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Abstract  

Alzheimer’s disease is a neurodegenerative disorder characterized clinically by cognitive 

decline and pathologically by amyloid deposition and neurofibrillary changes. These 

neuropathological hallmarks are accompanied by reactive events including microglial 

activation and astrogliosis. The inflammatory response in Alzheimer’s disease brains is 

distinguished by a pro-inflammatory signature involving amyloid peptides1, inflammasome 

signaling2 and disrupted blood brain barrier3. Inflammatory changes are observed also in the 

cerebrospinal fluid in Alzheimer’s disease4,5. It remains unknown, however, whether the 

choroid plexus which produces cerebrospinal fluid and guards the brain from peripheral 

inflammatory insults6,7, contributes to the inflammation and pathogenesis of Alzheimer’s 

disease. Here we show that the choroid plexus in Alzheimer’s disease exhibits a pro-

inflammatory signature with aberrant protein accumulations, which contribute to the age-

dependent inflammatory changes observed in the cerebrospinal fluid. Magnetic resonance 

imaging reveals that the choroid plexus in patients with Alzheimer’s disease displays 

pathological signal and increased volume, which inversely correlates with cognitive decline. 

Our findings suggest that the choroid plexus, being unable to efficiently resolve inflammatory 

insults over the lifetime, eventually ignites and drives the aberrant inflammatory response 

observed in Alzheimer’s disease. These findings advance our understanding of the 

pathogenesis and open new vistas in the diagnostics and therapeutics of Alzheimer’s disease. 
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The choroid plexus (ChP) is a grape-like structure protruding from each of the chambers that 

together constitute the ventricular system of the brain. It produces cerebrospinal fluid (CSF), 

which circulates between the ventricular system and the surface of the brain and the spinal 

cord to provide nutrients and remove waste. The ChP is composed of a fibroconnective 

stroma lined by a tight junction-bound epithelium; the stroma contains a rich network of 

fenestrated capillaries of peripheral vascular origin. This specific architecture creates the 

blood-CSF barrier (BCSFB), which secures optimal CSF composition and coordinates the 

crosstalk of the inflammatory signals between the brain and the periphery8-11.  

Despite upregulating its host-defence programs12, the ChP becomes compromised during 

aging at the time when the brain acquires a pro-inflammatory signature13,14. Consistent with 

these findings, animal models of major age-related disorders such as Alzheimer’s disease 

(AD), also exhibit inflammatory changes in the ChP15. In these models, the ChP shows 

increased levels of cytokines such as tumour necrosis factor alpha (TNFa)16-18, perturbed 

secretion of proteins such as transthyretin (TTR)19, disruption of the BCSFB18,19 and reversal 

of select AD phenotypes by attenuating the ChP inflammatory response16,20. These findings, 

together with reported interaction between amyloid peptides and the ChP volume21, 

morphological changes of the BCSFB22,23 and impaired production and inflammatory 

abnormalities of the CSF4,5,24 in AD patients, all suggest a relationship between aging, ChP 

dysfunction and AD. Intriguingly, aberrancies in the apolipoprotein E (APOE), which is 

intimately linked to the pathogenesis of AD25 and plays an anti-inflammatory role in the 

ChP26, were recently also described in the ChP of patients with AD27. Possible roles of the 

ChP in the inflammation and pathogenesis of AD, however, remain to be established.  
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Inflammatory changes in the ChP in AD  

To test whether the ChP exhibits inflammatory changes in AD, we first measured cytokines in 

lysates prepared from frozen post-mortem human ChP by a well-established ELISArray 

(Supplementary Tbl. 1). We found that ChP demonstrates increased levels of Interleukin (IL) 

2 (IL-2), IL-4, TNFa and tumour growth factor b (TGFb) levels, but not of IL-6, IL-10 and 

other cytokines, in AD compared with cognitively healthy individuals (H, Fig. 1a). To 

confirm this finding, we separated ChP lysates by SDS-PAGE and probed the blots for select 

cytokines. Blots showed increased levels of IL-2, TNFa and TGFb, but not of IL-6 and IL-10, 

in the ChP lysates in AD compared with H (Fig. 1b). Since these experiments showed 

humoral inflammatory response of the ChP in AD, we examined ChP for inflammatory 

infiltrates and other pathologies. Haematoxylin and eosin-stained formalin fixed tissue 

sections of ChP harvested from the lateral ventricles showed no inflammatory infiltrates or 

other overt pathologies apart from age-related changes common to both, H and AD28 

(Supplementary Tbl. 2, Extended Data Fig. 1a-c). We next probed ChP with anti-CD68 and 

anti-CD3 antibodies which label macrophages and T lymphocytes respectively, to test further 

for inflammatory infiltrates in the ChP in AD. We found no difference in the number of ChP 

resident anti-CD68 positive cells between H and AD, while the anti-CD3 positive cells were 

rarely ever observed (Extended Data Fig. 1d-f). To control for region specific pathologies, we 

analysed ChP harvested from the temporal horns of the lateral ventricles (Supplementary Tbl. 

3). No inflammatory infiltrates, AD hallmark lesions or other overt ChP pathologies were 

found in AD compared with H (Extended Data Fig. 2). These results show that ChP in AD 

exhibits impaired humoral inflammatory response characterized by an imbalance between the 

pro- and anti-inflammatory cytokines.  

 

Inflammatory changes in the CSF in AD  

We next investigated whether inflammatory changes in the CSF accompany the pro-

inflammatory state of the ChP observed in AD. Considering that aging is the most important 

risk factor for AD and plays an equally important role in inflammation29, we first mined a 

well-established CSF dataset30,31 for age-related changes. Mining showed abundant 

representation of inflammatory events among the top 20 most significantly changed pathways 

in the CSF by aging (Fig 2a). When we compared the most significantly changed pathways in 

the CSF by aging between H and AD, we identified several inflammatory and in particular 

complement-related pathways enriched in AD (Fig 2b). Since this established a link between 

inflammation, aging and AD, we next investigated CSF inflammatory changes in different age 
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groups (Supplementary Tbl. 4). We found that the 55-65 and 66-75 year-old age groups, 

which either precede or coincide with the most common age of onset of AD32, respectively, 

demonstrate the most pronounced CSF changes between H and AD (Fig. 2c, Extended Data 

Tbl. 1). We also observed a preponderant increase of CSF proteins in AD compared with H as 

previously reported30 (Fig. 2d). Metabolic and inflammatory pathways demonstrated the most 

common significant changes in the CSF in AD versus H across all age groups (Fig. 2e). 

Inflammatory changes showed significant differences between the age-groups (Fig. 2f). 

These findings provide compelling evidence that aging plays an important role in the 

inflammatory response of the CSF in AD, but are not informative regarding the extent to 

which these changes are unique to AD. Consequently, we compared proteins identified by two 

independent mass spectrometry protocols in the CSF harvested from individuals afflicted by 

mild cognitive impairment (MCI) or dementia due to AD with a different neurodegenerative 

disorder, the amyotrophic lateral sclerosis (ALS) and a canonical inflammatory disease, Lyme 

disease (Lyme) (Fig. 2g, Extended Data Fig. 3, Extended Data Tbl. 2, Supplementary Tbl. 5). 

We identified several CSF proteins that are either unique or shared between the disorders 

compared with AD (Fig. 2h, Extended Data Tbl. 3). In contrast to MCI, which showed no 

significant changes compared to AD, ingenuity pathway analysis showed significant 

differences between ALS and Lyme compared with AD CSF including their inflammatory 

profiles (Fig. 2i, j, Extended Data Fig. 4, 5). Thus, consistent with the inflammatory changes 

of the ChP in AD, CSF also exhibits an inflammatory response in AD, which differs from 

ones observed in a different neurodegenerative and canonical inflammatory disorders. 

Moreover, this response is qualitatively similar to MCI, which in our study represents early 

stage AD. 

 

Impaired function of the ChP in AD  

Several CSF proteins are produced and reside in the ChP33. This suggests that CSF protein 

changes in AD may actually reflect their perturbations in the ChP. To test this hypothesis, we 

randomly selected a subset of proteins identified in our CSF cohorts for H and AD, validated 

their proteotypic peptide sequences by matching them to the isotopically labelled standards 

(Extended Data Fig. 6) and then measured their concentrations in the ChP by mass 

spectrometry. While comparing AD to H, we found increased levels of NPC2 in both the CSF 

and the ChP, increased levels of TPI1, CD44 and LDHB in the CSF, but not in the ChP and 

no changes in IGHG2, APOE and ADAM22 in the CSF nor in the ChP (Fig. 3a, b). These 

findings indicated the involvement of the ChP as well as of other structures34 in the CSF 
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protein changes observed in AD. To investigate the involvement of the ChP in AD further, we 

stained ChP with anti-NPC2 and anti-APOE antibodies. Compared to H, we confirmed 

increased NPC2 immunoreactivity in AD, particularly in the epithelium of the ChP (Fig. 3c-

e). Intriguingly, although we stained for APOE as a negative control, enhanced APOE 

immunoreactivity and loss of the ring-like appearance suggested redistribution of APOE in 

the ChP in AD compared with H. To further test for aberrant protein changes within the ChP 

in AD, we last measured and stained for TTR, an abundant ChP resident protein, extensively 

reported to be changed in the CSF in AD (Supplementary Tbl. 6). Measurements showed 

increased levels and diffusely increased immunoreactivity of TTR in the ChP in AD 

compared with H (Fig. 3f, g).  

Considering previous work showed that NPC2 deficiency increases cholesterol and lipid 

levels35, we asked whether the increased NPC2 levels observed in the ChP in AD are 

accompanied by concomitant reduction in cholesterol and lipid levels. We found reduced 

GM1 levels, but not of cholesterol, gangliosides or other lipids in the ChP in AD compared 

with H (Fig. 3h, Extended Data Fig. 7-9). Collectively, these findings indicate perturbed ChP 

function, which partly contributes to the CSF changes in AD. Moreover, increased NPC2 and 

reduced anti-inflammatory GM1 levels are suggestive of causality and further corroborate the 

pro-inflammatory state of the ChP in AD. 

 

Enlarged ChP in AD exhibits pathological signal  

While our findings suggest functional failure of the ChP in AD on tissue samples, the clinical 

relevance of these findings is yet to be elucidated. To investigate their clinical relevance, we 

examined the ChP by magnetic resonance imaging (MRI). Analysis of MRI T1-weighted 

sequences showed increased normalized intensities of the ChP in AD compared with H (Fig. 

4a, Supplementary Tbl. 7). We next segmented T1-weighted sequences and first measured 

hippocampal and cerebellar cortical volumes, regions we selected as positive and negative 

controls (Supplementary Tbl. 8). As previously reported36, we found decreased hippocampal 

and unchanged cerebellar cortical volumes in AD compared with H. We next examined ChP 

and found increased ChP volumes in AD compared with H (Fig. 4b), which correlated 

inversely with the Mini-Mental State Examination (MMSE) scores in AD, but not in H (Fig. 

4c). To characterize ChP in AD further, we created 3-dimensional (3D) representations 

(Supplementary Tbl. 9), which revealed significant remodelling of ChP in AD with atrophic 

changes along the anterior margin and hypertrophy in its posterior parts (Fig. 4d, e). To 

correct for segmentation and other errors, we also measured ChP volumes manually 
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(Supplementary Tbl. 10). Measurements showed no overlap between the 95% confidence 

intervals of ChP volumes between AD and H (Fig. 4f). To reduce the confounding effect of 

sampling an individual cohort, we measured brain volumes also in a separate “confirmatory” 

cohort (Supplementary Tbl. 11). These measurements confirmed our previous observation of 

increased ChP volumes in AD compared with H (Extended Data Fig. 10). Taken together, our 

experiments demonstrate enlarged ChP exhibiting pathological signal in AD, which correlates 

with cognitive decline. 
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Conclusions  

Aging promotes a pro-inflammatory state by disrupting the peripheral immune system leading 

to excessive innate immune activity with release of pro-inflammatory cytokines and decrease 

in anti-inflammatory molecules37. This pro-inflammatory state is well-described in the aging 

brain where it is sustained by the upregulation of pro-inflammatory genes38,39. In the chronic 

inflammation in the context of AD, there is a close association between glial activation, 

inflammasome signaling and amyloid pathology1,2. This inflammatory landscape in AD is 

further compromised by adverse communication between the brain and the periphery due to 

disrupted blood brain barrier40,41.  

Here we provide evidence of failed ChP function in AD which consists in inflammatory, 

protein and ganglioside perturbations and in part contributes to the specific CSF proteome 

changes observed in AD. Our findings suggest that with age, the ChP in AD becomes unable 

to resolve injuries caused by peripheral inflammatory insults. This eventually translates into 

an impaired inflammatory response and dysfunction of the ChP that contributes to the chronic 

inflammation and the pathogenesis of AD. Importantly, identified failure of the ChP is 

clinically measurable and reflects cognitive decline in AD. The clinical relevance of our 

findings are insight into novel innovative diagnostic and therapeutic approaches for AD42, 

besides advancing the understanding of AD pathogenesis. 
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Figures  

Figure 1 - Imbalance between pro- and anti-inflammatory cytokines in the ChP in AD a, 

Levels of IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17a, interferon g (IFNg), TNFa, 

granulocyte colony stimulating factor (G-CSF) and TGFb in the ChP in H and AD (both n=5). 

Mean of 3 technical replicates per sample ± s.e.m.; two-sample t-test (p≤0.05). b, 

Representative Western blots probed for IL-2, IL-6, IL-10, TNFa and TGFb in the ChP in H 

and AD (both n=5). All measurements were normalized for b-actin. Mean of 3 technical 

replicates per sample ± s.e.m.; two-sample t-test (p≤0.05).  

 

Figure 2 - Inflammatory changes in the CSF in AD a, The most significant ingenuity 

pathway based age-related CSF changes (n=297, p≤0.05, inflammatory changes in red). b, 

The most significant ingenuity pathway based age-related CSF changes in H (n=147, p≤0.05) 

and AD (n=150). c, Venn diagram showing significantly changed CSF proteins in AD 

compared with H in 45-55 (n=29), 56-65 (n=97), 66-75 (n=133) and 76-90 (n=38) year-old 

age groups (p≤0.05). d, Volcano plot showing significantly increased and decreased CSF 

protein levels in AD compared with H in different age groups (p≤0.05, NS: not significant). e, 

Dot plot showing the most significant ingenuity pathway based age-related CSF changes in 

AD compared with H in different age groups (p≤0.05). f, Bar plot showing significantly 

changed inflammation-related biological processes in AD compared with H in different age 

groups. g, Heatmap representing hierarchically clustered CSF proteins identified by both 

independent mass spectrometry protocols (A and B) in MCI (n=10), AD (n=22), ALS (n=14) 

and Lyme (n=12) (p≤ 0.05 FDR adjusted t-test). h, Venn diagram showing CSF proteins 

identified by both independent mass spectrometry protocols (A and B) in MCI, ALS and 

Lyme significantly changed in comparison with AD (p≤0.05). i, Dot plot showing the most 

common significantly changed pathways in MCI, ALS and Lyme compared with AD 

(p≤0.05). j, Circular netplots showing CSF inflammatory protein and pathway significantly 

changed in AD compared with ALS and Lyme.  

 

Figure 3 – Impaired ChP function in AD a, TPI1, CD44, LDHB, IGHG2, APOE, NPC2 

and ADAM22 CSF protein levels in different H (n=147) and AD (n=150) age-groups 

analysed using the same data set as in the previous figure, a-f (p≤0.05). b, TPI1, CD44, 

LDHB, IGHG2, APOE, NPC2 and ADAM22 protein levels in the ChP of H (n=5) and AD 

(n=5). Mean of 6 technical replicates per sample ± s.e.m.; two-sample t-test (p≤0.05). c, 
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Representative image of scanned ChP tissue section (magnification bar 100 µ). d, Mean 

intensities of NPC2 and APOE in the ChP in H (n=5) and AD (n=5). Mean of 90 technical 

replicates per sample ± s.e.m.; two-sample t-test (p≤0.05). e, Mean intensities of NPC2 and 

APOE in the ChP epithelium and stroma in H (n=5) and AD (n=5) (magnification bar 10 µ). 

Mean of 3-12 technical replicates ± s.e.m.; repeated measures (p≤0.05). f, Protein levels and 

mean intensity of TTR in the ChP in H (n=5) and AD (n=5). For protein levels: mean of 6 

technical replicates per sample ± s.e.m.; two-sample t-test (p≤0.05). For mean intensity: mean 

of 90 technical replicates per sample ± s.e.m.; two-sample t-test (p≤0.05). g, Mean intensities 

of TTR in the ChP epithelium and stroma in H (n=5) and AD (n=5) (magnification bar 10 µ). 

Mean of 3-12 technical replicates ± s.e.m.; repeated measures (p≤0.05). h, Levels of GM1, 

GM2, GM3, GD1a, GD1b, GD2, GD3 and GT1b gangliosides in the ChP in H (n=5) and AD 

(n=5) ChP. Mean of 6 technical replicates per sample ± s.e.m.; two-sample t-test (p≤0.05).  

 

Figure 4 – Abnormal MRI signal of enlarged ChP in AD patients a, Coronal, sagittal and 

axial views of ChP representative of H and AD, respectively, visualized using T1-weighted 

sequence (top), FreeSurfer brain structure map (middle) and following ChP segmentation 

(bottom). Measurements of normalized ChP intensities in H (n=9) and AD (n=10). Individual 

measurements ± s.e.m.; two-sample t-test (p≤0.05). b, Measurement of normalized ChP 

volumes of cerebellar cortex, hippocampus and ChP in H (n=38) and AD (n=80). 3D brain 

reconstruction depicts segmented ChP (red) within the ventricular system (blue) of the brain. 

Individual measurements ± s.e.m.; two-sample t-test (p≤0.05). c, Correlation between 

normalized ChP volumes and MMSE scores in H (n=15) and AD (n=51). Individual 

measurements ± s.e.m. d, T1-weighted sequence derived coronal, sagittal and axial views of 

the ChP (in red) and the coronal view of the post-mortem ChP (red asterisk) in the right lateral 

ventricle. e, 3D reconstructions and measurements of normalized hippocampal and ChP 

volumes in H (n=23) and AD (n=36). Single measurements ± s.e.m.; two-sample t-test 

(p≤0.05). f, 95% confidence intervals of normalized, 3D reconstructed and manually 

measured ChP volumes. Representative 3D image shows manually traced ChP structure (red).  
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Methods 

Study participants  

Majority of MRI images and CSF samples were acquired through the International Clinical 

Research Centre of St. Anne’s University Hospital, which funds the Czech Brain Aging 

Study43 running in the Departments of Neurology at Motol and St. Anne’s University 

Hospitals, Prague and Brno, respectively. A total of 118 living individuals were examined in 

the original MRI study including 38 cognitively healthy individuals and 80 patients with AD 

(Supplementary Table 8). The average age of cognitively healthy individuals was 70.0±6.4 

years (mean±s.d.) and 75.0±7.6 years for patients with AD. The average MMSE scores for 

cognitively healthy individuals and patients with AD were 29.0±1.2 and 21.0±3.2, 

respectively. Randomly selected subsets of individuals of the original MRI study were also 

used for the assessment of the MRI intensities (Supplementary Table 7), 3D reconstructions 

(Supplementary Table 9) and for the manual measurements of the ChP (Supplementary Table 

10).  

Additional 23 living individuals from the Argentina Alzheimer’s Disease Neuroimaging 

Initiative44 were examined in the confirmatory MRI study including 13 cognitively healthy 

individuals and 10 patients with AD (Supplementary Table 11).  

To maximize the use of publicly available data, we evaluated age-related CSF protein changes 

by mining a well-established CSF protein database (https://www.synapse.org/Consensus)30,31. 

The set consisted in data from a total of 297 individuals, including 147 healthy individuals 

and 150 patients with AD. The average age of cognitively healthy individuals was 65.1±8.2 

years and 68.2±8.3 years for patients with AD (Supplementary Table 4). The average 

Montreal Cognitive Assessment (MoCA) scores for cognitively healthy individuals and 

patients with AD were 25.5±3.1 and 14.8±7.4, respectively.  

A total of 58 living individuals, part of the Czech Brain Aging Study43, were evaluated for 

changes in the CSF including 10 patients with MCI due to AD, 22 patients with AD dementia, 

14 patients with ALS45 (all from the Barrow Neurological Institute, Phoenix) and 12 patients 

with Lyme disease  (Supplementary Table 5). The average age was 73.2±7.0, 71.6±9.0, 

55.8±8.7 and 69.7±4.3 years for patients with MCI, AD, ALS and Lyme disease, respectively. 

The average MMSE scores were 26.6±1.4 and 18.3±4.5 for patients with MCI and AD, 

respectively.  

A total of 10 individuals provided post-mortem frozen ChP tissue through the Shiley-Marcos 

Alzheimer’s Disease Research Centre (ADRC) of the University of California San Diego 

(UCSD). Tissue included ChP from 5 cognitively healthy individuals and 5 patients with 
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advanced AD (Supplementary Table 1). The average age was 88.0±4.3 years for cognitively 

healthy individuals and patients with AD. The average MMSE scores were 26.4±3.6 and 

19.8±5.0 for cognitively healthy individuals and patients with AD, respectively.  

A total of 20 individuals provided post-mortem formalin-fixed paraffin embedded (FFPE) 

ChP tissue through the Shiley-Marcos UCSD ADRC, including 10 cognitively healthy 

individuals and 10 patients with advanced AD (Supplementary Table 2). The average age was 

84.1±10.7 years for cognitively healthy individuals and 84.1±10.4 years for patients with AD. 

The average MMSE scores were 28.3±2.8 and 15.9±8.5 for cognitively healthy individuals 

and patients with AD, respectively.  

A total of 44 individuals who are part of the Imperial College Parkinson’s UK Brain Bank46 

provided post-mortem stained FFPE ChP slides including 8 healthy individuals, 11 patients 

with early AD (eAD), 13 patients with late AD (lAD) and 12 patients with both AD and PD 

(AD/PD) (Supplementary Table 3). The average age was 73.6±9.1, 78.5±11.2, 83.2±9.8 and 

79.9±6.7 years for healthy individuals and patients with eAD, lAD and AD/PD, respectively.  

Collection of all samples was approved by the Institutional Review Boards of each 

participating institution with written consent obtained from all individuals. Research was 

conducted in accordance with the provisions of the Helsinki Declaration. 

 

Tissue collection 

CSF samples were obtained by lumbar puncture with collection and storage of the samples 

carried out according to a well-established internationally recognized consensus 

protocol43,45,47. CSF samples found to be diagnostically unclear or contaminated with blood 

were excluded from the study. Frozen and formalin fixed paraffin embedded ChP tissue was 

collected and stored following best practice protocols set forth by the NIH ADRCs. 

Additional FFPE immune-stained ChP tissue was collected by the Imperial College 

Parkinson’s UK Brain Bank’s following standardized protocols46. Photographs of post-

mortem anatomy of ChP were taken at the Imperial College Parkinson’s UK Brain Bank. 

 

Cognitive testing 

All study individuals underwent regular comprehensive diagnostic assessment, which 

consisted in extensive clinical evaluation, blood laboratory tests and brain imaging according 

to NIH and other best practice guidelines43,45. Clinical evaluation included neurological 

examination and a battery of neuropsychological tests fulfilling UDS standards. MMSE and 

the MoCA were used to screen study individuals for cognitive impairment consistent with 
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MCI and dementia. Examinations were performed by board-certified neurologists and clinical 

psychologists with extensive training and experience in behavioral and cognitive disorders. 

Clinical phenotypes of MCI and dementia due to AD, PD and ALS were established based on 

current internationally recognized diagnostic criteria. Lyme disease was diagnosed when 

individuals demonstrated symptoms and signs of acute polyradiculoneuritis, increased CSF 

blood count and positive serology for Borrelia burgdorferi.  

 

Pathology 

Frozen and FFPE ChP samples from the UCSD ADRC were scored based on the Braak and 

Braak staging of the AD neuropathological changes. Frozen ChP tissue corresponded to Braak 

and Braak AD scores of 2.0±0 and 5.8±0.4 in cognitively healthy individuals and patients 

with AD, respectively. FFPE ChP tissue corresponded to Braak and Braak AD scores of 

1.3±0.8 and 5.7±0.8 in healthy individuals and patients with AD, respectively. Samples from 

Imperial College Parkinson’s UK Brain Bank were scored for AD (AD), PD (PD) and mixed 

AD and PD (AD/PD) neuropathology as previously described48. Brain pathology of healthy 

individuals (H) and patients with eAD, lAD and AD/PD corresponded to Braak and Braak AD 

stages of 0.6±0.9, 2.6±0.7, 4.5±0.8 and 4.3±1.2 and to Braak PD stages of 0±0, 0.2±0.4, 

1.1±1.5 and 5.5±0.5, respectively. Senile plaques were probed using the primary antibody 

recognizing amyloid-b residues 17 to 24 (4G8, Covance), neurofibrillary changes using an 

antibody against phosphorylated tau (AT8, Thermo Fisher Scientific) and Lewy pathology 

using the a-synuclein clone 42 antibody (#610787, BD Transduction Labs). Neurogenerative 

pathology was assessed by a board-certified pathologist with training and extensive 

experience in neurodegenerative disorders according to current neuropathological diagnostic 

guidelines. 

 

ELISArray 

ChP were homogenized using 0.5 mm glass beads in a Bullet Blender (Next Advance) with 

two volumes of cold homogenization buffer (20 mM HEPES, 150 mM NaCl, 5 mM EDTA, 

pH 7.0) supplemented with Halt protease and phosphatase inhibitor cocktail (Thermo Fisher).  

Samples were then sonicated, centrifuged at 17,000 g for 20 min at 4°C and soluble fractions 

assessed for their protein content using Pierce BCA protein assay (Thermo Fisher Scientific) 

and then stored at -80°C. Cytokine levels were measured using Multi-Analyte ELISArray 

using manufacturer's instructions (QIAGEN). In brief, absorbance of the samples was 

measured at 450 nm in the Multiskan Go microplate reader (Thermo Fisher Scientific). 
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Concentration of cytokines was determined based on the absorbance values of negative 

(buffer) and positive controls (standards for all 12 cytokines examined). All measurements 

were normalized to the total protein content.  

 

Western blots  

Total amount of 40 μg of protein per homogenated sample (prepared as for the ELISArray 

measurements) were separated on 4-20% SDS-polyacrylamide gels and transferred to PVDF 

membranes (Bio-Rad Laboratories). After blocking in 5% BSA in TBS-T, membranes were 

incubated overnight with primary antibodies against IL-2 (D7A5, Cell Signaling Technology), 

IL-6 (#6672, Abcam), IL-10 (#34843, Abcam), TNFa (#9739, Abcam) and TGFb1 (#3711, 

Cell Signaling Technology) at 4°C. After washing, the membranes were treated with 

horseradish peroxidase HRP-conjugated secondary antibodies (sc-2357, Santa Cruz 

Biotechnology) for 1 h at room temperature. Blots were then developed using enhanced 

chemiluminescence reagent (Clarity Western ECL substrate, Bio-Rad Laboratories Inc) and 

visualized using ChemiDoc™ MP Imaging System with Image Lab Software (Bio-Rad). All 

samples were run in single blots for each cytokine. Cytokine levels were normalized to β-

actin. 

 

Immunohistochemistry 

FFPE ChP sections were rehydrated with Tissue Clear followed by a 100%, 80% and 50% 

ethanol to water gradient. Apart from APOE, all section were then subjected to antigen 

retrieval with citrate buffer of pH 6 at 95°C for 20 (NPC2 and TTR) or 30 (CD3) min or with 

a Tris-based buffer antigen unmasking solution (Vector Labs) at 95°C for 35 min (CD68). 

Whenever necessary (NPC2, APOE and TTR), the autofluorescence was quenched using 

TrueBlack Lipofuscin (Biotium). Sections were blocked either for 10 min with BLOXALL 

blocking solution (Vector Labs) and 2.5% horse serum (CD3) or for 30 min with 2.5% horse 

serum (CD68) or 10% with donkey serum (NPC2, APOE and TTR) and then incubated 

overnight with primary antibodies against NPC2 (1:50, sc-166449, Santa Cruz), APOE 

(1:100, 178479, Sigma), TTR (1:500, A0002, DAKO), CD3 (1:500, NCL-LCD3-565, 

Novocastra) or CD68 (1:100, ab955, Abcam). Sections for immunohistochemistry were 

processed with ImmPRESS Universal Polymer horse anti-mouse/rabbit IgG reagent (Vector 

Labs) for 30 min, incubated either with NovaRED (CD3, Vector Labs) or ImmPACT DAB 
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EqV solution (CD68, Vector Labs), co-stained with Gill's hematoxylin (Sigma) and last 

dehydrated through a 50%, 70% and 100% water to ethanol gradient followed by Tissue Clear 

and embedment in Eukitt (Sigma). Haematoxylin eosin-stained ChP sections were provided 

directly by the UCSD ADRC. Sections for immunofluorescence were incubated with goat 

anti-mouse 647 (NPC2, 1:500, Life Technologies), donkey anti-goat 546 (APOE, 1:500, Life 

Technologies) or goat anti-rabbit 546 antibodies (TTR, 1:500, Life Technologies) for 1 h at 

room temperature, co-stained with DAPI for 20 min and mounted using Mowiol (Sigma). 

Sections stained with secondary antibodies only were used as negative controls.  

 

Microscopy and image processing 

Stained at FFPE ChP sections were imaged using AxioScan.Z1 scanner microscope (Zeiss) at 

a magnification of 10×. Acquired images were processed and analyzed using the Image Pro 

Premier 3D software (Media Cybernetics). To examine the distribution of NPC2, APOE and 

TTR in the ChP, the slides were imaged with a 63× oil-immersion objective using a confocal 

laser scanning microscope (Zeiss). Acquired images were then processed and analysed using 

ImageJ software. 

 

Quantitative histology 

Hematoxylin eosin-stained ChP sections were examined for pathological changes by a board-

certified pathologist with training and extensive experience in neurodegenerative disorders. 

Inflammatory cells, visualized either by hematoxylin eosin staining or by an anti-CD-68 

antibody, were quantified on 6 high-magnification ChP images per section. Anti-CD-3 

antibody recognized individual inflamatory cells on rare occasions in H and AD ChP. As a 

result, we did not pursue formal quantification of inflammatory cells recognized by the anti-

CD-3 antibody. To measure NPC2, APOE and TTR total mean intensities, a grid of 500×500 

pixel squares was placed over each ChP image. 30 grid squares were randomly selected in 

order to sample NPC2, APOE and TTR total mean intensities across the entire ChP. 3 

rectangular regions of interest were examined per each grid square for a total of 90 regions of 

interest per image. The placement of the regions of interest was performed to best fit 

epithelium and stroma. Mean intensities of the regions of interest were calculated using Image 

Pro Premier 3D software (Media Cybernetics). To examine distribution of NCP2, APOE and 

TTR within the ChP, the slides were imaged with a 63× oil-immersion objective using a 

confocal laser scanning microscope (Zeiss). 1-4 ChP grape-like structures in 3 independent 
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fields of view were sampled per each slide based on the ChP morphology for detailed analysis 

of the immunoreactivity of the choroid epithelium and stroma.  

 

Mass spectrometry proteomics of the CSF 

CSF samples were analysed using two independent mass spectrometry proteomic protocols:  

Protocol A: Samples were analyzed by LC-MS/MS using an UltiMate 3000 RSLCnano 

system (Thermo Fisher Scientific) coupled via an EASY-spray ion source (Thermo Fisher 

Scientific) to an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Purified 

peptides were separated on 50 cm EASY-Spray column (75 µm ID, PepMap C18, 2 µm 

particles, 100 Å pore size; Thermo Fisher Scientific). For each LC-MS/MS analysis, 3 

technical replicates of 500 ng of tryptic peptides per sample were used for 165 min runs. For 

the first 5 min, peptides were loaded onto a 2 cm trap column (Acclaim PepMap 100, 100 µm 

ID, C18, 5 µm particles, 100 Å pore size; Thermo Fisher Scientific) in loading buffer 

(98.9%/1%/0.1%, v/v/v, water/acetonitrile/formic acid) at a flow rate of 6 µl/min. Peptides 

were then added to buffer A (99.9%/0.1%, v/v, water/formic) and eluted from the EASY-

Spray column with a linear 120 min gradient of 2% - 35% of buffer B (99.9%/0.1%, v/v, 

acetonitrile/formic acid), followed by a 5 min 90% B wash at a flow rate 300 nl/min. EASY-

Spray column temperature was kept at 35°C. Mass spectrometry data were acquired with a 

Top12 data-dependent mode in the Orbitrap with a resolution of 120,000 at m/z 400, AGC 

1E6 in the 300-1700 m/z range with a maximum injection time of 35 ms. The 2 m/z isolation 

window was used for MS/MS scans. Fragmentation of precursor ions was performed by CID 

with a normalized collision energy of 35. MS/MS data were acquired in ion trap with ion 

target value of 1E4 and maximum injection time of 100 ms. Dynamic exclusion was set to 70 

s to avoid repeated sequencing of identical peptides. 

Protocol B: Samples were analyzed by LC-MS/MS using an UltiMate 3000 RSLCnano 

system coupled to an Orbitrap Fusion Lumos tribrid mass spectrometer (both Thermo Fisher 

Scientific). 1 µg of tryptic peptides per sample (1 technical replicate per sample) was 

reconstituted in 5 µl of the solvent (98% water, 2% acetonitrile, 0.1% formic acid) and loaded 

on a 15 cm C18 Easy Spray column (2 µm particle size, 50 µm ID) kept at 45°C. Peptides 

were then separated using a binary solvent system (Solvent A: Water, 0.1% formic acid; 

Solvent B: Acetonitrile, 0.1% formic acid) operating at a flow rate of 300 nl/min with the 

following 120 min gradient: 2% to 19% B in 80 min, 19% to 30% B in 20 min, 30 to 98% B 

in 5 min, plateau at 98% for 2 min, return to initial conditions in 1 min and equilibration for 
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12 min. MS data were acquired using Xcalibur v4.1 (Thermo Fisher Scientific) in top-speed 

data dependent mode with MS1 in the Orbitrap (Resolution: 120,000, AGC: 2E5) followed by 

HCD (35% NCE) fragmentation of most abundant precursor ions with a charge state between 

2-6 and detection in the Orbitrap (Resolution: 30,000, AGC: 5E4). Quadrupole isolation was 

enabled and dynamic exclusion was set to 60 s.  

 

CSF proteomic data processing 

The raw data were analysed using MaxQuant software (version 1.5.6.5) by Andromeda search 

engine. Proteins were identified by searching MS and MS/MS data against the human 

proteome (UniProtKB, UP000005640, January 2017) and the common contaminants 

database. Carbamidomethylation of cysteines was set as a fixed modification. N-terminal 

acetylation and oxidation of methionines were set as variable modification. Trypsin was set as 

protease and maximum of two missed cleavages were allowed in the database search. Peptide 

identification was performed with an allowed initial precursor mass deviation up to 7 ppm 

(Orbitrap) and an allowed fragment mass deviation of 0.5 Da (ion trap). The “matching 

between runs” option was enabled to match identifications across samples within a time 

window od 20 s of the aligned retention times. The false discovery rate was set to 0.01 for 

both proteins and peptides with a minimum length of seven amino acids. LFQ was performed 

with a minimum ratio count of 2. Protein abundances were calculated on the basis of summed 

peptide intensities of “unique and razor” peptide.  

For bioinformatic and statistical analysis, the MaxQuant output file (ProteinGroups.txt) was 

uploaded to the Perseus software (version 1.6.1.1). Proteins idenified by site and matching to 

the reverse database were excluded.  Data was transformed to a logarithmic scale (log2(x)) 

and then normalized (Z-score). Samples were manually annotated based on technical and 

clinical conditions (AD, MCI, ALS, LYME). Technical replicates were averaged. Proteins 

were included into the analyses only if present in at least 50% of the samples in every 

condition. Differential expression was tested using t-test with permutation-based FDR 

calculation (p < 0.05). Volcano plot was used to visualize the results of the t-test. Clustvis 2.0 

webtool was used for cluster analyses and Venn diagrams. g:Profiler was used for the 

functional enrichment analysis of the significant protein changes.  
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TMT-based quantitative discovery mode CSF preteomics dataset from a previously reported 

analysis of a well-established cohort of 297 individuals30,31 was reanalyzed in this study for 

age-stratified differences (Fig. 2a-5, Fig. 3a). 

 

Processing of ChP tissue for mass spectrometry assays and global lipid analysis 

ChP samples were homogenized using BeadBlaster 24 (Benchmark Scientific Inc.), 

lyophilized, resuspended in 100 µl of ultrapure water and the total protein concentrations 

determined using the BCA kit (Thermo Fisher Scientific). Next, 360 µl of isopropanol were 

added to each sample, which was vortexed, sonicated and centrifuged at room temperature. 

400 µl of the supernatant were then removed and diluted 5-fold in 10% isopropanol for the 

ganglioside and other assays (lipid extract). Remaining pellets were dried at 37°C (Savant 

SDP121 P, SpeedVac, Thermo Fisher Scientific), reconstituted using glass beads in 100 µl of 

AmBic buffer (50 mM) with SDC (5 mg/ml), homogenized, vortexed and sonicated (protein 

extract). 20 µg of total protein per sample were next reduced (20 mM DTT; 10 min; 95 °C) 

and alkylated (40 mM IAA; 30 min; room temperature in the dark). Synthetic isotopically 

labeled standard peptides containing an enzymatically cleavable tag at C-terminus (TQL, JPT) 

were added to control for the variance in trypsin digestion. Trypsin was added to the samples 

in the 1:40 ratio (enzyme: total protein content, w/w), and the samples gently shaken 

overnight at 37 °C. The digestion was quenched by adding 200 µl of 2% formic acid. Solid-

phase extraction (SPE) was carried out on a mixed-mode cartridge according to the 

manufacturer´s instructions (Oasis Prime HLB).  

 

Validation of mass spectrometry targets 

Gangliosides were quantified using selected reaction monitoring (SRM) assays in lipid 

extracts, which were internally standardized with 1.5 µM and 0.15 µM of isotopically labeled 

GM1 and GM3, respectively (Extended Data Figure 7). Proteins were also analyzed using 

SRM assays for proteotypic peptides as protein surrogates. Tentative identifications of 

proteotypic peptides detected in CP and concordant with the Skyline iRT Retention Time 

Prediction algorithm were validated using their isotopically-labeled analogs (Extended Data 

Figure 5). Only proteotypic peptides with the SRM signatures and retention times matching 

corresponding isotopically-labeled peptide standard were accepted as correct identifications. 

The peak area of the proteotypic peptide was normalized to the average peak area of 5 
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isotopically-labeled RT indices and the ratio multiplied by the concentration of RT indices to 

calculate relative protein concentrations using c(light) = peak area (light)/peak area (average 

heavy) x concentration (average heavy).  

 

Mass spectrometry quantitative protein assays  

Dried solid-phase extracts of ChP digests were reconstituted in 13.3 µl of 5% acetonitrile with 

0.1% formic acid. Samples were analyzed using ESI-UHPLC-SRM mass spectrometry on a 

triple quadrupole mass analyzer (1290 Infinity II and 6495B, Agilent) in positive ion 

detection mode. A volume of 2 µl was injected into the Peptide CSH C18 column (1.7 µm, 

2.1 mm × 100 mm, Waters Corporation). The mobile phase at a flow rate of 0.3 ml/min 

consisted of buffer A (0.1% formic acid) and buffer B (0.1% formic acid in 95% ACN). 

Linear gradient elution was performed as follows: initial 5% B; 25 min 30 % B; 25.5 min 95 

% B; 30 min 95 % B and from 31 to 35 min with 5 % B. The electrospray ionization source 

temperature was 200 °C and voltage 3.5 kV. SRM assays were scheduled for 2 min RT 

windows around peptide RT. SRM transitions (3-5 per proteotypic peptide) and optimal 

collision energies were obtained using the SRMAtlas database (www.srmatlas.org). Data were 

processed in Skyline (Version 19.1.0.193, MacCoss Lab).  

 

Mass spectrometry ganglioside assays  

Gangliosides in lipid extracts of ChP were examined using both ESI-UHPLC-SRM positive 

and negative ion detection modes. Diluted lipid extracts were injected into a C18 column 

(CSH, 50 × 2.1 mm, 1.7 μm, Waters Corporation) thermostated at 40°C. The mobile phase of 

buffer A (0.5 mM ammonium fluoride) and buffer B (methanol: isopropanol (50:50 v/v) at the 

flow rate of 0.3 mL/min was used in positive ion mode. The gradient elution program (17.1 

min) was: 0 min 30% B; 2 min 70% B ; 9 min 95 % B; 13 min 95% B; 13.3 min 5 % B; 14.3 

min  5% B; 14.5 min 30% B; 17.1 min 30% B. The mobile phase of buffer A (0.5 mM 

ammonium fluoride and 10 mM ammonium acetate) and buffer B (acetonitrile: isopropanol 

(50:50; v/v) at a flow rate of 0.3 min mL/min was used in negative ion mode. The gradient 

elution program (19.1 min) was: 0 min 10% B; 4 min 85% B; 6.2 min 95% B; 10.2 95% B; 

10.4 10% B; 14.4 95% B; 16.2 95 % B; 16.4 10% B; 19.1% B. The electrospray ionization 

source capillary voltage was 3500 V and 3000 V in positive and negative ion modes, 

respectively. The gas flow rate was 16 L/min and 14 L/min at 190°C, sheath gas pressure 20 

PSI and 25 PSI at 350 °C and nozzle voltage 1300 V and 1500 V in positive and negative ion 

detection modes, respectively. Data were processed in Skyline (v19.1.0.193, MacCoss Lab). 
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Gangliosides were quantified with the stable isotope-labeled GM3 using appropriate response 

factors (except for GM1 quantified with the stable isotope-labeled GM1). Ganglioside content 

was reported in ng/mg of CP tissue dry weight. 

 

Mass spectrometry lipid analysis  

Orbitrap Fusion (Thermo Fisher Scientific) and UHPLC (Nexera X2, LC-30AD, Shimadzu) 

with identical C18 column (CSH, 50 × 2.1 mm, 1.7 μm, Waters Corporation) thermostated at 

40°C and gradient elution program as specified for ganglioside assays in the positive ion 

mode were used to measure lipids. The electrospray ionization in positive and negative ion 

modes with capillary voltages of 4000 V and 3500 V, respectively, were used to acquire full-

scan spectra. Sweep gas flow rate was 2 arbitrary units, sheath gas flow rate 30, auxiliary gas 

flow rate 5 and ion transfer tube and vaporizer temperatures 350 °C and 300 °C, respectively. 

The resolving power was 120 000 at 400 m/z, maximum injection time 5 ms, ACG 4.0x105 

and lenses RF level 50%. Data were acquired in centroid mode and converted to mzML 

format through MS Convert from ProteoWizard and analyzed through XCMS using the 

centWave algorithm. The XCMS output feature (m/z) list was submitted to the CEU mediator 

(Batch Advanced Search) to return database hits. The following CEU mediator settings were 

used: a) mass accuracy (tolerance) was set at 3 ppm, b) selected databases included 

LipidMaps, HMDB, Kegg and Metlin, c) respective ionization mode, d) input mass was m/z 

mass (instead of neutral mass) and e) in case of multiple hits per m/z, the tentative 

identification of adducts M+H+ was manually assigned based on similar retention time with a 

lipid from the same group, ppm error and available LipidMaps annotation. Features matching 

to multiple annotations with similar RT, ppm, and database availability remained unidentified. 

The most abundant lipid species were manually matched with the literature to verify tentative 

identifications further. 

 

Cholesterol spectrophotometric assay  

Cholesterol was extracted from 1 mg of dry ChP tissue by adding 100 ul of Chloroform: 

Isopropanol. Samples were vortexed, sonicated and centrifuged. The ultra-filtrate was 

transferred to a separate vial and air-dried at 50°C to remove chloroform and placed in a 

vacuum concentrator centrifuge to remove remaining isopropanol. Cholesterol was quantified 

using a colorimetric assay based on the manufacturer’s instructions (MAK043, Sigma-

Aldrich, USA).  
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In vivo brain MRI imaging 

T1-weighted 3-dimensional high-resolution MRI images were acquired using magnetization-

prepared rapid gradient echo (MP-RAGE, TR/TE/TI = 2000/3.08/1100 ms, flip angle = 15°, 

1.0 mm slice thickness) and fast spoiled gradient echo (FSPGR, TR/TE/TI = 7.26/2.99/400 

ms, flip angle = 11°, 1.2 mm slice thickness) pulse sequences using 1.5 T (Siemens Avanto) 

and 3.0 T scanners (GE Signa HDxt) in the Czech Brain Aging Study and the Argentina 

Alzheimer’s Disease Neuroimaging Initiative, respectively. All images were first visually 

inspected to ensure appropriate data quality and to exclude participants with clinically 

relevant brain pathology that could interfere with cognitive functioning and testing such as 

subdural hematoma, cortical infarct, tumour or hydrocephalus. To correct for differences in 

head size, all volumetric measurements were normalized to the total intracranial volume.  

 

MRI intensity measurements 

Based on FreeSurfer wrapped in R, all segmented regions of interest and their masks were 

exported, including ChP intensities. Since raw intensities of ChP preclude their direct use in 

statistical analysis, we normalized raw intensity of ChP to CSF considering MRI signal of the 

CSF does not significantly change between H and AD. The CSF strip algorithm was 

developed based on the white strip algorithm49.  

 

MRI volumetry measurements 

Measurements of cortical, hippocampal and ChP volumes were performed using FreeSurfer 

automated algorithm version v5.3 (http://surfer.nmr.mgh.harvard.edu/) as previously 

reported50-52. Subset of MRI brain images were further evaluated using 3D reconstructions. 

Automatic segmentation of FreeSurfer wrapped in R was used to obtain segmentation masks 

for all regions of interest. All T1-weighted images were registered to a common MNI305 

template using linear (affine) and ANTs (SyN) spatial normalization algorithms53 and 

symmetric image spatial normalization (SyN) algorithm with cross-correlation as similarity 

metric through Advanced Normalization Tools (ANTSs). Registered masks of structures of 

interest were then averaged to produce structure template used for visualizations. The iso-

surfaces of the template were extracted using marching cube algorithm. Inverse warp field 

from SyN were then decomposed by Principal Component Analysis and the first principal 

component projected back to shape space and averaged across groups. Vector fields of 

differences between H and AD regions of interest were orthogonally projected to normal 
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vector field from the average template, converted from mean to percentage change with 

normalization by centroid size and then used for coloring of the average template. To examine 

3-dimensional differences between H and AD ChP in shape, ChP were represented with 4246 

mesh points, the percentage change was calculated as (mean AD minus mean H) divided by 

mean H and multiplied by 100, where positive sign reflects larger areas in AD and scaling is 

done with respect to H mean.  

 

Manual MRI tracing 

T1-weighted brain images underwent quality assessment, including dicom format check and 

check for imaging artefacts. ChP segmentation was performed manually by two trained 

readers with significant background and experience with MRI imaging. Segmentation was 

performed using Slicer (www.slicer.org) on a slice per slice basis with a paintbrush of 0.5 

mm. Segmentation started at the top of the brain in the axial orientation with the reader 

moving down the brain to detect the first slice showing the contour of the ChP and then 

continuing consecutively through all the slices showing ChP. Once the region of interest was 

fully delineated, potential over- and under-segmented areas were checked in coronal 

orientation and segmentations corrected whenever necessary. Particular attention was given to 

brain regions where segmentation of the ChP may be difficult. First, ChP can be present in 

areas around the anterior pillars of the fornix and beneath there, it needs to be first 

distinguished from vascular structures and then segmented correctly. Second, signal from the 

hippocampal commissure and crura of the fornix, which appear as continuity of the ChP, was 

excluded from the segmentation. Particular attention was given to segment the thin lining of 

the ChP in the temporal horn of the lateral ventricles. After slice-to-slice manual segmentation 

of the ChP, the 3D volume rendering was performed to test for appropriate spatial appearance 

of ChP in line with the expected anatomy. Since ChP segmentations were performed voxel-

wise, generating labelled maps, the volumes were calculated as the sum of all voxels of the 

labeled maps multiplied by voxel size. Considering small size of ChP the obtained volumes 

were not normalized. 

 

Statistics 

All statistical analyses were performed using commercially available softwares (R, Prism, 

Excel, SPSS and SAS). Mass spectrometry proteomics of the CSF and brain imaging analyses 

were performed using R (v.4.1.0, R Core Team 2020. R: A language and environment for 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.29.21260696doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.29.21260696


statistical computing. R Foundation for Statistical Computing, Vienna, Austria). 

RColorBrewer, igraph, ggraph and ggplot2 packages were used for differential CSF protein 

expression analyses. For brain imaging analyses we used R packages Whitestripe, FreeSurfer, 

NeuroBase, fslr, fsbrain, misc3d, rgl and ggplot2. All values are expressed as mean ± s.e.m. 

Differences in means between H and AD were analysed using two-sample t-test at a 

significance a level of 0.05 unless otherwise specified. All tested hypotheses were two-sided 

(H0: equality of means vs H1: means are not equal). Missing values were not imputed. 

Differences in the shape of ChP between H and AD were assessed using a mesh point-by-

point two-sample t-test with differences in coronal, sagittal and axial planes projected to H 

with t-statistics and p-values at a significance a level of 0.05 presented as a coloured 

statistical parameter map. No statistical analyses were performed to predetermine sample size. 

 

Reporting summary 

Further information on research design is available … Summary linked to this paper. 

 

Data availability 

All mass spectrometry data have been deposited online (PRIDE ID). CSF data for the cohort 

of 297 individuals30,31 are available online at https://www.synapse.org/Consensus. 
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Extended data figures and tables 

Extended Data Figure 1 - No morphological changes in the ChP from H and AD a, 

Representative image of haematoxylin eosin-stained ChP consisting of peripheral vasculature 

rich stroma lined by epithelium. b, Percentage of ChP from H (n=10) and AD (n=10) showing 

epithelial atrophy, stromal fibrosis, vessel thickening, cystic dilations and calcifications. 1 

technical replicate ± s.e.m.; two-sample t-test (p≤0.05). c, Average number of inflammatory 

cells in haematoxylin eosin-stained ChP from H (n=10) and AD (n=10) ChP. Mean number of 

inflammatory cells per 5 high power microscopy fields per section ± s.e.m.; two-sample t-test 

(p≤0.05). d, Representative low and high magnification images of ChP from H and AD 

stained with an anti-CD68 antibody (asterisks denote anti-CD68 antibody labelled cells in 

brown). e, Average number of anti-CD68 antibody labelled cells per ChP section in H (n=8) 

and AD (n=10) ChP. Mean number of inflammatory cells per 10 high power microscopy 

fields per section ± s.e.m.; two-sample t-test (p≤0.05). e, Representative low and high 

magnification image of a ChP from H stained with an anti-CD3 antibody (asterisk denotes 

anti-CD3 antibody labelled cell in red). 

 

Extended Data Figure 2 – Lack of AD pathology in the ChP in AD Percentage of ChP 

from H (n=8), early AD (eAD, n=11), late AD (lAD, n=13) and AD with Parkinson’s disease 

(AD/PD, n=12) showing: epithelial atrophy, a, stromal fibrosis, b, vessel thickening, c, and 

calcifications, d. 1 technical replicate ± s.e.m.; two-sample t-test (p≤0.05). Anti-amyloid-b 

antibody showing senile plaques in the hippocampus of AD (positive control), e, but no senile 

plaques in the ChP from H, f, eAD, g, lAD, h or AD/PD, i (magnification bar 100 µ). Anti-

phospho-tau antibody showing neurofibrillary changes in the hippocampus of AD (positive 

control), j, but no phospho-tau-immunoreactive deposits in the ChP from H, k, eAD, i, lAD, 

m or AD/PD, n (magnification bar 100 µ). Anti-a-synuclein antibody reveals Lewy bodies in 

the temporal cortex of AD (positive control), o, but no Lewy changes in the ChP from H, p, 

eAD, r, lAD, s or AD/PD, t (magnification bar 100 µ).  
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Extended Data Figure 3 - Unique and shared CSF proteins between AD and other 

disorders Venn diagram showing CSF proteins identified by both independent mass 

spectrometry approaches in mild cognitive impairment (MCI, n=10) and dementia (AD, 

n=22) due to AD, amyotrophic lateral sclerosis (ALS, n= 14) and Lyme disease (Lyme, n=12) 

or in any of the resulting combinations.  

 

Extended Data Figure 4 - CSF proteins changed in mild cognitive impairment, 

amyotrophic lateral sclerosis and Lyme’s disease compared with AD Volcano plots 

showing individual protein changes in the CSF of patients with MCI (n=10), ALS patients (n= 

14) and Lyme disease (n=12) compared with AD (n=22) using two independent mass 

spectrometry approaches (A and B, p≤0.05). 

 

Extended Data Figure 5 – Interactions between CSF proteins changed in mild cognitive 

impairment, amyotrophic lateral sclerosis and Lyme’s disease compared with AD 

patients String plots depicting interactions between significantly increased and decreased 

CSF proteins in MCI (n=10), ALS (n= 14) and Lyme (n=12) compared with AD (n=22) using 

two independent mass spectrometry approaches (A and B). 

 

Extended Data Figure 6 - Validation of the identity of the proteotypic peptides used in 

the ChP targeted protein mass spectrometry Skyline iRT retention time prediction 

algorithm shows identical chromatogram retention times between proteotypic peptides used to 

quantify ChP proteins (bottom) and stable isotopically labelled synthetic peptides (top). 

Peptides in a were used for relative quantification.  

 

Extended Data Figure 7 - No change in the cholesterol in the ChP between H and AD 

Total and free cholesterol levels (ng/mg of dry ChP weight) in the ChP from H (n=5) and AD 

(n=5) ChP. 1 technical replicate ± s.e.m.; two-sample t-test (p≤0.05). 

 

Extended Data Figure 8 – Validation of the identity of the gangliosides used in the ChP 

targeted ganglioside mass spectrometry Identical retention times between proteotypic GM1 

and GM3 and isotopically labeled GM1 and GM3. Gangliosides were quantified using 

selected reaction monitoring (SRM) assays internally standardized with 1.5 µM and 0.15 µM 

of isotopically labeled GM1 and GM3, respectively. 
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Extended Data Figure 9 - No lipid changes in the ChP between H and AD No difference 

in the levels of phosphatidylcholines PC34:0, PC34:1, PC34:2, PC36:1 and PC36:2, a, 

phosphatidylethanolamines PE-34:1, PE-36:2, PE-38:4 and PE-38:6, b, sphingomyelins 

SM(34:1), SM(36:2) and SM(36:1), c, phosphatidylinositols PI34:2, PI36:1, PI36:2, PI36:4, 

PI38:3, PI38:4 and PI38:5, d, phosphatidylserines PS34:1, PS36:1, PS36:2 and PS38:4, e, and 

sulfatides S36:1, S40:1, S41:1(OH), S41:2, S42:1, S42:1(OH), S42:2, S42:2(OH), S42:3, 

S43:2, S43:2(OH), S43:1(OH) and S44:2(OH), f, in ChP between H (n=5) and AD (n=5). 6 

technical replicates ± s.e.m.; two-sample t-test (p≤0.05). 

 

Extended Data Figure 10 – Increased ChP volumes in AD compared with H in a 

confirmatory cohort Normalized volumes of cerebellar cortices (negative control), 

hippocampi (positive control) and ChP in H (n=13) and AD (n=10). 1 technical replicate ± 

s.e.m.; two-sample t-test (p≤0.05). 

 

Supplementary information 

Reporting summary 

Supplementary Tables 1-11. 

 

Source data 

Source Data Fig.1 

Source Data Fig. 2 

Source Data Fig. 3 

Source Data Fig. 4 

Source Data Extended Data Fig.1 

Source Data Extended Data Fig. 2 

Source Data Extended Data Fig. 3 

Source Data Extended Data Fig. 4 

Source Data Extended Data Fig. 5 

Source Data Extended Data Fig. 6 

Source Data Extended Data Fig. 7 

Source Data Extended Data Fig. 8 

Source Data Extended Data Fig. 9 

Source Data Extended Data Fig. 9 
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