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Abstract

This paper presents a new importance sampling scheme calledfailure biasing for the efficient

simulation of Markovian models of repairable fault-tolerant systems. The new scheme enriches

the failure biasing scheme previously proposed by exploiting the concept of failure distance.

This results in a much more efficient simulation with speedups over failure biasing of orders of

magnitude in typical cases. The paper also discusses the efficient implementation of the new

importance sampling scheme and presents a practical methodfor the optimization of the biasing

parameters.

NOTE FROM THE AUTHOR: The method proposed in the paper for theoptimization of the biasing

parameters introduces correlation, making the estimates invalid. A more recent paper, J. A. Carrasco,

“Failure Transition Distance-Based Importance Sampling Schemes for the Simulation of Repairable

Fault-Tolerant Computer Systems,IEEE Trans. on Reliability, vol. 55, no. 2, June 2006, pp.

207–236, minor corrections inIEEE Trans. on Reliability, vol. 56, no. 2, June 2007. p. 360,

presents two slightly modified biasing schemes which can be proved to be more efficient for balanced

systems than failure and balanced failure biasing, and describe a correct and efficient method for the

optimization of the biasing parameters. The author apologizes for the error in this paper.



1 Introduction

Availability/reliability metrics are appropriate for theevaluation of reapairable fault-tolerant systens

which from the user’s point of view can be seen as either operational or down. Important metrics of

this type are the steady-state availability, the availability, the interval availability, the mean time to

failue (MTTF), and the reliability. For the computation pf these metricsthe system can be viewed

as made up of instances of component types which change theirstate as a result of failure and repair

processes. Under the assumption of exponential failure andrepair time distributions, homogeneous

continuous-time Markov chains (CTMCs) area a powerful modeling tool, well suited to capture all

sort of dependencies which realistic models have to consider.

The main problem of CTMCs (and in general of any type of stochastic state-level models) is the

exponential growth of their size with the number of component types of the system. Simulation is

an approach which by nature is not limited by the size of the model, but, for repairable fault-tolerant

systems, the values of the metrics which are really of interest (i.e., the steady-state unavailability,

since the steady-state availability is usually very close to 1) result from contributions of rare paths

and direct Monte Carlo simulation is unfeasible. Two types of techniques have been proposed to

speed up direct Monte Carlo simulation. Inmportance sampling techniques exploit heuristic knowl-

edge about the model to modify the sampling distributions sothat the rare contributing paths be

sampled more often. Failure biasing and forced transition are two such techniques which were ini-

tially proposed in the context of the nuclear domain [1, 2], and have been recenty further developed

and applied with success to the simulation of models of fault-tolerant computer systems [3]–[5].

Estimator decomposition techniques exploit heuristic knowledge abot the models to formulate the

metric of interest in terms of lower-level metrics which canbe estimated more efficiently. Such tech-

niques have been recently used for the estimation of the steady-state availability [6] and theMTTF

[7], as well as the availability, the interval availability, and the reliability [8].

This papr presents a new importance sampling scheme calledfailure distance biasing which

enriches the failure biasing scheme previously poposed by exploiting the concept of failure dis-

tance. As the examples presented in Section 7 illustrate, the new scheme can achieve speedups over

failue biasing of orders of magnitude in typical cases. The paper also discusses the efficient com-

putation of failure distances, which are required by the scheme, and gives a practical method for

the optimization of the biasing parameters. The rest of the paper is organized as follows. Section 2

describes the type of models under consideration. Section 3contains a brief review of availabil-

ity/reliability simulation. Section 4 describes the new importance sampling scheme. Section 5

presents efficient techniques for the computation of failure distances, as required by the proposed

scheme. Section 6 describes a practical and efficient methodfor the optimization of the biasing

parameters of the scheme. Experimental results are presented in Section 7 illustrating both the

speedups over failure biasing and the efficiency of the techniques proposed for the computation of

failure distances. Section 8 concludes the paper and outlines future reserach directions.
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2 Type of Models

In the models under consideration the system is viewed as made up of instances of component types,

the instances of the same component type being completely indistinguishable. Components are ei-

ther unfailed or failed and, in general, can be failed in several modes. The system is operational or

down as determined by a coherent structure function [9] of the unfailed/failed state of the compo-

nents of the system. Without loss of generality, we assume that the structure function is represented

by a fault-tree consisting of and, or gates. The fault-tree can have in general fanout and its inputs

have associated atoms of the formt[k] with the semantics “at leastk components of typet are

failed”. The output of the fault-tree evaluates to true if and only if the system is operational. An

alternative representation, which sometimes is more convenient, is provided by an operation-tree

whose output evaluates to true if and only if the system is operational and in which the atomst[k]

have the semantics “at leastk components of typet are unfailex”. Both representations are equiv-

alent, in the sense that it is possible to transform an operation-tree into a fault-tree representing the

same structure function and viceversa by transforming and gates into or gates and or gates into and

gates and replacing each atomt[k] by t[n+ 1 − k], wheren is the number of instances of typet in

the system.

The state of the system changes as a result of failure and repair processes with constant but,

possibly, state-dependent rates. Failure processes are associated with components, but the failure of a

component can in general be propagated to others. Components without failure processes associated

with them are callednon-failing and provide a very general framework for the modeling of lackof

coverage. For instance, system failures due to lack of coverage can be modelled by introducing

a non-failing “recovery” component to which uncovered failures are propagated and requiring the

“recovery” component to be unfailed for the system to be operational. The repair of the “recovery”

component would model a system restart. It is also possible to model in this way covergae failures

taking down only part of the system.

We assume that all component types are repairable and that failed components are immediately

considerd for repair according to a “static” repair policy,which only takes into account the current

state of the components. Under this hypothesis, the behavior of the system can be modelled by a

finite ergodic CTMCX(t), whose states can be described by the number of components ofeach type

in each component state and whose transitions are associated to either failure or repair processes.

The state with all components unfailed will be denoted byu. All states exceptu have outgoing

failure and repair transitions. The stateu has only outgoing failure transitions.

3 Availability/Reliability Markovian Simulation

It has been recently showed [6]–[8] that availability/reliability simulation of repairable fault-tolerant

systems can be speeded up by using estimator decomposition techniques. The idea is to formulate

the metric of interest in terms of lower-level metruics which can be expressed as the expected value
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of a path function over the regenerative behavior ofX(t) aroundu, use independent simulation

streams to obtain estiamtes for the low-level metrics and combine these estimates to achieve the

estimate for the desired metric. For instance, the steady-state unavailability can be simulated based

on the formulation:

ua =
τDuu
τuu

, (1)

whereτDuu is the mean time spent byX(t) during a regenerative cycle in the subset of down states

D and τuu is the mean regenerative cycle duration. LetΠ(t) be the transient CTMC with ini-

tial stateu and absorbing statea capturing the regenerative behavior ofX(t). Let r be a path to

absorption ofΠ(t) and denote byLr the length (number of transitions) ofr, by xi(r) the ith vis-

ited state (xo(r) = u), and byhx the mean holding time inx. τDuu is the expected value of the

path functionZr =
∑

0≤i≤Lr−1,xi(r)∈D hxi(r) andτuu is the expected value of the path function

Zr =
∑

0≤i≤Lr−1 hxi(r). We next present a brief review of importance sampling theory [10] in the

xontext of path simulation ofΠ(t).

Let R be the set of paths to absorption ofΠ(t) and denote byqij the jump probability from

statei to statej. The probability of a pathr ∈ R is given by:

P (r) =
Lr−1∏

i=0

qxi(r),xi+1(r) .

Let ρ be the random variable “path to absorption followed byΠ(t)” and Zr a path function. We

want to estimate:

E[Zρ] =
∑

r∈R

ZrP (r) .

Assume we want to achieve a given confidence interval of givenrelative width with respect toE[Zρ].

The number of paths,M , which have to be sampled in direct Monte Carlo simulation isproportional

to σ2(Zρ)/E[Zρ]
2, which, usingσ2(Zρ) = E[Z2

ρ ]− E[Zρ]
2, can be expressed as:

σ2(Zρ)

E[Zρ]2
=
∑

r∈R

(
ZrP (r)

E[Zρ]

)2
1

P (r)
− 1 , (2)

whereZrP (r)/E[Zρ] can be interpreted as the relative contribution ofr to E[Zρ]. Therefore, (2)

says thatM will be large if paths with significant contributions have small probabilities. In order

to reduce the simulation effort we can sample the paths with biased probabilitiesP ∗(r) (P ∗(r) 6= 0

wheneverZrP (r) 6= 0) and take the sample mean of the path functionZ∗
r = ZrΛ

∗(r), where

the likelihood ratioΛ∗(r) = P (r)/P ∗(r) is introduced so thatE[Z∗
ρ∗ ] = E[Zρ]. The goal is

to chooseP ∗(r) so that the varianceσ2(Z∗
ρ∗) of the new path function be substantially smaller

thanσ2(Zρ). It is easy to show thatσ2(Z∗
ρ∗) = 0 whenP ∗(r) = ZrP (r)/E[Zρ] and importance

sampling theory suggests to sample paths with probabilities P ∗(r) as close as possibel to their

relative contributions to the metric. When, as in this paper, Π(t) si biased by modifying the jump

probabilities the likelihhod ratio can be expressed as:

Λ∗(r) =

Lr−1∏

i=0

qxi(r),xi+1(r)

Lr−1∏

i=0

q∗xi(r),xi+1(r)

. (3)
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Repair rates are usually several orders of magnitude higherthan failure rates. This has two im-

plications for the models under consideration. First, the probability of following a failure transition

from a statex 6= u is typically very small. Second, the mean holding timehx for the statesx 6= u is

typically much smaller thanhu. Consider now the simulation of the steady-state unavilability based

on (1). It follows from the previous observations that the valueZr for the path function associated

to τuu (which is the mean duration of the path) is≈ hu for all paths with signficant probabilities.

This implies that these paths have relative contributions to τuu ≈ P (r) and, according to importance

sampling theory,τuu is estiamted very efficiently by direct Monte Carlo simulation. On the other

hand, direct Monte Carlo simulation would be highly inefficient for the estimation ofτDuu, since only

paths ofΠ(t) enteringD have non-null contributions to this metric and typically these paths have

globally a small probability. A similar scenario arises in the simulation methods proposed in [7] for

theMTTF and in the methods proposed in [8] for the availability, interval availability and reliabil-

ity. Simulation of the badly-behaved low-level metric can be speeded up by using an importance

sampling scheme in which paths enteringD are sampled with high probability. Failure biasing is

such an scheme which was proposed in [1, 2] and borrowed in [3,5, 6, 7] for the simulation of the

type of models considered in this paper. The scheme biases the jump probabilities from the states

x 6= u so that the probability of following a failure transition isFBIAS and the probability of fol-

lowing a repair transition is1− FBIAS . The simulation effort (number of events) is minimized by

choosing a value forFBIAS which typically is close to0.5.

4 Failure Distance Biasing

Although failure biasing succeeds in sampling with a substantial global probability the contributing

paths of the badly-bhaved low-level metric, it does not fully exploit their heuristically clear impor-

tance ranking. Consider, for instance, a system, withm component types and two components of

each type, which is operational if at least one component of each type is unfailed, and assume that all

components fail independently (no failure propagation) with the same rate. The probabilities of the

paths ofΠ(t) decrease in general very fast with their length and, according to importance sampling

theory, shorter contributing paths should be sampled more often than longer contributing paths. In

the example, after sampling fromu the transition associated with the failure of a component, we

should sample the transition associated with the failure ofthe other component of the same type

with higher probability than the transitions associated with the failure of the other components. But

using the failure biasing technique all these transitions would be sampled with the same probability.

The importance sampling scheme proposed in this paper is based on the concept offailure

distance. The failure distance from a down state is 0. The failure distance from an operational state

x is the minimum number offailing components whose failure inx would take the system down.

Let t = (x, y) denote a failure transition fromx to y and letd(x) denote the failure distance from

statex. We say thatt is non-dominant if d(y) = d(x), dominant if d(y) < d(x), andcritical if

d(y) < d(x) − 1. Critical failure transitions are always associated to failure processes involving

several components. Thecriticality of the failure transitiont is defined asc(t) = d(x) − d(y).
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As in failure biasing, we turn our achem off when a down state is hit. When biasing is on the

jump probabilities from a state are modified in a process which can be described as done in steps. At

each step, a subset of transitions is split into two subsets,which are biased in relation to one another,

and one of the subsets is passed to the next step. If one of the subsets is empty, the step is skipped.

As in failure biasing, the first step assigns a probabilityFBIAS to the set of failure transitions,

which is passed to the next step, and a probability1− FBIAS to the set of repair transitions. In the

next step, the set of dominant failure transitions is assigned a probabilityDBIAS in relation to the

current set and passed to the next step, and the set of non-dominant failure transitions is assigned a

relative probability1 − DBIAS . The thirs step is repeated while the transitions in the current set

have different criticalities and assigns the relative probability 1 − CBIAS to the set of transitions

with the smallest criticality and the relative probabilityCBIAS to the complmentary set, which is

the one considered for the next application of the biasing step. Assume, for instance, that the current

state has repair transitions, non-critical dominant failure transitions, and critical falire transitions

of criticalities 2 and 3. In failure distance biasing, thesesubsets of transitions are sampled with,

respectively, the probabilities1 − FBIAS , FBIAS (1 − CBIAS ), FBIAS CBIAS(1 − CBIAS ,

andFBIAS CBIAS 2.

The biasing parametersDBIAS andCBIAS control the focus of the sampling to the shorter

paths enteringD. The use of an independent biasing parameter to deal with critical failure transitions

is convenient since the actual importance of the paths containing this type of transitions depend on

the values of the “covergae” parameters of the model. Note also that non-failing components are

not taken into account in the definition of the failure distance. This is done so that the presence

of “recovery” compoments (see Section 2) do not affect the heuristics behind the biasing scheme.

Consider, for instance, a system with a “recovery” component which has to be unfailed for the

system to be operational. If non-failing components were taken into account, the failure distance

from all the operational states would be 1 and all failure transitions not taking the system down

would be biased equally.

A variant of the failure biasing scheme which is somhow related to the scheme proposed here

is described in [5]. Under that scheme, failures of component types which have already some in-

stance failed are biased independently of the others. This scheme does not take into account that (as

illustrated by the example presented in Section 7) redundancy can be provided between components

of different types. In addition, the scheme will bias equally all failure transitions from the stateu.

5 Computation of Failure Distances

Application of the failure distance biasing scheme requires the computation of the failure distance

from the current state and the states reached from it by failure transitions. These distances can

be computed using the minimal cuts of the structure functionof the model. Since this function is

defined in terms of instances of component types, a minimal cut m is specified by a set of component

typestinmc(m), and, for each component typet in the set, by the number of instancesinmc(t,m)
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of t in m. Denote byNFC the set of non-failing component types and byfailed(t, x) the number of

instances of typet which are failed in the statex. LetU(k) be the function returningk if k > 0 and 0

otherwise. We define the distancedtomc(x,m) from x to the minimal cutm as∞ if inmc(t,m) >

failed(t, x) for somet ∈ tinmc(m) ∩ NFC , and as

∑

t∈tinmc(m)

U(inmc(t.m)− failed(t, x))

otherwise. Denote byMC the set of minimal cuts. We have:

d(x) = min
m∈MC

dtomc(x,m) . (4)

Let f be a failure event, i.e., a set of components which can fail simultaneously and denote

by ad(x, f) the failure distance from a state reached fromx by a failure transition involving the

components inf . LetAMC f be the set of minimal cuts of the structure function obtainedfrom the

structure function of the model by failing the component instances inf . AMC f can be obtained by

considering the minimal cuts with instances of the component types inf and removing from them

as many component instances off as possible. Iff includes only one component instance the cuts

thus obtained are guaranteed to be minmal; otherwise, the set has to be reduced. It is easy to show

that:

ad(x, f) = min{d(x), min
m∈AMC f

dtomc(x,m)} . (5)

Using (4), (5), the criticality of the failure transitions can be computed if a priority queue yielding

minm∈MC dtomc(x,m) and a priority queue yieldingminm∈AMC f
dtomc(x,m) for each failure

eventf of the model are updated as the path is sampled.

The number of minimal cuts can be large when the system has many component types and

bookkeepping the distances to all of them can be expensive. The number of cut “touches” can

however be reduced significantly by exploiting the following observation. Consider, for instance,

the bookkeepping ofd(x) = minm∈MC dtomc(x,m) and assume that an upper boundub for d(x)

is known. Denote byo(m) the order (number of components) of the minimal cutm and byn(x,m)

the number of components inm which are failed inx. Sincedtomc(x,m) ≥ o(m)−n(x,m) (it will

be> if m has unfailed instances of non-failing component types)m does not need to be considered

for the computation of the minimum distance ifo(m)− n(x,m) ≥ ub.

The bookkeepping of the distances to the minimal cuts inMC and the distances to the minimal

cuts in the setsAMC f is done independently. In a given statex, only he minimal cutsm with

o(m) ≤ K, an for each orderk ≤ K only those withn(x,m) ≥ R(k) have their distances updated.

The remaing cuts have their distances in the priority queuesset todtomc(u,m) ≥ dtomc(x,m).

The values ofK andR(k) are selected so that the minimal cutsm whose distance is “cleaned” are

guaranteed to have a distance non smaller than a known upper bound for, respectively,d(x) and

maxf ad(x, f). In addition,R(k) is not allowed to take a value greater than the parameterR.

Let s be the state visited beforex and denote byn(x) the number of components failed inx.

The bookkeepping after a failure transition associated to afailure eventf is done as follows. The
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distances to the minimal cuts inMC are not updated sinced(x) = ad(s, f), which is known. To

obtain the after failure distancesad(x, f) we update the distances to the minimal cuts in the sets

AMC f as follows. First, we set the global upper boundub to d(x). Then, we consider the minimal

cuts in increasing orderk while k − n(x) < ub, and, for each orderk, we compute the new value

of R(k) asmax{1,min{k − ub + 1, R}} and update the distances to the minimal cuts of orderk

so that only those withR(k) or more failed components inx have their distances updated and the

remaining minimal cuts of orderk have their distances “cleaned”. After processing the minimal cuts

of a given order the upper boundub is updated considering the values at the top of the priority queues

associated to the failure events, and at the end of the while loop, we clean the cuts of order higher

than the maximum processed which had their distances updated. The values obtained at the top of

the priority queues are guaranteed to be the minimum distance to the after minimal cuts associated

to each failure event.

The bookkeepping after a repair transitionr is done as follows. In order to computed(x) we

first clean the distances to the “touched” minimal cuts and perform an updating process similar to

the one described before. Letnr be the number of components repaired inr. The upper bound

for d(x) is initially set tomin{d(s) + nr, d(u)} if r involves only failing component types, and

to d(u) otherwise. To obtain the after failure distancesad(x, f) we first update the distances to

the “touched” minimal cuts in the setsAMC f to consider the component instances repaired inr

and then follow the same upodating procedure as before, setting initially the global upper bound to

min{maxf ad(s, f) + nr,maxf top(f), d(x)} (top(f) denotes the value at the top of the priority

queue associated tof ) if r involves only failing component types, and tomin{maxf top(f), d(x)}

otherwise.

In order to drive the updating process we use minimal cut selectors. A selector is a distinguished

combination of component instances which is part of some minimal cut, and has associated a list

linking the minimal cuts including the selector. Thus, access to the minimal cuts with at leastn

failed instancesn ≤ R) can be done by following the lists associated to the minimalcut selectors of

ordern having all their component instances failed.

We also tried a more ellaborated variant in which the bookkeepping of the minimal cuts in each

setAMC f was controlled independently and found that the overhad wasexcesive. Usually, the

optimized values for the biasing parameters are such that the sampling is strongly focussed to paths

including mostly failure transitions reducing the failuredistance and the bookkeepping strategy will

almost restrict distance updates to the cuts of minimum order with increasing number of failed

components.

6 Biasing Optimization

In this section we propose an adaptive optimization scheme for the minimization of the required

simulation effort which we have found robust and efficient. In the adaptive optimization scheme the

simulation stream is split into substreams and the biasing parameter values are optimized at the end
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of each substream. The lengths of the substreams are chosen so that the total simulation length is

approximately doubled after each of them.

The number of events which is required to achieve a given confidence intervak is proportional

to:

µ∗ = σ2(Z∗
ρ∗)E[Lρ∗ ] . (6)

A general minimization method is provided by the likelihoodratio gradient theory [11]. However, a

simbolic estimator forµ∗ as a function of the biasing parameters can be obtained as thesimulation

progresses and used with advantage.

LetP ′(r) andΛ′(r) be the actua l sampling probabilities and likelihood ratios(corresponding to

the current values of the biasing parameters), andP ∗(r) andΛ∗(r) the generic values. Considering

thatσ2(Z∗
ρ∗) = E[(Z∗

ρ∗)
2]− E[Z∗

ρ∗ ]
2 andE[Z∗

ρ∗ ] = E[Zρ], independent of the biasing parameters,

we can write (6):

µ∗ =
(
σ2(Z ′

ρ′) + E[(Z∗
ρ∗)

2]− E[(Z ′
ρ′)

2]
)
E[Lρ∗ ] . (7)

UsingΛ∗(r)P ∗(r) = Λ′(r)P ′(r) = P (r), we can formulateE[(Z∗
ρ∗)

2] andE[Lρ∗ ] as:

E[(Z∗
ρ∗)

2] =
∑

r∈R

Z2
rΛ

∗(r)2P ∗(r) =
∑

r∈R

Z2
rΛ

∗(r)Λ′(r)P ′(r)

E[Lρ∗ ] =
∑

r∈R

LrP
∗(r) =

∑

r∈R

Lr
Λ′(r)

Λ∗(r)
P ′(r) ,

which tells us thatE[(Z∗
ρ∗)

2] andE[Lρ∗ ] can be estimated by the sample means of, respectively, the

path functions:

Yr = Z2
rΛ

∗(r)Λ′(r)

Wr = Lr
Λ′(r)

Λ∗(r)
.

The generic biasing jump probability of theith transition of a pathr can be expressed in terms

of the biasing parameters as:

q∗xi−1(r),xi(r)
=

qxi−1(r),xi(r)

Q(r, i)
× FBIASn1(r,i)(1− FBIAS )n2(r,i) · · · (1− CBIAS )n6(r,i) ,

whereQ(r, i) is the unbiased probability of the class (repair or failure with given criticality) to which

the transition belongs andnj(r, i) are integers≥ 0. Denoting byB(r) the set of transitions of path

r coming from a state in which biasing is active, and using (3) we get:

Λ∗(r) =

∏

i∈B(r)

Q(r, i)

FBIASn1(r)(1− FBIAS )n2(r) · · · (1− CBIAS )n6(r)
,

wherenj(r) =
∑

i∈B(r) nj(r, i) ≥ 0. Then the sample meansY r andW r belong, to, respectively,

the class of functions:

f(x1, x2, . . . , xn) =
p∑

k=1

ak

n∏

i=1

1

x
ni(k)
i (1− xi)

n′

i
(k)
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g(x1, x2, . . . , xn) =
l∑

k=1

bk

n∏

i=1

x
ni(k)
i (1− xi)

n′

i
(k) ,

with ak, bk > 0, andni(k), n′
i(k) integers≥ 0. Symbolic expressions forY r andW r can be

obtained as paths are sampled by accumulating the factorsak, bk. The symbolic estimator for

µ∗ is finally obtained by using (7), with the varianceσ2(Z ′
ρ′) estimated by the sample variance

collected during the last substream and the remaining quantities by using the symbolic estimators

for E[(Z∗
ρ∗)

2] andE[Lρ∗ ].

The symbolic estimator forµ∗ may have several local minima. Global minimization procedures

are too expensive for our context and are not always guaranteed to return the global minimum.

However, we have found that the varianceσ2(Z∗
ρ∗) is much more sensitive to the biasing parameters

thanE[Lρ∗ ] and a minimization ofσ2(Z∗
ρ∗) yields optimized biasing parameter values close to

those resulting from the minimization ofµ∗. Taking this into account we first minimizeE[(Z∗
ρ∗)

2]

(which is equivalent to the minimization of the variance) and starting from that point we make a

local minimization ofµ∗. It is proved in [12] that the class of functionsf(x1, x2, . . . , xn) to which

the symbolic estimator forE[(Z∗
ρ∗)

2] belongs are convex in the domain]0, 1[n, and then a local

minimization algorithm is enough [13] to minimizeE[(Z∗
ρ∗)

2].

Using the adaptive biasing optimization scheme, we are in fact sampling a different random

variableZ∗
ρ∗
i

at each substreami. The final estimate forE[Zρ] is computed by weighting optimally

the sample means according to estimates for their variances, which are obtained as follows. LetMi

be the number of paths of theith substream,s2i the sample variance for theith substream, andSi the

current estimate forE[(Z∗
ρ+

)2] for the values of the biasing parameters used in theith substream.

After thenth substream we estimate the variance of the sample mean of the ith substream by:

σ̂2
i =

1

Mi
(s2n + Si − Sn) .

This procedure was selected after trying the use of the sample variancess2i , which was found dan-

gereous when the model is “hard”. The reason is that in such cases the sample variances tend to be

optimistic for the first substreams and undue weights are assigned to the poor estimates obtained in

those substreams.

7 Experimental Analysis

The results presented in this section were obtained using a prototype software package which im-

plements the simulation methods described in [6]–[8] underboth failure biasing and failure distance

biasing. The interface required by the simulator includes one function returning the failure and re-

pair processes which are active in a given state (expressed in terms of action/response pairs), two

functions returning the rates and probabilities associated to actions and responses, another function

returning the next state given the current state and an action/response pair, and another function de-

termining whether the system is operational or down in a given state. These functions were obtained

using the model specification preprocessor included in METFAC [14].

10



In our implementations of the methods we turn off the biasingschemes after a given number

MAXREP of repair transitions are sampled. This ensures that the variance of the estimator is finite

and has little effect on the biasing scheme if a large enough value forMAXREP is chosen. We have

foundMAXREP = 2 to be an appropriate choice. Other important parameters of our implemen-

tation of the biasign schemes are the length of the first “biased” substreamMINBEVENTS , the

initial values for the biasing parametersIFBIAS , IDBIAS , andICBIAS , andPINT . The values

of the biasing parameters are restricted to the interval[PINT , 1 − PINT ] to prevent the biasing

parameters from getting too close to 0 or 1, since this would delay the reaction capability of the

scheme against a premature minimization. The choixeMINBEVENTS = 500, IFBIAS = 0.8,

IDBIAS = 0.7, ICBIAS = 0.2 for failure distance biasing,IFBIAS = 0.5 for failure biasing, and

PINT = 0.05 have given good results in all tests we have run.

Events are optimally allocated between the simulation streams used for the low-level metrics.

This typically results in allocating almost all the events to the stream used for the estimation of the

badly-behaved low-level metric which is sampled with biasing.

The biasing schemes will be compared using a non-trivial large example for which simulation

would be a competitive approach. The example is the fault-tolerant data processing system whose

architecture is shown in Figure 1. A dual configuration of data processing units (DPUs) command

control subsystems located at remote sites. Each control subsystem comprises two redundant control

units (CUs) working in hot-standby redundancy. The system can be accessed through two redundant

front-ends connected to the DPUs. The DPUs and CUs communicate using a redundant local area

network (LAN) to which each DPU and each CU has access throughdedicated communication pro-

cessors (CPs). All components fail with constant ratesλFE , λDPU , λCU , λCP , andλL, respectively.

Two failed modes are consider for the DPUs: “soft” and “hard”. The first mode occurs with proba-

bility α and can be recovered by an operator restart; the second mode occurs with probability1− α

and requires hardware repair. Coverage is assumed perfect for all faults except those of the DPUs,

which take the system own with a probability1 − C. Lack of coverage is modelled by propagating

the failure of Sone DPU to the other DPU. There are three repair teams. The first repairs LANs and

CPs, with preemptive prority given to LANs. The second repairs FEs, DPUs and CUs in “hard”

failed mode, with preemptive priority given first to DPUs, next to FEs, and last to CUs. The third

makes DPU restarts. Each team includes only one repairman. Failed components with the same

repair priority are taken at random for repair. The repair rates are denoted bym respectively,µFE ,

µDPUh , µDPUs , µCU , µCP , andµrL.

The system is considered operational if one unfailed DPU cancommunicate with at least one

unfailed CU of each control subsystem. Different LANs can beused for communication between

the active DPU and the active CU of each control subsystem, but the communication has to be

direct, i.e., involving only one CP of each unit and one LAN. The front-ends can be conceptualized

as being instances of the same component type. However, the interconnection relationships make

it mandatory to consider all the other components as unique representatives of different component

types. The resulting CTMC has about4.6× 1011 states, whch clearly precludes both generation and

numerical solution of the state-level model.
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Figure 1: Fault-tolerant data processing system.

Table 1: Sets of model parameter values used in the tests.

case a b c d e

λFE 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−5

λDPU 10−3 10−3 10−3 10−3 10−4

λCU 2× 10−4 2× 10−4 2× 10−4 2× 10−4 10−5

λL 10−4 10−4 10−4 10−4 10−5

λCP 5× 10−5 5× 10−5 5× 10−5 5× 10−5 5× 10−4

α 0.9 0.9 0.9 0.9 0.9

C 0.9 0.99 0.999 0.999 1

µFE 0.5 0.5 0.5 0.05 5

µDPUh 0.5 0.5 0.5 0.05 5

µDPUs 4 4 4 0.4 40

µCU 0.5 0.5 0.5 0.05 5

µL 0.2 0.2 0.2 0.02 2

µCP 0.5 0.5 0.5 0.05 0.5

We have used several sets of model parameter values, representing different scenarios. The test

sets are given in Table 1. The values for failure and repair rates chosen for cases a, b, c are meant

to be typical, i.e., repair rate/failure rate ratios of two to three orders of magnitude and differences

in failure rates of up to two orders of magnitude. These test sets only differ in the value chosen

for C, the coverage to DPU failures. In case a, coverage failures are the dominant source of system

failures, in case c resource exhaustion is the dominant source, and in case b both are important. Case

d represents a situation in which repair dominance is weak (i.e., the probability of following a repair

transition is not very close to 1). Case e accounts for the situations in which failure modes with a

high number of failed components have important contributions.

We simulated the steady-state unavailabilityua under both biasing schemes with a goal of a

99 % confidence interval of±2 % and a limit of 500,000 events for all cases. For failure distance

biasing, the parameterR was set to 2. Our biasing scheme achieved significant speedups in all cases.
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Table 2: Results obtained forua under failure distance biasing (D) and failure biasing (F ).

set estimate eD rD rF esu tsu

a 5.187 × 10−5 9,353 0.0198 0.0285 113 95.3

b 7.627 × 10−6 32,630 0.0197 0.0754 229 220

c 3.166 × 10−6 79,594 0.0199 0.1057 181 162

d 2.911 × 10−4 3.664 × 105 0.0196 0.0820 24.4 21.0

e 7.854 × 10−10 5.1 × 105 0.0484 0.643 173 148

Table 2 shows the results. The subscriptsD andF make reference to the results obtained under,

respectively, failure distance biasing and failure biasing. We give the estimates obtained using failure

distance biasing, the number of simulated events under failure distance biasingeD (with failure

biasing the limit was used up in all cases), the relative semiwidths of the99 % confidence intervals

(rD, rF ), and two speedup factors:esu andtsu , giving, respectively, the ratio between the number

of events and CPU times which would be required by failure biasing and failure distance biasing to

achieve the same confidence interval. These factors are computed asesu = (eF r
2
F )/(eDr2D) and

tsu = (tF r
2
F )/(tDr

2
D), wheretD, tF andeD, eF are, respectively, the CPU times and numbers of

events obtained in the tests. We can see that a speedup of two orders of magnitude is achieved by

failure distance biasing in all cases except case d. Even in that case, the speedup is significant. It

is interesting to note that the speedup is also high for case e, in which the heuristic of our biasing

scheme breaks down, since some system failure modes with more components are more significant

than system failure modes with fewer components. In order torealize the practical implications of

these speedups, let us mention that in our machone (a SUN 3/260) the simulation for case a took

100 seconds of CPU time under our biasing method and more thanone hour under failure biasing.

The proposed biasing optimization method works well: in most cases, the values chosen after

the first simulation substream (500 events) are already veryclose to the optimal ones. However,

occasionally we have found cases in which the biasing parameters only get stable after a large

number of events and, since the overhead associated to the optimization scheme is low, we do not

find advisable to turm it off. Figure 2 shows the values for thebiasing parameters used in each

estimator available at the end of the simulation. It can be noted that the optimized value ofµ∗

(which is proportional to the simulation effort required toachieve a given confidence interval) is

about six times smaller than the value corresponding to the initial values of the biasing parameters.

This illustrates the importance of the optimization of the biasing parameters.

Comparison ofesu and tsu in Table 2 reveals that the overhead per simulated event of our

baising scheme over failure baising is small. By profiling the code we found out that in all cases

except case e the overhead due to actual minimal cut touches was negligeable compared with the

remaining overhead sources. The average number of minimal cut touches per eventt was 41.3 in

case e, 3.82 in case d, and about 1! in the remaining cases. Thelatter is noticeable considering

that the model has 512 minimal cuts (8 of order 2, 48 of order 3,96 of order 4, and 360 of order 6)
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Figure 2: Behavior of the adaptive biasing parameter optimization scheme for case b.

Table 3: Average number of minimal cut touchest and average time spent per simulated event in

case e for several values ofR.

R t ms/event

1 149.6 13.03

2 41.3 11.07

3 9.26 10.54

4 4.80 10.38

and 40 different failure events, and illustrates the efficiency of the techniques described in Section 5

to reduce the number of minimal cut “touches”. The values oft are explained by the values of

the optimized biasing parametersFBIAS andDBIAS for each case. The values forFBIAS and

DBIAS are 0.95 (the maximum allowed) for cases a, b, and c, 0.84 and 0.81 for case d, and 0.95 and

0.59 for case e. As the values forFBIAS andDBIAS are closer to 1, the sampling is more focussed

to shorte paths involving only failure transition which reduce the failure distance and minimal cuts

and after minimal cuts of higher orders are less touched. Table 3 shows the values oft and the

average time spent per simulated event when case e is run withseveral values ofR. AsR increases

fewer minimal cuts are touched and the associated overhead decreases. The value oft for givenR is

related to the number of minimal cuts (512 in the example). Then, from the figures shown in Table 3

we can conclude that, by taking an appropriate value forR, the overhead due to the bookkeepping

of the failure distances will be in general small even if the model has tens of thousands of minimal

cuts.
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8 Conclusions

We have shown that the simulation of repairable fault-tolerant systems can be made very fast by

exploiting the concept of failure distance. The failure distance biasing scheme proposed in this paper

is more efficient than failure biasing in focussing the sampling to the paths with higher contributions

and this results in reductions on the number of events required to achieve a given confidence interval

which, as illustrated by the example presented, can be orders of magnitude. The efficiency of failure

distance biasing in relation to failure biasing increases with the importance of coverage probabilities,

which are poorly dealt with in failure biasing (they are sampled with very low probabilities due to

the uncoverage factor, which is typically very small), and with the sparseness of combinations of

k failed components in which the system is down for small values of k. As coverage failures are

typically important and fault-tolerant systems are designed with good redundancy allocation so that

down state with few components failed are sparse, failure distance biasing will be usually much

more efficient than failure biasing.

Failure distance biasing is a very flexible scheme which can be adapted to a variety of scenarios

and optimization of the parameters of the scheme is an important issue. We have proposed an

optimization method which introduces negligeable overhead and typically takes the parameters to

their optimal values after sampling a small number of paths.The proposed method can be applied

to other biasing schemes of the same type.

We have also developed techniques for the computation of failure distances which introduce

a small overhead even if the model has many minimal cuts. A limitation of our method is that it

requires to find the minimal cuts of the model. Although theoretically the number of minimal cuts

can be very large, in practice most fault-tolerant systems have a moderate number of minimal cuts so

that the computational effort to find them is negligeable compared with the reduction in simulation

times achieved by the proposed scheme over failure biasing.For instance, the 512 minimal cuts of

the example presented in this paper were found in about 5 seconds of CPU time while simulation

times were of the order of hours under failure baising and of the order of minutes with failure

distance biasing.

Finally, it is likely that the failure distance concept can be exploited to improve current model

pruning techniques giving error bounds [15, 16].
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