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ABSTRACT

A method is presented for predicting the failure strength and the failure mode of
fiber reinforced composite laminates containing one or two pin loaded holes. The
method involves two steps. First, the stress distribution in the laminate is calculated by
the use of a finite element method. Second, the failure load and failure mode are
predicted by means of a proposed failure hypothesis together with the Yamada-Sun
failure criterion. A computer code was developed which can be used to calculate the
maximum load and the mode of failure of laminates with different ply orientations,
different material properties, and different geometries. Tests were also conducted

measuring the failure strengths and failure modes of Fiberite T300/1034-C laminates
containing a pin-loaded hole or two pin-loaded holes in parallel or in series. Com-
parisons were made between the data and the results of the model. Good agreement
was found between the analytical and the experimental results.

1. INTRODUCTION

N STRUCTURAL APPLICATIONS COMPOSITES ARE GENERALLY FASTENED

Ieither to composites or to metals by mechanical means. Therefore, to
utilize the full potential of composite materials as structural elements, the
strength and failure of mechanically fastened joints in laminated composites
must be understood.

Owing to the significance of the problem, several investigators have
developed analytical procedures for calculating the strength of bolted joints
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in composite materials. Among the recent studies are those of Waszczak and
Cruse [1], Oplinger and Gandhi [2,3], Agarwal [4], Soni [5], Garbo and
Ogonowski [6], York, Wilson, and Pipes [7,8], and Collings [9]. The results
of these investigations apply only to joints containing a single hole, and, with
the exception of Agarwal’s method, none of the previous methods can predict
the mode of failure. Furthermore, as will be discussed in Section 7, the

previous methods provide conservative results and underestimate the failure
strength, often by as much as 50 percent.
The major objective of the investigation was, therefore, to develop a

method which a) can be used to estimate both the failure strength and the
failure mode of pin-loaded holes in composites, b) applies to laminates con-
taining either one or two pin-loaded holes, c) provide results with as good or
better accuracy than the existing analytical methods and, d) can be used in the
design of mechanically-fastened composite joints.
An analysis applicable to composite laminates containing a single hole was

described in References [ 10,11 ] . In this paper, this analysis is extended to
laminates containing two pin load holes placed either in parallel or in series.
In addition, data are presented for validating the analytical results.

2. PROBLEM STATEMENT

Consider a plate (length L, width W, thickness H) made of N fiber-
reinforced unidirectional plies. The ply orientation is arbitrary, but must be
symmetric with respect to the X3 = 0 plane. Perfect bonding between each ply
is assumed.

Three types of problems are analyzed (see Figure 1): a) A single hole of
diameter D is located along the centerline of the plate; b) Two holes of
diameter D are located at equal distances from the centerline of the plate (two
holes in parallel); c) Two holes of diameter D are located along the centerline
of the plate (two holes in series). A rigid pin, supported outside the plate, is
inserted into each hole.
A uniform tensile load P is applied to the lower edge of the plate and a

uniform tensile load P2 (referred to as the &dquo;by-pass&dquo; load) is applied to the
upper edge.

It is desired to find:

1) the maximum (failure) load (PM ) that can be applied before the joint fails,
and

2) the mode of failure.

Point 2 refers to the fact that, according to experimental evidence,
mechanically-fastened joints under tensile loads generally fail in three basic
modes, referred to as tension mode, shearout mode, and bearing mode. The
type of damage resulting from each of these modes is illustrated in Figure 2.
The objective, listed in point 2 above, is to determine which of these modes
will most be responsible for the failure.
The calculation proceeds in three steps. For a given geometry and load:
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Figure 1. Descriptions of the problem. Top: single hole model; middle: two holes in series;
bottom two holes in parallel.

1) the stress and strain distributions around the hole are calculated,
2) the maximum (failure) load is predicted,
3) the mode of failure is determined.

3. STRESS ANALYSIS

The calculation of stresses raises the issue of whether a two or three-
dimensional stress analysis is required. The applied loads are parallel to the
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ffgure I Illustration of the three basic failure modes.

plate (in-plane loading) and are symmetric with respect to the centerline.
Hence, the loads cannot create bending moments about either the x,, x~, or x,
axes. Moreover, for symmetric laminates, in-plane loading and bending ef-
fects are uncoupled. Transverse forces, (i.e., forces in the X3 direction) are not
applied, and transverse displacement of the laminate is not taken into ac-
count. For example, a washer on each side of the laminate, supported by a
lightly-tightened (&dquo;finger-tight&dquo;) bolt in the hole, would ensure that there is
little transverse displacement, and that a condition of two-dimensionality is
reasonable [12]. If tests were to show that the stacking sequence did not affect
the failure strength and the failure mode, then a two-dimensional stress
analysis would suffice. Existing experimental evidence indicates that the
stacking sequence is important only when a) the laminate is narrow (and edge
effects are not negligible [13]), or b) the laminate is unrestrained laterally [14].
However, even when the stacking sequence affects the results, it seems to af-
fect the failure strength by only 10 to 20 percent [13-17]. Furthermore, the
failure strength and the failure mode seem unaffected by the stacking se-
quence when there is a slight lateral constraint on the laminate, such as pro-
vided by lightly tightened (finger-tight) bolts [12,18,19].

For these reasons, a two-dimensional stress analysis was chosen for the
present work. As will be demonstrated in Section 7, this analysis provides a
useful estimate of the failure strength and the failure mode of loaded holes.
In addition to being reasonably accurate, the two-dimensional analysis
adopted here also provides a simple and inexpensive means for calculating
failure strengths and failure modes, making it an attractive design aid.

Governing Equations

The stresses in the laminate are calculated on the basis of the theory of
anisotropic elasticity and classical-lamination plate theory. Accordingly, in
the analysis, planes are taken to remain planes, the strain across the thickness
is taken to be constant [Eij = f(xhx1)], and only in-plane stresses are con-
sidered (013 = O23 - 033 = 0). Under these conditions, in the absence of body
forces, the condition of force equilibrium can be expressed as [20]:
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In index notation Equation (1) becomes

Now consider an elastic laminate of volume V. containing a single pin-
loaded hole or two pin-loaded holes, as shown in Figure 3. Loads are applied
over the surface area AL. The displacements along the surface area AR are
restricted in a manner described subsequently. The surface area AF is free of
applied stress.
The total surface area is

Let us denote by u, any arbitrary displacement inside the body. u, is a test
function. The only requirement is that u, be continuous and differentiable. In
addition, along the AR surface, the components of u, normal to the surface
must be zero. By multiplying Equation (2) by u, and by taking the volume in-
tegral of the resulting expression, we obtain

By employing the identity

and by utilizing Gauss’ theorem, Equation (4) may be written as

Figure 3. Elastic laminates with one hole (left), two holes in parallel (middle), and two holes in
series (right).
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where nl is the unit vector normal to the surface. By utilizing Equation (3),
Equation (6) can be expressed as

On the free surface AF the stresses are zero. This condition gives

The forces per unit area (surface traction) at each point of the surface area AL 2.
are [20]:

Equations (7)-(9) yield

The stresses are related to the displacements through the stress-strain relation-
ships, which for an elastic body are [20]

The subscripts k and I may take on the values of 1 or 2. In order to reduce the
analysis from three dimensions to two dimensions, the reduced modulus Em..
is introduced

where hp is the thickness of the p-th ply, and [Q]p is the transformed reduced
stiffness matrix for the P-th ply [11,21]. The subscripts i, j, k, and I are related
to m and n as follows

Note that these reduced moduli are constant and are independent of the
thickness of the laminate. The strains are related to the displacements uj by
the expressions
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By combining Equations (10-14) we obtain

The displacements and, consequently, the strains are constant across the
laminate. Hence the stresses, as defined by Equation (11), are also constant
across the laminate. However, the stresses with respect to the ply coordinates
x,y are taken to vary from ply-to-ply, and are given by

where the subscripts x and y indicate directions parallel and normal to the
fibers, respectively. The matrix [T] is the coordinate transformation matrix,
[Ql is the transformed reduced stiffness matrix [22] and y12 is engineering
shear strain.

Boundary Conditions-Single Hole and Two Holes in Parallel

For problems involving a single hole and two holes in parallel, it is assumed
that a portion of the surface of each hole is subjected to a surface traction T,*
(Figure 4). The parameter T,* is related to the applied load. The spatial dis-
tribution of T,* depends on the magnitude of the applied load, on the
material properties, and on the geometry in a complex manner. It is difficult
to determine the exact distribution of T,* inside the hole [23-25]. To over-
come this difficulty, a cosine normal load distribution was assumed. With
this approximation, a force balance in the x2 direction gives

Figure 4. Configurations used in the finite element calculations.
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where Txz is the normal stress at the hole surface at 0 = 0. At any arbitrary
angle 6 (-n/2 < 9 < n/2), the stress normal to the surface has been assumed
to be

Solving Equation (17) for TxZ and substituting into Equation (18) gives

where P2 is the by-pass load which is a fraction f of the total load P.

The values of either P and P2 or P and f must be specified. Now the surface
traction on ALl can be written as

The surface traction on ALZ is

For a single hole C is equal to 1; for two holes in parallel it is equal to 1/2.
The angle 8 varies from -n/2 to n/2 in each hole. The angle 0 is in the x, - X2
plane, and is measured clockwise from the X2 axis (Figure 1). For isotropic
materials, the cosine normal load distribution (Equation 21) was found to
represent closely the actual load distribution [26]. Calculations performed by
previous investigators also showed that, for composite materials, the stress
distribution inside the body is insensitive to the assumed load distribution
[1,6,27]. Therefore, Equation (21) should suffice for the purpose of the pres-
ent analysis, which is to determine the overall strength of the joint.

Equations (1), (20), (21) and (22) give

We recall that Ü, are functions that can be selected arbitrarily. The unknowns
in Equation (23) are the displacements uk. Once Uk are known, the stresses at
every point can be calculated from Equations (14) and (16).

Solutions to Equation (23) must be obtained subject to the following con-
straints : a) Along the symmetry axis and along the lower edge, displacements
are allowed only in the direction tangential to the surface. These tangential
displacements may occur freely without any restraints, b) The intersection of
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the symmetry axis and the lower edge must not move (i.e., the intersection in
rigidly fixed).
The integral (Equation 23) over the AR surface now applies to the surfaces

along the symmetry axis and along the lower edge (Figure 4). On these sur-
faces the normal component of the displacement and the tangential compo-
nent of the surface traction are zero. Accordingly, we have

Equation (23) can now be simplied and becomes

Boundary Condition-Two Holes in Series

For problems involving two holes in series the fraction of the load carried
by each pin is unknown. To analyze the problem, it is assumed that a uniform
load distribution is applied along the lower edge of the plate, and it is further
assumed that a rigid pin is inside each hole. The assumption of the rigid pins
implies that the normal displacements are zero along the contact surface
(Figure 4). The extent of the contact surfaces are unknown and need to be
determined.
The uniform load distribution on the AL, surface is

where H and W are the thickness and the width of the plate, respectively
(Figure 1).

Equations (15), (22), (26) give

As before, u, can be selected arbitrarily but must satisfy the displacement
boundary conditions. Hence, the unknowns in Equation (27) are the dis-
placements u,. The solution to Equation (27) must be obtained with the
displacement u, subject to the following constraints:

a) Along the symmetry axis displacements are allowed only in the direction
tangential to the surface (i.e., in the X2 direction). This tangential dis-
placement may occur freely.

b) The contacts between the rigid pins and the surfaces of the holes are
assumed to be frictionless and are assumed to take place through arcs
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bounded by the angles 0, and 0, (Figure 4). Along these arcs the surface
displacements can take place only in the direction tangential to the sur-
face. Because of the assumption of frictionless contact, this displacement
may occur freely.

c) The radial displacements at the intersections of the symmetry axis and the
upper edge of each hole are zero (i.e., these intersections are rigidly fixed).
This corresponds to the rigid supporting pins being fixed in space.

The integral over the AR area now applies to the symmetry axis and to con-
tact surfaces. We express AR as the sum of two surfaces

ARS is the surface area along the symmetry axis and ARc is the total contact
surface inside the upper and lower holes. Along the symmetry axis, the nor-
mal component of the displacement and the tangential component of surface
traction are zero. Accordingly, we have

Equation (27) gives

The solution to Equation (30) requires that the contact area ARc (i.e., the con-
tact angles 0u and 8u Figure 4) be known. However, the contact angles 9~
and 0, are as yet unknown; therefore, these angles must be determined before
solutions for Uk can be obtained. The following procedure is suitable for

calculating 0, and 0~:
Values of 0, and 0, (designated as 0au and 8aL) are assumed such that these

values are greater than n/2. The normal stresses along the contact surfaces
bounded by the arcs 0au and 8aL are calculated. For contact angles greater
than the actual contact angles compressive stresses become tensile (stress
reversal) as illustrated in Figure 5. The angles Oa, and 6B are then decreased
slightly, and the stresses are calculated again. This procedure is repeated until
no reversal in sign of the normal stresses occurs along the arcs, 0 to Ou and 0
to 9L (i.e., both contact surfaces are in compression). These values, au and 8u
are taken to be the contact angles.

4. METHOD OF SOLUTION

Solutions to Equations (25) and (30) must be obtained by numerical means.
In this investigation a finite element method of solution was used. The
calculation procedures for laminates containing a single hole were given in
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Figure 5. Illustration of the reversal of the normal stresses when the assumed contact angles 9&dquo;u
and 9&dquo;L are greater than the actual contact angles (left). No stress reversal occurs for the actual
contact angles 8u and 8L (right).

References [ 10,11 ] . These procedures were extended to laminates containing
two pin-loaded holes either in parallel or in series. Details of the procedures
pertaining to laminates with two holes are not given here but may be found in
Reference [22].
A &dquo;user friendly&dquo; computer code (designated as &dquo;BOLT&dquo;) was developed

suitable for performing the calculations. The input parameters required by
the code and the output provided by the code are discussed in Section 6. The
&dquo;BOLT&dquo; code may be obtained from G.S.S.

5. PREDICTION OF FAILURE

In order to determine the load at which a joint fails (failure load) and the
mode of failure, the conditions for failure must be established. In this in-
vestigation the joint is taken to have failed when certain combined stresses
have exceeded a prescribed limit in any of the plies along a chosen curve
(denoted as the characteristic curve). The combined stress limit is evaluated
using the failure criterion proposed by Yamada-Sun [28]. This failure predic-
tion method was adopted here because it showed promising results for
laminates containing a single pin-loaded hole [ 10,11 ] . Although the method
was explained in References [ 10,11 ], it is summarized below in order to bring
together the entire solution procedure.

Failure Criterion

In this investigation, the Yamada-Sun failure criterion was adopted [28].
This criterion is based on the assumption that just prior to failure of the
laminate, every ply has failed due to cracks along the fibers. This criterion
states that failure occurs when the following condition is met in any one of
the plies
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As indicated in Equation (31 ) failure occurs when e is equal to or greater than
unity. In the above equation, 0&dquo; and a, are the longitudinal and shear stresses
in a ply, respectively (x and y being the coordinates parallel and normal to the
fibers in the ply). S is the rail shear strength of a symmetric, cross ply
laminate [0/90]5’ X is either the longitudinal tensile strength or the longi-
tudinal compressive strength of a single ply. The tensile strength (X = Xr) is
used when the stress ox is tensile. The compressive strength (X = X,) is used
when ox is compressive.

Failure Hypothesis-Characteristic Curve

The hypothesis is proposed that failure occurs when, in any one of the
plies, the combined stresses satisfy an appropriately-chosen failure criterion
at any point on a characteristic curve. The characteristic curve (Figure 6) is
specified by the expression

The angle 0, measured clockwise from the X2 axis, may range in value from
-n/2 to n/2. R, and R, are referred to as the characteristic lengths for tension
and compression. These parameters must be determined experimentally, as is
discussed in a companion article [29].

In this investigation, the characteristic curve is used together with the
Yamada-Sun failure criterion. Accordingly, failure occurs when the

parameter e is equal to, or is greater than unity at any point on the char-
acteristic curve

Figure 6. Description of the characteristic curve.
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Solution Procedure

Whether or not a joint fails under a given condition is determined as
follows. For a given load

a) The components of strain E&dquo;, E22 and F,2 are calculated.

b) The longitudinal and shear stresses in each ply are calculated using Equa-
tion (16).

c) The parameter e is calculated (Equation 31) along the characteristic curve.
Note that there is a characteristic curve around each hole; i.e. for two
holes there are two characteristic curves.

d) If e equals or exceeds the value of unity (e > 1) in any ply along the char-
acteristic curve (or curves) the joint is taken to have failed.

The procedure outlined above is used to predict whether or not failure
occurs under a given load. Due to the assumption of a linear stress-strain rela-
tionship, the calculated stresses are linearly proportional to the applied load
P. This fact, together with Yamada-Sun failure criterion (Equation 31) gives

This relationship is utilized to determine the maximum load (P--) which
can be imposed on the joint. For a given load P, values of e are calculated on
the characteristic curve, as discussed above (points a-d). Note again, that
there are two characteristic curves when there are two holes. The highest
value of e (eo) is then determined, and the maximum load is

The calculation procedure described in the foregoing also provides the
location (angle Of) at which e first reaches the value of unity (e = 1) on the
characteristic curve (Figure 7). A knowledge of Of provides an estimate of the
mode of failure. Failure is taken to occur in the bearing mode when Of is small
(8¡ ~ 0°). Failure is taken to be due to shearout when 8¡ ~ 45 °. Failure is
taken to be caused by tension when 0, E£ 90 °. In summary,

At intermediate values of 811 failure may be caused by a combination of these
modes.

6. INPUT-OUTPUT PARAMETERS

The failure analysis described in the previous section was coupled with the
stress analysis and was included in the &dquo;Bolt&dquo; computer code. Thus, in addi-
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Figure 7. Location of failure (e = 1) along the characteristic curve.

tion to the stresses, the code also calculates the failure load and the failure
mode. A list of the input parameters required for the solution of problems is
given in Table 1. Material properties are given in Table 2.

7. EXPERIMENTAL VALIDATION OF THE MODEL

Experiments were performed to generate data which can be used to
evaluate the accuracy of the model. The experimental apparatus and pro-
cedure are described in the Appendix. Data were obtained with Fiberite
T300/1034-C graphite/epoxy composites having different geometries and dif-

Table 1. Input parameters required by the computer code and the
output provided by the code.
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Table 2. Properties of fiberite T3OO/1034-C graphitelepoxy composite.

ferent ply orientations. The failure strengths and the failure modes were
measured with composites containing either one pin-loaded hole or two pin-
loaded holes in parallel, or two pin-loaded holes in series. The experimental
results are presented in Figures 8 through 15. The data are tabulated in

Reference [22].
To facilitate comparisons between the data and the results of the model,

the ordinates in these figures represent the bearing strength PB. For laminates
with a single hole or with two holes in series, the bearing strength is expressed
as PB = P/DH. For laminates containing two holes in parallel, the bearing
strength is taken as P, = P/2DH. P is the failure load and DH represents the
cross sectional area of the hole. In Figures 8-15 the measured bearing
strengths and failure modes are represented by different symbols.
The bearing strengths and failure modes were also calculated using the

model. The numerical calculations were performed using the material proper-
ties listed in Table 2. The numerical results are included in these figures. The
calculated bearing strengths are given by solid lines. The calculated failure
modes were not identified separately as long as they were the same as those
given by the data. In those cases where the calculated failure model differed
from the data, the calculated failure mode is identified by the letters T, B, or
S, next to the corresponding data point. These letters represent failure in ten-
sion, bearing, and shearout modes.
As indicated in Figures 8-15, for [(O/±45/90),], and [(90~60~30)~

laminates the calculated failure strengths agree with the data within 10 per-
cent to 30 percent. The specimen geometry (hole diameter, edge distance, and
width) has little effect on the accuracy of the model.
For cross-ply laminates ([O/90]s and [±45] J the difference between the

calculated bearing strengths and the data ranges from about 10 to 40 percent.
The accuracy is better for smaller holes (10 percent for D = 1/8 in) and
decreases as the hole size increases. The differences between the calculated
and measured bearing strengths become about 40 percent for 1/2 in diameter
holes. In all cases, the calculated values are conservative and underestimate
the actual bearing strengths. The reason for the lower accuracy of the model
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Figure 8. Bearing strengths of fiberite T3lJIDl la?4-C laminates containing a single loaded hole.
Comparisons between the data and the results of the model. The failure modes calculated by the
model are the same as those of the data unless indicated by a letter in parentheses next to the
data point.

for cross-ply laminates is most likely due to the assumption that the shear
stress is linearly proportional to the shear strain. Since shear stresses are im-
portant in determining the failure strengths of cross-ply laminates [22,29] the
use of nonlinear shear stress-strain relationships improve the accuracy of the
model for such laminates [33].
The results in Figures 8-15 show that the model predicts the failure mode

with good accuracy. Of the 83 specimen configurations tested, the model
failed to predict accurately the failure mode only in 9 cases-these cases being
indicated by the letters T, B, or S, in Figures 8-15. In 3 of those cases where
the model gave different failure modes than the data, the data were am-
biguous. Failure, in fact, may have occurred by a combination of two dif-
ferent modes.
The results discussed in the foregoing, and represented in Figures 8-15,

show that the model provides the failure strengths and failure modes of
loaded holes with reasonable accuracy. The accuracy of the present model
could be improved further if, instead of the average values of S, R, and R,,
the values corresponding to the specific geometry and laminate configuration
were used in the calculations.

It is worthwhile to compare the accuracy of the present model with the ac-
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Figure 9. Bearing strengths of fiberite T30i0/ 1034-C laminates containing a single loaded hole.
Comparisons between the data and the results of the model. The failure modes calculated by the
model are the same as those of the data unless indicated by a letter in parentheses next to the
data point.

Figure 10. Bearing strengths of fiberite T3WI 1034- C laminates containing a single loaded hole.
Comparisons between the data and the results of the model. The failure modes calculated by the
model are the same as those of the data unless indicated by a letter in parentheses next to the
data point.
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Figure 11. Bearing strengths of fiberite T30i0/ 1034-C laminates containing two loaded holes in
parallel. Comparisons between the data and the results of the model. The failure modes

calculated by the model are the same as those of the data unless indicated by a letter in paren-
theses next to the data point.

Figure 12. Bearing strengths of fiberite T30i0/ 1034-C laminates containing two loaded holes in
parallel. Comparisons between the data and the results of the model. The failure modes
calculated by the model are the same as those of the data unless indicated by a letter in paren-
theses next to the data point.

Figure 13. Bearing strengths of fiberite 730011034-C laminates containing two loaded holes in
series. Comparisons between the data and the results of the model. The failure modes calculated
by the model are the same as those of the data unless indicated by a letter in parentheses next to
the data point.
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Figure 14. Bearing strengths of fiberite T3010/ 1Gt34-C laminates containing two loaded holes In
series. Comparisons between the data and the results of the model. The failure modes calculated
by the model are the same as those of the data unless indicated by a letter in parentheses next to
the data point.

Figure 15. Bearing strengths of fiberite T30i0/ fO134-C laminates containing two loaded holes in
series. Comparisons between the data and the results of the model. The failure modes calculated
by the model are the same as those of the data.

curacy of the models developed by previous investigators. A summary of the
accuracies of the various models is presented in Table 3.
The accuracy may depend on the geometry, ply orientation, and material

properties. Therefore, the results in Table 3 should be viewed with some
caution. Nevertheless, the numbers in this table provide an estimate of the
magnitudes of errors in the different models. The present model appears to be
more accurate than any of the other models.
Two points are worth noting: First, the models developed previously apply

only to laminates containing a single hole. None of the models, except the
present one, applies to laminates containing two holes. Second, of the exist-
ing models, only the present one and the one by Garbo and Ogonowski [6]
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Table 3. Approximate differences between experimentlll (P) and
calculated (Pc) failure loads of laminate containing a single loaded hole.

The numbers indicate the maximum differences (in percent) for the
indicated hole diameters and ply orientation.

have been supplemented with &dquo;user friendly&dquo; computer codes. Therefore,
presently, only these two models can be used readily. Furthermore, the Garbo
and Ogonowski model yields the failure strength, but does not provide the
mode of failure.

8. CONCLUDING REMARKS

The model and the corresponding computer code developed in this in-
vestigation can be used to determine the strength and the failure mode of
composite laminates with one or two pin-loaded holes. As is shown in the
next paper [32], the code can also be used to size composites containing more
than two pin-loaded holes.
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APPENDIX

Experimental Apparatus and Procedure

The apparatus and procedure are described below. In addition, the pro-
cedure used to fabricate the specimens is described briefly.
The test fixture is shown in Figure 16. The top part of the fixture consisted

of two 3 in wide and 5 in long steel plates (&dquo;main plates&dquo;). A 1.25 in diameter
and 3.5 in long rod was inserted between these plates. The rod was fastened to
the main plates by bolts. A 0.5 in diameter hole was drilled along the center
line of each main plate, 1.5 in from the bottom edge. A 0.5 in dowel pin was
inserted into this hole.
The bottom part of the fixture consisted of two 3 in wide and 5 in long

&dquo;base plates.&dquo; These plates were supported by the dowel pin. The material to
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Figure 16. Fixture used in testing loaded holes (base plate geometry given in Figure 17 and
Table 4).

be tested was placed between the two base plates. A second 0.5 in diameter
dowel pin was passed through the base plates and the laminate. In case of
laminates with two holes, two 0.5 in diameter dowel pins were used.

In each test the same main plate and the same dowel pin were used. The
dimensions of the base plates were different, depending upon the specimen
configuration. The dimensions of the base plates are given in Figure 17 and
Table 4.
A C clamp was placed around the base plates near the lower dowel pin and

tightened by hand. The purpose of this clamp was to simulate the lateral force
which would be provided by &dquo;finger-tight&dquo; bolts in the hole.

Figure 17. Base plates configurations (see Figure 16). Plate thickness 1 /4 in. The dimensions G,
D, and E are given in Table 4.
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Table 4. Dimensions of the base plates shown in Figures 16 and 17.
All units in inches.

During the tests the rod protruding from the main plates was inserted into
the upper grips, and the laminate was inserted into the lower grips of a
mechanical testing machine. A tensile load was applied by the machine and
the ultimate tensile strength was recorded. After the test, each specimen was
inspected and the mode of failure was determined.

Specimen Preparation

The laminates were constructed from Fiberite T300/ 1034-C prepreg tape.
The panels were cured in an autoclave [30]. The test specimens were cut by a
diamond saw. The holes were drilled with solid carbide drills for hole
diameters less than one-half inch and by carbide tip drills for 1/2 in diameter
holes. The nominal sizes of holes were 0.125 in, 0.1875 in, 0.25 in, and 0.5 in.
The nominal size of the dowel pins were the same. To provide a close fit, each
dowel pin was dressed down by about 0.001 in.


