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Failure of the random-phase-approximation correlation energy
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The random phase approximation (RPA) is thought to be a successful method; however, basic errors have been

found that have massive implications in the simplest molecular systems. The observed successes and failures

are rationalized by examining its performance against exact conditions on the energy for fractional charges and

fractional spins. Extremely simple tests reveal that the RPA method satisfies the constancy condition for fractional

spins that leads to correct dissociation of closed-shell molecules and no static correlation error (such as in H2

dissociation) but massively fails for dissociation of odd electron systems, with an enormous delocalization error

(such as H2
+ dissociation). Other methods related to the RPA, including the Hartree-Fock response (RPAE) or

range-separated RPA, can reduce this delocalization error but only at the cost of increasing the static correlation

error. None of the RPA methods have the discontinuous nature required to satisfy both exact conditions and the

full unified condition (e.g., dissociation of H2
+ and H2 at the same time), emphasizing the need to go beyond

differentiable energy functionals of the orbitals and eigenvalues.
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The random phase approximation (RPA) [1], formulated

within the adiabatic-connection fluctuation dissipation the-

orem, provides an appealing definition of the exchange-

correlation energy. It can also be simply viewed [2] from a

density-functional-theory (DFT) perspective as a functional

of all (occupied plus virtual) orbitals and eigenvalues in the

Kohn-Sham (KS) formalism. There has been much recent

attention given to the RPA method in molecules and solids

[3–14], highlighted by the work of Furche [3,4], who has

shown a practical way to calculate the correlation energy

in the KS context in a similar fashion to the wave-function

approach [15]. Much of the interest in the RPA method

comes from the improved description of two key aspects for

which many other density-functional approximations (DFAs)

encounter severe problems: One is the description of the weak

van der Waals interaction, as typified by molecules such as

He2 or Ne2; the other is the description of static correlation,

as seen in the stretching of H2 [11] and N2 [16]. Other efforts

to include unoccupied orbitals into the exchange-correlation

energy, such as the second-order Möller-Pleset (MP2) or

second-order Görling-Levy (GL2) methods, have not been

so successful with unphysical divergence for very simple

systems [17]. Also the idea of range separation has been

applied to the RPA correlation [7], and interesting functionals

including long-range RPA have been developed [5,6,12]. More

considerations have included different kernels [exact exchange

(EXX) versus Hartree-Fock (HF)] and orbitals (KS versus

HF) or the addition of single excitations [13,14], which may

improve the description of binding at equilibrium. The RPA

is thus believed to be a successful method. It has even been

pushed further to tackle big systems [18]. We reveal that this

view is incomplete because the RPA method suffers from

basic errors, which can be seen and studied in the simplest

cases (e.g., H2
+ dissociation) and have massive and important

implications for larger systems.

Consider the energy of two infinitely separated protons

with one and two electrons (i.e. stretched H2
+ and stretched

H2). This one problem (the energy of both of these systems)

captures an incredible challenge for physics that is not even

remotely described by any energy functional in DFT or other

methods (HF, MP2), and it is a simple way to phrase the

problem of strong correlation. It is thus key to analyze the

same energy expression with different numbers of particles,

highlighting the connection of distinct chemical species that

comes through the use of a single energy functional. A

perspective based on fractional numbers of electrons and

spins is invoked [19–22], for which exact constraints for

the total energy have been derived. The most general flat-

plane condition [22] highlights a basic feature of any energy

expression, which is its discontinuous derivative at an integer

number of electrons, in particular for fractional spin systems.

This is violated by all functionals in the literature and remains

a challenge.

Testing a method for the flat-plane condition can be done in

two ways. It either requires calculating the energy of infinitely

stretched systems of integer numbers of protons and electrons

with the specified symmetries, or more simply it requires the

generalization of the formalism to include occupation numbers

and fractional occupations at one dissociated subsystem. A

general framework for the extension of any theory explicitly

in terms of the one-electron density matrix and one-electron

Green function has been developed [23]. This development

enables the testing of approximations against exact conditions

in a remarkably simple and illuminating manner. It is sufficient

to perform calculations on a single hydrogen atom with

zero to two electrons. This gives the same information as

calculations on many stretched systems (including H2
+ and

H2) at the same time. This simple test for RPA reveals massive

errors, demanding radically new ideas beyond differentiable

functionals of the orbitals and eigenvalues.

Consider the matrix representation of the RPA problem [16]

(

A B

−B −A

)(

X

Y

)

= ω

(

X

Y

)

, (1)
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where the matrices A,B,X,Y are of dimension noccnvirt ×
noccnvirt, with nocc and nvirt being the numbers of occupied

and virtual orbitals, respectively, and ω is the noccnvirt vector

of excitation energies. The RPA is given by the solution of the

above equations in the KS orbital basis with

Aia,jb = (ǫa − ǫi)δia,jb + 〈ib|aj 〉, (2)

Bia,jb = 〈ij |ab〉, (3)

where ǫ are KS eigenvalues, i,j are occupied orbitals, a,b

are virtual orbitals, and 〈ij |ab〉 =
∫ ∫ φi (x)φa (x)φj (x′)φb(x′)

|r−r′| dxdx′,

where x is a combined space and spin coordinate. This corre-

sponds to a Hartree-only density response with no exchange-

correlation contribution. RPAE (also called RPA + X or full

RPA) includes a Hartree-Fock response that requires antisym-

metrized integrals in Eqs. (2) and (3) (〈ij ||ab〉 = 〈ij |ab〉 −
〈ij |ba〉) using Hartree-Fock orbitals and eigenvalues.

To extend the method to fractional occupation of the

orbitals, the occupation numbers {np} can be included in the

basic matrices using an extension of the fluctuation-dissipation

theorem to ensemble Green functions, as proven in Ref. [23]:

Aia,jb = (ǫa − ǫi)δia,jb

+〈ib|aj 〉
√

ninj (1 − na)(1 − nb), (4)

Bia,jb = 〈ij |ab〉
√

ninj (1 − na)(1 − nb). (5)

The simple rule of generalization to fractional occupations is

scaling the orbitals according to their occupation numbers:

φi(x) → √
niφi(x) for the occupied orbitals and φa(x) →√

1 − naφa(x) for the virtual ones. Also partially occupied

orbitals are considered both occupied and virtual, such that

now i,j run over nocc + nfrac; a,b run over nfrac + nvirt;

and the dimensionality of the matrices extends to (nocc +
nfrac)(nvirt + nfrac) × (nocc + nfrac)(nvirt + nfrac) for nfrac, the

number of fractionally occupied orbitals. This is consistent

with the perspective of fractional charges and spins resulting

from dissociation, because at the dissociation limit the highest

occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) both become fractional. This is a

correct prescription for extending functionals of orbitals to

fractional occupations. It gives a correct extension for all

the orbital functionals with occupied orbitals [generalized

gradient approximation (GGA), HF] but also for MP2 [24]

and other many-body theories based on the one-electron Green

function [23].

The RPA correlation energy is given by [3,23]

ERPA
c =

1

2

∑

ia

(ωia − Aia,ia) (6)

or [23]

ERPAE
c =

1

4

∑

ia

(ωia − Aia,ia) (7)

with no additional (frequency or coupling constant) inte-

grations and fully expressed in terms of KS quantities. It

should be noted that it is also possible to calculate the

derivatives ∂E
∂N

by taking derivatives with respect to the frontier

orbital occupation number, ∂E
∂N

= ∂ERPA
c

∂nf
, to get the band gap
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FIG. 1. (Color online) The closed-shell dissociation of H2 com-

pared with the fractional-spin H atom, H[nα,nβ ], nα = 1

2
+ γ,nβ =

1

2
− γ . All calculations, except Fig. 6, use a cc-pVDZ basis set.

as previously done for MP2 [24] and also discussed in

Ref. [23].

We have implemented the above equations in a modified

version of CADPAC [25]. We do this by simply calculating the

whole A and B matrices and then diagonalizing according to

Eq. (1) to give the excitation energies. This is computed on

top of a Perdew-Burke-Ernzerhof (PBE) calculation using the

fractional PBE KS orbitals and eigenvalues (HF in the case

of RPAE) to give the total RPA exchange-correlation energy

Exc = EEXX
x + ERPA

c . This functional could be also treated in

a variational fashion using the optimized effective potential

method (or its generalized version to accommodate nonlocal

potentials in the case of RPAE).

One of the promising aspects of the RPA method is that it

greatly improves upon DFAs for the closed-shell dissociation

of H2. This is illustrated in Fig. 1, where the RPA energy is

compared with the local density approximation (LDA), the

HF method, and the Becke three-parameter Lee-Yang-Parr

(B3LYP) approximation [26]. The RPA method predicts the

correct dissociation limit, which clearly correlates with the

much improved behavior of the hydrogen atom with fractional

spins, H[ 1
2
, 1

2
]. Remarkably, the RPA method satisfies the

constancy condition, and all fractional spin configurations are

degenerate in energy and equal to that of the pure-spin H atom

with [1,0]. It is possible to study in more detail the energy of

the hydrogen atom with general spin occupations, H[nα,nβ], as

is shown in Fig. 2. The exact energy should be two flat planes

that intersect with a line of discontinuity at nα + nβ = 1. We

have shown previously [22] that differentiable functionals of

the occupied orbitals, such as LDA, GGA, HF, and other hybrid

functionals, are unable to qualitatively give this discontinuous

behavior of the E[nα,nβ ] surface. Other methods involving

virtual orbitals such as MP2 or its degenerate corrected version

also fail [24]. A simple test on the hydrogen atom shows

that the RPA method also qualitatively fails and misses the

discontinuity. Therefore, it is expected to fail for problems

where this discontinuity is key, such as the band gap of strongly

correlated systems.

Very importantly, Fig. 2 reveals another real problem of

RPA for the treatment of fractional charges, with an extremely

042507-2



FAILURE OF THE RANDOM-PHASE-APPROXIMATION . . . PHYSICAL REVIEW A 85, 042507 (2012)

0  0.2  0.4  0.6  0.8 1 0
 0.2

 0.4
 0.6

 0.8
1

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

E
ne

rg
y 

(a
.u

.)

RPA

nα

nβ

FIG. 2. (Color online) The energy of H[nα,nβ ] for 0 � nα � 1

and 0 � nβ � 1.

convex behavior, much more so than the LDA or other DFAs.

To emphasize this erroneous behavior, Fig. 3 shows the

dissociation curve of stretched H2
+. The result is astonishing: a

simple one-electron system where the RPA behaves extremely

badly and gives massive correlation energies. Another simple

and paradigmatic case, the dissociation of He2
+, is considered

in Fig. 4. Again the RPA fails dramatically, as shown for

the He atom with fractional charges, leading to unphysically

low correlation energies that affect not only the dissociation

but also the bonding region. Again this error may not be

obvious from the underlying RPA equation, but it is revealed

by extremely simple tests which highlight many important

problems of the method. It is now clear that the RPA method

suffers from large delocalization error, which might be due to

the lack of an underlying wave function and the poor quality of

the Hartree-only response in the RPA. This error is pervasive

and can be seen in calculations of many different systems and

properties. Thus the positive aspect of the RPA method in

the improved description of van der Waals systems such as

He2 gets clouded by the spectacular failure to describe related

systems such as He2
+.

This analysis may be applied to any method to gain

deeper insight into its behavior. For example, RPAE does

not suffer from a massive delocalization error (notice the
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FIG. 3. (Color online) The dissociation of H2
+ compared with

the fractionally charged H atom, nα = δ,nβ = 0.
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FIG. 4. (Color online) The dissociation of He2
+ compared with

the fractionally charged He atom, nα,1 = 1,nα,2 = 1; nβ,1 = 1,

nβ,2 = δ.

improvement over RPA in Figs. 3 and 4) but correspondingly it

no longer satisfies the constancy condition, performing worse

for fractional spins and hence H2 dissociation (Fig. 1). This can

be clearly seen in the RPAE flat plane of the H atom plotted in

Fig. 5, with a much improved description of fractional charges

but yet massively violating the constancy condition and lacking

the discontinuous behavior. This highlights that it is extremely

difficult to improve both aspects at the same time, and in a

manner that leads to the flat-plane behavior, for any theory

that has a smooth dependence on the occupation numbers.

There has also been much recent interest in including range

separation in the RPA ingredients. Following the work of

Janesko et al. [5] we examine in Fig. 6 the range-separated

RPA (rsRPA) functional

ErsRPA
xc = ESR,LDA

x + ELR,HF
x + EVWN

c + ELR,RPA
c , (8)

where a value of μ = 1.2 a.u. is used for the range separation

parameter and the ESR,LDA
x is from Iikura et al. [27]. The

ELR,RPA
c is given by the RPA correlation energy with the

long-range integrals in Eqs. (2) and (3). This energy is

evaluated using PBE orbitals and eigenvalues. Figure 6 clearly

illustrates that the effect of range separation is in general to
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FIG. 5. (Color online) The same as Fig. 2 for RPAE.
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FIG. 6. (Color online) The same as Fig. 2 except for a range-

separated RPA functional, Eq. (8), calculated with a 6-31G basis set.

move the surface up, in between RPA and RPAE, such that

again the error for fractional charges is decreased, but the good

performance for fractional spin deteriorates correspondingly

and the constancy condition is no longer fulfilled. There are

many other possible methods related to the RPA method

[13,14] and the fluctuation-dissipation theorem, such as chang-

ing the eigenvalues (KS versus generalized KS) and the kernel

(going from RPA to RPAE) [13]. We would recommend that

while developing such methods at least stretched H2
+ and H2

are considered, and if the extension to fractional occupations

is possible, the flat-plane behavior of Fig. 2 is investigated.

A dramatic failure of the RPA method is seen in the stretch-

ing of simple systems, such as H2
+, which is understood by

considering the extension of the RPA to fractional occupations.

Although RPA correlation is a complicated orbital-dependent

functional, it still does not have the discontinuous behavior

needed to satisfy relevant exact conditions for fractional charge

and fractional spin. It is found that the RPA has a small

static correlation error but a massive delocalization error. This

affects many systems throughout chemistry and physics, from

reaction barriers to charge transfer complexes. In fact, the lack

of a discontinuous nature means that a reduction of the static

correlation error leads to an increased delocalization error, and

vice versa. For example with range separation the fractional

charge behavior improves (stretched H2
+) but the fractional

spin behavior (stretched H2) worsens. The same holds for other

proposed extensions or modifications of the method. These

basic failures of the RPA method highlight the importance of

the exact conditions for the energy to be satisfied by methods

in and outside DFT, and furthermore the required complexity

is beyond differentiable functionals of the occupied orbitals

and eigenvalues.
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