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Failure mode and effects analysis (FMEA) is a method that examines potential failures in products or
processes and has been used in many quality management systems. One important issue of FMEA is the
determination of the risk priorities of failure modes. In this paper we propose an FMEA which uses data
envelopment analysis (DEA), a well-known performance measurement tool, to determine the risk priorities
of failure modes. The proposed FMEA measures the maximum and minimum risks of each failure mode. The
two risks are then geometrically averaged to measure the overall risks of failure modes. The risk priorities are
determined in terms of overall risks rather than maximum or minimum risks only. Two numerical examples
are provided and examined using the proposed FMEA to show its potential applications and benefits.
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1. Introduction

Failure mode and effects analysis (FMEA) is an engineering
technique used to define, identify and eliminate known and/or
potential failures, problems, and errors from the system, design,
process, and/or service before they reach the customer [29]. It is also
referred to as failure mode, effects and criticality analysis (FMECA)
when used for a criticality analysis. When applying FMEA, a cross-
functional and multidisciplinary team identifies failure modes,
evaluates their risks and prioritizes them so that appropriate corrective
actions can be taken. A failuremode is defined as themanner inwhich a
component, subsystem, system, process, etc. could potentially fail to
meet the design intent. A failure mode in one component can serve as
the cause of a failure mode in another component. A failure cause is
defined as a designweakness thatmay result in a failure. For each failure
mode identified, the FMEA team should determine what the ultimate
effect of failurewill be. A failure effect is defined as the result of a failure
mode on the function of the product or process as perceived by the
customer. The traditional FMEA determines the risk priorities of failure
modes through the risk priority number (RPN), which is determined by

RPN = O × S × D; ð1Þ

where the risk factors O and S are occurrence and severity of a failure,
and D is the ability to detect the failure before it reaches the customer.
The three risk factors are evaluated using the ratings (also called ranks
or scores) from 1 to 10, as described in Tables 1–3. Failures with
higher RPNs are viewed to be more important and should be given
greater considerations.

FMEA proves to be one of the most important early preventative
actions in system, design, process, or service which will prevent
failures and errors from occurring and reaching the customer [29].
However, the RPN has been criticized for a variety of reasons
[1,3,6,9,17,25,27], some of which are listed as follows:

• Different combinations of O, S and D may produce exactly the same
value of RPN, but their hidden risk implications may be totally
different. For example, two different events with the values of 2, 3, 2
and 4, 1, 3 for O, S and D, respectively, have the same RPN value of
12. However, the hidden risk implications of the two events may not
necessarily be the same. This may cause a waste of resources and
time, and in some cases a high risk event may go noticed.

• The relative importance among O, S and D is not taken into
consideration. The three risk factors are assumed to be equally
important. This may not be the case when considering a practical
application of FMEA.

• The mathematical formula for calculating RPN is questionable and
debatable. There is no rationale as to why O, S and D should be
multiplied to produce the RPN.

• The three risk factors are difficult to be precisely evaluated.
• RPNs are not continuous with many holes and heavily distributed at
the bottom of the scale from 1 to 1000. This causes problems in
interpreting the meaning of the differences between different RPNs.
For example, is the difference between 1 and 2 the same as or less
than the difference between 900 and 1000?

To overcome the drawbacks listed above, a number of approaches
have been suggested in the literature. For example, Bevilacqua et al.



Table 1
Traditional ratings for occurrence of a failure [3,27,35].

Rating Probability of occurrence Failure probability

10 Very high: failure is almost inevitable >1 in 2
9 1 in 3
8 High: repeated failures 1 in 8
7 1 in 20
6 Moderate: occasional failures 1 in 80
5 1 in 400
4 1 in 2000
3 Low: relatively few failures 1 in 15,000
2 1 in 150,000
1 Remote: failure is unlikely <1 in 1,500,000

Table 3
Traditional ratings for detection [3,27,35].

Rating Detection Likelihood of detection by design control

10 Absolute
uncertainty

Design control cannot detect potential cause/mechanism
and subsequent failure mode

9 Very remote Very remote chance the design control will detect
potential cause/mechanism and subsequent failure mode

8 Remote Remote chance the design control will detect potential
cause/mechanism and subsequent failure mode

7 Very low Very low chance the design control will detect potential
cause/mechanism and subsequent failure mode

6 Low Low chance the design control will detect potential cause/
mechanism and subsequent failure mode

5 Moderate Moderate chance the design control will detect potential
cause/mechanism and subsequent failure mode

4 Moderately
high

Moderately high chance the design control will detect
potential cause/mechanism and subsequent failure mode

3 High High chance the design control will detect potential cause/
mechanism and subsequent failure mode

2 Very high Very high chance the design control will detect potential
cause/mechanism and subsequent failure mode

1 Almost
certain

Design control will detect potential cause/mechanism and
subsequent failure mode
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[2] defined RPN as the weighted sum of six parameters (safety,
machine importance for the process, maintenance costs, failure
frequency, downtime length, and operating conditions) multiplied
by a seventh factor (machines access difficulty), where the relative
importance of the six attributes was estimated using pairwise
comparisons.

Sankar and Prabhu [27] presented a modified approach for
prioritization of failures in a system FMEA, which used the ranks 1
through 1000, called risk priority ranks (RPRs), to represent the
increasing risk of the 1000 possible severity–occurrence–detection
combinations. These 1000 possible combinations were tabulated by
an expert in the order of increasing risk and can be interpreted as ‘if–
then’ rules. The failure having a higher rank was given a higher
priority.

Braglia [5] proposed a multi-attribute failure mode analysis
(MAFMA) based on the analytic hierarchy process (AHP) technique.
The proposed MAFMA viewed the risk factors (O, S, D, and expected
cost) as decision attributes, causes of failure as decision alternatives,
and the selection of cause of failure as decision goal, which together
with the attributes and alternatives formed a three-level hierarchical
structure. Pairwise comparison matrices were used to estimate the
weights of attributes and local priorities of the causes with respect to
the expected cost attribute. The conventional ratings for O, S and D
were normalized as the local priorities of the causes with respect to O,
S, and D, respectively, and the weight aggregation technique in the
AHP was used to synthesize the local priorities into global priorities,
based on which the possible causes of failure were ranked.

Braglia et al. [7] also proposed an alternative multi-attribute
decision-making approach, called fuzzy TOPSIS approach for FMECA,
which is a fuzzy version of the technique for order preference by
similarity to ideal solution (TOPSIS). The TOPSIS method is a well-
known multi-attribute decision-making methodology based on the
assumption that the best decision alternative should be as close as
possible to the ideal solution and the farthest from the negative-ideal
Table 2
Traditional ratings for severity of a failure [3,27,35].

Rating Effect Severity of effect

10 Hazardous
without warning

Very high severity ranking when a potential failure
mode effects safe system operation without warning

9 Hazardous with
warning

Very high severity ranking when a potential failure
mode affects safe system operation with warning

8 Very high System inoperable with destructive failure without
compromising safety

7 High System inoperable with equipment damage
6 Moderate System inoperable with minor damage
5 Low System inoperable without damage
4 Very low System operable with significant degradation of

performance
3 Minor System operable with some degradation of

performance
2 Very minor System operable with minimal interference
1 None No effect
solution. The proposed fuzzy TOPSIS approach allows the risk factors
O, S, and D and their relative importance to be assessed using
triangular fuzzy numbers.

Chang et al. [8] utilized grey theory for FMEA. They used fuzzy
linguistic terms such as Very Low, Low, Moderate, High and Very High
to evaluate the degrees of O, S and D, and grey relational analysis to
determine the risk priorities of potential causes. To carry out the grey
relational analysis, fuzzy linguistic terms were defuzzified as crisp
values, the lowest levels of the three factors O, S and Dwere defined as
a standard series, and the assessment information of the three factors
for each potential cause was viewed as a comparative series, whose
grey relational coefficients and grey relational degree with the
standard series were computed in terms of the grey theory. Big grey
relational degree means small effect of potential cause. In [9], they
also utilized the grey theory for FMEA, but the grey relational degrees
were computed using the traditional scores 1–10 for the three risk
factors rather than fuzzy linguistic terms.

Bowles and Peláez [4] described a fuzzy logic based approach for
prioritizing failures in a system FMEA, which uses linguistic terms to
describe O, S, D, and the risks of failures. The relationships between
the risks and O, S, D were characterized by fuzzy if–then rules
extracted from expert knowledge and expertise. Crisp rankings for O,
S, D were fuzzified to match the premise of each possible if–then rule.
All the rules that have any truth in their premises were fired to
contribute to a fuzzy conclusion. The fuzzy conclusion was then
defuzzified by the weighted mean of maximum method (WMoM) as
the ranking value of the risk priority. Similar fuzzy inference methods
also appeared in [6,12,18,19,24,25,30].

Yang et al. [36] presented a novel, efficient fuzzy rule-based
Bayesian reasoning (FuRBaR) approach for prioritizing failures in
FMEA. The technique was specifically developed to deal with some of
the drawbacks concerning the use of conventional fuzzy logic (i.e.
rule-based) methods in FMEA. In their approach, subjective belief
degrees were assigned to the consequent part of the rules to model
the incompleteness encountered in establishing the knowledge base.
A Bayesian reasoning mechanism was then used to aggregate all
relevant rules for assessing and prioritizing potential failure modes.
The applicability of the proposed approach was demonstrated by
studying a maritime collision risk due to technical failures.

Recently, Chin et al. [13] proposed an FMEA using the group-based
evidential reasoning (ER) approach to capture FMEA team members'
diversity opinions and prioritize failure modes under different types
of uncertainties such as incomplete assessment, ignorance and
intervals. The risk priority model was developed using the group-
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based ER approach, which includes assessing risk factors using belief
structures, synthesizing individual belief structures into group belief
structures, aggregating the group belief structures into overall belief
structures, converting the overall belief structures into expected risk
scores, and ranking the expected risk scores using the minimax regret
approach (MRA). Similar applications for risk analysis on dynamic
alliance can also be found in [21].

In spite of the fact that much effort has been paid to the
improvement of RPN, the improved methods either need to specify
or determine the weights of risk factors in advance or take no account
of them at all. It is argued that the specification or determination of
risk factor weights is not easy because different decision makers
(DMs) may have distinct judgments or preferences. For example,
Pillay and Wang [25] gave more emphasis on the risk factor D
followed by S and less weight to O; while Braglia et al. [7] observed
that a failure cause with a very high severity value but a very remote
occurrence probabilitymight be less critical than a failure causewhich
occurs repeatedly and therefore considered the chance of failure more
important than the other factors. Obviously, the above authors'
opinions are in conflict with each other.

Another reason why risk factor weights are not easy to determine
is that different failure modes have different consequences. The
specification or determination of a fixed set of risk factor weights for
all the failure modes might be inappropriate, particularly in the case
with a large number of failure modes. In other words, it might be a
better choice to use different sets of risk factor weights for different
failure modes when there are a large number of failure modes to be
prioritized. In this aspect, Garcia et al. [16] proposed a fuzzy data
envelopment analysis (DEA) approach for FMEA, which does not
require specifying or determining risk factor weights subjectively.
Their approach, however, was computationally very complicated and
also could not produce a full ranking for the failure modes to be
prioritized.

Based on the above analyses, we propose in this paper a new
FMEA, which utilizes DEA, a well-known performance measurement
tool, to determine the risk priorities of failure modes. The proposed
FMEA takes into account the relative importance weights of risk
factors, but has no need to specify or determine them subjectively,
which are determined by DEA models. The weights determined by
DEA models differ from one failure mode to another. The new FMEA
measures the maximum and minimum risks of failure modes, which
are geometrically averaged to reflect the overall risks of the failure
modes, based on which the failure modes can be prioritized.
Incomplete and imprecise information on the evaluation of risk
factors can also be considered in the FMEA.

The rest of the paper is organized as follows. In Section 2, we give a
brief description of DEA and its main mathematical models for
efficiency measurement. In Section 3, we develop DEA models for
FMEA. In Section 4, we discuss uncertainties such as incomplete and
imprecise information related to FMEA and develop interval DEA
models for prioritization of failure modes. Numerical examples are
provided in Section 5 to demonstrate the potential applications of the
proposed FMEA and its advantages. Section 6 concludes the paper
with a brief summary.

2. DEA and DEA models for efficiency measurement

DEA, i.e. data envelopment analysis, was originally developed by
Charnes et al. [11] for measuring the relative efficiencies of a group of
decision-making units (DMUs) that utilize multiple inputs to produce
multiple outputs. Since its development in the late 1970s, DEA has
found surprising applications [14,15,20,22,33]. The traditional DEA
models measure only the optimistic efficiencies of DMUs. This usually
leads to more than one DMU being evaluated as efficient. The efficient
DMUs are difficult to be discriminated from each other. Recently,
Wang et al. [32] proposed the pessimistic efficiency model that
measures the pessimistic efficiencies of DMUs and suggested a
geometric average efficiency, which is the integration of the opti-
mistic and pessimistic efficiencies of DMUs, as the overall efficiency
measure of DMUs. The geometric average efficiency considers not
only the optimistic efficiencies of DMUs but also their pessimistic
efficiencies and is therefore more comprehensive and more convinc-
ing than both of them. By the geometric average efficiency, all
the DMUs can be fully ranked and discriminated. In what follows,
we briefly review the two DEA models that measure the optimistic
and pessimistic efficiencies of DMUs, and the geometric average
efficiency.

2.1. Optimistic efficiency — the best relative efficiency

Assume that there are n DMUs to be evaluated in terms ofm inputs
and s outputs. Denote by xij (i=1,…, m) and yrj (r=1,…, s) the input
and output values of DMUj (j=1,…, n), which are known and
nonnegative. The efficiency of DMUj is defined as

θj =
∑
s

r=1
uryrj

∑
m

i=1
vixij

; ð2Þ

where ur and vi are the output and input weights assigned to the rth
output and the ith input. To determine the efficiency of DMUj relative
to the other DMUs, Charnes et al. [11] developed the following well-
known CCR model, which was named by acronym and measures the
best relative efficiencies of DMUs:

Maximize θ0 =
∑
s

r=1
uryr0

∑
m

i=1
vixi0

Subjectto θj =
∑
s

r=1
uryrj

∑
m

i=1
vixij

≤1; j = 1;…;n;

ur ; vi≥ε; r = 1;…; s; i = 1;…;m;

ð3Þ

where the subscript zero represents the DMU under evaluation, ur
and vi are decision variables and ε is a very small positive number
called non-Archimedean infinitesimal in the DEA literature. Through
Charnes and Cooper's transformation [10], the above fractional
programming is transformed into the following equivalent linear
programming (LP) model:

Maximize θ0 = ∑
s

r=1
uryr0

Subject to ∑
s

r=1
uryrj−∑

m

i=1
vixij≤ 0; j = 1;…;n;

∑
m

i=1
vixi0 = 1;

ur ; vi ≥ ε; r = 1;…; s; i = 1;…;m:

ð4Þ

If there exists a set of positive weights that makes θ0⁎=1, then
DMU0 is referred to as optimistic efficient; otherwise, it is referred
to as optimistic inefficient. For n different DMUs, there are a total of n
LP models to be solved. Accordingly, there are n sets of weights
available, some of which may be different. All the optimistic efficient
DMUs determine an efficiency frontier.
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2.2. Pessimistic efficiency — the worst relative efficiency

Efficiency is a relative measure and can be measured within
different ranges. The CCR model measures the optimistic efficiency
of each DMU within the range of less than or equal to one. If the
efficiency of a DMU is measured within the range of no less than one,
then we have the so-called pessimistic efficiency, also referred to as
the worst relative efficiency. The pessimistic efficiency of DMU0 is
measured by the following pessimistic DEA model [32]:

Minimize ψ0 =
∑
s

r=1
uryr0

∑
m

i=1
vixi0

Subject to ψj =
∑
s

r=1
uryrj

∑
m

i=1
vixij

≥1; j = 1;…;n;

ur ; vi ≥ ε; r = 1;…; s; i = 1;…;m;

ð5Þ

which can be further converted into the following equivalent LP
model:

Minimize ψ0 = ∑
s

r=1
uryr0

Subject to ∑
s

r=1
uryrj−∑

m

i=1
vixij ≥ 0; j = 1;…;n;

∑
m

i=1
vixi0 = 1;

ur ; vi ≥ ε; r = 1;…; s; i = 1;…;m:

ð6Þ

When there exists a set of positive weights making ψ0⁎=1, we
refer to DMU0 as pessimistic inefficient; otherwise, DMU0 is referred
to as pessimistic efficient. All the pessimistic inefficient DMUs deter-
mine an inefficiency frontier.

According to the above definitions, DMUs can be classified into three
categories: optimistic efficient, pessimistic inefficient, and those that are
neither optimistic efficient nor pessimistic inefficient. Obviously,
optimistic inefficient units include pessimistic inefficient and part of
pessimistic efficient DMUs. As such, pessimistic efficient units include
optimistic efficient and part of optimistic inefficient DMUs.

2.3. Geometric average efficiency — the overall efficiency measurement

It is a common knowledge that optimistic efficiency and pes-
simistic efficiency should form an interval when measured under the

same constraints such as α≤∑
s

r=1
uryrj = ∑

m

i=1
vixij≤1 with 0 < α <

min
j∈f1;…;ng

fθj⁎=ψj
⁎g and j=1,…, n. The efficiency interval of DMUj

could accordingly be expressed as [αψj
⁎,θj⁎] if α value is small enough.

To avoid the difficulty in determining the value of α, Wang et al. [32]
suggested a geometric average efficiency, determined by

ϕj
⁎ =

ffiffiffiffiffiffiffiffiffiffiffi
ψj
⁎θj⁎

q
; j = 1;…;n; ð7Þ

where θj⁎ and ψj
⁎ are respectively the optimistic and pessimistic

efficiencies of DMUj (j=1,…, n). The geometric average efficiency
considers not only the optimistic efficiency of a DMU, but also its
pessimistic efficiency. It measures the overall efficiency of a DMU
and considers both sides of a coin. The integration of two extreme
efficiencies, optimistic and pessimistic, into a geometric average
efficiency is undoubtedly more meaningful and more comprehensive
than the use of either of the two efficiencies.
When efficiency intervals [αψj⁎,θj⁎] ( j=1,…, n) are compared

through their geometric midpoints
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αψj

⁎⋅θj⁎
q

, the rankings among the

n DMUs depend only upon their geometric average efficiencies

ϕj
⁎ =

ffiffiffiffiffiffiffiffiffiffiffiffi
ψj
⁎θj⁎

q
(j=1,…, n) and have nothing to do with the value of α.

This is the reasonwhy geometric average rather than arithmetic average
or another average is used for ranking. This good property enables the
decision maker (DM) not to worry about how to determine the value of
α. He/She can therefore leave it alone and compare directly the geometric
average efficiencies of the n DMUs to determine their overall perfor-
mances and rankings. Interested readers are referred to Wang et al. [32]
for further theoretical justifications on geometric average efficiency.

3. DEA models for FMEA

Suppose there are n failure modes denoted by FMi (i=1,…, n) to
be prioritized, each being evaluated against m risk factors denoted by
RFj (j=1,…,m). Let rij (i=1,…, n; j=1,…,m) be the ratings of FMi on
RFj and wj be the weight of risk factor RFj (j=1,…, m). Since the RPN
defined as the product of three risk factors O, S and D has been largely
criticized for its mathematical formula and equal treatment of the risk
factors, we define in this paper the risks of failures with a different
mathematical form, which can be either of the following:

Ri = ∑
m

j=1
wjrij; i = 1;…;n; ð8Þ

Ri = ∏
m

j=1
r
wj

ij ; i = 1;…;n: ð9Þ

Eq. (8) defines the risk of each failure mode as the weighted sum of
m risk factors, whereas Eq. (9) as theweighted product ofm risk factors.
For convenience to distinguish between the two risks, we refer to the
risk determined by Eq. (8) as additive risk and the risk by Eq. (9) as
multiplicative risk, respectively. It is worthwhile to point out that the
definition for additive risks was first proposed by Braglia et al. [6], who
defined the RPN as the weighted sum of O, S and D, whereas the
definition for multiplicative risks was first proposed byWang et al [34],
whodefined theRPNas the fuzzyweighted geometricmeanof the three
risk factors O, S, and D, which they referred to as fuzzy risk priority
number (FRPN). Both of the papers require the weights of the risk
factors to be specified or determined subjectively, but in this paper the
risk factor weights will be determined by DEA models automatically.

The traditional DEA often assigns too many zeros to input and
output weights, leading to optimistic efficiency being unreasonably
high and pessimistic efficiency being extraordinarily low. To avoid
this from happening in FMEA, we consider imposing a constraint on
the ratio of maximum weight to minimum weight. According to
Saaty's AHP [26], the maximum value, as a ratio of the comparative
importance of a criterion over another, can assume to be 9. We
therefore constrain the ratio of maximumweight to minimumweight
within the range of one and nine. That is

1≤ maxfw1;…;wmg
minfw1;…;wmg

≤ 9: ð10Þ

The DM can also set a specific but different upper bound for the
ratio of maximum weight to minimum weight if necessary. The main
reasons for us to set the maximum ratio as 9 are based on the
following observations:

• The pairwise comparison matrices in the AHP are the most widely
used approaches for estimating the relative importance weights of
decision attributes or criteria, in which the maximum ratio scale
between the importance of two attributes or criteria are usually not
greater than 9.
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• Risk factors O, S and D are all evaluated using the ratings between 1
and 10, where 1 represents no risk. Accordingly, their relative
importance should also be evaluated using similar ratings. Due to
the fact that “no importance” makes no sense, the ratings used for
evaluating the relative importance of risk factors should therefore
be defined as 1–9 rather than 1–10. As a result, the maximum ratio
between the importance of two risk factors is less than or equal to 9.

• Five-point Likert scale is also widely used in practice for measuring
the relative importance of risk factors. Wemay conduct a sensitivity
analysis to the risk priority ranking obtained under the maximum
ratio scale of 9 to test the robustness of the ranking.

The left-hand-side of Eq. (10) is trivial and holds always. Its right-
hand-side is equivalent to the following:

max
wj

wk
j j; k = 1;…m; k≠j

� �
≤ 9; ð11Þ

which can be further rewritten as

wj−9wk ≤ 0; j; k = 1;…;m; k≠j: ð12Þ

According to the DEA models introduced in Section 2, we are now
able to build FMEA models for measuring the maximum and
minimum risks of each failure mode, as shown below:

Rmax
0 =MaximizeR0

Subject to

(
Ri≤ 1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;

ð13Þ

Rmin
0 = MinimizeR0

Subjectto

(
Ri ≥ 1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;

ð14Þ

where R0 is the risk of the failure mode under evaluation. The overall
risk of each failuremode is defined by Eq. (7) as the geometric average
of the maximum and minimum risks of the failure mode. That is

―
Ri =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rmax
i · Rmin

i

q
; i = 1;…;n: ð15Þ

This definition enables us not to worry about how to determine an
interval for the risk of each failure mode. The bigger the geometric
average risk, the higher the risk priority. The n failure modes
FMi (i=1,…, n) can be easily prioritized by their geometric average
risks R ̅i (i=1,…, n).

The above models (13) and (14) are developed for additive risks.
For multiplicative risks defined by Eq. (9), the maximum and
minimum risk models can be built in the same way, but the ratings
and risks need to be transformed into logarithmic scales for linearity.
The two models are constructed as follows:

ln Rmax
0 = Maximize ln R0

Subject to

(
ln Ri≤ 1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;

ð16Þ

ln Rmin
0 = Minimize ln R0

Subject to

(
lnRi ≥1; i = 1;…;n;

wj−9wk ≤ 0; j; k = 1;…;m; k≠j:

ð17Þ
Accordingly, the geometric average risk is defined as

―
Ri =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EXPðlnRmax

i Þ · EXPðlnRmin
i Þ

q
; i = 1;…;n: ð18Þ

where EXP(.) is the exponential function.
Through the solution of models (13) and (14) or (16) and (17) for

each failure mode, the maximum and minimum risks of all the n
failure modes can be obtained. Their geometric average risks can then
be computed by using Eqs. (15) or (18), based on which the n failure
modes can be prioritized.

4. Interval DEA models for FMEA

FMEA is a team function. Different FMEA team members may
sometimes behave very differently and provide distinct assessment
information, some of which may be incomplete or imprecise. For
example, an FMEA team member may provide an interval rating for a
risk factor such as 4–5 which refers to the rating between 4 and 5, or
an incomplete distribution such as 4 at 40% and 5 at 50% which means
the failure mode under evaluation is assessed to have a risk rating of 4
at 40% confidence and a risk rating of 5 at 50% confidence. Since the
total confidence 40%+50%=90%<100%, the above assessment is
said to be incomplete. The missing 10% (=100%–90%) confidence is
called local ignorance in the terminology of Dempster–Shafer theory
of evidence [28] and could be assigned to any rating between 1 and 10.
The above incomplete assessment can be transformed into an
expectation interval, whose lower and upper bound values are
respectively computed as

4 × 40% + 5 × 50% + 1 × ð100%−40%−50%Þ = 4:2;
4 × 40% + 5 × 50% + 10 × ð100%−40%−50%Þ = 5:1:

As a result, the maximum, minimum and geometric average risks
will also become intervals.

Let [rijL, rijU] be the interval ratings of FMi on RFj, which are the
weighted sum of individual expectation intervals of FMEA team
members, namely,

½rLij; rUij � = ∑
K

k=1
λkEðrðkÞij Þ; i = 1;…;n; j = 1;…;m; ð19Þ

where λk (k=1,…, K) are the relative importance weights of FMEA
team members satisfying λk>0 and ∑k=1

K λk=1, and E(rij(k))=[rijkL ,
rijk
U ] are the expectation intervals provided by K team members. In the
case of interval ratings, the additive and multiplicative risks defined
by Eqs. (8) and (9) can be rewritten as
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i ;R

U
i

h i
= ∑

m

j=1
wjr

L
ij; ∑

m

j=1
wjr

U
ij

" #
; i = 1;…;n; ð20Þ
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U
i

h i
= ∏

m

j=1
rLij

� �wj
; ∏

m

j=1
rUij

� �wj

" #
; i = 1;…;n: ð21Þ

Accordingly, the maximum and minimum risk models for additive
risks can be expressed as

Rmax
0

� �L
; Rmax

0
� �Uh i

= Maximize RL
0;R

U
0

h i

Subject to
RL
i ;R

U
i

h i
≤ 1; i = 1;…;n;

wj−9wk ≤ 0; j; k = 1;…;m; k≠j;

8>><
>>:

ð22Þ
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Rmin
0

� �L
; Rmin

0

� �Uh i
= Minimize RL

0;R
U
0

h i

Subjectto
RL
i ;R

U
i

h i
≥1; i = 1;…;n;

wj−9wk≤0; j; k=1;…;m; k≠j;

8><
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which are further broken down into four LP models, as shown below:

Rmax
0

� �L = MaximizeRL
0

Subject to
RU
i ≤1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;

8<
: ð24Þ

Rmax
0

� �U = MaximizeRU
0

Subjectto
RU
i ≤1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;

8<
: ð25Þ

Rmin
0

� �L
= MinimizeRL

0

Subject to
RL
i≥1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;
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Rmin
0

� �U
= MinimizeRU

0

Subjectto
RL
i ≥1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j:

8><
>: ð27Þ

In this case, the geometric average risk defined by Eq. (15) can be
determined by interval arithmetic [23] as

RL
i ;R

U
i

h i
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRmax

i ÞL · ðRmin
i ÞL

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRmax

i ÞU · ðRmin
i ÞU

q	 

; i = 1;…;n:

ð28Þ

For multiplicative risks defined by Eq. (21), the maximum and
minimum risk models are reconstructed as follows:

ln Rmax
0

� �L = MaximizelnRL
0

Subject to
lnRU

i ≤1; i = 1;…;n;

wj−9wk≤ 0; j; k = 1;…;m; k≠j;
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lnRU
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ln Rmin
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0

Subject to
lnRL
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ln Rmin
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The geometric average risk in this case is given by
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U
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= ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EXP ln Rmax
i

� �L� �
⋅EXP ln Rmin

i

� �L� �r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EXP ln Rmax

i

� �U� �
⋅EXP ln Rmin

i

� �U� �r �; i = 1;…;n;

ð33Þ

Since the geometric average risks are intervals, an appropriate
ranking approach for interval numbers is thus needed to prioritize
failure modes. In Appendix A, we provide the minimax regret
approach (MRA) for ranking interval numbers developed by Wang
et al. [31], which will be used in this paper for comparing and ranking
interval-valued geometric average risks.

5. Illustrations

In this section, we provide two numerical examples to illustrate
the potential applications and benefits of the proposed FMEA in
industry. Example 1 is taken from Pillay and Wang [25] and considers
no imprecise and incomplete assessment information. Example 2
incorporates imprecise and incomplete information into FMEA and is
a revised version of Example 1.

Example 1. Consider an application of FMEA to a fishing vessel. The
FMEA for the fishing vessel investigates four different systems which
are structure, propulsion, electrical, and auxiliary systems. Each
system is considered for different failure modes that could lead to
an accident with undesired consequences. The effects of each failure
mode on the system and vessel are studied along with the provisions
that are in place or available to mitigate or reduce risk. For each of the
failure modes, the system is investigated for any alarms or condition
monitoring arrangements, which are in place. Tables 4 and 5 show
respectively the 21 identified failure modes and their ratings on the
three risk factors O, S, and D. The traditional RPN does not consider the
relative importance of the three risk factors and is therefore unable to
discriminate failure mode 11 from failure modes 1, 2, and 16, and
failure mode 7 from failure mode 15.

We now examine the failure modes using DEA. By solving DEA
models (13) and (14) as well as (16) and (17) for each failure mode,
respectively, we get the maximum and minimum risks of all the 21
failure modes, which are shown in Table 6 together with their
geometric average risks computed by Eqs. (15) and (18), respectively,
and the risk priority rankings of the 21 failure modes. Based on the
results in Table 6, we have the following observations:

• There is not much difference between the two sets of risk priority
rankings. The Spearman's rank-correlation coefficient between the
two sets of rankings is as high as 0.9818, which means the choice of
whether to use the additive risk model in Eq. (8) or the
multiplicative risk model in Eq. (9) has no significant impact on
the final risk priority ranking of the 21 failure modes. Major
difference between the two sets of rankings happens at failure
modes 3 and 19. The former has a difference of two ranking places,
while the latter has a difference in ranking places of three. All the
other failure modes are either ranked in the same places or have a
very small gap of one.

• Failuremode 11 is successfully distinguished from failuremodes 1, 2
and 16 no matter whether their risks are defined as additive or



Table 4
Failure modes for a fishing vessel [25].

Item Failure mode Description Component Failure effect (system) Failure effect (vessel) Alarm Provision

1 Seizure Structure Rudder bearing Rudder jam No steering ctrl No Stop vessel
2 Breakage Structure Rudder bearing Rudder loose Reduced steering ctrl No Stop vessel
3 Structural failure Structure Rudder structure Function loss Reduced steering No Use beams
4 Loss of output Propulsion Main engine Loss of thrust Loss of speed Yes None
5 Auto shutdown Propulsion Main engine M/E stops Loss of speed Yes Anchor
6 Shaft breakage Propulsion Shaft and propeller Loss of thrust Loss of speed No Anchor
7 Shaft seizure Propulsion Shaft and propeller Loss of thrust Loss of speed Yes Anchor
8 Gearbox seizure Propulsion Shaft and propeller Loss of thrust Loss of speed Yes Anchor
9 Hydraulic failure Propulsion Shaft and propeller Cannot reduce thrust Cannot reduce speed No Anchor
10 Prop. blade failure Propulsion Shaft and propeller Loss of thrust Loss of speed No Slow steaming
11 No start air press. Air services Air receiver Cannot start M/E No propulsion Yes Recharge receiver
12 Generator fail Electrical sys. Power generation No elec. power Some system failures Yes Use stand-by generators
13 Complete loss Electrical sys. Main switch Loss of main supply No battery charging Yes Use emergency 24 V
14 Complete loss Electrical sys. Emergency S/B Loss of emer. supp. No emergency supp. No Use normal supply
15 Loss of output Electrical sys. Main batteries Loss of main 24 V Loss of main low volt Yes Use emergency 24 V
16 Loss of output Electrical sys. Emer. batteries Loss of emer. supp. No emergency supp. No Use normal supply
17 Contamination Auxiliary sys. Fuel system M/E and gen. stop Vessels stops Yes Anchor
18 No fuel to M/E Auxiliary sys. Fuel system M/E stops Vessel stops No Anchor
19 No cooling water Auxiliary sys. Water system Engine overheat M/E auto cut-out Yes Use stand-by pump
20 System loss Auxiliary sys. Hydraulic No hydraulics No steering Yes Stop vessel
21 Loss of pressure Auxiliary sys. Lube oil system Low pressure cut-off M/E stops Yes Use stand-by pump
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multiplicative. Failure mode 7 is also discriminated from failure
mode 15.

• Failure mode 11 is ranked far behind failure modes 1, 2 and 16
because it has a very small severity rating in comparisonwith failure
modes 1, 2, and 16. This is also true for failure modes 7 and 15. The
former has a very high severity rating and is therefore ranked higher
than the latter.

• Except for failure modes 14 and 20, the risk priority rankings of the
other 19 failuremodes obtained by their geometric average risks are
all different from those by their RPNs. This shows the fact that the
proposed FMEA is totally different from the traditional FMEA. The
biggest difference among the three sets of risk priority rankings in
Tables 4 and 5 happens at failure modes 11 and 19, which have a
difference of up to four or five ranking places by the two different
FMEA priority methods. The Spearman's rank-correlation coeffi-
cients between the priority rankings of the 21 failure modes by the
RPNs and the two geometric average risks are 0.9195 and 0.9340 for
additive and multiplicative risks, respectively, which are less than
that between the rankings by the two geometric average risks.
Table 5
FMEA for the fishing vessel by RPN [25].

Failure mode O S D RPN Priority ranking

1 1 8 3 24 14
2 1 8 3 24 14
3 2 8 4 64 10
4 8 8 5 320 2
5 6 8 6 288 3
6 2 8 1 16 19
7 2 9 2 36 12
8 1 4 3 12 20
9 3 2 3 18 18
10 1 2 4 8 21
11 4 2 3 24 14
12 9 3 7 189 4
13 8 3 6 144 7
14 3 7 4 84 9
15 3 3 4 36 12
16 1 8 3 24 14
17 4 8 5 160 6
18 2 7 7 98 8
19 7 2 4 56 11
20 9 8 9 648 1
21 9 3 6 162 5
The above observations show the applicability and potentials of
the new FMEA and its advantages over the traditional FMEA. To test
the robustness of the risk priority rankings in Table 6, we conduct a
sensitivity analysis to the weight restriction of the ratio of maximum
weight to minimum weight. Table 7 shows the risk priority rankings
of the 21 failure modes under different weight restrictions, where the
five-point Likert scale means the weight restriction of 1≤max{w1,…,
wm}/min{w1,…, wm}≤5, whereas +∞ represents no restriction to the
weights of risk factors. In the case that there is no weight restriction,
some of the risk factors may be assigned a zero weight by the DEA
models. From Table 7 the following observations have been made:

• Failuremodes canalsobeprioritizedbyDEAmodelswithout imposing
any weight restriction, but this will result in difficulties in explaining
the risks of failuremodes due to the presence of zero weight for some
of the risk factors and may also result in some ties for risk priority
ranking. So, imposing a weight restriction is of benefit to the risk
prioritizations of failure modes and their explanations.

• For additive risks, no matter whether the weight restriction is five,
seven or nine, the risk priority rankings of the 21 failure modes are
nearly the samewith only a small ranking difference of one for some
of the failure modes such as failure modes 8, 11, 12, 17, 18 and 21.

• For multiplicative risks, there is seemingly a big difference of three
between the rankings of failure mode 15, but in fact, it is only the
difference that the failure mode 15 is ranked higher or lower than
failuremodes 1, 2 and 16,which have exactly the same ratings on the
three risk factors and can therefore be viewed as one failuremode or
DMU. In this sense, the differences between the rankings under
different weight restrictions are still very small and are of no more
than one.

From the above observations it can be concluded that the priority
rankings in Table 6 are stable and robust, and will not be significantly
changed when a different five-point Likert scale is imposed as the
weight restriction on the ratio ofmaximumweight tominimumweight.

Example 2. The above example assumes that FMEA team members
reach a consensus on the ratings of each failure mode. In reality,
however, different team members may have different opinions and
provide distinct ratings, some of which may be incomplete or
imprecise. Tables 8–10 show hypothetical ratings of the 21 failure
modes on O, S, and D provided by five FMEA team members, where
incomplete and imprecise ratings are shaded for the sake of clarity.
The relative importance weights of the five FMEA team members are



Table 6
FMEA for the fishing vessel by DEA.

Failure
mode

Additive risks Multiplicative risks

Maximum risk Minimum risk Geometric average risk Priority ranking Maximum risk Minimum risk Geometric average risk Priority ranking

1 0.84 1.12 0.97 12 2.36 2.95 2.64 13
2 0.84 1.12 0.97 12 2.36 2.95 2.64 13
3 0.87 1.60 1.18 9 2.46 5.46 3.66 7
4 0.94 2.16 1.43 3 2.64 7.27 4.38 3
5 0.93 2.32 1.47 2 2.62 7.73 4.51 2
6 0.83 1.00 0.91 16 2.32 2.72 2.51 17
7 0.94 1.23 1.08 11 2.50 4.06 3.18 11
8 0.44 1.00 0.67 18 1.80 2.72 2.21 19
9 0.33 1.00 0.57 21 1.64 2.72 2.11 21
10 0.40 1.00 0.63 20 1.73 2.72 2.17 20
11 0.42 1.02 0.65 19 1.81 2.76 2.24 18
12 0.93 1.85 1.31 5 2.58 5.43 3.75 6
13 0.83 1.74 1.20 8 2.46 5.11 3.54 10
14 0.78 1.60 1.12 10 2.38 5.43 3.59 9
15 0.43 1.27 0.74 17 1.84 3.75 2.63 16
16 0.84 1.12 0.97 12 2.36 2.95 2.64 13
17 0.90 1.96 1.33 4 2.56 6.69 4.14 4
18 0.80 2.05 1.28 6 2.41 6.82 4.05 5
19 0.70 1.22 0.93 15 2.26 3.22 2.70 12
20 1.00 3.16 1.78 1 2.72 10.00 5.21 1
21 0.92 1.78 1.28 7 2.57 5.14 3.63 8

Table 8
Occurrence assessment by FMEA team members.
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assumed to be 0.3, 0.3, 0.2, 0.1, and 0.1, respectively. That is, (λ1,…,
λ5)=(0.3, 0.3, 0.2, 0.1, 0.1).

Evidently, existing FMEA methods can handle fuzzy information,
but have no way to deal with incomplete and imprecise information.
To prioritize the failure modes with incomplete and imprecise
assessment information, we first synthesize individual ratings given
by the five FMEA teammembers into group ratings using Eq. (19). The
results are shown in Table 10, from which it can be seen that quite a
number of the ratings are intervals rather than precise values due to
the presence of incomplete and imprecise assessment information.

For the group ratings in Table 11, we view precise ratings as special
cases of intervals and solve interval DEA models (24)–(27) and (29)–
(32) for each of the 21 failure modes to get their maximum and
minimum risks. Tables 12 and 13 show the results that are obtained
from the solution of the interval DEA models. The geometric average
Table 7
Risk priority rankings under different weight restrictions.

Failure
mode

Additive risk Multiplicative risk

Five-
point
scale

Seven-
point
scale

Nine-
point
scale

+∞ Five-
point
scale

Seven-
point
scale

Nine-
point
scale

+∞

1 12 12 12 12 14 14 13 12
2 12 12 12 12 14 14 13 12
3 9 9 9 8 8 7 7 6
4 3 3 3 3 3 3 3 3
5 2 2 2 2 2 2 2 2
6 16 16 16 15 17 17 17 16
7 11 11 11 11 11 11 11 11
8 19 18 18 18 19 19 19 18
9 21 21 21 21 21 21 21 21
10 20 20 20 19 20 20 20 19
11 18 19 19 19 18 18 18 19
12 4 4 5 6 6 6 6 8
13 8 8 8 9 10 10 10 10
14 10 10 10 10 9 9 9 7
15 17 17 17 17 13 13 16 15
16 12 12 12 12 14 14 13 12
17 5 5 4 4 4 4 4 4
18 7 7 6 5 5 5 5 5
19 15 15 15 16 12 12 12 17
20 1 1 1 1 1 1 1 1
21 6 6 7 6 7 8 8 8
risks of the 21 failure modes are then computed by Eqs. (28) and (33).
The corresponding results are shown in the fourth column of Tables 12
and 13, respectively. By comparing their geometric average risks using
the minimax regret approach detailed in Appendix A, the 21 failure
modes are finally prioritized. Their risk priority rankings are
presented in the last column of Tables 12 and 13.

From the risk priority rankings in Tables 12 and 13, it is observed
that the two sets of risk priority rankings are still highly correlated
and their Spearman's rank-correlation coefficient is 0.9766. The
biggest difference between the two sets of risk priority rankings
happens at failure modes 16 and 19, followed by failure modes 12, 15
and 18. The former two failure modes have a difference of three



Table 9
Severity assessment by FMEA team members.

Table 11
Group ratings aggregated from FMEA team members.

Failure mode O S D

1 1–1.2 7.89 2.98–3.07
2 1.15 7.9–8.1 3
3 1.97–2.24 7.5 3.94–4.04
4 8.04 7.9–8.1 5
5 6 8.06–8.33 6.03
6 2–2.1 7.8–8 1.245–1.345
7 2 8.925 2.325
8 1.075 4.025 3.04
9 3–3.3 2 3.08
10 1.175 2.08 4
11 4.025 2–2.3 3.28
12 9 3.08 7
13 7.58–8.12 2.76–3.06 5.9
14 3.2 7.3 4
15 3.03 3 3.955–4.09
16 1 8 3
17 4.03 7.7 5
18 1.98–2.16 7 6.7–7.3
19 6.89–7.16 2.075 3.97–4.06
20 8.97 8–8.2 8.88–9.015
21 8.7–9 3 5.675–6.075
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ranking places between the two risk definitions, while the latter three
failure modes have a difference of two. These differences are con-
sidered as small or not significant.

The above example shows the capability of the proposed FMEA in
prioritization of failure modes under incomplete and imprecise
information. This is its biggest advantage over existing FMEA methods.
Table 10
Detection assessment by FMEA team members.
6. Conclusions

As an improvement to the traditional RPN, we proposed in this
paper an FMEA by data envelopment analysis. By defining the risks of
failuremodes as theweighted sum orweighted product of risk factors,
we developed DEA models for measuring the maximum and
minimum risks of failure modes. Their geometric averages measure
the overall risk of each failure mode and are therefore used for
prioritizing failuremodes. Considering the fact that FMEAmay involve
incomplete and imprecise assessment information, we also developed
interval DEA models for FMEA. The proposed FMEA was examined
with two numerical examples and proved to be useful and effective.

In comparison with the traditional RPN and its various improve-
ments such as fuzzy FMEA, the proposed FMEA has the following
advantages:

• The relative importance weights of risk factors are considered and
determined by DEA models with a weight restriction on the ratio of
maximum weight to minimum weight to avoid the relative
importance of any risk factors from being under- or overestimated.
Table 12
Additive risk assessment and risk priority.

Failure
mode

Additive risks Priority
ranking

Maximum risk Minimum risk Geometric average risk

1 [0.817, 0.820] [1.082, 1.152] [0.940, 0.972] 13
2 [0.820, 0.840] [1.125, 1.131] [0.961, 0.974] 12
3 [0.800, 0.804] [1.515, 1.556] [1.101, 1.118] 10
4 [0.917, 0.936] [2.092, 2.108] [1.385, 1.405] 3
5 [0.921, 0.948] [2.285, 2.306] [1.451, 1.478] 2
6 [0.800, 0.822] [1.000, 1.043] [0.895, 0.926] 16
7 [0.922, 0.922] [1.246, 1.246] [1.072, 1.072] 11
8 [0.440, 0.440] [1.000, 1.000] [0.663, 0.663] 19
9 [0.334, 0.355] [1.000, 1.006] [0.578, 0.598] 21
10 [0.399, 0.399] [1.000, 1.000] [0.632, 0.632] 20
11 [0.424, 0.427] [1.051, 1.102] [0.668, 0.686] 18
12 [0.930, 0.930] [1.827, 1.827] [1.304, 1.304] 4
13 [0.785, 0.838] [1.600, 1.731] [1.121, 1.204] 8
14 [0.794, 0.794] [1.606, 1.606] [1.129, 1.129] 9
15 [0.423, 0.434] [1.248, 1.271] [0.727, 0.744] 17
16 [0.828, 0.828] [1.089, 1.089] [0.949, 0.949] 14
17 [0.853, 0.853] [1.900, 1.900] [1.274, 1.274] 5
18 [0.781, 0.798] [1.888, 2.022] [1.214, 1.271] 7
19 [0.695, 0.721] [1.228, 1.243] [0.928, 0.947] 15
20 [0.997, 1.000] [3.075, 3.121] [1.751, 1.767] 1
21 [0.888, 0.920] [1.721, 1.753] [1.236, 1.270] 6



Table 13
Multiplicative risk assessment and risk priority.

Failure
mode

Multiplicative risks Priority
ranking

Maximum risk Minimum risk Geometric average risk

1 [2.325, 2.346] [2.718, 3.257] [2.514, 2.765] 14
2 [2.341, 2.363] [3.089, 3.098] [2.689, 2.706] 13
3 [2.375, 2.391] [4.764, 4.922] [3.364, 3.431] 10
4 [2.600, 2.626] [6.669, 6.737] [4.164, 4.206] 3
5 [2.609, 2.642] [7.213, 7.304] [4.338, 4.393] 2
6 [2.297, 2.332] [2.718, 2.875] [2.499, 2.589] 16
7 [2.485, 2.485] [3.909, 3.909] [3.117, 3.117] 11
8 [1.800, 1.800] [2.718, 2.718] [2.212, 2.212] 19
9 [1.644, 1.686] [2.718, 2.733] [2.114, 2.147] 21
10 [1.742, 1.742] [2.718, 2.718] [2.176, 2.176] 20
11 [1.821, 1.832] [2.841, 3.039] [2.275, 2.359] 18
12 [2.586, 2.586] [5.432, 5.432] [3.748, 3.748] 6
13 [2.397, 2.470] [4.645, 5.008] [3.337, 3.517] 9
14 [2.402, 2.402] [5.125, 5.125] [3.508, 3.508] 8
15 [1.832, 1.855] [3.602, 3.663] [2.569, 2.607] 15
16 [2.338, 2.338] [2.735, 2.735] [2.529, 2.529] 17
17 [2.500, 2.500] [6.064, 6.064] [3.894, 3.894] 4
18 [2.370, 2.421] [6.064, 6.417] [3.791, 3.941] 5
19 [2.248, 2.283] [3.240, 3.269] [2.699, 2.732] 12
20 [2.714, 2.718] [9.301, 9.461] [5.024, 5.071] 1
21 [2.528, 2.568] [4.879, 5.063] [3.512, 3.606] 7
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• Risk factors are aggregated in the ways that are different from the
RPN, which aggregates the risk factors by simple product and has
been subject to significant criticism.

• Failure modes can be better ranked and well distinguished from
each other.

• Incomplete and imprecise assessment information can be consid-
ered and handled if any.

• More risk factors can be included if necessary. The proposed FMEA is
not limited to O, S and D, but applicable to any number of risk factors.

• Unlike fuzzy FMEA, there is no need to build any fuzzy if–then rules,
which prove to be highly subjective and costly. Different experts
may make different judgments, leading to different rules.

Finally, we point out that DEA-computed weights are not fixed for
failure modes. They vary from one failure mode to another. If the DMs
have preference structures on the relative importance of risk factors,
they could be added as constraints to the developed DEA models to
form an assurance region (AR) on the relative importance weights. It
is expected that the proposed FMEA as a decision-making tool can find
more applications in quality and reliability engineering in the future.
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Appendix A. The minimax regret approach for ranking
interval numbers

The minimax regret approach (MRA) developed by Wang et al.
[31] is a method for comparing and ranking interval numbers and is
briefly summarized below for the purpose of application. Let ui=[uiL,
ui
U]=<ci,di>(i=1,…, N) be N intervals, where ci = 1

2 ðuL
i + uU

i Þ and
di = 1

2 ðuU
i −uL

i Þ are their midpoints and widths. Without loss of
generality, suppose ui=[uiL,uiU] is chosen as the biggest interval. Let
v = max
j≠i

ðuU
j Þ. If ui

L<v, then the DM may regret due to the loss of

opportunity that other interval numbers might be ranked higher than
ui. The maximum loss the DM may suffer from is given by

MaxðriÞ = v−uL
i = max

j≠i
uU
j

� �
−uL

i :

If uiL≥v, the DM will definitely suffer from no loss of opportunity
and thus will not regret. In this situation, the DM's regret is defined as
zero, i.e. ri=0. Combining the above two situations, we get

MaxðriÞ = max max
j≠i

uU
j

� �
−uL

i ;0
	 


:

Theminimax regret criterionwill choose the interval satisfying the
following condition as the best or most desirable:

Min
i

max rið Þf g = min
i

max max
j≠i

uU
j

� �
−uL

i ;0
	 
� �

:

Based upon the above analysis, Wang et al. [31] gave the following
definition for comparing and ranking interval numbers.

Definition 1. Let ui=[uiL,uiU]=<ci,di> (i=1,…, N) be N intervals.
The maximum regret value (MRV) of each interval ui is defined as

R uið Þ = max max
j≠i

uU
j

� �
−uL

i ;0
	 


; i = 1;…;N: ð38Þ

The interval with the smallest MRV should be chosen as the best
interval. In order to generate a full ranking for the N intervals, the
following eliminating process was suggested by Wang et al.

Step 1. Calculate the MRVs of the N intervals and choose the interval
with the smallest MRV as the best one. Suppose ui1 is selected,
where 1≤ i1≤N.

Step 2. Eliminate ui1 from further consideration and recalculate the
MRVs of the remaining (N−1) intervals, from which choose
the one with the smallest MRV as the second best interval.
Suppose ui2 is chosen, where 1≤ i2≤N, but i2≠ i1.

Step 3. Eliminate ui2 from further consideration and recalculate the
MRVs of the remaining (N−2) intervals, from which choose
the one with the smallest MRV as the third best interval.

Step 4. Repeat the above eliminating process until only one interval
uiN is left. The final ranking is ui1>ui2>⋯>uiN.

By the above MRA, interval-valued geometric average risks can be
compared and ranked. The rankingwill serve as the risk priority of the n
failure modes when incomplete or imprecise information is available.
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