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Abstract— Formally verified methods for motion planning
are required in order to guarantee safety for autonomous
vehicles. In particular, we consider trajectory generation by
considering the most probable trajectory of other traffic partici-
pants. However, if the surrounding vehicles perform unexpected
maneuvers, a collision might be inevitable. In this paper, a
fail-safe motion planner is developed, which generates optimal
trajectories, yet guarantees safety at all times. Safety is achieved
by maintaining an emergency maneuver which can safely
bring the host vehicle to a stop while avoiding any collision.
The emergency maneuver is computed by considering for a
given time horizon the occupancy prediction which encloses
all possible trajectories of the other traffic participants. The
performance of the approach is evaluated through simulation
against real traffic data.

I. INTRODUCTION

Autonomous vehicles are expected to become the most

viable means of transportation by 2040, accounting for more

than 75% of the cars on the roadway1. Increased safety,

traffic flow, and comfort are among the most prominent

advantages introduced by automated driving. Since a fully

autonomous vehicle relieves humans of all driving duties,

the safe operation of vehicles in a dynamic environment (i.e.

the position of obstacles changes) must be guaranteed.

A key issue in guaranteeing the safety of autonomous

vehicles is the generation of trajectories based on possible

trajectories of other traffic participants. However, relying

only on the most probable trajectory of the other traffic

participants is not safe, since unexpected maneuvers might

result in inevitable collisions. Fail-safe motion planning is

therefore required in order to safely react in any traffic

scenario. The main idea is the following: First, a trajectory

is generated considering the most probable trajectory of

the other vehicles. Then, an emergency maneuver which

accounts for every possible action of the other traffic partic-

ipants is kept available at each time step. If no other further

feasible trajectory is found, then the emergency maneuver is

applied until either the host vehicle is brought to standstill,

or a new feasible trajectory is found.

Different methods are already available for motion plan-

ning and can be categorized as follows: 1) planning in

discrete space (e.g.: grid-based approaches [15], planning

using motion primitives [1], rapidly-exploring random trees

[2]–[4], and road maps [5]–[9]); 2) planning in continuous

space (e.g. optimal control, model predictive control [10]–

[13], and elastic bands [14]). A survey on existing algorithms
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for collision-free trajectory planning for mobile robots can

be found in [16].

1) Planning in discrete space: Sampling-based motion

planning algorithms such as Probabilistic Road Maps (PRM)

[5]–[9] or Rapidly-Exploring Random Trees (RRT) [2]–[4]

demonstrate good performance in practice, especially for

path planning in high-dimensional non-convex state spaces.

However, the performance of sampling-based approaches

depends on control inputs used to explore the configura-

tion space. To decrease the computational cost required by

sampling, predefined and parametrized trajectories which are

often referred to as a motion primitives [1] (e.g. turn left,

right turn, go straight, etc) can be used. The maneuvers

are constructed such that they can be smoothly connected

according to a maneuver automaton [17]. Since the motion

primitives are computed off-line, the proposed planning al-

gorithms are suitable for real-time applications. Construction

of formally verified maneuver automata using reachability

analysis is investigated in [18]. The authors of [19] use a

heuristic graph search to find a feasible path. In [20], the

motion primitives are modeled as a hybrid system, where the

discrete states are the predefined trajectories and the control

input used to transition from one state to another is defined

by maneuvers. Thus, the optimal path is found by solving a

classic hybrid optimal control problem [21].

2) Planning in continuous space: To generate a trajectory

directly in continuous space, elastic bands have been intro-

duced [14]. Elastic bands are paths which can be deformed

to react to changes in the environment. This approach is

used for various purposes, such as emergency maneuver

generation [22], trajectory planning [23], or adaptive cruise

control [24], where only one path is computed. Since a single

elastic band might fail to describe a desired path, several

elastic bands are generated in [25]. A single solution is then

selected based on a given cost function.

For optimal trajectories which consider constraints, op-

timal control or MPC is used [10]–[13]. In [10], MPC is

utilized for trajectory planning to prevent lane departure.

Collision-free trajectories are developed in [11], which takes

static obstacles into account. In [12], collision avoidance is

achieved through steering and braking, and it is assumed that

the obstacle moves with constant velocity.

Guaranteeing safety and comfort for motion planning in

a dynamic environment is a major issue due to uncertainties

introduced by the infinite number of possible trajectories

of other traffic participants. However, most of the time,

comfort and safety are opposite requirements, e.g. in an

emergency situation, a jerky maneuver might be useful in

avoiding a collision. While much work already exists both
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on emergency maneuver and optimal trajectory generation,

motion planning which simultaneously considers safety and

comfort has not yet been addressed. Some attempts toward

safe motion planning already exist. The authors of [26]

employ emergency maneuvers at the end of the computed

trajectory, but they do not consider all possible trajectories

of the surrounding vehicles. Instead, viable inter-vehicle

communication and future trajectories are assumed to be

known [26].

The main contribution of this paper is the development of

a fail-safe motion planner for autonomous vehicles, which

simultaneously guarantees safety and comfort by combining

an optimal trajectory with an emergency maneuver. Unlike

previous work, our framework generates two trajectories:

First, an optimal path considering the most likely movement

of leading vehicles is computed for a given time horizon.

Then, for each time step an emergency maneuver is kept

available which takes the overapproximative future occu-

pancy of surrounding traffic participants into account.

The remainder of the paper is structured as follows: In

Sec. II, an overview of the approach is presented, including

the vehicle system dynamic model and the imposed con-

straints. The fail-safe motion planner is described in detail

in Sec. III. This algorithm is evaluated against real traffic

data on a highway in Sec. IV. Finally, the conclusions are

briefly presented in Sec. V.

II. OVERVIEW

Consider a road network, specified by adjacent lanes with

arbitrary curvature; a possibility for efficiently representing

road networks can be found in [27]. In the following, we

consider that lanei is a drivable path determined by its left

and right borders, bL,i and bR,i, each defined as a polyline,

see Fig. 1. We assume that the adjacency between lanes is

known. For simplicity, lanes will refer to the union of all

lanes which can be reached by the host vehicle in a given

time interval: lanes =
⋃

i

lanei.

bL,i bR,i

lanei

lanej

lanek

driving direction

point of polyline

Fig. 1: Road network.

Each vehicle is uniquely described by its position (sx, sy)
within the lanes’ borders, by considering a global coordinate

system. The host vehicle is defined as the vehicle which is

controlled using our approach. The other traffic participants

positioned ahead represent the leading vehicles. In order to

focus on the novel aspects in this paper, we intentionally

only consider a single leading vehicle. In principle however,

this approach works for arbitrarily many leading vehicles.

driving direction

Lead: most likely path

Host: optimal path

Lead: unpredicted maneuver

bL

bR

Fig. 2: A trajectory for the host vehicle is generated considering
the most likely path of the leading vehicle. However, if the leading
vehicle performs an emergency maneuver, the generated path for
the host vehicle is no longer safe.

The problem addressed in this paper is the design of a

motion planner for the host vehicle, such that the generated

trajectory is smooth and any possible collision with other

traffic participants is avoided. Next, let us define the system

dynamics of the host vehicle.

A. Modeling

We model the vehicle as in [12], where the notation ẋ

represents the first derivative of x:

ṡx = v cos θ,

ṡy = v sin θ,

θ̇ =
v δ

l

[

1 +

[

v

vch

]2
] ,

δ̇ = u1,

v̇ = u2,

(1)

where the position sx, sy , velocity v, yaw angle θ, and

steering angle δ represent the state variables. The steering

rate u1 and the acceleration u2 are the control inputs. In

addition, two parameters are used: the car length l and

velocity vch, which depends on mass and cornering stiffness,

and characterizes the steady-state dynamics of the bicycle

model. The notation ẋ represents the first derivative of x. The

following constraints on state and inputs must be satisfied:

0 ≤ v ≤ vmax, (2)

amin ≤ u2 ≤ amax. (3)

(sx, sy) ∈ lanes, (4)

δmin ≤ δ ≤ δmax, (5)

δ̇min ≤ u1 ≤ δ̇max. (6)

While the first two inequalities (2)-(3) refer to physical

constraints, i.e. the possible values of the velocity and

acceleration, the last three constraints refer to safety (4)

and comfort (5)-(6), such that the vehicle does not exit the
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Host Lead

L: occupancy set

L: most likely path

H: optimal trajectory

H: emergency maneuver

a

b

L = Lead vehicle

H = Host vehicle

ti + t′

titi

ti + Th2

ti + Th2

ti + Th1

ti + Th1

Th2
< Th1

(a) t = ti

Host

Lead

a′

b′

ti + Th2

ti+1

ti+1

ti+1 + t′

ti+1 + Th2

ti+1 + Th2

ti+1 + Th1

(b) t = ti+1

Fig. 3: At each time, an emergency maneuver which accounts for
every possible maneuver of the leading vehicle is kept available.
If there is no other further trajectory available, the emergency
maneuver is applied, which can safely bring the host vehicle to
a standstill.

lanes’ boundaries and the generated trajectory is smooth. The

parameters for the velocity vmax, the acceleration amin, amax,

and the steering angle δmin, δmax are given.

III. FAIL-SAFE MOTION PLANNER

The main idea is to design a three-step motion planner

which accounts for changes in the environment and at the

same time maintains comfortable motions. First, the most

probable maneuver of the surrounding vehicle2 is computed.

Then, an optimal trajectory of the host vehicle is generated

for a given time horizon Th1
, so that no collision occurs

according to the assumed behavior of the other vehicle,

as illustrated in Fig. 3. In the second step, an emergency

maneuver is generated which can bring the host vehicle

to a standstill. To guarantee safety, all possible trajectories

of the leading vehicle must be considered. To this end, an

overapproximative occupancy set which encloses all possible

occupancies is computed [28] for a given time horizon Th2
.

Let us denote the segment of the optimal trajectory com-

puted for a given time interval [t, t+t′] as a , see Fig. 3a. Us-

ing optimal control, we generate a collision-free emergency

maneuver b , such that the fail-safe trajectory determined

by concatenation of a and b does not intersect with the

2We consider as surrounding vehicles the other traffic participants which
are situated in front of the host vehicle, in the same lane, or on the adjacent
lanes, whose x-position (considered in the driving direction) is similar to
the host vehicle. Since each vehicle is responsible for not colliding with the
other vehicles, and driving backwards is prohibited on the highways, the
vehicles positioned behind the host vehicle are not considered.

occupancy set of the lead vehicle, for any intermediate time

interval up to the time horizon Th2
. Thus, for a given time

horizon, no matter what the trajectory of the lead vehicle is,

there exists an emergency maneuver which can safely bring

the host vehicle to standstill, as depicted in Fig. 3a. In the

third step, after new measurements are received (see Fig. 3b),

it is evaluated whether the fail safe trajectory should be exe-

cuted or the optimal trajectory should be continued. If there

exists any further fail-safe maneuver obtained by connecting

an optimal trajectory a’ with an emergency maneuver b’ ,

which does not intersect with the new computed occupancy

set, then the optimal trajectory a’ is followed. If several

feasible trajectories are found, the optimal one is chosen.

Otherwise, if there exists no other collision-free trajectory,

then the previously computed emergency maneuver b is

applied. The general architecture is presented in Fig. 4. In

the following subsections we describe the generation of the

optimal and emergency trajectory in more detail.

➀ ➁

➂

Init

Maneuver prediction (Lead) Occupancy set (Lead)

Optimal trajectory (Host) Emergency maneuver (Host)

Obtain
current measurements

Follow
optimal trajectory

yes
Check if

any further fail-safe
trajectory exists?

no

Apply emergency
maneuver

Fig. 4: General architecture of the proposed approach.

➀ Optimal trajectory

To generate an optimal trajectory, the most likely maneu-

ver of the leading vehicle must first be computed. Different

approaches for computing the most probable trajectory of

the leading vehicle already exist: by assuming constant yaw

rate and acceleration (CYRA) [29] or by using a maneuver

recognition module (MRM) [30]. Since MRM shows higher

accuracy compared with CYRA for a longer time horizon

prediction [30], the MRM approach is used in the following

to generate the most probable trajectory of the leading

vehicle.

The main idea of the MRM is to generate a trajectory

prediction based on the detection of the goal lane, i.e. the

lane towards which the leading vehicle is driving. Three basic

maneuvers are considered: keep lane, change lane, and turn;
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obviously, the other possible maneuvers can be seen as a

combination of those basic maneuvers. It is assumed that for

any maneuver execution, the target position of a vehicle is

on the center-line of a lane. To compute the most likely

trajectory of the lead vehicle, a comparison between the

current path of the vehicle and the center-line of a given lane

is performed. The prediction of the most likely trajectory is

computed for each time ti within a given time horizon Th1 .

For more details, the reader is referred to [30]. Moreover, for

each time ti, a polygon which represents the car occupancy is

associated with each position of the computed trajectory. The

predicted polygons of the lead vehicle are then embedded as

constraints in the trajectory generation problem of the host

vehicle, as later explained in more detail.

After the most probable path of the leading vehicle is com-

puted, an optimal trajectory of the host vehicle is generated

for the same time horizon Th1 . Generating trajectories that

utilize optimal control or MPC, which must satisfy a set

of given constraints, is already a mature research field. In

this paper, an approach inspired by [12] is used to generate

the trajectory of the host vehicle. Other approaches for

computing an optimal trajectory can be used as well.

In [12], the main objective is collision avoidance through

velocity reduction. Here, our aim is to generate a smooth

trajectory by avoiding high jerk values. Hence, the cost

function from [12] is modified to penalize deviation from

the reference trajectory (which is the center-line of each lane)

and to avoid the predicted polygons of the lead vehicle.

l

w

(sxi, syi)

di

enclosing rectangle ri

obji

Fig. 5: Obstacle avoidance constraint.

Let us denote with obji, i ∈ {1, · · · , n} the prediction of

the leading vehicle occupancy at the ith time step. In order

to avoid any collision with the leading vehicle, constraints

regarding the distance between the generated trajectory and

the prediction obji must be considered for the host vehicle.

Therefore, the minimum Euclidian distance di between the

rectangle ri, which encloses the host vehicle, and the pre-

dicted polygon obji, is introduced (see Fig. 5). Both polygons

are computed for the ith time step.

di = min
i

distance(ri, obji). (7)

Then, it is checked if di is greater or equal than a parameter

λ, in order to prevent a collision with the lead vehicle. The

selected cost function minimizes the variation of the velocity

and the variation of the steering rate:

J1 =

t+Th1
∫

t

[

γ1u
2
1 + γ2u

2
2 + γ3(θ − θr)

2 + γ4δ
2 + γ5d

2
r

]

dτ,

subject to: (1) − (6), (sx, sy) ∈ lanes, (8)

where θr is the orientation of the reference trajectory, dr is

the distance to the reference trajectory, and γi, i ∈ {1, . . . , 5}
are weighting parameters. As already mentioned, the ref-

erence trajectory of the host vehicle is the center-line of

the current lane; if no feasible trajectory is found using the

current center-line as a reference, then the center-line of the

adjacent lanes is considered to be the reference trajectory.

Thus, the generated trajectory corresponds to a lane change

maneuver, as depicted in Fig. 6. The collision avoidance

with the surrounding vehicles is done by considering the

constraints regarding the distance between the generated

trajectory and the predicted trajectory of the other traffic

participants, as described in (7). Of course, other approaches

for trajectory generation could be used.

Lead: initial position

Lead: path prediction

Host: initial position

Host: generated trajectory

Fig. 6: Optimal trajectory generation.

➁ Emergency trajectory

The leading vehicle can perform infinitely many unpre-

dictable maneuvers, which are not taken into account when

generating an optimal trajectory, as illustrated in Fig. 2. Of

course, not considering all possible maneuvers of the lead

vehicle might result in a collision. Therefore, an emergency

plan must be maintained, which accounts for all possible

maneuvers the leading vehicle can perform in a given time

horizon Th2 .

In [28], a method for computing an overapproximative

set which encloses all possible trajectories of the leading

vehicle is proposed for a given time horizon Th2 . To this

end, two abstracted models for the leading vehicles are

presented: They consider constraints derived from the traffic

rules listed in the Vienna Convention on Road Traffic [31]

and physical constraints. Next, the reachable sets for each

abstraction are computed; it is proven that the intersection

of reachable sets of different abstractions of other traffic

participants provides the overapproximative occupancy of

other traffic participants [32]. The following constraints are

assumed for predicting the occupancy of the lead vehicle:

driving backward and leaving the road are forbidden; the

maximum absolute acceleration is limited by amax; longi-

tudinal acceleration is zero when a parametrized vmax is

reached and is inversely proportional to speed whose value is
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bigger than a parameter vs, which models a maximum engine

power. If one of the constraints is violated, the corresponding

abstraction is no longer considered when computing the

occupancy set. This approach has two main advantages: First,

it guarantees that all possible trajectories are enclosed by the

overapproximative occupancy set. Second, the computation

time is low due to the abstracted models used for the vehicle,

which makes it suitable for real-time computation. For a

more detailed description, the reader is referred to [28].

As in the previous step, after the prediction of the leading

vehicle is computed, a collision-free trajectory is generated

for the host vehicle. The difference for computing the emer-

gency maneuver is that the velocity must be reduced, and all

possible trajectories of the lead vehicle enclosed by the entire

occupancy set must be avoided. There is much research on

emergency trajectory generation. However, not all possible

trajectories of the leading vehicle are considered in previous

work. Most work computing possible trajectories assumes

that the lead vehicle is moving with constant acceleration or

only considers static obstacles.

The following approach uses optimal control to generate

the emergency maneuver, similar to the one used for optimal

trajectory [12]. To guarantee safety, the occupancy sets are

embedded in the constraint function.

The cost function is similar to the one used for optimal

trajectory generation, as described in (8). The difference is

that driving along a reference trajectory is no longer desired,

but rather minimizing the velocity v:

J2 =

t+Th1
∫

t

[

γ1u
2
1 + γ2u

2
2 + γ3(θ − θr)

2 + γ4δ
2 + γ5v

2

]

dτ

subject to: (1) − (6), (sx, sy) ∈ lanes\obji. (9)

IV. NUMERICAL EXPERIMENTS

Real traffic data is used to evaluate our proposed approach

for fail-safe motion planning. The provided dataset is part

of the Federal Highway Administration’s (FHWA) Next

Generation Simulation (NGSIM)3 project, and it contains de-

tailed vehicle trajectories. These data were collected on June

15th, 2005, on a segment of U.S. 101 Highway (Hollywood

Freeway) located in Los Angeles, using eight video cameras.

The vehicle trajectory data were transcribed from the taken

video data using a specialized software application - the Next

Generation Vehicle Interaction and Detection Environment

for Operations (NG-VIDEO). For each considered vehicle,

the following information is available for every 0.1 seconds:

position, velocity, and acceleration.

In the simulation, the vehicles whose trajectories were

recorded are considered to be leading vehicles. The host

vehicle is positioned behind the leading vehicle(s); the initial

velocity and acceleration are arbitrarily chosen within the

given limits (see Tab. I). The parameters used for the

generation of fail-safe trajectories are listed in Tab. I.

3http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

In the following, three scenarios based on the NGSIM

dataset are considered: First, we present a scenario in which

the motion planner does not consider fail-safe maneuvers.

Then we apply our proposed algorithm to the same scenario

and compare the two. Finally, multiple leading vehicles are

considered.

1) Scenario 1: Here, only the predicted trajectory of

the lead vehicle is taken into account when computing the

motion for the host vehicle. Initially, both host and lead

vehicles are situated in the same lane at a 37m distance. The

initial velocity for the host and the lead vehicle are 20m/s

and 13.5m/s. At time 4.5s (t9), the lead vehicle performs an

unexpected maneuver and drives towards the left lane. Since

no fail-safe maneuver is considered for the host vehicle, a

crash occurs, as illustrated in Fig. 7.

Lead vehicle. Host vehicle. Driving direction.

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

t6

t6

t7

t7

t8

t8

t9

t9

Fig. 7: Scenario 1. Simulation results.

2) Scenario 2: The same traffic scenario is considered,

which differs from the host vehicle’s motion planner used

in the previous scenario. Here the set-based occupancy

prediction is computed for the leading vehicle at each time

step. Thus, all possible maneuvers are considered. At each

time step, a feasible emergency maneuver is available for

the host vehicle. At time 4.5s (t9), the lead vehicle steers to

the left, towards the host vehicle. This unexpected behavior

triggers an emergency maneuver for the host vehicle in order

to successfully avoid a collision, as depicted in Fig. 9. The

inputs used to control the host vehicle are presented in Fig. 8.

The control inputs u1 and u2 are high due to the fail-safe

maneuver which is only executed in an emergency situation.

3) Scenario 3: A scenario with two surrounding vehicles

is considered. The initial distances between the host vehicle

and the other vehicles are 37m and 49m, and the initial

velocity of the lead vehicles is 13.5m/s and 13m/s. Fig. 10

shows the measured position of the surrounding vehicles

at each time step, together with the generated path of the

host vehicle. The values of control inputs u1 and u2 are

presented in Fig. 11. The lead vehicle #1 (see Fig. 10)

performs an unexpected maneuver at time t9 towards the

left lane, where the host vehicle is driving. The host vehicle

successfully avoids the collision by applying the available

emergency maneuver. Next, at time t22 the lead vehicle #2

starts a change lane maneuver. At the next time step, the lane

change maneuver is aborted, and the host vehicle continues

driving along the planned trajectory. As it can be seen, the

host vehicle’s path is collision-free for the entire simulation.
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TABLE I: Parameters.

Parameter Ts Th1 Th2 ǫ v a θ δ w l vch

[unit] [s] [s] [s] [m] [m/s] [m/s2] [rad] [rad] [m] [m] [m/s]

Value/ Interval 0.5 5 1 2.4 [0, 60] [-10, 10] [-π/2, π/2] [-0.5,0.5] 1.7 4 50

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

Time [s].

u
1

[r
ad

/s
].

(a) Steering rate u1.

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

Time [s].

u
2

[m
/s
2

].

(b) Acceleration u2.

Fig. 8: Scenario 2. Control inputs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a fail-safe motion planning approach for

autonomous vehicles is presented. The optimality of the ap-

proach is achieved by considering the most likely trajectory

of the lead vehicle. The safety of the proposed method is

guaranteed by keeping an emergency maneuver available

which accounts for every possible trajectory of the leading

vehicle over a given time horizon. Thus, the main asset of

our technique is that we are able to bring the host vehicle to

a safe stop, no matter what the current maneuver of the lead

vehicle is.

The approach is tested using real traffic data, and it shows

that safety can indeed be achieved by considering all possible

maneuvers of the leading vehicle(s). As a direction for future

research, we will also consider the interaction between sur-

rounding vehicles, such that the traffic behavior is anticipated

more accurately. This would allow the host vehicle’s motion

planner to be smoother and more comfortable.
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Fig. 9: Scenario 2. Simulation results.
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