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Abstract

A fasl-stop processor never performs an erroneous state
transformation due to a failure. Instead, the processor halts
and its state is irretrievably lost. The contents of stable
storage are unaffected by any failure. Fail-stop processors and
stable storage can simplify construction of fault-tolerant com-
puting systems. The problem of designing approximations to
fail-stop processors and stable storage is addressed. Their use
is compared with the stale machine approach, another general
paradigm for constructing fault-tolerant systems.

Introduction

Designing and programming a fault-tolerant computing
system is a difficult task. As a result of a failure, a processor
might exhibit arbitrary and malicious behavior thereby des-
troying critical information. An obvious solution to this is to
employ multiple processors. However, a malfunctioning pro-
cessor might still destroy state information and thus affect the
operation of working processors. Clearly, use of processors
that halt in response to any failure would avoid this difficulty.
We call such processors fail-stop.

A fail-stop processor never performs an erroneous state
transformation due to a failure. Instead, the processor simply
halts and its internal state (registers, etc.) and the contents of
its memory are irretrievably lost. Similarly, the contents of
atable storage are unaffected by any failure. We have found
these abstractions to be useful for building fault-tolerant com-
puting systems and have developed a methodology based on
them, called the fasl-atop processor approach. The develop-
ment of programs for fail-stop processors and stable storage it
treated in detail in [11]. This paper addresses the problem ol
constructing fail-stop processors and stable storage. We also
contrast our approach with the state machine approach
[3,4,5,12], another paradigm for constructing fault-tclcrant
computing systems.

Programming Fail-Stop Processors
with Stable Storage

When using a computing system constructed from fail-
stop processors and stable storage, a failure never contam-
inates values in stable storage. However, a failure does destroy
state information in other storage attached to malfunctioning
fail-stop processors. This suggests the following structure for a
fault-tolerant program. The program is divided into logical

*This work is supported in part by NSF Grant MCS-81-03605.

CH1856-4/83/0000-0066$1.00 © 1983 |IEEE

units of computation, called actions. Concurrently executed
actions communicate and synchronize by using shared
variables in stable storage.

For each action, a recovery protocol is also programmed.
The recovery protocol R for action A is designed so that:

RPI:

Only values stored in stable storage are required for R
to run correctly.

R will yield the same results as A, and will do so
when started in any intermediate state that can be
visible should execution of A or R be halted (due to a
failure).

RP2:

A fault-tolerant computing system is then constructed
from a collection of fail-stop processors and some shared,
stable storage. (The number of fail-stop processors and
amount of stable storage required will depend on the number
of failures the system must be able to tolerate and any
response-time constraints imposed by the application.) When-
ever a fail-stop processor fsp fails, a reconfiguration rule is used
to assign programs that were running on fsp to operating fail-
stop processors. Once assigned, the corresponding recovery
protocol is invoked for each action that is moved and the com-
putation continues. Failures during execution of the recovery
protocol cause the program to be moved to another fail-stop
processor and the recovery protocal to be reinvoked. Thus,
processor failures are invisible, except for possibly increased
execution times.

Structuring programs as actions and recovery protocols is
reasonably straightforward. An action is designed to save
enough of its state in stable storage so that its recovery proto-
col, should it be invoked, can always complete the state
transformation that was in progress. Although it is tempting
to store all program variables in stable storage, thus simplify-
ing the task of designing the recovery protocol, accessing
stable storage is likely to be expensive compared with access-
ing other storage. Therefore, the number of accesses to stable
storage that an action makes should be minimized. On the
other hand, recovery protocols are executed infrequently, so
they can make heavy use of stable storage and even do extra
computation when invoked.

One simple way to structure an action is for it to read
some information from stable storage, do a computation based
on that information, and then write the results of that compu-
tation back to stable storage. This approach is often used in
database management systems. Items are stored on disks,
which are assumed to implement stable storage. Transactions
can update one or more items by moving the items to proces-




sor storage, performing the update, and then issuing an
instruction to cause the items to be written back onto the
disk. A logis used to save the old and new values for each
item in the database that is changed; the log is stored in stable
storage. A failure during processing may leave the database in
a state that reflects partial execution of one or more transac-
tions, depending on which new values had actually been writ-
ten to the database prior to the time of the failure. However,
a recovery protocol can make use of the log to restore the
database to a state that reflects complete execution of some of
the transactions.

A methodology for developing actions and recovery proto-
cols is described in [11]. It is based on axiomatic program
verification and can be viewed as extending Dijkstra's pro-
gramming calculus [1] for programming fault-tolerant systems.
The methodology has been successfully applied to a number of
small examples, including the two-phase commit protocol [10]
~ and a process control application [13].

Approximating Fail-Stop Processors
and Stable Storage

It is impossible to implement a completely fault-tolerant
computing system using a finite amount of hardware. With
~ only a finite amount of hardware, a finite number of failures
- could disable all the error detection hardware and thereby
allow arbitrary behavior. Thus, we must be satisfied with con-
. structing systems that behave as desired unless too many
" failures occur within some specified time interval. A k-fail-stop
processor is a computing system that behaves like a fail-stop
- processor unless k+ 1 or more failures occur. Similarly, an s-
table storage unit behaves like stable storage unless s+ 1 or
ore failures occur. Obviously, as k and & approach infinity,
- these approximations become closer to the ideals they approxi-
. mate. [n order to construct a computing system that can
~ tolerate up to t failures, t-fail-stop processors and ¢-stable
storage units are used.

- Byzantine Agreement

Qur approximations are based on establishing Byzantine
Agreement [7] (also known as interactive consistency [9]) among
 collection of processors. Given a collection of potentially
faulty processors, where one is designated the franamitier, a
Byzantine Agreement protocol allows the transmitter to distri-
nte a value at time T according to its clock so that:

Byzl:  each non-faulty processor will agree at time T+ A
: (on its clock) on the value sent by the transmitter,
and

if the transmitter is non-faulty, the non-faulty proces-
sors agree on the value sent by the transmitter

- A depends on the upper bound on the time it takes the net-
work to deliver a message once it has been sent and on the
- maximum rate by which clocks at non-faulty processors can
differ. Thus, one way the transmitter might fail is by execut-
ing very slowly. In this case, all non-faulty processors will
gree on a distinguished value “timecout™.

Protocols that establish Byzantine Agreement are
described in [2,7,8]. In addition, lower bounds have been
obtained for various aspects of establishing Byzantine Agree
~ ment among N processors when at most ¢ can be faulty [3]:

o the protocol must run for at least O(¢+ 1) rounds, and
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e the number of messages exchanged in each round must
be at least O(N?).

These quantify the cost of any protocol to establish Byzantine
Agreement; it is not cheap.

k-Fail-Stop Processors

A k-fail-stop processor is constructed from k+ 1 proces-
sors and a stable storage unit. Failures are detected by having
processors run the same program and compare results when
they access stable storage.

Initially, we assume the existence of perfectly reliable
stable storage; that assumption is relaxed in the next section.
We also assume that

Al: The clocks at all non-faulty processors and the stable
storage unit are synchronized and run at the same

rates.

Algorithms exist to synchronize processor clocks despite arbi-
trary and malicious failures [68]. These algorithms require at
least 2¢+ 1 processors in order to tolerate up to ¢ faulty ones.
Thus, provided our implementation of stable storage involves
at least k processors, clocks can be kept synchronized, since
our implementation of a k-fail-stop processor involves k-+ 1
processors. The implementation of an s-stable storage unit
given in the next section uses 28+ 1 processors, 4 > k.

Finally, we assume

A2: The origin of a message can be authenticated by its
receiver.

This is a reasonable assumption; digital signatures can be used
for this purpose.

Each of the k41 processors that make up a k-fail-stop
processor fsp executes the same program. A processor accesses
stable storage by sending a message. In order for processor p
to write value val to location var in stable storage, it sends a
timestamped message m:

m = < T:time, p:origin, write val to var:request > ;
to read the value of location var in stablc storage, p sends

m = < T:time, p:origin, read var:request > ;

Since all processors execute the same program and have
synchronized clocks, all non-faulty processors should send mes-
sages containing identical request and time fields to a stable
storage unit. Moreover, a stable storage unit should receive
those messages by time T+ 6 on its clock, where é is a func-
tion of the upper bound on the time it takes the network to
deliver a message once it has been sent and the maximum rate
by which clocks at non-faulty processors and the stable storage
unit can differ. The failure of a k-fail-stop processor is
detected by checking all messages received as of time T with
timestamp T'-6. If

(i) exactly one message from each of the k+ 1 processors
has been received and

(i1) the request field in each of these messages is identical,

then (either all or) none of the k+ 1 processors that make up
the k-fail-stop processor are faulty. (The case where all k+1
processors are faulty need not concern us here, because the
definition of a k-fail-stop processor allows it to display arbi-
trary behavior under these circumstances.) Otherwise, at least
one processor is behaving differently from the others and so
the k-fail-stop processor is deemed faulty. Stable storage is



updated only if the k-fail-stop processor is not faulty; that is
all processors send the same request.

Operation of a stable storage unit is summarized by the
following program.

At each clock tick do;
T':= current time;
R := bag of received messages m where:
m.time = T -§
if |[R|=0— skip
IR |=k+1 A
(Ym,m':m,m' eR:
m.request =m' .request A
m.origin #£m' .origin)) —
m:= elementof(R };
if m = <..., write val to var> —
var:= val
[ m=<..., read var> —
forall pefsp :
send var to p

fi

[| otherwise — fap:= reconfiguration_rule(fsp);
forall p € fsp:
start recovery protocol at p

fi

It should be clear that this implementation of stable storage
changes the value of a variable only if all £+ 1 processors that
make up a k-fail-stop processor request it to.

When the processors that make up a k-fail-stop processor
read a variable from stable storage, they are all sent the same
value. Unfortunately, this does not ensure that this value will
be the one reccived by all. However, processors that receive
the wrong value and subscquently behave differently as a
consequence will be deemed faulty at that time; this is entirely
reasonable, since a failure has indeed occurred.

If the failure of a fail-stop processor is detected, the com-
putation that was in progress is moved to another fail-stop
processor. To do this, a new k-fail-stop processor is
configured, according to a reconfiguration rule and the
recovery protocol for the action in progress at the time of the
failure is started on each of these processors. However, note
that a computing system that must be able to tolerate k
failures need not involve k+ 1 k-fail-stop processors, or a total
of (k+ 1)* processors. After a new fail-stop processor has been
configured and the computation has been moved there, diag-
nostics can be started on the processors that made up the mal-
functioning fail-stop processor. Processors that pass these
tests can be returned to the pool of processors available for use
in subsequent reconfigurations. Thus, a single faulty processor
will not cause k working processors to become unavailable.

s-Stable Storage

We now relax the assumption, made in the previous sec-
tion, that stable storage is completely reliable. An s-stable
storage unit is constructed from 2s+ 1 processors. Each of
these keeps a copy of each variable contained in stable storage.
Provided each processor in the approximation receives every
request to read or write stable storage in the same order and
in a timely fashion, cach non-faulty processor will indepen-
dently perform the same updates to its copy of stable storage.
All the copies will therefore agree. By assumption, at most a
of the processors used to implement s-stable storage can be

faulty. Thus, the value of each variable in stable storage can
be determined by taking the majority value of the 2a+1
copies.

To ensure that all of the 2a+ 1 processors that make up
s-stable storage receive the same messages in the same order
and in a timely fashion, a Byzantine Agreement protocol is
used—each processor in the k-fail-stop processor serves as
transmitter to the processors that make up the stable storage E
unit. Thus, as of time T, the processors that make up a :
stable storage unit can be certain that no request with times-
tamp smaller than T-A will ever be received, due to Byzl.
Therefore, each can run the program described above with &
changed to A and messages placed in the bag R only if they
result from a Byzantine Agreement, and again the implemen-
tation will change the value of a variable in stable storage only §
if all K+ 1 of the processors that make up a k-fail-stop proces- :
sor request it to.

The operation of the processors making up a fail-stop
processor must also be changed slightly for them to interact
with an s-stable storage unit instead of with the fully reliable
stable storage postulated in the previous section. After
requesting the value of a variable from an s-stable storage
unit, a processor will receive a value from every non-faulty
processor in the s-stable storage approximation, whereas pre-
viously it would receive exactly one response from the fully
reliable stable storage. Above, we assumed that the origin of a
messages could be authenticated by a receiver. Thus, if (a
faulty) one of these processors sends more than one message,
the additional messages can be discarded. Consequently, at
most 2s+ 1 messages will be considered in response to a
request to read a value from stable storage. Provided at most
s processors are faulty, s+ 1, a majority of the values received
should agree.

Similarly, since as many as s of the processors in an s-
stable storage may be faulty, a recovery protocol should be
started only after at least s+ 1 requests to do so have been
received. Recall that each of the non-faulty processors in an
s-stable storage unit will independently determine that there

1
has been a failure, then compute the same reconfiguration, and :
finally attempt to start the recovery protocol running on the <
new fail-stop processor. £

i

1
Implementation Notes

An s-stable storage unit can service a number of fail-stop
processors, the only limitation being the aggregate rate of P
accesses that must be supported. Moreover, it is also possible fe
for each physical processor to be multiprogrammed and thus
to implement more than one virtual processor. If this is done,
then it is important that the virtual processors that make upa
given k-fail-stop processor and an s-stable storage unit be
implemented by different physical processors. Otherwise, fa
failures would not be independent—a single failure could result - be
in the failure of multiple virtual processors. - de
It is easy to imagine situations in which various tasks 4
require different degrees of fault-tolerance. In that case, a k- oY
fail stop processor would be used for each task r;, where k; is i
based on the degree of fault-tolerance required. A single s-
stable storage unit can service such a heterogeneous collection ar

of fail-stop processors, provided s >£;, for all &;.

Lastly, determination of k and s will be based on the |
reliability characteristics of the processors used. These param-
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define the number of concurrent failures that can be
ed, where failures are considered concurrent if they
between successive accesses to stable storage. Given
he cost for processors with different reliabilities is likely
er, it is desirable to use a few highly reliable processors
e implementation of stabie storage, and less reliable,
aper processors in the implementation of the fail-stop pro-
or approximations. This reduces the cost of achieving
zantine Agreement, because the total number of processors
Ived is smaller, without affecting reliability.

Fail-Stop Processors and
the State Machine Approach

The implementation of the a-stable storage unit
ibed above is an application of the atate machine
oach, a general approach for constructing distributed pro-
ms first described in [3] and later extended for environ-
gents in which failures could occur in [4,5,12). Given any pro-
S, a distributed version that can tolerate up to t faults
be constructed by running S on 2t+ 1 processors. Byzan-
agreement is used to ensure that each version of the pro-
reads the same inputs; majority voting is used to deter-
the output of the computation. The state machine
roach is an attractive alternative to building and program-
fail-stop processors because there is no need to partition
aprogram into actions and to construct recovery protocols for
se actions.

The fail-stop processor approach has its advantages, how-
Consider an application that, if run on P fault-free pro-
s, would meet its response-time constraints. If the state
ne approach is used, in order for this program to be able
olerate up to ¢ faults,

= P(2t+ 1)

rs are required. Suppose the fail-stop processor
ach is used instead. Let us assume that I/n of the
ctions executed by the application involve accesses to
. storage. P (-fail-stop processors and an a-stable
¢ unit with sufficient bandwidth are required. The a-
o storage unit must respond to access requests from all
1) processors in the fail-stop processor approximations.
is a total of:

Ny= P(t+ 1)1+ ﬂ‘:"’—‘l(eu 1)

rs. Thus, the fail-stop processor approach requires
processors provided:
¢

= P4 8t+ 1

* If accesses to stable storage are not frequent, then using
op processors is cheaper then the state machine approach
se P(t+ 1) processors do most of the processing and
t up to ¢ failures, while in the state machine approach
- 1) processors are required to do that processing. How-
hen the fail-stop processor approach is used, a few addi-
| processors are required to implement stable storage.

ther significant differences between the two approaches
mfortunately, more difficult to quantify. They include:

s The fail-stop processor approach may incur additional
response time when a task is moved from one fail-stop
processor to another because its recovery protocol must
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be executed. Such delays are not incurred when the state
machine approach is used.

e We have only limited experience designing and program-
ming applications in terms of actions and recovery proto-
cols. It is likely to be more difficult to write a program in
such a stylized manner, as required in the fail-stop pro-
cessor approach. The state machine approach imposes no
such constraints. Also, the running time of programs
that are structured in terms of actions and recovery pro-

tocols may be higher because information must be moved
periodically to stable storage.

Discussion

We helieve the fail-stop processor approach to be a viable
way to construct fault-tolerant computing systems. It does
not involve appreciably more processors than required by the
state machine approach, and in some cases requires fewer pro-
cessors.

Another popular scheme for constructing reliable comput-
ing systems involves majority voting and ‘‘warm stand-bys™: a
program is run on ¢ processors and if ever there is a disagree-
ment among these processors, the dissenting one is taken off-
line and replaced by ome of the stand-bys. Such a scheme is
clearly less fault-tolerant than ours, since it is not immune to
concurrent failures. Moreover, a careful analysis shows that
such a scheme requires a comparable number of processors as
the fail-stop and state machine approaches do, although it can
tolerate only a limited class of failures.

A major cost incurred when using the fail-stop approach
is that of achieving Byzantine Agreement. This cost need not
be significant, however, since actions can be designed to make
infrequent references to stable storage. In effect, updates to
stable storage are batched by the processors that make up a
fail-stop processor. When this is done, in the worst case a big
chunk of the computation will have to be repecated after a
failure has been detected by the stable storage unit.

The fail-stop processor approach can be viewed as a for-
malization of a well-known technique: checkpoints are taken
during the course of a computation, and after a failure the
computation is restarted from the last checkpoint. Actually,
our formulation of the approach was not based on this, but
followed from our attempts to extend assertional methods for
use in understanding fault-tolerance. The basis of axiomatic
program verification is that theorems of the programming logic
are also true statements about what would happen if the pro-
gram were run on a computer. That is, the logic is sound with
respect ta operation of a computer. If a failed processor can
perform arbitrary state transformations, then the program-
ming logic will no longer be sound with respect to the com-
puter on which the program is being run. Thus, to ensure
soundness in light of the possibility of failures, it is necessary
to prohibit failures from causing arbitrary state transforma-
tions. Hence, fail-stop processors.

There are undoubtedly other ways to approximate fail-
stop processors. By using conservative design practices and
introducing redundancy at lower levels, it should be possible to
implement a computing system that, with high probability,
behaves like a fail-stop processor. The fact that programmers
have long treated disk drives as, acceptable approx imations of
stable storage and real processors as acceptable approxima-
tions of fail-stop processors strengthens this argument.
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