ……pj ……

Span only if pj-pi+ Te Span Pe i…j Pe i… j … Pe i…x

pi…… …… ……pj ……

Pe[i…x] is the last possible candidate window starting with i

Current valid window

New valid window

Current valid window

New valid windows

i i+ j j+ x m

px-pi+1 e and px+1-pi+1> e

Figure 7: span and shift operations.

x=10 as px-pi+1 Te and px+1-pi+1>Te

(1) shift

(2) span

(3) shift

(5) shift

3310 17 767166616059584334
2 121 11109876543

3310 17 767166616059584334

3310 17 767166616059584334

3310 17 767166616059584334

Pe

Pe

Pe

Pe

2 121 11109876543

2 121 11109876543

2 121 11109876543

8681
1413

8681
1413

8681
1413

8681
1413

(4) span
3310 17 767166616059584334Pe

2 121 11109876543
8681
1413

i

New valid windows

New valid windows

Current valid window

Current valid window

j

i j

Current valid window

Current valid window

Current valid window

|e4|= q Tl= e4= Te4=

Pe[6 10] is a candidate window but Pe[6 9] is not as p9-p6+1< e4

Pe[7 10] is a candidate window

Figure 8: An example for span and shift operations.

Thus given a valid window Pe[i · · · j], we use binary span
and shift operations to find candidate windows (Figure 9).

• Binary span: If pj − pi + 1 ≤ e, we first find x by
doing a binary search between j and i+e − 1, where
x satisfies px − pi + 1 ≤ e and px+1 − pi + 1 > e,
and then directly span to Pe[i · · ·x].

• Binary shift: If pj − pi +1 > e, we find mid by doing
a binary search between i and j where mid satisfies(
pj +(mid− i)

)− pmid +1 ≤ e and
(
pj +(mid− 1−

i)
) − pmid−1 + 1 > e. If pmid+j−i − pmid + 1 > e,

we iteratively do the binary shift operation between
mid+ 1 and mid+ 1 + j − i.
On the contrary, if pj − pi +1 ≤ e, we shift to a new
valid window Pe[(i+1)· · · (j+1)].

Given a valid window Pe[i · · · j], the binary shift can skip
unnecessary valid windows (non-candidate windows), such
as Pe[(i+1) · · · (j+1)], . . ., Pe[(mid−1) · · · (mid−1+j−i)],
as proved in Lemma 4. For example, consider the position
list in Figure 10. Suppose τ = 2. Tl = 4, |e4| = 8,e4 =
10. Consider the first valid window Pe4 [1 · · · 4]. The shift
operation shifts it to Pe4 [2 · · · 5], Pe4 [3 · · · 6], · · · , Pe4 [6 · · · 9],
and checks whether they are candidate windows. The binary
shift operation can directly shift it to Pe4 [3 · · · 6] and then
to Pe4 [6 · · · 9]. Thus it skips many valid windows.

Lemma 4. Given a valid window Pe[i · · · j] with pj − pi +
1 > e, if

(
pj+(mid− i)

)−pmid +1 ≤ e and
(
pj +(mid−

1)−i
)−pmid−1+1 > e, Pe[(i+1) · · · (j+1)], . . ., Pe[(mid−

1) · · · ((mid− 1) + j − i
)
] are not candidate windows.

pi

Binary Shift

…… …… ……pj

Binary Span (if pj-pi+1 Te):

pi…… …… ……pj

Span to the last possible candidate window starting with i

……

……

mid mid+j-i
Find mid by doing a binary search between i and j

such that pj+(mid-i) -pmid+1 e and pj+(mid-1-i) -pmid-1+1 e

Find x by doing a binary search between j and i+ e-1
such that px pi+1 e and px+1 pi+1 e

Current valid window

the last possible candidate window

the first possible candidate window

pi

(2) if pj-pi+1 e: Shift to the next possible candidate window

…… …… ……pj ……

Current valid window

New valid window

(1) if pj-pi+1>Te: Shift to the first possible candidate window after pi
Current valid window

i i+ j j+ m

i i+ j j+ m

i i+ j j+ x m

Figure 9: span and shift in a binary-search way.

skip

lower=j

x =10 as px pi+1 e and px+1 pi+1 e

upper=i+Te-1

Pe[6…10] is a candidate window but Pe[6…9] is not as p9-p6+1 < e

(1) binary shift

(2) binary span

(5) binary shift

3310 17 767166616059584334
2 141 11109876543

3310 17 767166616059584334
2 121 11109876543

3310 17 767166616059584334
2 121 11109876543

8681
1312

8681
1413

8681
1413

|e4|= q Tl= e4= Te4=

Pe

Pe

Pe

lower=jPe[7…10] is a candidate window
(4) binary span

3310 17 767166616059584334
2 121 11109876543

8681
1413

Pe

upper=i+Te-1

(3) binary shift

3310 17 767166616059584334
2 121 11109876543

8681
1413

Pe

pj-pi+1 e
Current valid window

Current valid window

stop

pj-pi+1 e

Current valid window

skip

i

i

pj-pi+1 e

pj-pi+1 e

pj-pi+1 e

Current valid window

Current valid window

Figure 10: An example for binary span and shift.

The binary span operation can directly span to Pe[i · · ·x]
and has two advantages. Firstly, in many applications, users
want to identify the best similar pairs (sharing common to-
kens as many as possible), and the binary span can effi-
ciently find such substrings. Secondly, we do not need to
find candidates of e for Pe[i · · · (j + 1)], . . . , Pe[i · · ·x] one
by one. Instead since there may be many candidates be-
tween lo = pj − e + 1 and up = pi+x−j + e − 1, we find
them in a batch manner. We group the candidates based on
their token numbers. Entities in the same group have the
same number of tokens. Consider the group with g tokens,
suppose Tg is the threshold computed using |e| and g. If
|Pe[i · · ·x]| < Tg, we prune all candidates in the group.

We can use the two binary operations to replace the shift
and span operations in order to skip valid windows. We give
an algorithm to find candidate windows using the two oper-
ations as illustrated in Figure 11. It first initializes the first
valid window (line 2-line 4). Then it uses the two binary
operations to extend the valid window until reaching the
last valid window (line 3). If its token number is no larger
than e, we do a binary span operation by calling its sub-
routine BinarySpan (line 6) and do a shift operation (line 7);
otherwise calling its subroutine BinaryShift (line 8). BinaryS-
pan does a binary search to find the last possible candidate
window starting with pi (lines 3-6). Then it retrieves the

536

Algorithm 1: Find Candidate Windows

Input: e: An entity; Pe: Position list of e on the heap;
Tl: Threshold; �e: The upper bound of token numbers;

begin1

i = 1;2

while i ≤ |Pe| − Tl + 1 do3

j = i+ Tl − 1;4

if pj − pi + 1 ≤ �e then5

BinarySpan(i, j);6

i = i+ 1; /* shift to the next window */7

else i = BinaryShift(i, j);8

end9

Procedure BinarySpan(i, j)

Input: i: the start point; j: the end point;
begin1

lower = j;upper = i+�e − 1 ;2

while lower ≤ upper do3

mid = �(upper + lower)/2�;4

if pmid − pi + 1 > �e then upper = mid− 1;5

else lower = mid+ 1;6

mid = upper ;7

Find candidate windows in D[i · · ·mid];8

end9

Procedure BinaryShift(i, j)

Input: i: the start point; j: the end point
Output: i: the new start point;
begin1

lower = i; upper = j;2

while lower ≤ upper do3

mid = �(lower + upper)/2�;4

if
(
pj + (mid− i)

)− pmid + 1 > �e then5

lower = mid+ 1;6

else upper = mid− 1;7

i = lower; j = i+ Tl − 1;8

if pj − pi + 1 > �e then i = BinaryShift (i, j);9

else return i;10

end11

Figure 11: Algorithm: Find candidate windows

candidate windows (line 8). BinaryShift does a binary search
to find the first possible candidate window after pi. Itera-
tively our method finds all candidate windows. Figure 10
illustrates an example to walk through our algorithm.

5. THE Faerie ALGORITHM
In this section, we propose a single-heap-based algorithm,

called Faerie, to efficiently find all answers.
We first construct an inverted index for all entities in the

given dictionary E. Then for the document D, we get its
tokens and corresponding inverted lists. Next we construct
a single heap on top of inverted lists of tokens. We use the
heap to generate entities in ascending order. For each en-
tity e, we get its position list Pe. If |Pe| < Tl, we prune
e based on lazy-count pruning; otherwise we use the two
binary operations to find candidate windows. Then based
on the candidate windows, we generate candidate pairs. Fi-
nally, we verify the candidate pairs and get the final results.
Figure 12 gives the pseudo-code of the Faerie algorithm.

The Faerie algorithm first constructs an inverted index
for predefined entities (line 2), and then tokenizes the doc-
ument, gets inverted lists (line 3), and constructs a heap
(line 4). Faerie uses 〈ei, pi〉 to denote the top element of
the heap, where ei is the current minimal entity and pi is
the position of the inverted list from which ei is selected.
Faerie constructs a position list Pe to keep all the positions
of inverted lists in the heap that contain e (line 6). Then for
each top element 〈ei, pi〉 on the heap, if ei = e, we add pi

Algorithm 2: Faerie Algorithm

Input: A dictionary of entities E = {e1, e2, . . . , en};
A document D;
A similarity function and a threshold;

Output: {〈s, e〉| s and e are similar for the function and
threshold}, where s is a substring of D and e ∈ E.

begin1

Tokenize entities in E and construct an inverted index;2

Tokenize D and get inverted lists of tokens in D;3

Construct a heap H on top of inverted lists of D;4

e is the top element of H; /* keep the current entity*/5

Initialize a position list Pe = φ;6

while
(〈ei, pi〉 = H.top

)
! = φ do7

if ei == e then8

Pe∪ = {pi}; /* ei is the new top entity. */9

else10

Derive the threshold Tl for entity e;11

if |Pe| ≥ Tl then12

Find candidate windows using Algorithm 1;13

Get candidates using candidate windows;14

e = ei; Pe = {pi}; // update the current entity15

Adjust the heap;16

Verify candidate pairs;17

end18

Figure 12: The Faerie Algorithm.

into Pe (line 8-line 9), where e is the last popped entity from
the heap; otherwise Faerie checks the position list as follows.
Faerie derives a threshold Tl for entity e based on the simi-
larity function and threshold. If |Pe| ≥ Tl, there may exist
candidate pairs. Faerie generates candidate windows based
on Algorithm 1 (line 13), and finds candidate pairs based
on candidate windows (line 14). Faerie adjusts the heap to
generate candidates for the next entity (line 16). Finally
Faerie verifies the candidates to get final results (line 17).

Next we give a running example to walk through our al-
gorithm. Consider the entities and document in Table 1.
We fist construct a single min-heap (Figure 5). Then we
adjust the heap to generate the position list for each entity.
Consider the position list for entity e4 (“venkatesh”) in Fig-
ure 10. Suppose τ = 2. |e4| = 8, ⊥E = 6, E = 12, ⊥e4 = 6,
e4 = 10, Tl = 4. We use the binary shift and span opera-
tions to get candidate windows (Pe[6 · · · 10] and Pe[7 · · · 10]),
and then generate candidate pairs based on the candidate
windows (e.g., 〈D[58, 9]=“venkaee sh”, e4=“venkatesh”〉).
Finally we verify the candidates to get the final answers.

6. EXPERIMENTS
We have implemented our proposed techniques. The ob-

jective of the experiments is to measure the performance,
and in this section we report experimental results.

Experimental Setting: We compared our algorithms with
state-of-the-art methods NGPP [22] (the best for edit dis-
tance) and ISH [4] (the best for jaccard similarity and edit
similarity). We downloaded the binary codes of NGPP [22]
from “Similarity Joins” project website6 and implemented
ISH by ourselves. We reported the best performance of the
two existing methods. The algorithms were implemented in
C++ and compiled using GCC 4.2.4 with -O3 flag. All the
experiments were run on a Ubuntu machine with an Intel
Core 2 Quad X5450 3.0GHz processor and 4 GB memory.

Datasets: We used three real datasets, DBLP7, PubMed8,
and ACM WebPage9. DBLP is a computer-science publi-

6
http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html

7
http://www.informatik.uni-trier.de/∼ley/db

8
http://www.ncbi.nlm.nih.gov/pubmed

9
http://portal.acm.org

537

cation dataset. We selected 100,000 author names as enti-
ties and 10,000 papers as documents. PubMed is a medical-
publication dataset. We selected 100,000 paper titles as enti-
ties and 10,000 publication records as documents. WebPage
is a set of web pages. We crawled 100,000 titles as entities
and 1,000 web pages as documents (thousands of tokens).
Table 4 gives the dataset statistics (len denotes the aver-
age length and token denotes the average token number).
We did not consider different attributes in the entities and
documents. Each entity in the dictionary is just a string.

Table 4: Datasets.
Datasets Cardinality len tokens Details
DBLP Dict 100,000 21.1 2.77 Author
DBLP Docs 10,000 123.3 16.99 Papers
PubMed Dict 100,000 52.96 6.98 Title
PubMed Docs 10,000 235.8 33.6 Papers
WebPage Dict 100,000 66.89 8.5 Title
WebPage Docs 1,000 8949 1268 Web Pages

6.1 Multi-Heap vs Single Heap
In this section, we compared the multi-heap-based method

with the single-heap-based method (without using pruning
techniques in Section 4). We tested the performance of the
two methods for different similarity functions on the three
datasets. Figure 13 shows the experimental results.

We see that the single-heap-based method outperforms
the multi-heap-based method by 1-2 orders of magnitude,
and even 3 orders of magnitude in some cases. For exam-
ple, on DBLP dataset with edit-distance threshold τ = 3,
the multi-heap-based method took more than 10,000 seconds
and the single-heap-based method took about 180 seconds.
On PubMed dataset with eds similarity threshold δ = 0.9,
the multi-heap-based method took more than 14,000 seconds
and the single-heap-based method took only 600 seconds.
There are two reasons that the single-heap-based method
is better than the multi-heap-based method. Firstly, the
multi-heap-based method scans each inverted list of the doc-
ument many times and the single-heap-based method only
scans them once. Secondly the multi-heap-based method
constructs larger numbers of heaps and does larger numbers
of heap adjustment than the single-heap-based method. As
the single-heap-based method outperforms the multi-heap-
based method, we focus on the single-heap-based method in
the remainder of the experimental comparison.

6.2 Effectiveness of Pruning Techniques
In this section, we tested the effectiveness of our pruning

techniques. We first evaluated the number of candidates by
applying different pruning techniques to our algorithm (lazy-
count pruning, bucket-count pruning, and binary span and
shift pruning. As batch-count pruning is a special case of
binary span and shift pruning, we only show the results for
binary span and shift pruning.). In the paper, the number
of candidates refers to the number of non-zero values in the
occurrence arrays, which need to be verified. Figure 14 gives
the results. In the figure, we tested edit distance on DBLP
dataset, jaccard similarity on WebPage dataset, and edit
similarity on PubMed dataset. Note that in the figures, the
results are in 10x formate. For example if there are 100
million candidates, the number in the figure is 8 (108 =
100M). In the paper, our method used parameters of q =
16, 8, 5, 4, 3 for τ = 0, 1, 2, 3, 4 respectively for edit distance
on DBLP and q = 26, 11, 7, 5, 4 for δ = 1, 0.95, 0.9, 0.85, 0.8
edit similarity on PubMed.

We observe that our proposed pruning techniques can
prune large numbers of candidates. For example, on the
DBLP dataset, for τ = 3, the method without any pruning
techniques involved 11 billion candidates, and the lazy-count
pruning reduced the number to 860 million. The bucket-
count pruning further reduced the number to 600 million.
The binary span and shift pruning had only 200 million can-
didates. On the WebPage dataset, for δ = 0.9, the binary
span and shift pruning reduced the number of candidates
from 10 billion to 35. On the PubMed dataset, for δ = 0.85,
the binary span and shift pruning reduced the number of
candidates from 180 billion to 120 million. The main rea-
son is that we compute an upper bound of the overlap of an
entity and a substring, and if the bound is smaller than the
overlap threshold, we prune the substring. If for any sub-
string, the bound of an entity is smaller than the threshold,
we prune the entity. This confirms the superiority of our
pruning techniques.

Then we evaluated the performance benefit of the prun-
ing techniques. Figure 15 shows the results. We observe
that the pruning techniques can improve the performance.
For instance, on the DBLP dataset, for τ = 3, the elapsed
time of the method without any pruning technique was 180
seconds, and the lazy-count pruning decreased the time to
43 seconds. The binary span and shift pruning reduced the
time to 25 second. On PubMed dataset, for δ = 0.9, the
pruning techniques can improve the time from 600 seconds
to 8 seconds. This shows that our pruning techniques can
improve the performance. In the remainder of this paper,
we compared the single-heap-based method using the binary
span and shift pruning with existing methods.

6.3 Comparison with State-of-the-art Methods
In this section, we compared our algorithm Faerie with

state-of-the-art methods NGPP [22] (which only supports
edit distance) and ISH [4] (which supports edit similarity and
jaccard similarity). We tuned the parameters of NGPP and
ISH (e.g., prefix length of NGPP) to make them achieve the
best performance. Figure 16 shows the results. We see that
Faerie achieved the highest performance. Especially Faerie
outperformed ISH by 1-2 orders of magnitude for edit sim-
ilarity and jaccard similarity. For example, on the PubMed
with edit-similarity threshold δ = 0.9, the elapsed time of
ISH was 1000 seconds. Faerie reduced the time to 8 seconds.
This is because Faerie used the shared computation across
overlapped tokens. In addition, our pruning techniques can
prune large numbers of unnecessary valid substrings and re-
duce the number of candidates. Although NGPP achieved
high performance for smaller edit-distance thresholds, it is
inefficient for larger edit-distance thresholds. The reason is
that it needs to enumerate neighbors of entities and an en-
tity has larger numbers of neighbors for larger thresholds.
On jaccard similarity, as each entity has a smaller number
of tokens (the average number is 8) and the thresholds Tl

and e for different thresholds are nearly the same (Tl = 8
for δ=1 and Tl = 10 for δ=0.8), Faerie varied a little for
different jaccard-similarity thresholds.

In addition, we compared index sizes of difference algo-
rithms. Note that NGPP had different index sizes for dif-
ferent edit-distance threshold τ , as NGPP uses τ to gener-
ate neighborhoods. The larger the edit-distance threshold,
the larger indexes are involved for the neighborhoods of an
entity, since an entity has larger numbers of neighbors for
larger thresholds. On DBLP dataset, for τ = 3, NGPP con-

538

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3
S

ea
rc

h
T

im
e

(s
)

Threshold τ

Multi-Heap
Single-Heap

(a) ed (DBLP)

 100

 1000

 10000

1 0.95 0.9 0.85

S
ea

rc
h

T
im

e
(s

)

Threshold δ

Multi-Heap
Single-Heap

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

 100000

1 0.95 0.9 0.85

S
ea

rc
h

T
im

e
(s

)

Threshold δ

Multi-Heap
Single-Heap

(c) eds (PubMed)

Figure 13: Performance comparison of multi-heap-based methods and single-heap-based methods.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3

of

 C
an

di
da

te
s

(1
0x)

Threshold τ

None
Lazy

Bucket
Binary

(a) ed (DBLP)

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 0.95 0.9 0.85

of

 C
an

di
da

te
s

(1
0x)

Threshold δ

None
Lazy

Bucket
Binary

(b) jac (WebPage)

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 0.95 0.9 0.85

of

 C
an

di
da

te
s

(1
0x)

Threshold δ

None
Lazy

Bucket
Binary

(c) eds (PubMed)

Figure 14: Number of candidates with different pruning techniques.

 0.1

 1

 10

 100

 0 1 2 3

S
ea

rc
h

T
im

e
(s

)

Threshold τ

None
Lazy

Bucket
Binary

(a) ed (DBLP)

 10

 100

 1000

1 0.95 0.9 0.85

S
ea

rc
h

T
im

e
(s

)

Threshold δ

None
Lazy

Bucket
Binary

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85

S
ea

rc
h

T
im

e
(s

)

Threshold δ

None
Lazy

Bucket
Binary

(c) eds (PubMed)

Figure 15: Performance comparison with different pruning techniques.

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
ea

rc
h

T
im

e
(s

)

Threshold τ

NGPP
Faerie

(a) ed (DBLP)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85 0.8

S
ea

rc
h

T
im

e
(s

)

Threshold δ

ISH
Faerie

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85 0.8

S
ea

rc
h

T
im

e
(s

)

Threshold δ

ISH
Faerie

(c) eds (PubMed)

Figure 16: Comparison with existing methods.

sumed about 43 MB index size. The index size of Faerie was
only 7 MB (q = 4). This result consists with that in [22]:
the q-gram-based method has smaller index sizes than the
neighborhood-based method (NGPP). On WebPage, ISH in-
volved about 18 MB index size for jaccard-similarity thresh-
old δ = 0.9 (its parameter k = 3) and Faerie only used 4 MB.

6.4 Scalability with Dictionary Sizes
This section evaluates the scalability of our proposed method

on various similarity functions. We varied the number of en-
tities in the dictionary and identified similar pairs from the
document collection in Table 4. Figure 17 shows the results
for the five similarity functions. We observe that our method
scaled well as the dictionary size increased. For example, on
DBLP, for τ = 3, Faerie took 6 seconds for 20, 000 entities
and 25 seconds for 100, 000 entities. On WebPage, as each
entity has a smaller number of tokens, Faerie varied a little
for different thresholds. On PubMed, we evaluated edit sim-
ilarity, dice similarity, cosine similarity, using q-grams. For
edit similarity, when δ = 0.85, Faerie took 9 seconds for 20,
000 entities and 48 seconds for 100, 000 entities.

In addition, we also evaluated the index sizes as the dictio-

Table 5: Scalability of index sizes.
(a) DBLP (q = 5)

of Entities 20k 40k 60k 80k 100k
Inverted Index (MB) 1.6 3.22 4.9 6.5 8.2
Heap+Array (KB) 4.5 4.5 4.5 4.5 4.5

(b) WebPage
of Entities 20k 40k 60k 80k 100k

Inverted Index (MB) 0.8 1.63 2.45 3.3 4.2
Heap+Array (KB) 38 38 38 38 38

(c) PubMed (q = 7)
of Entities 20k 40k 60k 80k 100k

Inverted Index (MB) 4.5 9.2 14.1 18.3 22.8
Heap+Array (KB) 7.2 7.2 7.2 7.2 7.2

nary size increased. Table 5 shows the results. We see that
the index sizes of our method were very small and scaled
well as the number of entities increased.

7. RELATED WORKS
There have been some recent studies on approximate en-

tity extraction [22, 9, 20, 1, 4, 5]. Wang et al. [22] pro-
posed neighborhood-generation-based methods for approxi-
mate entity extraction with edit-distance thresholds. They

539

 0

 10

 20

 30

 2 4 6 8 10

S
ea

rc
h

T
im

e
(s

)

Number of Entities (*10000)

τ=3
τ=2
τ=1
τ=0

(a) ed (DBLP)

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10

S
ea

rc
h

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(b) jac (WebPage)

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10

S
ea

rc
h

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(c) eds (PubMed)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 2 4 6 8 10

S
ea

rc
h

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(d) dice (PubMed)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 2 4 6 8 10

S
ea

rc
h

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(e) cos (PubMed)

Figure 17: Scalability of performance for various similarity functions on different datasets.

first partition strings into different partitions, and guarantee
that two strings are similar only if there exist two partitions
of the two strings, which have an edit distance no larger
than 1. Then they generate neighborhoods of each partition
by deleting one character from the partitions, and the edit
distance between two partitions is not larger than 1 only if
they have a common neighbor. However this method cannot
support the token-based similarity. Chakrabarti et al. [4]
proposed an inverted signature-based hash-table for mem-
bership checking. They first selected top-weighted tokens as
signatures and encoded the dictionary as a 0-1 matrix. Then
they built a matrix for the document and used the matrix to
find candidates. Lu et al. [20] proposed signature-based in-
verted lists to improve [4] by using a tighter threshold. How-
ever this method cannot support edit distance. In addition,
Agrawal et al. [1] proposed to use inverted lists for ad-hoc
entity extraction. Chandel et al. [5] studied the problem of
batch top-k search for dictionary-based exact entity recog-
nition. Chaudhuri et al. [9] proposed to expand a reference
dictionary of entities by mining large document collections.

Many studies have been proposed to address the approximate-
string-search problem [4, 14, 2, 8, 6, 11, 18, 19, 15, 25,
12] and the similarity-join problem [10, 2, 3, 7, 21, 23,
24]. Although we can extend them to solve our problem,
they are very inefficient, since they need to enumerate all
valid substrings in the document and cannot use the shared
computation across overlaps of substrings. Existing works
(NGPP[22] and ISH[4]) have proved that the extraction-
based methods outperform similarity-join-based methods for
the approximate entity-extraction problem, and thus we only
compare with state-of-the-art methods NGPP[22] and ISH[4].

In addition, there have been many studies on estimating
selectivity for approximate string queries [13, 16, 17].

8. CONCLUSION
In this paper, we have studied the problem of approximate

entity extraction. We proposed a unified framework to sup-
port various similarity functions. We devised heap-based fil-
tering algorithms to efficiently extract similar entities from
a document. We developed a single-heap-based algorithm
which can utilize the shared computation across overlaps of
substrings by constructing a single heap on top of inverted
lists of tokens in the document and scanning every inverted
list only once. We proposed several pruning techniques to
prune large numbers of unnecessary candidate pairs. We
devised binary-search-based techniques to improve the per-
formance. We have implemented our method, and tested
our method on several real datasets. The experimental re-
sults show that our method achieves high performance and
outperforms state-of-the-art studies.

Acknowledgement
The authors thank Professor Wei Wang, Professor Chen Li,
and the three anonymous reviewers for their comments and
suggestions that definitely help us improve the paper.

9. REFERENCES
[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti.

Scalable ad-hoc entity extraction from text collections.
PVLDB, 1(1):945–957, 2008.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[4] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An
efficient filter for approximate membership checking. In
SIGMOD Conference, pages 805–818, 2008.

[5] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch
top-k search for dictionary-based entity recognition. In ICDE,
page 28, 2006.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD
Conference, pages 313–324, 2003.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[8] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification
of fuzzy duplicates. In ICDE, pages 865–876, 2005.

[9] S. Chaudhuri, V. Ganti, and D. Xin. Mining document
collections to facilitate accurate approximate entity matching.
PVLDB, 2(1):395–406, 2009.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[11] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava.
Fast indexes and algorithms for set similarity selection queries.
In ICDE, pages 267–276, 2008.

[12] M. Hadjieleftheriou, N. Koudas, and D. Srivastava. Incremental
maintenance of length normalized indexes for approximate
string matching. In SIGMOD Conference, pages 429–440, 2009.

[13] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava.
Hashed samples: selectivity estimators for set similarity
selection queries. PVLDB, 1(1):201–212, 2008.

[14] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-gram/2l:
A space and time efficient two-level n-gram inverted index
structure. In VLDB, pages 325–336, 2005.

[15] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join
and selection queries. In VLDB, pages 199–210, 2006.

[16] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to estimate
selectivity of string matching with low edit distance. In VLDB,
pages 195–206, 2007.

[17] H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of
set similarity join size. PVLDB, 2(1):658–669, 2009.

[18] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[19] C. Li, B. Wang, and X. Yang. Vgram: Improving performance
of approximate queries on string collections using
variable-length grams. In VLDB, pages 303–314, 2007.

[20] J. Lu, J. Han, and X. Meng. Efficient algorithms for
approximate member extraction using signature-based inverted
lists. In CIKM, pages 315–324, 2009.

[21] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[22] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit distance constraints. In
SIGMOD Conference, 2009.

[23] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm
for similarity joins with edit distance constraints. PVLDB,
1(1):933–944, 2008.

[24] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In ICDE, pages 916–927, 2009.

[25] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, 2008.

540

	Introduction
	A Unified Framework
	Problem Formulation
	A Unified Method
	Valid Substrings

	Heap-based Filtering Algorithms
	An Inverted Index Structure
	Multi-Heap based Method
	Single-Heap based Method

	Improving The Single-heap-based Method
	Pruning Techniques
	Finding Candidate Windows Efficiently

	The Faerie Algorithm
	Experiments
	Multi-Heap vs Single Heap
	Effectiveness of Pruning Techniques
	Comparison with State-of-the-art Methods
	Scalability with Dictionary Sizes

	Related Works
	Conclusion
	References

