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The analysis of event sequence data that contains system failures is becoming increasingly important in the design of service and
maintenance policies. This paper presents a systematic methodology to construct a statistical prediction model for failure event based
on event sequence data. First, frequent failure signatures, defined as a group of events/errors that repeatedly occur together, are
identified automatically from the event sequence by use of an efficient algorithm. Then, the Cox proportional hazard model, that is
extensively used in biomedical survival analysis, is used to provide a statistically rigorous prediction of system failures based on the
time-to-failure data extracted from the event sequences. The identified failure signatures are used to select significant covariates for
the Cox model, i.e., only the events and/or event combinations in the signatures are treated as explanatory variables in the Cox model
fitting. By combining the failure signature and Cox model approaches the proposed method can effectively handle the situation of a
long event sequence and a large number of event types in the sequence. Its effectiveness is illustrated by a numerical study and analysis
of real-world data. The proposed method can help proactively diagnose machine faults with a sufficient lead time before actual system

failures to allow preventive maintenance to be scheduled thereby reducing the downtime costs.
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1. Introduction

The method of servicing equipment (e.g., medical equip-
ment, photocopy machines and computer hardware) is
moving from reactive firefighting to preventive (proactive)
maintenance. The reactive servicing of equipment is expen-
sive and results in equipment downtime which negatively
affects customer satisfaction and customer profitability.
Therefore, current emphasis is being placed on predicting
machine faults with a sufficient lead time before actual fail-
ure to allow a preventive repair action to be scheduled.

Error/event logs and system performance data can be
used to determine preventive maintenance cycles that al-
low downtime to be avoided. The prediction of machine
failure requires a formal framework to specify causal links
between failure modes and failure indicators (failure signa-
tures). These indicators can be generated from the error and
event sequences, i.¢e., a series of events marked with their oc-
currence times, logged in the system’s log files.

For example, a system error/event log file for a Com-
puterized Tomography (CT) machine can consist of several
thousand records associated with several hundred differ-
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ent event types and their associated occurrence times dur-
ing machine usage. The recorded events can be related to
various machine activities and behaviors, system failures,
operator/user actions, or status of a subsystem task, etc. In
practice, people use event sequence data to manually iden-
tify failure signatures within a time frame, which is speci-
fied by area experts based on experience and the physical
operation principles of the system. Clearly, this is a time-
consuming and labor intensive method.

A simple case of such an event sequence is illustrated
in Fig. 1. In this figure, 4, B, C and K are the different
event types that occur at various points along the time line.
Hereafter we let K represent the key failure event we are
interested in, and in most cases event K occurs recurrently
in the event sequence as shown in Fig. 1.

The event sequence contains considerable system infor-
mation which can be used to monitor and diagnose faults
in the process, or predict the future behavior of the process,
say, the occurrence of some event(s) of interest. For instance,
by analyzing the log file of a CT imaging system, service
engineers can identify a frequently occurring failure signa-
ture (event sequence segment) consisting of five events with
the last event representing the scan hardware error. The last
event in this signature is a failure event, whereas the first four
events contained in the signature are called trigger events.
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Fig. 1. An example of a timed event sequence.

Knowledge of this failure signature allows the identification
of the root cause of a system failure, and thus creates the
potential for opportunistic maintenance, for example, part
replacement, etc. On the other hand, if the occurrence of a
failure could be predicted based on the trigger events, then
preventative maintenance measures could be taken before
the system breakdown and thus the downtime cost will be
reduced.

In this paper, we are interested in building a statistical fail-
ure prediction model for a single event sequence based on
failure signatures. Formally, an event sequence S is a triple
(T%,T, s) on a set of event types E, where T and 77 are the
starting time and ending time respectively, and s = ((E],
1), (E2, 15), ..., (Ep, t,)) 1s an ordered sequence of events
such that E; e Eforalli= 1,2, ..., m and the individual
t7 are the occurrence time of the corresponding event with
T; <t] <--- <t;, < Ts (Mannila et al., 1997). The prob-
lem of building a failure prediction model is formulated as
follows: given the event sequence S containing failure event
K, how do we construct a statistical model that can predict
the occurrence of system failure K, i.e., during what time
interval and with what probability will the failure event K
occur in the system?

Some techniques to predict failure event(s) based on the
analysis of event sequence data already exist. These meth-
ods can be roughly classified into design-based methods
and data-driven rule-based methods. Design-based meth-
ods tend to be applied to logic fault diagnosis in automated
manufacturing systems. In a design-based method, the ex-
pected event sequence is obtained from the system design
and is compared with the observed event sequence. A sys-
tem logic failure can be identified by use of this comparison.
Sampath et al. (1994) and Chen and Provan (1997) pro-
posed untimed and timed automata models to diagnose the
faults in an automated systems. Untimed and timed Petri
net models were developed by Valette et al. (1989) and Srini-
vasan and Jafari (1993) to represent the behavior of man-
ufacturing systems and determine if a fault occurs. Time
template models (Holloway and Chand, 1994; Holloway,
1996; Das and Holloway, 1996; Pandalai and Holloway,
2000) make use of timing and sequencing relationships of
events, which are generated from either timed automata
models (system design) or observations of manufacturing
systems, to establish when events are expected to occur. The
construction of all the abovementioned models requires us
to know the designed or expected event sequences of the
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system. The major disadvantage of this method is that in
many cases, the event occurring is random and thus there
is no predefined system design information and hence no
temporal relationship knowledge available.

In contrast with design-based methods, data-driven rule-
based methods do not require system logic design infor-
mation. Instead, they first identify the temporal patterns,
i.e., the sequences of events that frequently occur, and then
prediction rules are developed based on these patterns.
Mannila et al. (1997) analyzed the event sequence data
by identifying frequently occurring episodes (temporal pat-
terns) through the “WINEPI” approach, in which compu-
tationally efficient algorithms are developed to identify fre-
quent episodes and episode rules. In Klemettinen (1999), a
method for recurrent pattern identification in alarm data for
a telecommunications network was proposed to recognize
episode rules. The technique of sequential pattern detection
has also been applied to web log files by Agrawal (1996) and
Xiao and Dunham (2001). Once the temporal patterns are
identified, the time relationships among events in the pat-
tern can be used to predict the occurrence of a failure event.
To reach this goal, prediction rules, such as temporal asso-
ciation rules (Dunham, 2003) and episode rules (Mannila
et al., 1997; Klemettinen, 1999), can be generated based on
the identified temporal patterns. An example of a predic-
tion rule based on a temporal pattern consisting of events
A, Band K is:

IF the events 4 and B occur in the system
THEN the failure event K will occur
WITH [Time Interval] confidence (c%0)

which means that if we observe events 4 and B occurring
in the system, then we can predict that failure event K will
occur within the time interval specified by [Time Interval]
with a confidence of c%. If we try to predict the occurrence
of a failure event, the prediction process begins by search-
ing through the space of prediction rules generated from the
identified temporal patterns. The available data-driven rule-
based methods do not build rigorous statistical prediction
models for event sequence data and thus they only provide
heuristic prediction results. We would encounter the follow-
ing two difficulties when using these rules for prediction.

1. Once temporal patterns are identified, the corresponding
prediction rules are fixed with their parameters, i.e., the
values of [Time Interval] and confidence (c%) are fixed
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in the above prediction rule. If people are interested in
a different time interval, new temporal patterns need to
be identified in terms of the changed parameters. If we
need to predict the occurrence of events of interest with
varying parameters, the space of prediction rules could
be very large for a long event sequence.

2. The prediction becomes more complicated, if not impos-
sible, for the case in which different trigger event sets, say,
T, and T,,, occur in the system. Now we have different
rules based on different trigger event sets, therefore we
will have different prediction results. It is hard for us to
combine all the associated prediction rules together to
reach a final conclusion.

In this paper, we would like to develop a systematic
methodology to construct a rigorous prediction model for
failure events based on a single event sequence collected
from in-service equipment. At the first step, we will iso-
late the meaningful failure signatures, which are a special
temporal pattern, namely, a set of events that occur together
frequently in the event sequence and end with the failure event,
and then screen out trigger events which could affect the oc-
currence of failure events. Next, the Cox proportional hazard
model (Klein and Moeschberger, 2003) will be built to pro-
vide rigorous statistical predictions for the system failures
based on the identified failure signatures. In the procedure,
we take advantage of both temporal pattern identification
techniques originating from temporal data mining and the
Cox PH model that predominates in biomedical survival
analysis. Our approach is data-driven, which means that
we do not need detailed physical models for the relationship
between the trigger event(s) and the failure event. Another
advantage of our approach is that no assumption of a para-
metric distribution for the event sequence data is needed,
which could result in the discovery of information that may
be hidden by the assumption of a specific distribution.

The remainder of this paper is organized as follows. In
Section 2, the problem formulation and the data-driven
procedure to construct the prediction model are presented.
We illustrate the effectiveness of the developed procedure
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through a numerical case study and a real-world example
in Section 3. Finally, conclusions are drawn in Section 4.

2. Failure event prediction using the Cox proportional
hazard model

2.1. Basics of failure prediction using the Cox proportional
hazard model

As stated in the Introduction, we will consider an event
sequence in which the failure event K occurs recurrently
along the time line. Suppose event K occurred n times
in the event sequence; hereafter we will call the inter-
val [¢3,17 ] between two adjacent failure events, K; and
Kiy,i=1,2,...,(n—1) the Time Interval Between Fuil-
ures (TIBF) as illustrated in Fig. 2. It should be noted that
if an event K does not occur at 7% or 77, the start and end
points of the event sequence; the interval [T, 7] or [£5, T3],
is also the TIBF. In this case, there are N = n + 1 time in-
tervals in the event sequence data in total. In many cases, it
is reasonable if we assume that all the time intervals are in-
dependent of one another, that is, the current occurrence of
failure event K is assumed to be unaffected by any previous
occurrence of an event K. In Fig. 2 the symbol “0” rep-
resents the occurrence of an event K, and the symbol “0”
means that the last TIBF is censored for the case in which
no failure event K occurs at the end of the event sequence. If
applicable, the censoring time of the last TIBF is assumed
to be independent of the failure times in the event sequence.

Based on the above assumptions, the data we now have
are the time-to-failure data of event K, also referred as sur-
vival data. Let T denote the time intervals, i.e., T isarandom
variable that indicates the waiting time from the start of the
current TIBF to the next failure. As stated above, all the T;
(i=1,2,...,n+ 1) in the event sequence are assumed to
be independent of one another.

Some basic quantities are needed in order to analyze the
time-to-failure data. If the density function of 7', f(¢), exists,
then the survival function of T can be written as

S(t)=Pr(T >1t)= +oof(x)dx,
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Fig. 2. An example of independent time intervals between failures in an event sequence.
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which can be interpreted as the probability that the length
of the TIBF is larger than a specified value . Another basic
quantity used is the hazard function, also called the condi-
tional failure rate function in the reliability literature, which
can be written as,

Prt <T <t+At|T>1t) [f(1)
- S(t)

We can interpret the hazard function as the “instanta-
neous” probability that the failure event occurs at time ¢,
given that no failure event occurs before ¢. Thus, A(t)At
can be viewed as the “approximate” probability that a fail-
ure event will occur in the small time interval between ¢ and
t + At. This quantity is very useful in describing the chance
of experiencing a failure event. It is particularly useful in
reliability studies because it can help determine the correct
failure distributions (Klein and Moeschberger, 2003). Var-
1ous models have been built for the hazard rate function,
for example, multiplicative hazard rate models in survival
analysis and the bathtub hazard model in reliability (Misra,
1992). If A(t) is known, we can calculate the function S(¢)
using the following equation:

S(t) = exp |: — /: h(x)dx:| 3)

Based on S(7), we can predict that failure event K can occur
in a specified time interval [#;, ¢;] with a probability of S(#;) —
S(t). If needed, other quantities, such as the mean time
between failures in reliability, can also be derived.

Among the abovementioned multiplicative hazard rate
models developed to analyze biomedical survival data, the
Cox Proportional Hazard Model (Cox, 1972) is a partic-
ularly powerful regression model. In clinical trials, for ex-
ample, the Cox model is used to investigate how some co-
variates affect the hazard rate and survival of patients who
have been given a kidney transplant. Time-to-death data
for these patients are analyzed and the covariates exam-
ined include the sex and age of the patients (Klein and
Moeschberger, 2003). Let A[t|Z(t)] be the hazard rate at
time ¢ for a TIBF with covariate vector Z(7); the basic Cox
model is as follows (Klein and Moeschberger, 2003):

o= Jim, ¥

2

Y
ht | Z(1)] = ho(1) exp[B” Z(1)] = ho(t) exp [Zﬂkzk(z)]
k=1
)

where /i(t) is the baseline hazard rate function. The use
of a proportional hazards model means that the haz-
ard rate of a subject is proportional to its baseline haz-
ard rate ho(¢), which is the basic assumption of Cox’s
model. In the model, B is the coefficient vector and Z(z) =
[Z1(1), Za(t), ..., Z,(1)]" is the covariate vector. Z,(), i =
1,2, ..., y,1s a time-dependent covariate if its value varies
with time. The Cox model can be used to build a predic-
tive model for a failure event based on trigger events. For
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example, in the first TIBF shown in Fig. 2, since at the be-
ginning of this TIBF we do not know whether or not the
intermediate event 4 will occur, the intermediate event A
can be coded as a time-dependent covariate as follows:

0, o <t < the occurence time of A
Z4(t)= 11, theoccurencetimeof 4 <t < ®)

the end of the TIBF.

If the value of a covariate is known at the start of each TIBF,
it is called a fixed-time covariate, and in this case we would
denote it as Z;.

As indicated previously, the objective of this study is to
build a statistical prediction model for a single event se-
quence, and thus some extensions of Cox model, such as
the Prentice-Williams-Peterson (Prentice ef al., 1981) and
Wei-Lin-Weissfeld (Wei et al., 1989) models can not be used
in this case, because they were proposed to handle recur-
rent event data of multiple subjects. In addition, multi-state
models have some disadvantages for recurrent events data
because they consider states rather than events (Hougaard,
2000). Another popular regression model used in survival
analysis and reliability analysis (Wasserman, 2003) is the
accelerated failure time model, also referred to as the para-
metric regression model, but its usage is restricted by the dis-
tributions people can assume for the time-to-failure data,
i.e., we have to select an “appropriate” parametric distri-
bution for the failure data when fitting the model, such as
exponential, Weibull, Gamma distributions, etc. (Klein and
Moeschberger, 2003). Compared with this model, the Cox
proportional hazard model is a semi-parametric model in
that it does not need to assume and thus defend any dis-
tribution for the hazard rate, which will benefit us because
assuming hazard rate functions for the field data could hide
some useful information although it could provide some
conveniences (George, 2003). Another advantage of Cox’s
model is that studying interactions between variables is easy
(Elsayed and Chan, 1990; Hougaard, 1999).

Now if we have a simple event sequence as shown in
Fig. 1, we can predict the occurrence of failure event K by
fitting the Cox model to the failure data with the events A4,
B and C as time-dependent covariates. However, there are
two difficulties in practice if we want to apply this simple
prediction model building technique.

1. In many cases, the field failure data, i.e., the failure event
sequence data, may contain numerous event types, say,
several hundred different event types in a log file, thus it
will be quite difficult, if not impossible, to incorporate
all the event types as covariates in the regression model.
That is, it is hard for us to select the statistically signifi-
cant covariates and interactions among these covariates
from a large set of event types. For this reason, it is nec-
essary to select the trigger events which may affect the
occurrence of failure event.

2. Statistically significant covariates or interactions could
be insignificant even meaningless from a physical point



Signature-driven failure event prediction

of view. As stated in the Introduction, failure signatures
play a very important role in service and maintenance.
Thus, it is reasonable that people would predict the oc-
currence of failure events based on identified failure sig-
natures. That is, in the first step, people would identify
the failure signatures from both statistical and physical
points of view. Next, the failure prediction model will
be built based on the failure signatures. If the model is
constructed in a reversed sequence, the results may be
meaningless or even misleading.

To deal with the abovementioned difficulties when fitting
the Cox model directly to the failure data, an effective tech-
nique for failure prediction model construction driven by
failure signatures is developed.

2.2. Steps in failure prediction model building

A diagram of the complete procedure for failure prediction
model building is illustrated in Fig. 3.

Firstly, the failure event to be predicted is defined by ex-
pertsin the specific area. The failure event sequence data are
collected in the field and then preprocessed. For example,
if several events of the same type are recorded at a single
time point, only one event will be kept.

The next step is recognizing failure signatures in the event
sequence data by using the approach to be presented in
Section 2.3. The frequent failure signatures identified using
this approach should be checked by area experts to decide
whether or not they are real signatures. If yes, go to next
step. If no, then the benign signatures are removed from the
set of fault signatures. After this step, physically significant
failure signatures are identified, and thus this step serves
as the variable selection process for the prediction model
building.

Finally, based on the failure signatures, we can build the
failure prediction model for the event sequence data. The
method to build such a model will be presented in Sec-
tion 2.4.
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2.3. Frequent failure signature identification

In this subsection, we present our approach to extract fre-
quent failure signatures from event sequence data. In prac-
tice, engineers are interested in finding failure signatures
because they want to find how trigger events affect the oc-
currence of failure events. In other words, trigger events are
those events that can cause the occurrence of failure events.
Using system knowledge, a trigger event can be associated
with a specific fault (Holloway, 1994). However, when phys-
ical relationships between events are not available, we have
to identify the trigger events by using temporal relation-
ships in the event sequences. In this paper, we only con-
sider this case. An example of failure signatures, denoted
as ¢ = ({4, B, K},{A4, B < K}), can be found in Fig. 1.
The latter part (partial order) of ¢, {A, B < K}, means
the set of trigger events T, = {A, B} occur before K in the
failure signature, but the order between 4 and B is not
fixed and thus ¢ is a parallel failure signature, whereas
o = ({4, B, K}, {4 < B < K}) s a serial signature because
the order between trigger events 4 and B is fixed. All fail-
ure signatures can be recursively generated using these two
basic types. Therefore, we only consider parallel and serial
signatures in this paper. Hereafter we use italic Greek let-
ters, such as « and ¢, to denote failure signatures.

In practice, engineers are interested in finding patterns
containing events that occur quite close together in time.
The closeness of events in failure signatures is specified
by experts based on experience and the physical operation
principles of the system. For example, CT maintenance per-
sonnel are interested in failure signatures that occur over
30 minutes in the CT log files. In the frequent failure sig-
nature identification, we use the term window to define the
closeness of events, that is, we only consider those failure
signatures that occur in a time window of a given width w.
The window width should be specified by the area experts
based on experience and the physical operation principles
of the system.

For a given window width of w, it is often possible to ex-
tract many failure signatures from the event sequence. Only
frequent failure signatures, whose occurrence frequency is

Define the failure
event to be predicted

Collect failure event |
sequence data

Generate frequent
failure signatures

Build the prediction
model for failure event |

Time-to-failure data
extraction

including covariates

Yes
Real signatures?

ﬂNo

Fig. 3. The procedure for failure event prediction model building.
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not smaller than a prespecified frequency threshold Ay,
are kept for further analysis. The frequency of a failure sig-
nature « is the proportion of all windows containing K that
also contain the whole failure signature «. From a statistics
viewpoint, we may view the frequency of a failure signature
a as follows. Imagine that we arbitrarily place a window
of size w on the time line, if the window covers the failure
event K, then the frequency of the failure signature « is
the probability that the window will also cover the whole
failure signature «. A larger frequency means that the trig-
ger events contained in fault signature « will occur with
a greater probability before failure event K in the same
window. Put in another way, if a failure signature is not
frequent, that means that we will have a limited number of
survival times related to this failure signature. From a statis-
tical viewpoint, in this case we may not be able to estimate
its effect due to the limited number of observations. In prac-
tice, the area experts also specify the frequency threshold
value Ay,. The formal concepts of failure signature, window
and frequency can be found in the Appendix.

A flow chart of the algorithm for frequent failure signa-
ture extraction is shown in Fig. 4. The inputs of this algo-
rithm are the event sequence data S, the failure event K,
a frequency threshold Ay,, and a window width w. Notice
that K, Ay, and w are specified by the area experts. The
outputs are the set F of frequent parallel/serial failure sig-
natures F; with different length L and the corresponding
frequencies. Suppose that the largest length of identified
signatures is r, thus we have F = {F», ..., F, }, where the
length of failure signatures Lis L =2,3,...,r.

Similar to the WINEPI approach (Mannila et al., 1997),
the core part of our algorithm has two alternating phases:
(1) building new candidate failure signatures; and (ii) iden-
tifying the frequent failure signatures from the candidate
set. The algorithm stops if no frequent failure signatures
are recognized from the data. The basics of this algorithm
are as follows.

Step 1. Extract event sequence data from the system log
files.

Lietal.

Step 2. Calculate the set of event types, E, which is used to
generate the candidate failure signatures in Step 5.
Calculate the number of windows of size w covering
K.

Decompose the event sequence into several seg-
ments in case the number of failure events in the
event sequence is quite small (rare failure events),
i.e., the number of windows covering K is small.
Through this step, we can improve the algorithm
efficiency because we only keep the sequence seg-
ments S; (i=1, 2, ..., p), in which the distance
between the beginning of the segment to the first
failure event K is equal to w (the end point is the
event K), while other parts of S will be discarded.
Generate the candidate failure signatures C, with
L = 2. The candidate signatures are in the form of
({E, K}, {E < K}), E €E, E # K and the candi-
date parallel and serial signatures with L = 2 are
the same.

Compute frequent parallel and/or serial failure sig-
natures forevery S;,i = 1, 2, ..., p. Refer to Equa-
tion (A1) for the calculation of frequency.
Increase the length of candidate failure signatures
by one.

Generate the candidate signatures C, | based on
the identified frequent failure signatures F;. This
is because of the fact that all sub-signatures of one
failure signature o occur at least as «, thus we can
build longer signatures from shorter ones.

Output F = {F», ..., F,}, if NO further frequent
failure signatures are recognized.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

In Step 6, the basic idea is to slide a window of a given
width along the time line and count the number of windows
that cover the candidate failure signature «. If the frequency
of « is either equal to or larger than the specified frequency
threshold Ay,, we incorporate it into the set F,. Typically,
two adjacent windows are often very similar to each other
since we only move the window by one time unit along the
time line at a time. Thus, in the algorithm we only need

Get the set of event
—> types E from the
event sequence S

Extract event
sequence S from
the log files

Decompose
Calculate the # of event S into
—>| windows covering  [—>| segments
failure event K S,i=12,..p

Compute the frequent
Parallel and/or Serial
failure signatures F, in
S,i=12,..,p

A

Generate the initial
candidate episodes
C, with L=2

\ 4 Compute the
IE'—' candidate signatures

C, from F,

Fig. 4. Flow chart of the frequent failure signature identification algorithm.
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to “update” the information in the current window. The
details of Step 6 are as follows.

(a) In order to identify frequent parallel failure signatures,
for each event in the failure signature ¢ (including trig-
ger events set T, and K), we maintain a flag ¢. flaglj],
j=1,2,..., L, (L is the length of the failure signa-
tures) to show whether or not the event is present in
the window. When the jth event of ¢ is in the win-
dow, we have that ¢. flag[j] = 1. We also have a list
¢. time[j], j=1,2,..., L, which is used to record the
occurrence time for each event in ¢. If the ith event
occurs multiple times in the window, then all the oc-
currence epochs are recoded in ¢. time[j, :] in the or-
der from small to large. When all flags ¢. flag[j] = 1,
j=1,2,..., L, AND the latest event in T, occur be-
fore any of the failure events K in the window, the fail-
ure signature ¢ occurs entirely in the window, the oc-
currence indicator of ¢ (¢. indicator) will change from
zero to one and then the counter ¢. counter will be in-
creased by one. When sliding the window, we just update
¢. flaglj], ¢. timelj](j = 1,2, ..., L) and ¢. indicator, if
an event related with « enters into or leaves the window.
If the value of ¢. indicator is still one, we can increase
¢. count er by one instead of checking the whole failure
signature in the new window.

In order to identify frequent serial fault signatures, the
algorithm similar to the WINEPI approach is utilized.
We make use of state automata to accept candidate sig-
natures. The transition diagram of the finite automaton
for the serial signature « (Fig. A1), is shown in Fig. 5. In
this figure, go g1, .. ., g4 are states, and a state marked
with double circles is either the initial or the final state.
When the first event 4 of @ enters the window, the cor-
responding automaton will be initialized and when this
event A leaves the window, the automaton will be re-
moved. If the automaton reaches its final status, which
means the signature o occurs entirely in the window, we
increase the number of windows which cover « by one.
Similar to (a), when sliding the window, we just update
the status of the corresponding automaton if an event
related to o enters into or leaves the window. If the au-
tomaton for « is still in its final status, we can increase
the occurrence number of « by one.

(b)

Whereas the WINEPI approach can be used to recog-
nize general episodes (temporal patterns) in an event se-
quence, our proposed algorithm can identify frequent fail-

Other Other All

BK
OO

Other

OO~ = sw—@-

Fig. 5. The transition diagram of the finite automata based on «.
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ure signatures more efficiently. The time complexities for
calculation of the collection F = {F,, ..., F,} of fre-
quent injective (refer to the Appendix for definition) parallel
and serial failure signatures in all event sequence segments
Si(i=1,2,...,p) are o( ;5 [p x |C| x L+ pw]) and
U(Z'L";lz [p x wx |CL| 4+ pw]), respectively, where w is the
window width, L is the length of the failure signatures, Cr
is the set of candidate failure signatures, and |Cy| is the
number of the failure signatures in C. The proof of this
result can be obtained from the authors.

2.4. Failure prediction using the Cox proportional
hazard model

As stated in Equation (4), the Cox proportional hazard
modelis used to model the hazard rate as a function of time-
dependent covariates. The conditional survival function on
covariate vector Z(¢) can be expressed in terms of a baseline
survival function Sy(7) as follows:

S(1) = So(t)PE 20, (6)

The coefficient vector (3 in Equations (4) and (6) can be
estimated by the maximum likelihood solution of the partial
likelihood function (Klein and Moeschberger, 2003).

As we mentioned in Section 2.1, incorporating trigger
events into the Cox model as time-dependent covariates,
means that we can predict the failure event based on trigger
events. Furthermore, not only the trigger events but also the
relationships among these events can be derived from the
recognized failure signatures. Thus, we can make full use of
all the information contained in the failure signatures.

For a parallel failure signature ¢ = ({Ty, K}, {T; < K}),
we can use every trigger event in T, as time-dependent co-
variates, meanwhile, the whole T, could be viewed as the
interaction term among these trigger events. For example,
¢ = ({4, B, K}, {4, B < K}) is a frequent failure signature,
then other two failure signatures ¢, = ({4, K}, {4 < K})
and ¢, = ({B, K}, {B < K}) should be also frequent, we
could set two time-dependent covariates for @ and o, re-
spectively as follows:

0, 0<t <ty
Za(t) = 1, t4 <t < theend of the TIBF,
0, 0<t <tp,
Zp(t) =
5(1) {1, tp <t < theend of the TIBF.

where 74 and 7p are the occurrence times of event 4 and
B respectively. For signature ¢, we can use Z4(¢) x Zp(t),
the interaction between Z4(¢) and Z(¢), in the regression
model to study its effect on the occurrence of the failure
event.

For a serial failure signature o« = ({Ty, K}, {T; < K}), in
addition to the time-dependent covariates for every trig-
ger event, the whole set T, can also be viewed as a time-
dependent covariate. For example, o« = ({4, B, K}, {4 <
B < K}), we could also set a time-dependent covariate for
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« as follows:

1, t4 <tp <t <theend of the TIBF,

Zy-p(t) = ,
a<s(1) {0, otherwise.

Through this way, we can predict the occurrence of a fail-
ure event by combining the failure signatures. After estimat-
ing the baseline survival function Sy(¢) and the coefficient
vector 3 from the data, we can predict the occurrence of a
failure event by using Equations (4) and (6).

With this method, our data can be viewed as follows. We
have independent time-to-failure data 73,/ = 1,2, ..., n +
1, which correspond to the jth TIBF. §; is the failure
event indicator for the jth TIBF, thus we have §; =1 for
j=1,2,...,n. For the last TIBF, the indicator value de-
pends on whether or not the occurence times of failure event
occurs at the end of the event sequence; if yes, 8,,1 = 1,
otherwise §,,,1 = 0. If the last TIBF is censored, the failure
event and the censoring time are independent. We also have
covariate vector Z;(1) = [Zj(1), Zp(1), ..., Zy(1)]" for the
jth TIBF, where y is the length of covariate vector. The co-
variates are coded as illustrated above. Using these data, we
can fit the Cox model to the time-to-failure data and then
predict the time interval and confidence for the occurrence
of the failure event.

In the following section, a comprehensive case study
and a real-world example are presented to illustrate this
procedure.

3. Case studies

To show the effectiveness of our procedure as well as the
performance of the Cox model with time-dependent covari-
ates, we carried out the following case studies.

3.1. Numerical case study

In this case study, a simulated event sequence was used
and thus we first need to generate the event sequences. The
procedure is the reverse of the procedure to extract time-
to-failure data from the event sequence, which is illustrated
in Fig. 2. Because no distributional assumption is needed
for the Cox model, we were able to generate the time inter-
vals randomly and independently. After that, by linking all
the time intervals together we created an event sequence.
For a single hypothetical failure event sequence, we gener-
ated 1000 time intervals. In our study, all these 1000 time
intervals were exactly observed, which means no censoring
in our data. In addition to failure event K, there are three
event types A, B and C in the event sequence. Event type A4
may occur at most once in each TIBF. The event types B and
C are in the same case. To test the algorithm for frequent
failure signature detection, the occurrence number of event
C in the event sequence were set very small, which means
that we will not get any failure signature containing event
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C when a comparably large threshold for the frequency is
given. Some details of the simulation will now be discussed.

1. The N = 1000 failure times follow a Weibull distribution
with parameters o = 3, . = 50 with shape parameter
and scale parameter as 3 and 50; respectively.

2. For each TIBF, the occurrences of events A, Band C are
assumed to be independent of one another. We also as-
sumed that the events 4, B and C occur within 60, 40 and
5% of all the TIBF respectively, that is, the occurrence
of events A, B and C in each TIBF independently fol-
low a Bernoulli distribution with p = 0.6, 0.4 and 0.05,
respectively.

3. Forthose time intervals during which events A, Band/or
C occur, we generated the occurrence times of the corre-
sponding event according to a specified distribution. For
A, the assumed distribution of the occurrence time was
log normal with u = 2, 0 = 1; for B, it was an exponen-
tial distribution with A = 10. And uniform distribution
with parameters « = 10, » = 20 was assumed for the oc-
currence times of event C. In total, N = 1000 sets of
time-dependent covariates (events 4 and B) are gener-
ated.

4. Assuming that the coefficient vector 3 in Equations (4)
and (6) is known, we can use the permutational algorithm
(Abrahamowicz et al., 1996; Leffondre et al., 2003) to
randomly pair the time-dependent covariate vector and
the TIBF, according to the probability based on the par-
tial likelihood given the values of 3. The assumed val-
ues of (3 are listed in Table 1. Because the event C is not
included in the frequent failure signatures, we only con-
sidered (3 values for time-dependent covariates of events
A and B. In the study, two scenarios were studied, the
difference being whether or not an interaction exists be-
tween Z 4(t) and Zp(¢). In scenario 1, this interaction is
assumed to have no effect on the hazard rate.

To apply the proposed failure prediction method, the first
step is to identify the frequent failure signatures. A win-
dow width of w = 50 and a threshold for the frequency of
Ay, = 5% were used. Three fault failure signatures were
identified A, = ({4, K}, {4 < K}), »» = ({B, K}, {B < K})
and A = ({4, B, K}, {4, B < K}) for both scenarios.

We ran the simulation algorithm 1000 times and obtained
1000 event sequences. For each event sequence, we obtained
an estimate of (3, denoted as_[?’). For each scenario stud-

ied, we calculated the mean [3 of the 1000 regression co-
efficients with the corresponding 95% confidence interval

Table 1. Assumed values of 3 for two scenarios

Covariates Scenario 1 Scenario 2
Z (1) 0.6 0.6
Z (1) 1.2 1.2
ZA([) XZB(I) 0 1.6
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Table 2. Mean of estimates, corresponding to a 95% CI and rela-
tive bias for both scenarios

Scenario Covariates  f3 é 95% CI ( é» —B)/B

1 Z4(1) 0.6 0.6037 [0.5984, 0.6090] 0.0061
Z(t) 1.2 1.2038 [1.1974, 1.2102] 0.0031
Z4(t) x Zp(1) 0 —0.0010 [—0.0090, 0.0070]

2 Z4(1) 0.6 0.6039 [0.5987, 0.6090] 0.0065
Z(t) 1.2 1.2040 [1.1976, 1.2104] 0.0033
Z4(t) x Zg(t) 1.6 1.6022 [1.5936, 1.6108] 0.0014

based on normal approximation. Also, we calculated the

relative bias as the ratio (3 — B)./B. The symbol «./” rep-
resents element-wise division.

Based on the results shown in Table 2, we can see that
our algorithm to build the Cox model incorporating time-
dependent covariates is quite accurate. The relative bias

(B — B)./B is in a small range of 0.14-0.65% (except for
Z4(t) x Zp(t) in scenario 1).
The prediction model for scenario 1 is

i’(l)[t | Z(1)] = il(l),o(l)eXP[[ga)JZA(f) + é(l),ZZB(t)]'

In this case, the model has two predictors which are the
time-dependent covariates Z4(¢) and Zg(t). Although A =
({4, B, K}, {4, B < K}) is a frequent failure signature, the
effect of the interaction between Z 4(¢) and Zp(¢) is not sig-
nificant, according to the p-value of the Wald test. That is,
we can consider the occurrence of event 4 and B separately.

For scenario 2, the prediction model includes the effect
of the interaction. The full model is

il(z)[f |Z(1)]
= h()0(1) explB2) 1 Z4(1) + B2)2Z5(1) + B(2)3Z4(1)
x Zp(1)].

The p-value of the Wald tests tell us that the interaction
effect is significant, which means the effect of concurrence
of event 4 and B is larger than the sum of effects of A
and B which occurs separately, because the estimate 3,) 3
is positive in this case.

3.2. Failure prediction model building for real
CT log file data

The real-world data to be analyzed are CT usage log files. A
large amount of data is generally recorded over a month of
monitoring. Failure event sequence data can be extracted
from the log file. After data preprocessing, there were 7199
events belonging to 179 different event types that occurred
in the month. This data set is available from the authors.
Since we do not know the physical relationships between
these event types, the technique for frequent failure signa-
ture identification presented in this paper is needed.

To maintain confidentiality, we simply denote the failure
event as K, which represents a provisional malfunction of
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the scanner. Using our algorithm we were able to identify
50 frequent parallel failure signatures based on the window
width and frequency threshold given by area experts. The
results from our algorithm were compared with the fail-
ure signatures manually identified by field engineers. The
comparison results are very satisfactory: essentially, all the
signatures identified by the engineers were also identified
by the algorithm. Among these signatures, three are viewed
as useful. They are

v = ({4, K}, {4 < K}),
v = ({B, K}, {B < K}),
v3 = ({C, K}, {C < K}).

Also for confidentially reasons we simply use 4, B and C
to denote the trigger events and these events are all related
to operator activities. No other failure signatures with a
length larger than two were identified. Our next task was
to investigate how the operator activities affect the occur-
rence of the malfunction of the CT scanner, that is, we con-
structed the prediction model based on these three failure
signatures.

We set three time-dependent covariates for the three trig-
ger events contained in the failure signatures. They were
Z4(t), Zg(t) and Z(t), which have the same form as that
in Section 2.4. We do not have any fixed-time covariates for
these data thus the covariate vector for the ith TIBF at time
tis Zi(t) = (Zia(1), Zip(1), Zic(1))".

In the event sequence, the total number of K events is
106, thus there are 107 time intervals with the last one be-
ing censored. Using the stepwise approach, we selected sig-
nificant covariates and interactions. We used the Akaike
Information Criterion (AIC) to decide if we should add fac-
tors Z 4(t), Zp(t) and Z(t), or interactions, Z 4(¢) x Zp(t),
Z4(t) x Zc(t) and Zp(t) x Z(t) into our model. The pro-
cess stops when no significant covariate and interactions
are found. AIC examines the statistic:

AIC = —2log L + kp, (7)
where L is the likelihood function, p is the number of re-
gression parameters in the model and & is some specified
constant (usually two). The parameters of the final regres-
sion model are listed in Table 3. In the table, exp(-) means
the exponential function, SE(-) is the standard error of the
estimate, whereas Z is the value of statistic.

Table 3. Analysis of variance table for the final model

DOF B exp(B) SE(B) Z p-value
Z4(t) 1 0862 2367 0.295 2.933.40 x 1073
Zg(t) 1 1.216 3372 0296 4.1 4.10 x 1073
Zc(1) 1 0644 1905 0235 2.74 6.20 x 1073
Zit)x Zg(t) 1 —1.55 0212 045 —3.45570x 1074
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Fig. 6. Graphical checks of the proportional hazards assumption.

When fitting the Cox model to the data, we need to check
the proportional assumption for every time-dependent co-
variate at the first place. The checking results by using
the cox - zph(-) function in R are shown in Fig. 6. In
the figure, the slopes of the smoothed curves for scaled
Schoenfeld residuals are nearly zero. Also, p-values of the
corresponding tests (not given here) show that the pro-
portional hazard assumption holds for all three time-
dependent covariates. In practice, if the proportional haz-
ards assumption is violated for some covariate, we can
stratify on that variable and fit the Cox model within
each stratum for other covariates (Klein and Moeschberger,
2003).

Analogous to R? in linear regression analysis, a measure
of goodness-of-fit for the Cox proportional hazard model
was proposed by Cox and Snell (1989) to be

2

R*=1—exp [N(LLO — LLG)] )
where LLj is the log partial likelihood for the fitted Cox
proportional hazard model, L L is the log partial likelihood
for model zero, and N is the number of time intervals in the
event sequence. The final result of the Cox—Snell R? is equal
to 0.204, thus the Cox model fits our data well (Verweij and
Van Houwelingen, 1993). In addition, we also checked the
model for outliers using deviance residuals, and no outliers
were found.

T T T T T T T T
500 1000 1500 2000 2500 3000 3500

time

The baseline survivor function is shown in Fig. 7. We now
interpret our final hazard model. The hazard ratio (HR)
between time points #, and ¢; is defined as

R _ M@ explBTZ(1)] _
ho(t) exp[B" Z(11)]

Thus, based on the results shown in Table 3, we can
estimate the hazard ratios. Assume that only event A4
occufsTin the time interval [#;, £,], then we can write HR =
exp{B [Z(t2) — Z(1))]} = exp(B4) = 2.367, which means
the hazard rate after 4 occursis 2.367 times that when event
A does not occur. While both 4 and B occur in the interval,
the hazard rate will be exp(84 + Bz + Bap) = exp(0.862 +
1.216 — 1.55) = exp(0.528) = 1.696 times that when events
A and B do not occur. That is, other than the effects of
A and B, the interaction also impacts the hazard rate.
Accordingly, the survival function will change when trigger
events occur. The predicted survival function can be
calculated from our results.

We can use the estimated regression coefficients listed
in Table 3 and baseline survival function in Fig. 7 to pre-
dict the occurrence of failure event K. For example, if
all the trigger events 4, B and C do not occur in the
system, then the failure event K will occur in the time
interval [100, 150] minutes from the start of the TIBF
with a probability of (0.5693 — 0.4776) = 0.0917 ~ 9.2%,
which can be calculated from the estimated baseline survival

exp{B’[Z(12) — Z(t1)]}.
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Fig. 7. Estimated baseline survival function.

function. However, if 4 and B do occur before the time in-
terval, the probability for K occurring in [100, 150] will be
increased to (0.5693XP(BatPatPas) _ (. 4776P(BatBstBan)y =
(0.569316% — 0.4776!-996) = 0.0991 =~ 9.9%.

4. Conclusions

An effective data-driven technique to predict the occur-
rence of failure events based on event sequence data has
been presented. The Cox proportional hazard model, which
has some advantages over other models and thus predomi-
nates in biomedical survival analysis, can be used to provide
a rigorous statistical prediction of system failure events.
However, due to the difficulties that can be encountered
when fitting the Cox model directly to the event sequence
data, we need to build a prediction model based on fail-
ure signatures. An algorithm to extract the frequent fail-
ure signatures has been developed and two types of failure
signatures—parallel and serial signatures—can be identi-
fied efficiently through the method. Based on the recognized
failure signatures, an approach to prediction model build-
ing has been developed. By coding the failure signatures as
time-dependent covariates and interactions, we can fit the
Cox model to the data and thus build a failure prediction
model for the event sequence based on the frequent failure
signatures. Finally, we illustrated the effectiveness of our
approach through a numerical case study and a real-world
example. In summary, the whole procedure provides a sys-
tematic methodology to analyze the failure event sequence
data and can be used in the field of failure prediction.

A very interesting open issue is failure prediction for mul-
tiple event sequences. For the case in which we have several
event sequences collected from different pieces of equip-
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ment, how do we predict the failure event by combining
the data together? Furthermore, it will be very interesting
to consider the dependence among the time intervals and
include the relationship in the prediction model. The ex-
tensions of Cox models for recurrent event data of multiple
subjects, such as the Prentice-Williams-Peterson (Prentice
et al., 1981) and Wei-Lin-Weissfeld (Wei et al., 1989) mod-
els, will be investigated in a future study. The results along
this direction will be reported in the future.
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Appendix

Definitions of failure signature, window and frequency
follows.

Failure signature: Let K denote the failure event and
T, the set of trigger events. A failure signature o =
({T:, K}, {T; < K}) is the set of events {T,, K}, which oc-
cur within time intervals of a given size, and a total order
{T: < K}, which represents that the trigger event set T,
occurs before K in the time intervals of specified size. A
partial order, <, could exist on the events in T;:(T;, <).

The failure signature is injective if no event type occurs
twice or more in the signature. The length of a failure
signature «, denoted as L, is the number of events con-
tained in the set of events {T;, K}. Based on the definition
of failure signature, we have L > 2.

Based on the partial order, <, on trigger events, there
are three types of failure signatures shown in Fig. Al.
a = ({4, B, K}, {A < B < K})isaserial failure signature
because the order relation {4 < B} of trigger events A
and B is a fotal order, while ¢ = ({4, B, K},{A, B < K})
is a parallel failure signature (notice that the order is not
fixed for all A # B). In failure signatures « and ¢, we
can see failure signature A = ({4, K}, {4 < K}) is a sub-
signature because it is contained in « and ¢. The third
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Fig. A1. The three basic types of failure signatures.

type of failure signature, y, is composite. The composite
signature could be constructed based on the first two
types recursively.

The definition of window, also used in Mannila et al.
(1997), is presented as follows.

Window: Given an event sequence S = (T3, Ts, s), a win-
dow W = (T, T?, sw) is a part of that event sequence,
where TY' and T}' are the starting and ending times
of the window respectively with 7)' < T3 and T > T3,
and sw consists of those event pairs (£;, ¢7) from S with
Y <t <T).

The width of the window Wisdefinedasw = T — Ty
Given an event sequence S and an integer w, we denote
Q(S, w, K) the set of all windows of size w which cover
failure event K on S.

Frequency: The firequency of o in the set Q(S, w, K) of all

windows of size w covering K on S is

fr(a,S,w,K)
__ the number of W convering « in (S, w, K)
o the number of W in Q(S, w, K)

. (A1)

Given a threshold Ay, for the frequency, a given failure
signature is frequent if fr(a, S, w, K) > Ay.. Apparently,
if o 1s frequent then all its sub-signatures are frequent.
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