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Abstract

Frequent failures are becoming a serious concern to the
community of high-end computing, especially when the ap-
plications and the underlying systems rapidly grow in size
and complexity. In order to develop effective fault-tolerant
strategies, there is a critical need to predict failure events.
To this end, we have collected detailed event logs from IBM
BlueGene/L, which has 128K processors, and is currently
the fastest supercomputer in the world. In this study, we
first show how the event records can be converted into a
data set that is appropriate for running classification tech-
niques. Then we apply classifiers on the data, including
RIPPER (a rule-based classifier), Support Vector Machines
(SVMs), a traditional Nearest Neighbor method, and a cus-
tomized Nearest Neighbor method. We show that the cus-
tomized nearest neighbor approach can outperform RIP-
PER and SVMs in terms of both coverage and precision.
The results suggest that the customized nearest neighbor
approach can be used to alleviate the impact of failures.

1 Introduction

The large processing and storage demands of meta-scale
scientific and engineering applications have led to the de-
velopment and deployment of IBM BlueGene/L. As ap-
plications and the underlying platforms scale to this level,
failures are becoming a serious concern [4, 10], as they
can have severe impact on the system performance and
operational costs. However, preventing failures from oc-
curring is very challenging, if at all possible. Our earlier
study [12] pointed out that the capability of predicting the
time/location of the next failure, though not perfect, can
considerably boost the benefits of runtime techniques such
as job checkpointing or scheduling [12, 6].

Failure prediction is a challenging problem, mainly due
to the fact that the number of fatal events (in a level of hun-
dreds) is far exceeded by the number of nonfatal events (in
a level of millions). In the field of data mining and machine
learning, this problem is known as rare class analysis prob-
lem, which is believed to be challenging. Another impor-
tant obstacle is the lack of real-world data and consequently
the lack of the thorough understanding of their properties.
Despite these challenges, there have been several attempts
[11, 8, 9] to derive realistic failure prediction models. While
these studies have demonstrated reasonable prediction accu-
racy, they failed to prove that their prediction methodology
is of much practical use. For instance, some focus on long
term prediction based on seasonal system behavior, without
pinpointing the occurrence times of the failures [11]. As an-
other example, some studies tried to predict whether there
will be a failure in the next 30 seconds [9], and within such
a short notice, no remedial measures can be taken, espe-
cially for large-scale systems. To address these issues, in
this study, we derive our prediction models from the failure
logs collected from IBM BlueGene/L over a period of 142
days. To emphasize both prediction accuracy and prediction
utility, we partition the time into fixed windows (each win-
dow is a few hours), and attempt to predict whether there
will be a fatal event in every window based on the event
patterns in the preceding windows.

Our prediction effort consists of two main parts. First,
we need to extract a set of features that can accurately cap-
ture the characteristics of failures. After establishing fea-
tures, we exploit four classifiers including RIPPER (a rule-
based classifier), Support Vector Machines (SVMs), a tradi-
tional Nearest Neighbor, and a customized Nearest Neigh-
bor for predicting failure events. Our evaluation results
show that the customized nearest neighbor predictor can
substantially outperform them in both coverage and preci-
sion. We also discuss the feasibility of employ the nearest
neighbor prediction to improve the runtime fault-tolerance
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of IBM BlueGene/L.
The rest of the paper is organized as follows. In Sec-

tion 2, we provide details on the BlueGene/L failure data
sets. Our overall prediction methodology and feature selec-
tion algorithm are presented in Section 3. Next, we discuss
the details of the three classifiers in Section 4, and the de-
tailed evaluation results in Section 5. Finally, we present
the concluding remarks in Section 7.

2 Overview of BlueGene/L and the RAS
Event Logs

BlueGene/L has 128K PowerPC 440 700MHz proces-
sors, which are organized into 64 racks. Each rack consists
of 2 midplanes, and a midplane (with 1024 processors) is
the granularity of job allocation. A midplane contains 16
node cards (which houses the compute chips), 4 I/O cards
(which houses the I/O chips), and 24 midplane switches
(through which different midplanes connect). RAS events
are logged through the Machine Monitoring and Control
System (CMCS), and finally stored in a DB2 database en-
gine. The logging granularity is less than 1 millisecond.
More detailed descriptions of the BlueGene/L hardware and
the logging mechanism can be found in [4].

Every RAS event that is recorded by IBM BlueGene/L
CMCS has the following relevant attributes: (1) SEVER-
ITY of the event, which can be one of the following levels
- INFO, WARNING, SEVERE, ERROR, FATAL, or FAIL-
URE - in the increasing order of severity (our primary focus
in this study is consequently on predicting the occurrence
of FATAL and FAILURE events); (2) EVENT TIME, which
is the time stamp associated with that event; (3) JOB ID,
which denotes the job that detects this event; (4) LOCA-
TION of the event; and (5) ENTRY DATA, which gives a
short description of the event. More detailed information
can be found in [4].

In this study, we collected RAS event logs from Blue-
Gene/L in the period from August 2, 2005 to December
21, 2005. Before we develop failure prediction models, we
first need to preprocess the RAS event logs, which involves
eliminating the redundancy of the event logs using the adap-
tive semantic filter proposed in [5].

3 Problem Definition and Methodology
Overview

Figure 1 illustrates the basic idea of our prediction
methodology. As shown in the figure, we seek to predict
whether there will be fatal events in the next ∆ interval,
which we call a prediction window, based on the events in
the observation period (with duration T = 4∆ in this exam-
ple), which usually consists of several windows. Though we
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Figure 1. The illustration of our prediction
methodology. We use ∆ to denote the dura-
tion of a time window.

consider the event characteristics during the entire observa-
tion period, we consider events in the current window (the
one immediately preceding the prediction window) more
important. In this paper, we attempt to forecast whether
fatal events will occur in the prediction window; we clas-
sify the prediction window as FATAL if fatal events are pre-
dicted to occur during the period, and NONFATAL if no
fatal event is predicted.

In order to forecast whether the next time window will
encounter fatal events, we identify the following features
from those events that occurred during the observation pe-
riod:

1. The first group of features represent the number of
events (at all 6 severity levels) that occurred during
the current time window. Specifically, we have In-
foNum, WarningNum, SvrNum, ErrNum, FlrNum, and
FatNum. For example, FatNum is used to signify how
many fatal events occurred during the current time
window. In total, we have 6 features in this group.

2. The second group of features represent the num-
ber of events (at all 6 severity levels) accumulated
over the entire observation period. Specifically, we
have AcmInfoNum, AcmWarningNum, AcmSvrNum,
AcmErrNum, AcmFlrNum, and AcmFatNum. In total,
we have 6 features in this group.

3. The third group of features describe how the events (at
all 6 severity levels) are distributed over the observa-
tion period. To this end, we break down a time window
(with duration ∆) into a number of smaller sampling
intervals (with duration δ), and count the number of
events in each sampling interval over the entire obser-
vation period. For instance, if we have ∆ = 1 hour,
δ = 10 minutes, and the observation period of 5∆,
then we will have 30 sampling intervals in total, and
therefore, 30 samples for each severity level. Each of
these features is named to include the following three
parts: (1) its severity level, (2) the keyword “Sample ”,
and (3) the index of the corresponding sampling inter-
val. For example, FatalSample 23 signifies the number
of FATAL events in the 23rd sampling interval. In ad-
dition to the individual sample values, we also report

576576576584584



the mean and variance of the samples for each sever-
ity level, and name these features as InfoSampleMean,
InfoSampleVariance, etc. As a result, the total number
of features we have in this group is 6(k∆

δ + 2), where
k∆ is the observation period duration.

4. The fourth group of features are used to characterize
the inter-failure times. There is only one feature that
belongs to this group, i.e. the elapsed intervals since
last FATAL interval, which we call ItvNum2Fatal.

5. The last group of features describe how many times
each entry data phrase occurred during the current pe-
riod. Entry data phrases are entry data keywords af-
ter we take out numbers, punctuation, file names, di-
rectory names, etc. from the entry data [5]. In our
study, there are totally 529 phrases from 1,792,598
RAS events. Therefore, we have 529 features in this
group, each corresponding to one phrase, and these
features are named in the format of Phrase 245, where
245 is the phrase ID.

After we establish the above raw feature sets, we next
need to preprocess these features to make them suitable for
the later prediction study. Feature preprocessing consists of
two steps: first normalizing the numeric feature values and
then calculating each feature’s significance major. For a nu-
meric feature value v that belongs to feature V , we calculate
the normalized value as follows:

v′ =
v −median(V )

std(V )
. (1)

After normalizing each feature value, we next calculate fea-
ture V ’s significance major SIM(V ) as follows:

SIM(V ) = |mean(VF )−mean(VNF )
std(V )

|. (2)

Here, we partition all the values of feature V into two
parts: VF containing the feature values of the FATAL class
(i.e. these features collected from an observation period fol-
lowed by a FATAL window), and VNF containing the fea-
ture values of the NONFATAL class (i.e. these features col-
lected from an observation period followed by a NONFA-
TAL window). A feature will have a high significance major
if its values differ significantly between FATAL records and
NONFATAL records. In the prediction study, we sometimes
only use features whose significance index values are above
a certain threshold (TSIM ).

4 Prediction Techniques

In this study, we exploited three well-known prediction
techniques: RIPPER (a rule-based classifier), Support Vec-
tor Machines (SVMs) [3], and Nearest Neighbor based clas-
sification for predicting failure events.

4.1 RIPPER

As a rule-based classifier, RIPPER has been shown able
to effectively predict rare classes [2]. When using RIPPER,
we first feed the feature values as described in Section 3 to
RIPPER as input, and RIPPER will output a set of classifi-
cation rules. Some example rules are provided below:

1. FATAL :- Phrase 216>=97, InfoSample 55<=22
(46/9)

2. FATAL :- Phrase 213>=3, InfoNum<=1669, InfoS-
ample 98<=1 (37/20)

3. FATAL :- InfoSample 105>=34 (12/6)

We note that the numbers included in the parenthesis at
the end of each rule denote the number of hits and misses
caused by that rule. Finally, rules induced from the training
data will be applied on test data to make prediction.

4.2 Support Vector Machines

The second classifier we employed in this study is Sup-
port Vector Machines (SVMs), which are a set of general-
ized linear classifiers. The primary advantage of SVMs is
that, after the training phase is completed, the actual predic-
tion can be fast. Also, in many real-word cases [1], SVMs
have best classification performance. A drawback of SVMs
is that the training cost can be expensive if there are a large
number of training samples. For example, in our study, it
usually took 10 hours to run the training data that contain
2890 records each with 986 features. In this study, we chose
LIBSVM [1] with the Radial Basis Function (RBF) kernel
and the five-fold CV.

4.3 A Bi-Modal Nearest Neighbor Predic-
tor

In addition to using off-the-shelf prediction tools, we
also designed a nearest neighbor predictor.

For our nearest-neighbor prediction, we partition the
data sets into three parts: anchor data, training data and
test data. From the anchor data, we identify all the FATAL
intervals in which at least one FATAL event occurred, and
compute the feature values in the corresponding (preced-
ing) observation periods. These feature values serve as a
base for distance computation, and are organized into a two-
dimensional matrix where rows correspond to each FATAL
interval and columns correspond to each feature. We call
this matrix the anchor matrix, and each row of this matrix a
feature vector.

After establishing the anchor matrix from the anchor
data, we next process all the FATAL features from the train-
ing data, and calculate the nearest distance between each
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(a) FATAL distance map (b) NONFATAL distance map

Figure 2. The distance maps with ∆ = 12
hours, T = 36 hours and no sampling.

FATAL feature vector and all the rows in the anchor ma-
trix. The resulting distance values form a FATAL nearest
distance map. Similarly, we can also prepare the NONFA-
TAL feature vectors and thus the NONFATAL nearest dis-
tance map. Examining these two maps carefully, we can
characterize the properties of the nearest neighbor distribu-
tions for both FATAL and NONFATAL classes, and based
on these properties (which hopefully are distinct), we can
make prediction on the test data.

d1/d2 fF F fF N fNF fNN p (%) r (%) F (%)
89.8/91.4 13 15 7 10 46.43 65.0 54.17
89.9/91.4 15 17 5 8 46.88 75.0 57.69
90.0/91.4 16 17 4 8 48.48 80.0 60.38
90.1/91.4 16 18 4 7 47.06 80.0 59.26
90.0/91.5 15 16 5 9 48.39 75 58.82

Table 1. Prediction results using different
(d1, d2) values on the training data in Figure 2.

In order to understand the mechanism of the nearest
neighbor predictor, let us look at an example first. Fig-
ures 2 (a) and (b) show the FATAL and NONFATAL
nearest neighbor maps when we have ∆ = 12 hours,
T = 36 hours, and no sampling. In both figures, we sort
all the distances and plot them in the increasing order.
From Figure 2, our first observation is that the distance
distributions from both classes look rather alike. For
example, in both classes, most of the distances are between
89.5 and 94, i.e. 16 out of 17 FATAL distances in this
range, and 23 out of 27 NONFATAL distances in this
range. This similarity makes it impossible to adopt a single
threshold to differentiate these two classes. Fortunately,
after examining the figures more carefully, we find a
sparse region in FATAL distance distribution (Figure 2(a)),
i.e. [90, 91], and meanwhile, many NONFATAL dis-
tances are within this range. This observation suggests
that we can employ two distance thresholds (d1 and d2

with d1 < d2), and adopt the following prediction rule:
rnnp : ((d1 > distance) ∨ (distance > d2)) −→ FATAL.

We also observed the above trend in other parameter set-

tings, and therefore, our nearest neighbor predictor adopts
this simple prediction rule across all the settings. Since
this nearest neighbor predictor utilizes two distance thresh-
olds, we refer to it as bi-modal nearest neighbor predictor
(BMNN, in short). Traditional nearest neighbor prediction,
on the other hand, only uses the lower bound threshold, and
it classifies an event as FATAL as long as the nearest dis-
tance is smaller than the threshold.

The performance of BMNN is largely dependent on the
values of d1 and d2. Here, we use the training data to learn
the appropriate values for these two thresholds; for a given
setting, we vary their values, and choose the pair which
leads to the best prediction results for the training data.
Later on, we apply the same threshold values learnt from
the training data to the test data. For the example shown
in Figure 2, Table 1 summarizes the prediction results with
a range of (d1, d2) values. Based on the results shown in
Table 1, we choose d1 = 90.0 and d2 = 91.4, as they lead
to the highest F measure (60%), and more importantly, the
highest recall value (80%) (refer to 5.1 for the definitions
of F measure and recall).

5 Experimental Results

In this study, we choose to horizontally (along the time
axis) partition the event logs into large consecutive blocks.
For RIPPER and SVMs, we partition the event logs into two
consecutive parts which are training and test data respec-
tively, while for BMNN, we partition the event logs into
three parts.

In order to conduct a comprehensive evaluation of the
predictors, we need to run them against multiple test cases.
In this study, we constructed 15 test cases, T (1), . . ., T (15).
Our event log consists of failure events collected over a 20-
week period (In fact, the log duration is 20 weeks and 2
days, and we merged the last two days into the last week),
and our test data always contain events from a three-week
period. In the 15 test cases, the test data start from week
18, 17, . . . , and week 4 respectively. As far as RIPPER and
SVMs are concerned, the data from the remaining 17 weeks
are regarded as training data. In the case of BMNN, we need
to further split these 17-week data into two parts, events
from the immediately preceding 3 weeks are the training
data, and the remaining 14-week data are the anchor data.
Please note that test data are the same for all the classifiers
across the 15 test cases.

5.1 Evaluation Methodology

Since detecting FATAL intervals is more important than
detecting NONFATAL intervals, we use recall and precision
to measure the effectiveness of our predictors. Using the
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confusion matrix as shown in Table 2, we define these two
metrics as below.

Precision, p =
fFF

fFF + fNF
(3)

Recall, r =
fFF

fFF + fFN
(4)

A predictor with a high precision commits fewer false pos-
itive errors, while a predictor with a high recall commits
fewer false negative errors. Finally, we also use a combined
metric, F measure.

F measure =
2rp

r + p
=

2fFF

2fFF + fNF + fFN
(5)

A high F measure ensures that both precision and recall
are reasonably high.

5.2 Comparison of the Predictors

In the first set of experiments, we compare the perfor-
mance of the following predictors: RIPPER, SVM, BMNN,
and the traditional nearest neighbor predictor. We have run
the four predictors over all 15 test cases and we report the
average F measure (across all 15 test cases), the average
precision, and the average recall in Figure 3.

Regardless of which predictor we use, they all take fea-
ture data derived from raw logs as input. Nonetheless,
we can render different versions of feature data by tuning
several parameters, i.e. the significance major threshold
Tsim, the sampling period δ, and the observation period T .
We found that both RIPPER and SVMs prefer raw feature
data without applying any significance major filtering, i.e.
Tsim = 0. On the other hand, we had Tsim = 2.5 for near-
est neighbor predictors. Incidentally, the same value was
also recommended in [7]. In the experiments, we tuned the
parameters for each predictor to report the best results.

From the results in Figure 3, our observation is that
the prediction window size ∆ has a substantial impact on
the prediction accuracy. With ∆ = 12 hours, RIPPER,
SVM, and BMNN can perform reasonably well: F measure
higher than 60%, precision higher than 50%, and recall
higher than 70%. As prediction window becomes smaller,
the prediction difficulty rapidly increases, leading to much
degraded performance, especially for RIPPER and SVMs.

Predicted Class
FATAL NONFATAL

Actual FATAL fFF (TP) fFN (FN)
Class NONFATAL fNF (FP) fNN (TN)

Table 2. The confusion matrix

The F measure for these two predictors is less than 5%
when ∆ is 4 hours or shorter (0 in some cases), which is
hardly of any practical use for our application. The tradi-
tional nearest neighbor also fares poorly. Fortunately, our
nearest neighbor predictor, BMNN, managed to sustain a
much slower degradation. Even with ∆ = 1 hour, its
F measure is above 20%, and its recall is as high as 30%.
Figure 3 shows that our nearest neighbor classifier greatly
outperforms the other classifiers, especially for smaller pre-
diction window sizes. The main lesson learnt from this
study is that a prediction window from 12 to 6 hours bal-
ances the prediction accuracy (above 50%) and prediction
utility the best.

6 Related Work

In this section, we broadly classify the related work in
two categories: (1) failure prediction in computer systems,
and (2) rare class classification.

Predicting failures in computer systems has received
some attention in the past. However, most of the predic-
tion methods focused only on prediction accuracy, but not
the usability of the prediction. For example, Vilalta et
al. [11] presented both long-term failure prediction based
on seasonal trends and short-term failure prediction based
on events observed in the system. While these two methods
can provide insights, they cannot help runtime fault toler-
ance because the long term prediction does not tell when the
failure will occur while the short term prediction only pre-
dicts failures a few minutes before their occurrence. Simi-
larly, prediction studies in [8] and [9] suffer from the same
insufficiency.

At the same time, the data mining community has wit-
nessed a number of studies on rare class analysis. For in-
stance, Joshi et al. [3] discussed the limitations of boosting
algorithms for rare class modeling and proposed PNrule, a
two-phase rule induction algorithm, to carefully handle the
rare class cases [2]. Other algorithms developed for min-
ing rare classes include SMOTE, RIPPER, etc. However,
we note that, these research efforts merely focused on the
algorithm-level improvement of the existing classifiers for
rare class analysis on generic data, but not on event log
data in a specific application domain. Indeed, as previously
described, IBM BlueGene/L event log data have uniquely
challenging characteristics which thus requires domain ex-
pert knowledge to transform data into a form that is ap-
propriate for running off-the-shelf classifiers. More impor-
tantly, we would like to point out that due to these character-
istics, off-the-shelf tools fail to classify BlueGene/L event
data.
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Figure 3. (a) The average F measure, (b) the average precision, and (c) the average recall with vary-
ing prediction window size.

7 Concluding Remarks

As failures become more prevalent in large-scale high-
end computing systems, the ability to predict failures is be-
coming critical to ensure graceful operation in the presence
of failures. A good failure prediction model should not only
focus on its accuracy, but also focus on how easily the pre-
dicted results can be translated to better fault tolerance. To
address this need, we collected event logs over an exten-
sive period from IBM BlueGene/L, and developed a predic-
tion model based on the real failure data. Our prediction
methodology involves first partitioning the time into fixed
intervals, and then trying to forecast whether there will be
failure events in each interval based on the event character-
istics of the preceding intervals.

Our prediction effort addressed two main challenges:
feature selection and classification. We carefully derived
a set of features from the event logs. We then designed
a customized nearest neighbor classifier, and compared its
performance with standard classification tools such as RIP-
PER and SVMs, as well as with the traditional nearest
neighbor based approach. Our comprehensive evaluation
demonstrated that our nearest neighbor predictor greatly
outperforms the other two, leading to an F measure of 70%
and 50% for a 12-hour and 6-hour prediction window size.
These results indicate that it is promising to use the nearest
neighbor predictor to improve system fault-tolerance.
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