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Failure Mechanism and Bearing Capacity of Footings Buried 45 

at Various Depths in Spatially Random Soil 46 

 47 

Abstract: 48 

The objective of this paper is to demonstrate how the spatial variability of random soil affects the 49 

failure mechanism and the ultimate bearing capacity of foundations buried at various depths. A 50 

non-linear finite element analysis combined with random field theory is employed to explore the 51 

vertical capacity of foundations embedded at different depths in random soil. Different possibilities of 52 

shear failures resulting from spatial patterns of soil are demonstrated and used to explain the 53 

significant discrepancy between the bearing capacity of the random soil and that of uniform soil. The 54 

effect of the spatial pattern of the soil on the development of shear planes is also investigated, with the 55 

coefficients of variation for the bearing capacity demonstrated to be closely related to the shear plane 56 

length. Results of the statistical variation in the bearing capacity are provided for different 57 

embedment depth and these are also reported as the failure probability of the footing against using the 58 

established uniform soil bearing capacity. Safety factors are proposed for foundations at different 59 

levels of failure probability. This study provides a thorough understanding of the failure mechanisms 60 

of footings in random soil, especially where structures can penetrate deeply into soil. 61 

 62 
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Introduction 69 

The vertical bearing capacity of a shallow foundation is a classical geotechnical problem. When a foundation is buried 70 

deeply in soil, its failure mode differs markedly from the surface footing and is characterized by a mechanism where soil 71 

is free to flow around from under the footing to the top. In this case, the failure mechanism no longer extends to the soil 72 

surface, as happens for a shallow foundation, and becomes fully localized around the foundation (O’Neill et al. 2003). The 73 

mechanism of soil failure transforms from a general shear failure for a surface footing (Craig 2004) to a localized failure 74 

for a buried footing (Hu et al. 1999; Wang and Carter 2002; Hossain and Randolph 2009, 2010; Zhang et al. 2011, 2012, 75 

2014), with the ultimate bearing capacity for a deeply buried foundation demonstrated to be considerably larger than that 76 

of a shallow foundation (e.g., Merifield et al. 2001, Zhang et al., 2012). One example, where understanding of the change 77 

in bearing capacity at different embedment is required, is the offshore application of spudcan foundations. These large 78 

footings of mobile drilling platforms regularly penetrate and bury into the seabed to depths of three diameters (Endley et 79 

al. 1981; Menzies and Roper 2008; Menzies and Lopez 2011). 80 

The majority of the previous studies on the bearing capacity problem of buried footings have been limited to 81 

homogeneous soil or uniform soil of strength increasing linearly with depth. These have shown that, in uniform soil, a 82 

symmetrical logarithmic spiral failure plane for a surface footing and a symmetrical rotational scoop mechanism for a 83 

fully buried foundation are optimal (Merifield et al. 2001; Craig 2004). However, under more realistic conditions, soil 84 

properties spatially vary due to a combination of geologic, environmental and physical-chemical factors. This spatial 85 

variation of soil results in the reduction of the bearing capacity because the failure plane becomes asymmetric and tends to 86 

follow the weakest path (e.g., Fenton and Griffiths 2003; Popescu et al. 2005; Cho and Park 2010). The influence of soil 87 

spatial variation has been also found in slopes by developing different (shallow or deep) failure planes (Huang et al. 88 

2013).   89 

The bearing capacity of a footing can be overestimated without accounting for the inherent random heterogeneity of 90 

soil. Research on the bearing capacity of a surface footing on spatially varying soil has been conducted over the past three 91 

decades (e.g. Griffiths and Fenton 2001; Popescu et al. 2005; Kassama and Whittle 2011; Al-Bittar and Soubra 2013). 92 
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Nobahar and Popescu (2000) and Griffiths et al. (2002) observed that the mean bearing capacity can decrease by 20-30% 93 

for  random soil compared with the corresponding bearing capacity of homogeneous soil with the same mean soil 94 

properties. Cassidy et al. (2013) observed that the mean bearing capacity for pure vertical, horizontal and moment loads 95 

decreased with increasing variability of soil strength. The results of such probabilistic studies quantify the bearing 96 

capacity reduction. However, few studies have revealed how the spatial variability of random soil affects the failure 97 

mechanism and such the bearing capacity. To the authors’ knowledge there are no studies on the change in bearing 98 

capacity factor for buried footings in spatially random soil.   99 

The objective of this research is to investigate the failure mechanisms and the bearing capacity for footings buried at 100 

various depths in random soil. A non-linear finite element analysis combined with a Monte Carlo simulation is employed 101 

to achieve the objective. The statistical properties of the bearing capacity are investigated and re-interpreted according to 102 

the corresponding failure mechanisms. Finally, the factors of safety at different levels of failure probabilities are 103 

proposed. This research provides an improved understanding of the failure mechanisms of buried footings in random soil. 104 

 105 

Methodology 106 

Probabilistic Characteristics of Spatially Random Soil  107 

All soil properties in situ can vary vertically and horizontally. The spatial variation can be characterized by a trend, which 108 

describes the mean value, and a residual variation, which reflects the variability about the trend. The residuals off the trend 109 

are statistically correlated to one another in the space and are often a function of their separation distance. The correlation 110 

of residuals at two locations separated by distance δ is called the autocorrelation function. The integral of autocorrelation 111 

function results in the scale of fluctuation. The correlation for the properties at two locations within the scale of 112 

fluctuation is strong. Details on the physical meaning and characterization of these parameters can be referred to Phoon 113 

and Kulhawy (1999) and Baecher and Christian (2003). In this study, the randomness of the undrained shear strength su is 114 

considered and modeled as a log-normally distributed random field with a mean value µs, standard deviation σs, and scale 115 

of fluctuation θs. The Young’s modulus E is also a random field, as it is perfectly correlated to the undrained shear 116 

4 
 



 

strength su with a ratio E/su=500 (Hu and Randolph 1998).  117 

The statistical properties of the undrained shear strength are presented in Table 1. While the mean and standard 118 

deviation are familiar concepts to most engineers, the scale of fluctuation requires more examination. Phoon and Kulhawy 119 

(1999) conducted an extensive literature review and observed that the horizontal scale of fluctuation θh is on the order of 120 

40-60 m (with a mean value from the reported literature of 50.7 m). The vertical scale of fluctuation θv is in the range of 121 

2-6 m (with a mean value of 3.8 m). In this study, a square exponential model (Baecher and Christian 2003) is used to 122 

describe the auto-correlation of the undrained shear strength. The scale of fluctuation values is taken as 50.7 m and 3.8 m 123 

in the horizontal and vertical directions, respectively. The coefficient of variation of the undrained shear strength (i.e., 124 

σs/µs) is assumed to be 0.3 in the following simulations as it is reported in the range of 0-0.5 (Uzielli et al. 2005). Random 125 

fields of undrained shear strength su have been generated using the local average subdivision algorithm (Fenton and 126 

Vanmarcke 1990). 127 

 128 

Random Finite Element Modeling 129 

The two-dimensional plane strain condition has been simulated using the non-linear finite element software ABAQUS 130 

(Dassault Systèmes 2010). A footing (with width of B and height of h) embedded in a soil of depth D is illustrated in Fig. 131 

1. The soil is modeled with a linear-elastic perfectly–plastic constitutive law. The elastic response is defined by the 132 

Young’s modulus and the Poisson’s ratio. The Poisson’s ratio is set as 0.49 to model the undrained conditions of no 133 

volume change as well as to ensure numerical stability (Taiebat and Carter 2000). Soil failure is defined according to the 134 

Tresca criterion, with the maximum shear stress in any plane limited to the undrained shear strength (su). 135 

The foundation width B is 20 m, and the height h 4 m. These dimensions are typical values for a spudcan foundation 136 

today (Cassidy et al. 2009). The embedment depth, D, is taken as 0, 0.5B, 1B, 2B, 3B and 4B, respectively. For a 137 

foundation deeper than 4B its failure is contained in a localized area around the foundation which is not influenced by the 138 

embedment depth any more (Rowe and Davis 1982; Randolph et al. 2004; Zhang et al. 2011). The foundation is 139 

considered to be rigid and “wished-in-place”. The soil-foundation interface is fully ‘bonded’, which is reasonable to 140 
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represent undrained soil behavior (Gourvenec and Randolph 2003). In the numerical modeling, the foundation is 141 

displaced at the foundation reference point in the vertical direction until a failure load is attained. 142 

The soil domain has a width of 6.4B and a height of 6B, which is large enough to ensure there are no obvious 143 

boundary effects. The soil domain is discretized into many zones onto which the random field is to be mapped. Hence, the 144 

zone size has to be carefully examined to avoid excessive spatial averaging in the finite element modeling. Ching and 145 

Phoon (2013) have investigated the effect of zone sizes and observed that the zone size should be 0.13-0.18 times the scale 146 

of fluctuation when the squared exponential auto-correlation is adopted. In this case the zone sizes are set to be 2.0 m in 147 

the horizontal direction and 0.5 m in the vertical direction, which can assure both a prescribed accuracy and an acceptable 148 

computational time. The soil properties vary from zone to zone to reflect the spatial variability of the soil. For the majority 149 

of the soil domain, a zone is represented by one finite element. However, in a region of size 3B by 2B close to the strip 150 

footing (as bounded by the bold lines in Fig. 1), a zone is further discretized into four finite elements of 0.5 x 0.5 m. These 151 

smaller elements, each with the same material properties, have been proved to be helpful in improving the numerical 152 

accuracy of the simulation (Cassidy et al. 2013).  153 

 154 

Monte Carlo Simulation  155 

For each foundation at a specific embedment depth, Monte Carlo simulations have been performed for n realizations of 156 

the soil random field and the subsequent finite element simulations of the bearing capacity. The error in the estimate of the 157 

mean shear strength decreases as the number of simulations n increases. The number of simulations n that estimate the 158 

mean shear strength to within an error of e with confidence (1-α) is (Fenton and Griffiths 2008) 159 

 n ≈ �zα/2𝜎𝜎𝑠𝑠
e

�
2
 (1) 160 

where zα/2 is the value of the standard normal variant with a cumulative probability level (1-α/2). If a maximum error e of 161 

0.1σs is allowed on the mean value (i.e., maximum error of 3% on the mean value) of the shear strength with confidence 162 

of 95%, the required number of simulations is 385. In this study, 400 simulations have been performed for each 163 

foundation at a specific embedment depth. Each realization, with the same statistical properties, can lead to a quite 164 
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different spatial pattern of the shear strength in the soil. This spatial variation can, in turn, result in various failure 165 

mechanisms and bearing capacities of the foundations. 166 

Results and Discussion 167 

The computed bearing capacity factor for each realization, Nci, can be calculated using   168 

 Nci = qfi
µs

 (2) 169 

where qfi is the bearing capacity computed for the ith realization. The mean value of the undrained shear strength µs is 170 

maintained at a constant value of 10 kPa, which is the undrained shear strength of the uniform soil in the deterministic 171 

analysis.  172 

For each analysis, the bearing capacity increases with increasing applied displacement until plateauing at the failure 173 

value (which tended to be at a displacement around 6% of the footing width). The relationship between the bearing 174 

capacity factor and the normalized displacement for a surface footing is demonstrated in Fig. 2a. The 400 realization 175 

results from the Monte Carlo simulation are compared with both the corresponding deterministic analysis consisting of 176 

uniform soil and the closed form solution (e.g., Prandtl’s solution). The bearing capacity factor for the deterministic finite 177 

element analysis using uniform soil strength is 5.23, which is 1.7% higher than the Prandtl solution of 5.14. The reason for 178 

this small difference is due to the mesh used, which is to balance the computation time (15 min for each buried foundation 179 

case) and accuracy. The mean value, cumulative distribution and probability distribution for the 400 realizations are 180 

showed in Fig. 2b. A majority of the bearing capacity factors obtained from the Monte Carlo simulations are smaller than 181 

that of the deterministic case using uniform soil. This trend indicates the spatial variability of a soil is prone to decrease 182 

the bearing capacity of a foundation, a result consistent with the research performed by, amongst others, Griffiths and 183 

Fenton (2001) and Kasama and Whittle (2011). The following sections will closely inspect the failure mechanisms of a 184 

footing in random soil.  185 

 186 

Failure Mechanism of Foundations in Random Soil 187 

The manner in which the failure plane is formed is discussed in this section. Fig. 3 shows a failure plane development of a 188 
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particular realization of the random field, where the blue regions indicate weaker soil and the red regions indicate stronger 189 

soil. The shear strain contours (i.e., the regions in gray color) at different normalized displacements are superimposed on 190 

the random field. At the initial stage (as shown in Fig. 3a), the largest strain appeares at the two bottom corners of the 191 

foundation. Then, the shear plane develops downwards until a weak layer of soil beneath the foundation is encountered 192 

(as depicted in Figs. 3b &c). The shear plane develops further along the weak soil layer and is then restricted by an 193 

overlying stronger layer (see path I in Fig. 3d). In addition, a relatively large shear strain in a weak soil layer at a smaller 194 

depth emerges (see path II in Fig. 3d).  The shear plane extends further along path II through a relatively weak soil region 195 

and touches the soil surface. Finally, a complete failure plane forms accompanied by several other shear planes in weaker 196 

soil.  The failure plane for the uniform soil is also superimposed in Fig. 3f, which is the Prandtl failure mechanism. 197 

Compared with the uniform case, the shear plane of this random soil is deeper and mobilized more volume of soil, and in 198 

turn, led to a greater ultimate bearing capacity (6.34). It is interesting that shear planes in random soil can develop several 199 

paths in weak soil instead of a single shear path in the deterministic analysis. The failure plane seems tend to find a shear 200 

path that costs the least energy to extend from the corner of the foundation to the soil surface. Therefore, not only the 201 

weakest soil but also their distribution within spatial pattern of the random soil will determine the failure plane and thus 202 

the bearing capacity. 203 

Fig. 4 illustrates the development of the shear strain for a buried foundation of 3B depth in a realization of random 204 

soil. The largest strains first occur in the weakest soil surrounding the foundation. The shear plane is then developed from 205 

the regions with the largest strains in a circular manner to form a back-flow mechanism, where soil flows back over the 206 

upper surface of the foundation. The failure plane finally passes through a strong soil region to form a localized failure 207 

instead of strictly following the weakest soil path. The failure plane for this footing in uniform soil is also superimposed in 208 

Fig. 4d, which exhibits a symmetrical pattern. 209 

The shear plane of different realizations can be markedly different from one another due to different spatial patterns 210 

of random soil. In uniform soil, the shear plane is symmetrical for surface footing (as observed in Fig. 5a).  In random soil, 211 

Figs. 5b-f selectively show the failure planes for the surface footings with bearing capacity factors of 2.85, 3.94, 4.98, 5.93 212 
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and 6.34, which covers the full range of bearing capacities.  Fig. 5b demonstrates that the failure plane is restricted to a 213 

shallow and narrow area, which mobilizes a small area of soil and leads to a small resistance of the soil and thus a small 214 

bearing capacity factor of 2.85. As the failure plane becomes deeper, with more soil mobilized, the bearing capacity factor 215 

increases, as demonstrated in Figs. 5c-5f. Fig. 5e shows a comparable failure plane to that in Fig. 5d, while the bearing 216 

capacity factor is 16% larger than that of Fig. 5d. A close examination reveals that the shear strength of the soil along the 217 

shear plane in Fig. 5e is generally larger than that in Fig. 5d. Therefore, both the size of the shear plane and the soil 218 

strength along the shear plane, with both of them depending on the spatial pattern of the random field, determines the 219 

bearing capacity.  220 

The failure planes of the embedded foundation at 3B depth are selected to show different realizations with bearing 221 

capacity factors from 8.87 to 12.23 (see Figs. 6b-f). The failure plane for the footing in uniform soil is also shown in Fig. 222 

6a as a comparison. Generally, the bearing capacity increases upon enlarging the shear plane. The shear plane in random 223 

soil exhibits an unsymmetrical characteristic which is different from the uniform soil case. Interestingly, the figure 224 

suggests that more than one failure plane may be formed, which is different from the common assumption of one failure 225 

plane in previous studies (e.g., Fenton and Griffiths 2003). The shear plane in Fig. 6e is larger than that in Fig. 6a, while 226 

the bearing capacity factor of the former (i.e., 11.46) is smaller than that of the latter (i.e., 11.86). The reason lies in that 227 

the shear plane follows the weakest path in random soil, which has smaller shear strengths along the shear plane than 228 

uniform soil.  229 

The failure plane in Fig. 6f appears to be quite close to the boundary of the soil. Hence, a simulation with a larger 230 

boundary (i.e., 12.8B x 6B) has been performed to investigate the boundary effect. The shear plane for this simulation is 231 

shown in Fig. 7, which is similar to that in Fig. 6f. The bearing capacity for this analysis is 12.40, which is only 1% larger 232 

than that of Fig. 6f. From this, the boundary size used in the simulations (especially in Fig. 6f) is therefore considered 233 

appropriate.  234 

 235 

Bearing Capacity Results for Foundations at Different Embedment Depths 236 
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Based on a Monte Carlo simulation for each foundation at a specific embedment depth, the computed bearing capacity 237 

factors from Eq. (2) are plotted in the form of histogram, as presented in Fig. 8. A normal distribution is used to fit the 238 

histogram (Fig. 8). A Chi-square goodness-of-fit test (Ang and Tang 2007) is performed to verify the assumed normal 239 

distribution. Table 2 summarizes the mean value and χ2 statistics for the foundations at six different depths. The χ2 value is 240 

in the range of 11-37, which indicates an acceptable probability distribution in most cases (Ang and Tang 2007). This 241 

normal distribution of the bearing capacity factor has been also reported for a surface footing by Kasama and Whittle 242 

(2011).  243 

The average bearing capacity factors are 4.71, 6.71, 7.59, 9.90, 10.84 and 11.25 for the foundations embedded at 244 

depths of 0, 0.5B, 1B, 2B, 3B and 4B, respectively (see Fig. 9a). The average bearing capacity factors increase with 245 

increasing embedment depth due to the transition of a general failure at a shallow depth to a full-flow failure at a deep 246 

depth. The standard deviations of the bearing capacity factors are spread in a narrow range of 0.47-0.74 for the 247 

foundations at different depths. The coefficient of variation of the bearing capacity factor are 0.119, 0.075, 0.062, 0.050, 248 

0.055 and 0.060 for the foundations buried at depths of 0, 0.5B, 1B, 2B, 3B and 4B, respectively. The magnitude of 249 

coefficient of variation (COV) is closely related to the volume of soil mobilized and again to the length of the shear plane, 250 

L. The shear plane is characterized by the elements with the largest shear strain. The summation of the length values of the 251 

elements with the largest shear strain will give the length of the shear plane. The length of shear plane for a foundation 252 

buried at a certain depth in a random soil is shown to have the same order as in a uniform soil. The length of the shear 253 

plane in uniform soil is then investigated and normalized by the foundation width. The change of the shear plane length 254 

ratio, L/B, with the embedment depths is also plotted in Fig. 9b. The results indicate that when the shear plane length is 255 

larger, the COV is smaller. The reason for this finding is that a larger shear plane will pass through more soil elements, 256 

which results in a larger spatial averaging of the random soil and a smaller COV. The COV can significantly affect the 257 

failure probability and, in turn, the factor of safety of a foundation, as discussed in the following section. 258 

  259 

Probability of Failure for Foundations at Different Embedment Depths 260 
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The failure of a foundation can be defined by the ultimate bearing capacity or the displacement (Rowe and Davis 1982). In 261 

this paper, we focus on the bearing capacity. According to Griffiths and Fenton (2001) the failure can be defined as the 262 

bearing capacities of the foundation being less than the corresponding deterministic values based on the uniform soil 263 

strength. The failure can then be defined as the normalized bearing capacity factor of a foundation, Nc/Nc,det, which is less 264 

than 1. The probability of failure can be easily determined from the cumulative probabilities of the normalized bearing 265 

capacity for the foundations (as illustrated in Fig. 10). The failure probabilities are 82.3%, 87.3%, 91.7%, 95.3%, 95.5% 266 

and 93.3% for the foundations buried at 0, 0.5B, 1B, 2B, 3B and 4B depths, respectively. The results demonstrate that the 267 

deeply embedded foundation generally has a larger probability of failure.  268 

The probability of failure is extremely large when the ultimate bearing capacity obtained from the uniform soil case 269 

is used to define the failure criteria. In reality, the allowable load is often obtained by applying a factor of safety, FS. The 270 

probability that the bearing capacity is less than a targeted level of applied load can be determined by considering the 271 

factor of safety. The probability of failure can be defined as the bearing capacity being less than the nominated load (i.e., 272 

Nc,det/FS).  For a normally distributed bearing capacity factor, the probability of failure can then be calculated using 273 

 p�𝑁𝑁𝑐𝑐 < Nc,det/𝐹𝐹𝐹𝐹� = ∅�(Nc,det/FS)−µNc
σNc

� (3) 274 

where Φ is the cumulative normal function, µNc and σNc are the mean value and standard deviation of the bearing capacity 275 

factor Nc, and Nc,det is the ultimate bearing capacity factor of the deterministic analysis based on uniform soil.  276 

The probabilities of failure for the foundations at different factors of safety can be calculated using Eq. (3) with the 277 

parameters in Table 2. When the factor of safety is 1.2, the failure probabilities are 26.5%, 9.9%, 6.2%, 2.9%, 5.5% and 278 

9.9% for the foundations embedded at 0, 0.5B, 1B, 2B, 3B and 4B depths, respectively (as indicated in Fig. 11). A 279 

relatively larger probability of failure for the foundation buried at the 4B depth results from the relatively larger COV of 280 

the bearing capacity factor. As the target probabilities for bearing failure are generally in the range of 10-2 to 10-3, a factor 281 

of safety of 1.2 would be not acceptable for design. The probability of failure decreases markedly with an increasing 282 

safety factor. For the surface footing, the failure probability decreases from 82.3% to 1.4% when the factor of safety 283 

increases from 1.0 to 1.5. For a foundation buried at deeper depth, the failure probabilities are all smaller than 10-4 when 284 
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the safety factor reaches 1.5. The failure probability is essentially reduced to nearly zero by increasing the factor of safety 285 

to 2.0 for all of the foundations. Table 3 summarizes the factor of safety for foundations at different depths which predicts 286 

failure probabilities of 10-2, 10-3, and 10-4. The partial safety factor that accounts for the uncertainty in shear strength for 287 

buried anchors specified by DNV (2012) is 1.3. This factor of safety indicates a failure probability of 0.1%, which is at a 288 

reasonable level. Note that the failure of probability is also dependent on the degree of variation and the scale of 289 

fluctuation of the random soil, which requires further study.  290 

 291 

Summary and Conclusions 292 

This paper has demonstrated how the spatial pattern of random soil dominates the development of a failure plane and the 293 

ultimate bearing capacity for foundations buried at different depths. Different possibilities of shear planes resulting from 294 

different spatial patterns of soil are demonstrated, which can explain the significant discrepancy between the bearing 295 

capacity of random soil and that of uniform soil. The following conclusions can be drawn: 296 

 (1) A shear plane commences at the weakest soil surrounding the foundation and extends along the weak soil path. 297 

Several shear planes can be formed in random soil instead of a single shear path defined by the logarithmic spiral or 298 

circular shape in uniform soil. 299 

(2) Generally, the bearing capacity increases upon enlarging the shear planes, which are often unsymmetrical in random 300 

soil. In addition, the shear strength values along the shear plane impose a significant effect on the bearing capacity. 301 

(3) The average bearing capacity factors increase with an increasing embedment depth of the foundation due to the 302 

transition of a general failure at shallow depth to a full-flow failure at deep depth. The coefficient of variation of the 303 

bearing capacity factor, however, is closely related to the length of the shear plane. 304 

(4) The probability of failure is larger for the foundations at deeper depths when not considering the factor of safety. The 305 

probability of failure decreases markedly with an increasing safety factor for all of the foundations. The failure probability 306 

is essentially reduced to nearly zero by increasing the factor of safety to 2.0 for all of the foundations at the given level of 307 

variation, though different factors of safety for use defined probabilities of failure are provided (again, only relevant for 308 
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the spatial variation parameters calculated).  309 
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