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This paper deals with experimental investigation of the lined wall boundary condition in flow duct

applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a

microphone array located in the liner test section, is carried out in order to extract the axial wavenum-

bers with the help of an “high-accurate” singular value decomposition Prony-like algorithm. The ex-

perimental axial wavenumbers are then used to provide the lined wall impedance for both

downstream and upstream acoustic propagation by means of a straightforward impedance education

method involving the classical Ingard–Myers boundary condition. The results show that the Ingard–

Myers boundary condition fails to predict with accuracy the acoustic behavior in a lined duct with

flow. An effective lined wall impedance, valid whatever the direction of acoustic propagation, can be

suitably found from experimental axial wavenumbers and a modified version of the Ingard–Myers

condition with the form inspired from a previous theoretical study [Aurégan et al., J. Acoust. Soc.

Am. 109, 59–64 (2001)]. In a second experiment, the scattering matrix of the liner test section is

measured and is then compared to the predicted scattering matrix using the multimodal approach and

the lined wall impedances previously deduced. A large discrepancy is observed between the measured

and the predicted scattering coefficients that confirms the poor accuracy provided from the Ingard–

Myers boundary condition widely used in lined duct applications.
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I. INTRODUCTION

While acoustic liners are extensively used in engineer-

ing applications such as aircraft engine systems or automo-

bile mufflers, the acoustical behavior of such systems in the

presence of a grazing flow is still a challenging subject due

to the complexity of the interaction between sound and flow

in the boundary layer over the lined wall. It is often suitable

to compute the acoustical propagation by assuming that the

flow is potential and to take into account both the effect of

the boundary layer (in which large flow velocity gradients

and viscothermal and turbulent effects occur) and the effect

of the lined wall in the boundary condition of the computa-

tion.1 In this case, it is classically admitted that the acoustic

normal displacement and acoustic pressure are continuous

across the boundary layer leading to the Ingard2–Myers3

boundary condition. This condition has been widely used in

the literature over the past decades.4–7 Specifically, this con-

dition was used in the computations to deduce the impedance

from acoustical measurements.8–12

Nevertheless, Aurégan et al.13 and more recently Bramb-

ley14 pointed out that the viscous and turbulent effects near

the wall can alter this boundary condition. They demonstrate

that the continuity of normal displacement holds only when

the acoustic boundary layer thickness is much smaller than

the stationary layer thickness, i.e., typically in the high fre-

quency range. At very low frequencies, continuity of mass ve-

locity normal to the lined wall must be applied instead.

Inspired by these theoretical works, this paper mainly

aims to provide experimental evidence of the inaccuracy of

the results issued from the use of the Ingard–Myers condi-

tion in lined duct with uniform flow. The failure of Ingard–

Myers condition is observed both from the measurement of

axial wavenumbers in the lined duct section and from the

scattering matrix.

To this end, experiments were carried out in a duct

partly lined with a standard locally reacting liner submitted

to a grazing flow. The experimental apparatus is outlined in

Sec. II where the measured flow profile is presented. This ex-

perimental setup allows the extraction of the experimental

axial wavenumbers in the liner test section by means of a lin-

ear microphone array located at the upper wall opposite the

liner. This setup also allows the measurement of the scatter-

ing matrix.

The identified axial wavenumbers related to the least

attenuated modes are used in Sec. III to derive the liner

impedances in both downstream and reverse flow configura-

tions. To this aim, the mean flow is supposed to be uniform

and the Ingard–Myers boundary condition is applied. Signifi-

cant discrepancies are observed between results in the flow

direction and in the reverse flow direction. This invalidates

the use of the Ingard–Myers condition associated with uni-

form flow in our case. Afterward, a modified Ingard–Myers

condition (MIMC) is proposed that leads to define an effec-

tive lined wall impedance valid for both propagation direc-

tions. Section IV describes a multimodal method9 used to
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predict the scattering matrix of the liner test section. Finally,

a comparison is made between the measured scattering ma-

trix and the predicted multimodal scattering matrix using the

Ingard–Myers condition associated with uniform flow. Again

significant differences are observed.

II. EXPERIMENTS

A. Experimental apparatus

The test facility (see Fig. 1) used for experiments is

described in this section.

The apparatus allows acoustic propagation in a rectan-

gular duct superimposed to a grazing flow over an acoustic

liner. At each end of the duct, acoustic sources and

anechoic terminations are found. According to the duct

dimensions, only two acoustic modes are propagating

through the duct: the plane wave and the first order mode

along the width of the duct. Due to the centered positioning

of the microphones (in the width of the duct), only the

plane waves are measured.

Two configurations of microphones are settled in the

duct for the following purposes. The scattering matrix is

measured by means of 2� 4 flush mounted microphones in

the lower hard wall downstream and upstream of the liner

test section, respectively. It follows that the transmitted and

reflected waves can be determined with over-determination

to avoid inaccurate measurement when the acoustic wave-

length is close to half the distance between two micro-

phones. On the other hand, the axial wavenumbers are

measured in the liner test section thanks to an array of 11

flush mounted microphones (denoted lm with m¼ 1,…, M in

Fig. 1). These microphones are evenly distributed along the

x axis spaced out by 2 cm on the hard wall opposite to the

acoustic liner.

The acquisition of signals is performed by an Agilent

VXI 1432 hardware platform that drives the source excita-

tion synchronously with the acoustic pressure signals record-

ing. A stepped-sine over the frequency range [500–3000] Hz

is used with a frequency increment of 10 Hz and a sampling

rate of 8192 Hz. A least mean square amplitude and phase

estimator is implemented under MATLAB for the post-process-

ing of data.

Experiments were carried out on a conventional acoustic

liner widely used in aircraft engine-duct systems (a so-called

single degree of freedom liner). This acoustic device is com-

posed of a resistive layer performed by a perforated plate of

thickness 1.2 mm with orifices of diameter 1.3 mm and a

percent open area of 10.5%. The plate is glued to partitioned

air cavities (honeycomb structure) with a depth of 37.5 mm

(the cell size is 10 mm). This compound is terminated by a

rigid backplate. The dimensions of the sample are 200 mm

along the x axis and 100 mm along the z axis.

B. Flow profile in the test duct

The mean flow profile is measured in the test duct by

means of a 1 mm diameter pitot tube with EFFA GA064A5-

20 static pressure transducer (range 0–20 mbar). The experi-

mental flow velocity is depicted in Fig. 2 for an average

Mach number of M0¼ 0.2. This profile is compared to the

theory for a fully developed turbulent flow in a two-dimen-

sional channel15

U

U�
¼ dþ; in the laminar sublayer dþ � 11; (1a)

U

U�
¼ 2:5 ln dþ þ 5:5; in the logarithmic zone

2y

h
� 0:2;

(1b)

Um �U

U�
¼ 6:3 1�

2y

h

� �2

; near the center line 0:2�
2y

h
� 1;

(1c)

where U
*
is the friction velocity and Um is the maximum ve-

locity (at the center line of the duct). The values used to fit

experimental result are U
*
¼ 3.14 m s�1 and Um¼ 75.30

FIG. 1. Schematic view of the experimental setup.

FIG. 2. (Color online) Experimental mean flow profile (plus markers) and

theoretical fully developed turbulent flow profile (solid line) with average

Mach number of M0¼ 0.2.
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ms�1. The reduced coordinate dþ is given by dþ ¼ yU�=v
with v¼ 1.51�10�5 m2 s�1 the kinematic viscosity of air at

20 �C. The limit between the laminar sublayer and the loga-

rithmic zone is found to be dþ¼ 11, i.e., y � 0.052 mm. For

M0¼ 0.2, the mean Reynolds number is given by

Re ¼ U0h=v¼ 6.74�104. The y-average mean flow velocity

U0¼ 67.8 m s�1 is related to the mean Mach number by

M0 ¼ U0=c0. For the frequency range of interest in this pa-

per, it can be noted the following values for the acoustic

boundary layer

da � 0:10 mm at f ¼ 500 Hz; (2a)

da � 0:06 mm at f ¼ 1500 Hz; (2b)

da � 0:04 mm at f ¼ 3000 Hz; (2c)

wherein f denotes the frequency of sound.

The good agreement between the experimental and the-

oretical flow profiles shows that the flow in the duct can be

considered as a fully developed turbulent flow.

C. Method for the measurement of the axial
wavenumbers in the liner test section

The method outlined in the following text refers to the

well-known Kumaresan and Tufts16 (KT) approach, which is

slightly modified for our application. Here the aim is to esti-

mate the axial wavenumbers k0
þ (respectively, k0

�) correspond-

ing to the least attenuated waves propagating through the liner

test section in the downstream (respectively, upstream) direc-

tion with the presence of a grazing flow by the use of micro-

phone array.17 k0
þ is extracted from the measurement with an

active upstream source (the downstream source is turned off)

and k0
� from the measurement with an active downstream

source (the upstream source is turned off).

According to the modal decomposition in a 2D duct, the

pressure field at the hard upper wall opposite to the lined

wall reduces to

pm ¼
X1

n¼0

bþn e
�ikþn xm�x1ð Þ þ

X1

n¼0

b�n e
�ik�n xm�x1ð Þ; m ¼ 1; :::::;M;

(3)

where kn
6 are the axial wavenumbers in the liner test section,

bn
6 are the complex waves amplitudes, xm � x1¼ (m � 1)Dx

is the location along the upper wall where the pressure

pm¼ p(xm, y¼ 1) is measured, andM is the number of micro-

phones mounted flush at the inner surface of the upper wall

in the liner test section.

From now on, the dimensionless form of the quantities

of interest are introduced according to

p0 ¼ p= q0c
2
0

� �
;

y
0
¼ y=h;

k06n ¼ k6n h;
D
0
x ¼ Dx=h;

x0 ¼ x=h;
x0 ¼ xh

c0
; (4)

wherein the superscript 0 symbol denotes the quantities with-

out dimension, h is the transverse size of the duct, q0 and c0
are the density of fluid and the velocity of sound, respec-

tively, and x is the angular frequency of sound. In the fol-

lowing, 0 is dropped for convenience.

Equation (3) can be put in a compact parametric model

form

pm ¼
XN

n¼1

ans
m�1
n ; m ¼ 1; :::::;M: (5)

The method outlined below consists in identifying the axial

wavenumbers k6 from the poles sn ¼ e�ik6
n�1

Dx via the KT

algorithm.

Choosing a parameter K (it can be found in the litera-

ture18 that choosing K¼ 3M/4 provides the more optimized

results, which is assumed to be also the case in our applica-

tion) such that min(M � K,K) � N, the recursive relations

between the transfer functions Hlmlref ¼ pm=pref (lref¼ l1 for

instance) at successive locations along the upper wall are

obtained by (see the Appendix)

Hlmlref ¼ �
XK

n¼1

cnHlmþnlref (6)

and are reduced to a matrix form equation

Ac¼� b; (7)

where A is a (M � K)�K Hankel data matrix. b is a

(M � K)� 1 column vector.

The vector of the prediction coefficients c is determined

such as

c ¼� A†b (8)

¼ � AHA
� ��1

AHb (9)

where A† is the pseudo-inverse of A and AH denotes the con-

jugate transpose of A.

The singular value decomposition of A leads to

A ¼ URVH; (10)

A†¼V R
�1UH; (11)

where diag[R]¼ {R1,…, RQ, RQþ1,…, RK}
T is the vector of

the singular values arranged in the decreasing order. U and

V are the left and right singular vectors, respectively.

The basic idea underlying the KT method is to reduce

the measurement noise by considering the reduced rank

approximation of A such that

AQ¼URQV
H (12)

with diag[RQ]¼ {R1,…, RQ, 0,…, 0}T, Q � M � K. Then an

estimate of the prediction coefficients is given by

cQ¼� A
†
Qb: (13)

The resolution of the characteristic equation (see the

Appendix)
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C zð Þ ¼ 1þ
XK

n¼1

cnz
n (14)

provides the roots zn¼ 1/sn with sn the poles of Eq. (5). The

roots that lie outside the unit circle in the complex z-plane

correspond to physical modes, whereas the roots that lie

inside the unit circle are due to extraneous noise or spurious

modes.

D. Method for the measurement of the acoustic
scattering matrix

The scattering matrix S relates the scattered pressure

amplitudes pi
� and po

þ to the incident pressure amplitudes pi
þ

and po
� of the plane waves in the rigid duct as follows

pþo
p�i

� �

¼ S
pþi
p�o

� �

¼
Tþ

Rþ
R�

T�

� �
pþi
p�o

� �

; (15)

where Tþ and T� are the anechoic transmission coefficients,

Rþ and R� are the anechoic reflection coefficients, and the

subscripts i and o indicate the inlet and the outlet of the liner

test section, respectively (see Fig. 1). The scattering matrix

is measured in a similar manner as described by Aurégan et

al.9 and is referred to as the two-source method.

III. ANALYSIS OF RESULTS OBTAINED FROM THE
AXIALWAVENUMBERS IN THE LINED DUCT TEST
SECTION

A. Analysis of results with the Ingard–Myers
boundary condition

Assuming a locally reacting liner, its impedance Zw is

expressed as

Zw ¼
p

tw 	 n
; y ¼ 0; 0 < x < L=h; (16)

wherein n is the outward normal vector pointing into the

wall and tw is the acoustic velocity at the lined wall. As

there is no mean flow at the wall, tw is linked to the acoustic

displacement nw at the wall by

tw 	 n¼
@nw

@t
	 n; at y ¼ 0: (17)

Assuming a thin shear layer close to the lined wall, the

acoustic normal displacement as well as the acoustic pres-

sure can be considered constant across the boundary layer.

Then, the transverse kinematic condition is written as

te 	 n ¼
@

@t
þM0

@

@x

� �

ne 	 n

¼
@

@t
þM0

@

@x

� �

nw 	 n; (18)

where te and ne denote the velocity and the displacement

just above the thin boundary layer. When e !0, then

t(x,y¼ 0) 	 n ! te 	 n and p(0) ! pe¼ pw leading to the

lined wall boundary condition

ix t x;0ð Þ 	nð Þ¼ ixþM0

@

@x

� �
p x;0ð Þ

Zw

� �

; 0< x< L=h; (19)

where ix stands for the time derivative for an harmonic time

dependence eixt.

Using the Euler equation in the y-direction, Eq. (19) is

transformed into a relation between the acoustic pressure, its

first transverse derivative, and the lined wall impedance

@p

@y
¼

1

ixZw

� �

ixþM0

@

@x

� �2

p; y¼ 0; 0 < x< L=h: (20)

The relation (19) is called the Ingard–Myers boundary

condition2,3 for a plane boundary. For convenience, the

Ingard–Myers boundary condition is used under the form

(20) instead of (19) in the following.

The pressure is written as p(x,y)¼P(y)ei(xt�kx). For a

uniform mean flow, substituting the pressure in the con-

vected wave equation leads to

d2P yð Þ

dy2
þ k2yP yð Þ ¼ 0;

where

k2y ¼ x�M0kð Þ2�k2: (21)

The transverse pressure can be written in the case of a rigid

upper wall as P(y)¼ b cos (ky(y� 1)). Applying the Ingard–

Myers condition [Eq. (20)] leads to

FIG. 3. (Color online) Experimental axial wavenumbers k0
þ (dashed line) and

�k0
� (dashed-dotted line). (a) M0¼ 0, (b) M0¼ 0.2. The parameters used in

Sec. II C for experimental extraction of k0
6 are K¼ 8,M¼ 11, and Q¼ 2.

J. Acoust. Soc. Am., Vol. 130, No. 1, July 2011 Y. Renou and Y. Aurégan: Failure of Ingard–Myers boundary condition 55
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ky tan ky
� �

¼
ix� iM0kð Þ2

ixZw
: (22)

These equations give an explicit relation between the

unknown impedance Zw of the lined wall and the measured

axial wavenumbers k in the lined duct test section.

For the sake of accuracy, the lined wall impedance is cal-

culated only with the axial wavenumbers of the least attenu-

ated waves, namely, k0
þ and k0

�. The latter are shown in Fig.

3(a) for M0¼ 0 and in Fig. 3(b) for M0¼ 0.2 (for clarity, k0
þ is

compared to �k0
�). They correspond to the predominant

modes in the duct, traveling in downstream and upstream

directions (in the flow direction and in the reverse direction of

the flow, respectively).

Hence the measurement with active upstream source

(while the downstream source is switched off) provides the

lined wall impedance denoted ZI derived from k0
þ, and the mea-

surement with active downstream source (while the upstream

source is switched off) provides ZII derived from k0
�.

The real and imaginary parts of the lined wall impedan-

ces ZI and ZII are depicted in Fig. 4(a) for M0¼ 0 and in Fig.

4(b) for M0¼ 0.2.

Without flow, the two impedance curves are close as

one can expect. At M0¼ 0.2, a large discrepancy occurs

between the two curves.

Clearly the fact that two different values of the imped-

ance are obtained for two different directions of the propaga-

tion is incompatible with the model used. Thus the use of the

Ingard–Myers boundary condition associated with uniform

flow is not satisfactory with our measurements. Accordingly,

these assumptions cannot be applied to deduce accurately

the impedance. It may be noted that this phenomenon could

not be observed by other experimentalists because they only

use one upstream source.8,12

B. Analysis of results with the modified version of
Ingard–Myers boundary condition

In Ref. 13, Aurégan et al. have theoretically demon-

strated at low Mach number and for simple flow profiles

with constant molecular viscosity through the shear layer

that an extra parameter, say, bv, can be introduced in the

lined wall boundary condition to take into account the trans-

fer of momentum into the lined wall induced by molecular

and turbulent viscosities.

From this theoretical analysis, the transverse kinematic

condition [Eq. (18)] is modified as

te 	 n¼ ixþ 1� btð ÞM0

@

@x

� �

nw 	 n: (23)

When bv¼ 0, Eq. (23) recovers the classical Ingard–Myers

boundary condition, i.e., the continuity of normal acoustic

displacement, whereas bv¼ 1 yields to the continuity of

acoustic mass velocity.

The previous relation leads to a modified Ingard–Myers

boundary condition (MIMC) expressed as

@p

@y
¼

1

ixZw
ixþ 1�btð ÞM0

@

@x

� �

ixþM0

@

@x

� �

p; (24)

at y¼ 0 and 0< x<L/h.

The modified version of Ingard–Myers boundary condi-

tion [Eq. (24)] leads to also modify Eq. (22) as

ky tan ky
� �

¼
ix� i 1� btð ÞM0kð Þ ix� iM0kð Þ

ixZw
: (25)

The parameter bv is obtained by constraining the modified

Ingard–Myers boundary condition to give a unique effective

lined wall impedance Zeff, valid whatever the direction of

wave propagation.

FIG. 4. (Color online) Specific acoustic impedance of the lined wall Zw¼ZI

(dashed line) and Zw¼ZI (dashed-dotted line) calculated with Eqs. (22) and

(21). (a)M0¼ 0, (b)M0¼ 0.2.

FIG. 5. (Color online) Real and imaginary parts of bv
exp withM0¼ 0.2.
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Thus k0
þ and k0

� experimentally determined, are intro-

duced into Eq. (25)

X1 ¼
ix

Zeff
1� 1� btð ÞM1

kþ0
x

� �

X2 ¼
ix

Zeff
1� 1� btð ÞM2

k�0
x

� �

Y1;

Y2;

where X1 ¼ kþy0 tan kþy0

� 	

;X2 ¼ k�y0 tan k�y0

� 	

; Y1 ¼ 1�
M1k

þ
0

x
;

Y2 ¼ 1�
M2k

�
0

x
;M1 ¼ M0 and M2 ¼ �M0: k

þ
y0 and k�y0 are

determined with the help of Eq. (21)

After elimination of the unknown impedance Zeff in the

previous equations, one readily finds the factor bv given by

bt ¼
a2

a1
; (26)

with

a1 ¼
X1

X2

M0k
�
0

x
þ
Y1

Y2

M0k
þ
0

x
;

a2 ¼
X1

X2

1þ
M0k

�
0

x

� �

�
Y1

Y2
1�

M0k
þ
0

x

� �

:

The real and imaginary parts of the experimental parameter

bv, derived from Eq. (26) with the use of the experimental

wavenumbers in the lined duct test section, is denoted bv
exp

from now on. This latter is depicted in Fig. 5 for M0¼ 0.2.

It can be observed that the real part of the experimental

factor bv
exp is decreasing as the frequency increases. This

result fits with the theoretical analysis given by Aurégan et

al.13 The modified boundary condition tends to recover the

Ingard–Myers boundary condition in the high frequency

range.

The value of bv
exp is used in Eqs. (21) and (25) to obtain

the effective lined wall impedance denoted Zeff accounting

for the modified version of the Ingard–Myers boundary con-

dition. The resulting effective lined wall impedance Zeff is

presented in Fig. 6 conjointly with ZI and ZII.

IV. ANALYSIS OF RESULTS OBTAINED
FROM SCATTERING MATRICES

A second measurement, independent of the measure-

ment used in previous section, has been made. It consists in

the measurement of the scattering matrix.9–11 This measure-

ment is compared with the scattering matrix computed for a

uniform mean flow and Ingard–Myers condition either with

ZI or ZII. The multimodal method used to predict the scatter-

ing matrix is briefly outlined in the following text. The

reader is invited to refer to a previous paper for complete

details.9

A. The predicted scattering matrix using the
multimodal method

The problem of acoustic propagation in a 2D channel

with uniform flow is here described in term of displacement

potential, denoted /. Without incident vorticity, the dis-

placement potential obeys to the 2D convective wave

equation

D2/

Dt2
�r2/ ¼ 0 (27)

where D=Dt ¼ ixþM0 @=@xð Þ½ 
 is the convective

derivative.

At the rigid walls, the normal acoustic velocity vanishes.

This could be expressed in term of acoustic displacement

potential as

@/

@y
¼ 0: (28)

At the lined wall of the duct, the Ingard–Myers boundary

condition is

@/

@y
¼

1

ixZw
ixþM0

@

@x

� �2

/: (29)

Here the acoustic displacement potential is preferred to the

acoustic pressure because of the regularity of / near an ab-

rupt change in wall impedance contrary to the pressure

p ¼ �D2/=Dt2, which is then singular in this case.9 Using

the pressure variable, some specific mode-matching method

is needed at the rigid-soft wall interfaces.7 For the sake of

simplicity, the scattering matrix denoted S/ is first computed

with displacement potential formulation, and then the scat-

tering matrix S is computed in term of pressure variable

afterward.

FIG. 6. (Color online) Specific acoustic impedance of the lined wall Zw¼ZI

(dashed line) with bv¼ 0, Zw¼ZI (dashed-dotted line) with bv¼ 0 and

Zw¼Zeff (solid line) calculated with Eqs. (21) and (25) and bv¼bv
exp (see

Fig. 5) withM0¼ 0.2.

FIG. 7. Notations for amplitudes of the transmitted and reflected waves at

each interface between hard and lined walls.
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Using the multimodal approach as described in Ref. 9,

the scattering matrix relates the vector amplitude of the

incoming waves (denoted A1 and B4 in Fig. 7) to the vector

amplitude of the outcoming waves (denoted B1 and A4 in

Fig. 7) upstream and downstream of the lined duct test sec-

tion as

A4

B1

� �

¼
Tþ
/ R�

/

Rþ
/ T�

/

" #

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼ S/½ 


A1

B4

� �

: (30)

In this paper, we are interested only by the reflection and

transmission coefficients for the plane waves upstream and

downstream of the lined duct test section given by

Tþ
/ ¼

A4 1ð Þ

A1 1ð Þ
¼ S/ 1; 1ð Þ; (31a)

R�
/ ¼

A4 1ð Þ

B4 1ð Þ
¼ S/ 1; 2N þ 1ð Þ; (31b)

Rþ
/ ¼

B1 1ð Þ

A1 1ð Þ
¼ S/ 2N þ 1; 1ð Þ; (31c)

T�
/ ¼

B1 1ð Þ

B4 1ð Þ
¼ S/ 2N þ 1; 2N þ 1ð Þ; (31d)

where 2N total modes are considered (N upstream propagat-

ing modes and N downstream propagating modes). It should

be noted that the separation of the upstream and downstream

propagating modes has to be done with care (usually given

by the imaginary part of the wavenumbers) because some

hydrodynamic (or unstable) modes can exist.

Then the coefficients of the scattering matrix in term of

acoustic pressure for the plane waves are easily retrieved

from

T6 ¼ T6/ ; (32a)

R6 ¼ R6/
16M2

0

1�M2
0

� �

: (32b)

B. Comparison between the measured and the
predicted scattering matrix computed with the
conventional Ingard–Myers boundary condition

The multimodal scattering matrix with a number of 50

modes (N¼ 25 downstream modes and N¼ 25 upstream

modes), which is enough to ensure the convergence of the

scattering coefficients (with converged error <1%), is com-

puted according to the method briefly outlined in the previ-

ous section with a lined wall impedance value such that

Zw¼ZI and Zw¼ZII, respectively.

As one can expect in the no flow configuration, good

agreement is observed between the measured and the pre-

dicted scattering matrix [see Figs. 8(a) and 8(b)]. The differ-

ence occurring around 1.5 kHz on Tþj j is due to the

FIG. 9. (Color online) Comparison between the measured (plus markers)

and the predicted scattering matrix calculated at M0¼ 0.2 with the Ingard–

Myers boundary condition (bv¼ 0) for Zw¼ZI (dashed lines) and for

Zw¼ZII (dashed-dotted lines). (a) Magnitude of Tþ and T�. (b) Magnitude

of Rþ and R�.

FIG. 8. (Color online) Comparison between the measured (plus markers)

and the predicted scattering matrix calculated with the Ingard–Myers bound-

ary condition (bv¼ 0) for Zw¼ZI (dashed lines) and for Zw¼ZII (dashed-

dotted lines) atM0¼ 0. (a) Magnitude of Tþ. (b) Magnitude of Rþ.
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accuracy limit of the acquisition system (which nevertheless

permits measurement of an attenuation up to 70 dB).

T�j j and R�j j are intentionally not presented in Figs.

8(a) and 8(b) because the scattering matrix is reciprocal and

symmetric in the no flow case, i.e., Tþ � T� and Rþ � R�.

With flow (M0¼ 0.2), Figs. 9(a) and 9(b) show that a

large discrepancy occurs, in particular, on the predicted

transmission and reflection coefficients when using alterna-

tively ZI or ZII. More precisely, when ZI is used, there is a

good fit of the experimental Tþ and R� with the computed

values. On the other hand, using ZII leads to a good agree-

ment with T�. The reflection coefficient Rþ is accurately

predicted neither with ZI nor with ZII.

Thus neither ZI nor ZII can provide a good agreement with

both Tþ and T�. If the value Zeff is used instead (this approach

is not in coherence with the assumptions made for the calcula-

tion, i.e., the use of Ingard–Myers condition associated with a

uniform flow), there is not a good agreement on all the coeffi-

cients especially the reflection coefficients.

Again, those results show that the uniform flow assump-

tion associated with the use of Ingard–Myers condition is

inadequate to predict measurements for both downstream

and upstream results.

V. CONCLUSION

In this paper, two different experiments were performed

with a conventional perforated liner widely used in aeronaut-

ical applications. Both show the inadequacy of using a uni-

form mean flow assumption associated with the classical

Ingard–Myers boundary condition. From these experimental

results, the use of the Ingard–Myers condition in small ducts,

like the duct used in this study and more generally in the

ducts used in the impedance eduction techniques, seems to

be questionable.

The possibilities to this work are numerous. Experi-

ments have been carried out with only one acoustic liner and

for a unique flow rate. More experiments on different linings

with different flow boundary layer thicknesses are needed to

provide benchmark data concerning the bv factor. Further-

more, a mathematical analysis is also required concerning

the behavior of the MIMC in terms of stability, causality,

etc. Last, the introduction of the MIMC in the duct acoustic

models leads also to a modified mode-matching scheme that

has to be developed.
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APPENDIX

The parametric model [Eq. (5)] for the pressure field at

the upper hard wall in the lined part of the duct can be con-

sidered as a space state model defined by

Xmþ1 ¼ FXm; m ¼ 1; :::::;M (A1a)

pm ¼ 1Xm; (A1b)

where Xmþ1 and Xm are the vectors of state variables with

X1¼ {a1,…, aN}
T, F is a N�N matrix that contains the

poles sn on diagonal

F ¼

s1 0

.

.

.

0 sN

2

6
4

3

7
5; (A2)

and 1 is the identity row vector.

If the square matrix F admits as a characteristic

equation

C kð Þ ¼ det kI� Fj j ¼ c0 þ c1k
1 þ c2k

2 þ 	 	 	 þ cNk
N; (A3)

then the Cayley-Hamilton theorem states that F is itself root

of Eq. (A3) such that

C Fð Þ ¼ 0: (A4)

It follows that

c0Iþc1F
1 þ 	 	 	 þ cN�1F

N�1 þ cNF
N ¼ 0; (A5)

where c0¼ 1.

Equation (A1b) provides

Xm ¼ IXm

Xmþ1 ¼ F1Xm

Xmþ2 ¼ F2Xm

.

.

.

.

.

.

XmþN ¼ FNXm:

8

>>>>><

>>>>>:

(A6)

Multiplying the previous equations by c0, c1,…, cN�1, cN,

respectively, and then summing the resulting relations gives

XN

n¼0

cnXmþn ¼
XN

n¼0

cnF
n

 !

Xm: (A7)

From Eq. (A5) it can be seen that Eq. (A7) reduces to

XN

n¼0

cnXmþn ¼ 0; (A8)

which provides

XN

n¼1

cnXmþn ¼ �c0Xm: (A9)

Using Eq. (A1b) with Eq. (A9) leads to the equations of lin-

ear prediction

pm ¼ �
XN

n¼1

cnpmþn; (A10)

wherein c0¼ 1.

Dividing Eq. (A10) by pref, one finally obtains

Hlmlref ¼ �
XN

n¼1

cnHlmþnlref : (A11)

J. Acoust. Soc. Am., Vol. 130, No. 1, July 2011 Y. Renou and Y. Aurégan: Failure of Ingard–Myers boundary condition 59
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This is the recursive relation equivalent to Eq. (6) by replac-

ing N by K the prediction order chosen such that min

(M�K, K) � N.

The roots of Eq. (A3)

C zð Þ ¼ c0 þ c1z
1 þ c2z

2 þ 	 	 	 þ cN�1z
N�1 þ cNz

N

¼ 1þ
XN

n¼1

cnz
n; (A12)

provide the poles sn¼ 1/zn. Equation (A12) is similar to Eq.

(14), considering the summation with upper bound K instead

of N, without loss of generality.
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