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Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial
compression. Bymonitoring the shifts of the 2DRaman phonons of rectangular flakes of various sizes under
load, the critical strain to failurewas determined. Prior to loading carewas taken for the examined area of the
flake to be free of residual stresses. The critical strain values for first failure were found to be independent of
flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler
mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer
constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the
order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/
PMMA oligomers and a reasonable agreement was obtained.

G
raphene consists of a two-dimensional (2D) sheet of covalently bonded carbon and forms the basis of
both 1D carbon nanotubes, 3D graphite but also of important commercial products, such as, polycrys-
talline carbon (graphite) fibres. As a single defect-freemolecule, graphene is predicted to have an intrinsic

tensile strength higher than any other known material1 and tensile stiffness similar to values measured for
graphite. Indeed recent experiments2 have confirmed the extreme stiffness of graphene of 1 TPa and provided
an indication of the breaking strength of graphene of 42 N m21 (or 130 GPa assuming graphene thickness of
0.335 nm). These experiments involved the simple bending of a tiny flake by an indenter on an AFM set-up and
the force-displacement response was approximated by considering graphene as a clamped circular membrane
made by an isotropic material. To date there are no reported data, as yet, on pure axial stretching of graphene
monolayers to fracture. Furthermore there is still an uncertainty concerning the ultimate tensile strain to failure
which expected to be higher than even 30%making graphene a very ductilematerial indeed in spite of its very high
stiffness.

Previous studies by us and others have reported the effect of applied strain on the Raman spectrum (G and 2D
bands) under compression and tension loading histories3,4. For axial tension the brittle beam systems used to
impart deformation to the graphene flakes are not suitable for inducing graphene tensile failure (assumed to be as
high as 25–30%2). Other systems employed such as PDMS elastomers5, suffer from poor bonding between
graphene and matrix and therefore interfacial slippage initiates at relatively low strains and that hampers the
strain transfer efficiency. The situation however in axial compression is different as the material itself fails at low
strains due to its infinitesimally small thickness. Initial results reported earlier on a limited size range of only 3
graphene flakes3, indicated that the critical strain to failure depends on the Euler geometric term6 but at an
effective (graphene) bending stiffness that was orders of magnitude higher than the assumed value in air.
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In this present study we extend the work reported previously by
examining a wide range of graphene sizes (length-to-width ratio)
embedded in the SU8/PMMA matrix system. Special attention is
given to the efficient transfer of stress from the polymer to the inclu-
sion (monolayer graphene) as assessed by the value of Raman wave-
number shift per % of applied axial strain. For the interpretation of
the acquired data, we consider the general problem of buckling of an
embedded plate for which the ‘‘bonding’’ between the flake and the
surrounding medium is modelled by linear elastic springs that act
only in the z-direction, perpendicular to the graphene plane
(Winkler’s approach). A constitutive equation yielding the critical
strain to compression failure as a function of the graphene elastic
constants, the dimensions of the graphene flakes and the Winkler’s
modulus is derived. The same methodology has been used earlier in
themodelling of instability problems in the case of embedded carbon
nanotubes7–8. Moreover, the Winkler’s approach has also been used
to study vibrations9, buckling10 and wave propagation11 of embedded
single layer graphene sheets, the vibrational12 and the wave propaga-
tion13 characteristics of embedded double and multi- layer14 gra-
phene sheets using nonlocal elasticity theory.
From the full range of experimental results the model predicts a

universal strain value for failure, for all reported flakes regardless of
their specific dimensions. This is because the critical strain to failure
in compression is mainly affected by the presence of polymer and the
magnitude of graphene-polymer interaction (interface) which is
expressed by the Winkler modulus. Thus, it is concluded that the
graphene mode of failure in the embedded state differs dramatically
from that observed in the air. Hence, significant differences in the
values of the half-waves determined for the two media (air and poly-
mer) are expected in the case of graphene flakes.
Finally, in order to obtain an independent value for the Winkler

modulus we have performed calculations of the interaction between
monolayer graphene and PMMA within the framework of density
functional theory (DFT). These calculations can be separated in two
parts, (a) geometry optimisations of isotactic PMMA (i-PMMA) and
syndiotactic (s-PMMA) helixes with a length of two rings each, and
(b) rigid potential energy surface (PES) scans of various relative
configurations of a PMMA monomer and coronene. The optimised
structures are in good agreement with the experimental findings of
Kumaki15 et al. The structural details of the optimized structures were
used to determine the PMMA–coronene relative configurations for
the PES scans. The PES scans, the theoretical (optimised) structures
and the experimental findings of ref 15 were used to produce the
interaction energy curves which we furthermore fitted to a suitably
modified Lennard–Jones type potential. With these primitive (inter-
mediate) potentials of the PES scans we have constructed composite
potentials, that approximate the theoreticallymaximum values of the
non-linear spring stiffness per unit area, K, of PMMA (in its various
forms) and graphene.

Results and Discussion
The graphene samples were prepared by mechanical exfoliation of
HOPG using the well-established scotch-tape method16. The gra-
phene flakes are embedded in a SU8/PMMA layer3. As mentioned
in Methods all specimens were compressed using a four point bend-
ing jig (see Figure 1a) to ensure a better control of the imparted strain
up to values high enough to induce graphene compressive failure. In
most experiments Ramanmeasurements were takenmainly from the
geometric centre of the flakes (both x and y directions). However, if
the dimension of the flake along the loading direction, x, is less than
that required for efficient stress transfer then the applied strain values
given by the beam formula are not necessarily attained at the posi-
tions from which Raman measurements are taken. The reason for
this is that the stress/strain in an inclusion embedded in a polymer
matrix is built through shear at the interface. As found already by a
number of authors, in order to transfer efficiently the applied stress

or strain from thematrix to graphene a transfer length of the order of
1–2 mm is needed17. Indeed if the available length for stress transfer
in the axial direction is less than twice the required transfer length
(see Supporting Information) then only a fraction of the applied
stress/strain is transmitted to the flake. Furthermore the same effect

Figure 1 | (a) Experimental configurations of cantilever beam and 4 point

bending setup employed for the execution of the experiments. (b) Image

taken with an optical microscope; the flake dimensions were l5 11 mm and

w550 mm (c) representative Raman spectra of the 2D peak measured at the

onset of the experiment and just prior to failure. The shift to higher wave

number is clearly seen. The graphenemonolayer was loaded along the x-axis.
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is observed if the laser probe interrogates an area adjacent to the ends
of a larger flake from which the applied stress/strain is built-up (see
Supporting Information). It is nevertheless possible to devise a

method to convert the nominal applied strains to ‘‘actual’’ graphene
strains by comparing the slope of the measured wavenumber shift
per strain to the mean universal value, which for the 2D Raman peak
has been found to be 60 6 5 cm21/%, through the formula (see
Supporting Information):
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Themean value and corresponding error were calculated from flakes
with sufficient stress transfer; i.e. with uncorrected slope values from
Table 1 larger than 55 cm21/%. For this correction to be valid care
must be taken to collect the Raman data from the same position at
each strain level and to conduct the measurements at a constant
temperature (preferably RT). Also the above formula is only valid
up to the first inflection point as failure processes that are triggered at
that point will also affect the shift of the Raman wavenumber.
In Figure 2a, b plots of wavenumber versus applied strain are

shown for two different flakes, one with a sufficient length to result
in efficient stress transfer (length, l530 mm) and another (given in
Figure 2b) with a smaller length (l54 mm), which corrections need
be applied to. The results in Figure 2a are fitted by a 4th degree
polynomial which accurately captures both the slopes at zero and
critical strains and the slopes near the origin. The critical strain value
for buckling shown at the plateau corresponds to the point of zero

slope. For the case of Figure 2a the initial slope
LDn
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� �
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~

56:4
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%
indicates efficient load transfer which is not surprising

since the flake has a length of 30 mm and the data were obtained at
the middle of the flake. The position of the 2D peak increases with
applied strain until a plateau is observed. After this plateau the 2D
peak relaxes in value with any further increment of applied strain.
For this flake the strain at which the plateau occurs corresponds to a
critical strain of failure of ,20.7%.
In contrast, the results of Figure 2b must be corrected since the

length of the flake is of the order of the critical length (,2 Lt) and
the initial slope is – as expected - 38 cm21/% i.e. outside the bounds of
the required value of 60 cm21/%. As seen the corrected data through
formula (1) yield a critical value of compressive failure of,20.45%
for this flake. A full collection of the data obtained in this work and in
Ref. 3 are summarised in Table 1.

Table 1 | Full presentation of the critical strain for buckling and the geometry of every specimen examined here and previously (ref. 3). Strain
correction has only been implemented for data the slope of which lies outside the boundaries of the standard deviation value of65 cm21/%
from the mean absolute value (60 cm21/%)

aNominal applied
strain at failure (%) l (mm) w (mm) Configuration

2D shift
rate |cm21/% |

Critical (graphene)
strain (%) Kw (GPa/nm)

Half-wave
number, m

Half-wave
length, l(nm)

20.67 5 70 4pb 46.8 20.52c 4.88 3742 1.33
21.25b 6 56 Cantilever 39.4 20.82c 12.14 5639 1.06
20.62 6 30 4pb 60.1 20.62 6.94 4742 1.26
20.68 4 21 4pb 38.0 20.45c 3.34 2722 1.46
20.64b 11 50 Cantilever 55.1 20.64 5.46 8467 1.29
20.61 28 23 Cantilever 69.6 20.61 6.72 22701 1.22
20.53b 56 25 Cantilever 59.1 20.53 5.07 42314 1.31
20.71 30 6 4pb 56.4 20.71 9.36 26423 1.12
20.58 22 14 4pb 60.3 20.58 6.07 17388 1.26

a. Applied strain calculated from beam Equation. b. Data from reference 14.c. Corrected data for short transfer length (equation 1).

Figure 2 | (a)Typical curve of Raman wavenumber of the 2D peak versus

applied strain for a flake with l530 mm and w56 mm.The line is a fourth

order polynomial and fitting to the data is given by Pos2D52596 – 56.41e–

29.54e21 13.16e3 1 4.01e4. The plateau is clearly identified and the critical

strain is calculated at 0.7%. (b) dependence of the 2D Raman peak on the

strain for the flake with l54 mm and w521 mm. The solid circles

correspond to the applied strain of the beam and the open circles represent

the corrected strain values in accordance to equation 1. The black line is

described by the Equation Pos2Dblack52595.3 – 38.0e – 23.9e2, and the blue

line is a rescaling to a slope of 60 cm21/%.
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A plate with low flexural rigidity fails under compression in air by
elastic buckling. When the plate is supported/embedded, out-of-
plane buckling is restricted by the presence of the surrounding
material which, in effect, provides a strong support against any buck-
ling instability. The result is that the critical stress for buckling of the
plate is orders of magnitude larger than that of the free plate.
Analogous phenomena have been observed in embedded microtu-
bules18,19. It is worth mentioning here that in carbon (graphene) fibre
reinforced composites, compression failure initiates as a result of
internal (shear) collapse of the fibre prior to Euler (instability) buck-
ling. Hence, the elastic instability observed in the case of a graphene
monolayer is the upper limit for composite failure. In other words,
reinforcing materials that do not suffer from internal collapse per-
form much better in compression than commercial reinforcements
such as carbon or Kevlar fibres.
In Figure 3 the experimental data of the critical strain to compress-

ive failure determined here but also those presented in an earlier
publication are plotted as a function of the aspect ratio of l/w of
the rectangular flake. As shown the data fluctuate around a mean
value of about 20.6% regardless of aspect ratio. With reference to
experimental scatter, this increases considerably for values of l/w
close to the origin (very short flakes) for which certain corrections
were made based on the initial slope of the Raman wavenumber vs.
strain line. The scatter reflects the difficulty in measuring the gra-
phene strain at that region due to the inefficient stress transfer as
mentioned above. However, there is no doubt that the average value
even for very short flakes is within the range of the mean value
obtained from all the data points of the graph.
A widely used method for modelling plates resting on elastic

foundation is that of Winkler’s20 in which the interaction between
the plate and the foundation is modelled with discrete linear elastic
springs acting only in the z-axis. No interaction between adjacent
springs is considered. The reaction pressure of the foundation is
linearly related to the deflection of the plate in the vertical direction:

pr~Kwu(x,y) ð2Þ

where pr is the reaction pressure of the polymer matrix, Kw is the
Winkler’s foundation modulus in units of stress per unit deflection
(N/m2/m), and u(x,y) is the deflection in the z- direction. We note
that nonlinear frameworks can also be found in the literature for
modelling the substrate effect39,40. However, for relatively small

strains the substrate employed here (glassy polymer) exhibits a linear
stress-strain curve and, hence, there is absolutely no need to resort to
a non-linear framework. Moreover, the axial stress is imparted to the
inclusion through direct compression loading and not via the release
of a prestressed substrate as in the case of Refs. 39, 40).
Here, for the embedded graphene sheets, the flake is assumed to be

pushing on both surfaces against linear springs as shown in Figure 4.
Thus the PMMA is modelled as an elastic medium which is an
appropriate assumption since the experiments were performed at
small strains where the response of the polymer is elastic.
Following the analysis of Timoshenko6 for the case examined here,
one can derive analytically the compressive strain of failure for plates
resting on elastic foundations. We start from the energy balance per
area, A, of the compressed plate which is given by6:

E~UbzUf{T ð3Þ

where E is the total energy of the system- assumed zero at the point of
failure-Ub is the plate bending energy,Uf is associated with the elastic
strain energy as the flake is pushing/pulling against the surrounding
matrix and T is the axial compression energy released by the flake
buckling. The corresponding expressions for the terms of equation 3
are given by equation 4–6 (see Supporting Information):
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where Nx is the compressive force per unit length applied in x-dir-
ection, D is the bending stiffness and v is the Poisson’s ratio of the
plate and Kw is the Winkler modulus.
For a simply supported plate, Kw is the spring constant that

describes the foundation and the interaction between the plate and
the foundation and w is plate’s width. The boundary conditions that
should be satisfied are u(0,y)5u(x,0)50, u’x(0,y)5u’y(x,0)50. For
the out-of-plane displacement u we make the assumption6,39–42 that
a sinusoidal wave is formed during buckling of an embedded flake

Figure 3 | The experimental critical strain for buckling is plotted
versus the dimensions’ ratio l/w for monolayer graphene flakes. The
experimental mean value is shown with the dash line and corresponds

to a Winkler modulus of 6.7 GPa/nm. The shadowed area corresponds to

the zone that describes the standard deviation from the mean value

(60.11%).

Figure 4 | The interaction is modeled with linear springs with modulus
Kw. In the case of the embedded graphene both sides of the flake are in

contact with the polymer matrix.

www.nature.com/scientificreports
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with unconstrained ends:

u x,yð Þ~
X

?

m~1

X

?

n~1

amn sin
mpx

l

� �

sin
npy

w

� �

ð7Þ

Where m, n are the half-waves of the buckling mode in the x and y
directions, respectively. Such an assumption for the displacement
seems to be reasonable even though we have no direct observation
of how the graphene plate is deformed due to the intervening poly-
mer layer. However, useful information can be extracted from simply
supported flakes that confirm the sinusoidal nature of graphene
buckling under axial compression (Figure 5).
By inserting equation 7 into the balance of energy equation 3 and

after some further manipulation (see Supporting Information) we
arrive at the following constitutive expression for the axial critical
strain to failure:

ecr~p2 D

C

k

w2
z

l2

p2C

Kw

m2

� �

ð8Þ

In the above relation C is the tension rigidity of the flake which has
been found to be 340 Nm2 while the Euler geometric term k is
defined as follows

k~
mw

l
z

l

mw

� �2

ð9Þ

As it can be seen from equation 8, in the absence of polymer (Kw50)
the second term is zero and therefore the problem reduces to the
Euler buckling formula for a freely suspended (graphene) plate in air.
The number of half-waves, m, is evaluated by equating the force

expressions (see Supporting Information) for two consecutive buck-
ling modes6, i.e.

Nm
~Nmz1 ð10Þ

This renders for the number of half waves:

m2(mz1)2~
l4

w4
z

l4Kw

p4D
ð11Þ

It is evident from Equations 8, 9 and 11, that theWinkler’s approach
requires either the modulus, Kw or the number of half-waves, m, in
order to yield analytically the critical strain to buckling in compres-
sion. All other parameters, such as the elastic constants (D and C)2,21

and the flake dimensions, are known. As mentioned earlier, the
experimentally obtained ecr is insensitive to the ratio of l/w and
retains a value of ,20.6% for a wide range of sizes and axial geo-
metries (Figure 3). Hence, it is facile to estimate a value of Kw (and
hence m from equation 11) from the measured ecr and to compare
with values reported in the literature for similar systems. The results
are presented in Table 1 fromwhich a value ofWinkler’s modulus for
the embedded monolayer graphene in the PMMA/SU8 system of
Kw56.7 GPa/nm is obtained. This value is of the same order of
magnitude with the value of Kw5 1.13 GPa/nm for a system poly-
mer-graphene in ref. 11 and a value of 7.2 GPa/nm that corresponds
to the stiffness of van der Waals forces between graphene and Si22.
Another outcome of this work is that our model predicts a high

amount of half waves for the buckling mode for the embedded case.
Using simple geometrical arguments (see Supporting Information)
we can evaluate the amplitude and the wavelength of the out of plane
displacement. For the amplitude the estimated value is of approxi-
mately 0.61Å. Amplitude values in this range have been experiment-
ally observed23 (,0.5Å) for graphene flakes suspended over trenches
on a copper substrate under thermally induced compression. This
demonstrates the ability of graphene to exhibit sub-nanometer buck-
ling amplitudes. The buckling half wavelength can be calculated by
dividing the final length of the buckled sheets with the number of
half-waves:

l<
l 1{ecrð Þ

m
ð12Þ

The results presented in Table 1 indicate clearly that the wavelength
of the embedded monolayer graphene flakes is of the order of 1.2 nm
which agrees well with the value of 2.68 nm reported previously22 for
a simply supported graphene under axial compression. We note that
this wavelength is essentially the half-wavelength since it is derived
from the half-wave number. The full wavelength therefore corre-
sponds to the value of approximately 2.4 nm. In fact, the value
obtained here is expected to be smaller than the rippling wavelength
of a graphene flake in air as shown schematically in Figure 6, since
for a constrained (here by polymer matrix) plate to bend, it should
push into/pull apart the surrounding matrix. Hence, from the ener-
getic point of view, short-wavelength buckling will be preferred
because the same degree of end-to-end compression is possible with
smaller lateral motion (i.e. less energy required for that mode of
deformation). Multiple rippling under compression in supported
monolayer graphene sheets has been investigated using mixed ato-
mistic- finite element simulations24. Analogous phenomena have
been observed for a whole variety of specimens such as embedded
rods25, cytoskeletal microtubules18, living animals such as snakes26

etc. (see Figure 7). It is worth noting here that the graphene region
under investigation at the middle of the flake is considered to be
wrinkle-free at the onset of the experiment since, due to the prepara-
tion procedure (spin coating at high speeds), the graphene is
stretched in all directions and Raman frequency mapping prior to
loading ensures that only regions that exhibit no residual strain are
examined.
We have modelled the interaction of the graphene sheet with the

polymer matrix by considering two independent terms; one corres-
ponding to the graphene–polymer van derWaals (vdW) interactions
and the other describing the influence of the elastic deformations of
the matrix itself at the vicinity of the interface. For each case we have
ascribed a spring of certain stiffness. These two springs are consid-
ered to be connected in series and with the overall stiffness equal to
the reduced stiffness of the two springs (for details see Supporting
Information).
In order to get an independent estimate of the strength of the van

der Waals interactions between the PMMA polymer and graphene
we have performed calculations within the framework of density
functional theory (DFT). The primitive potentials (see supporting

Figure 5 | Wrinkling (buckling) observed for simply supported
monolayer graphene flake under compression. In this case the flake is

resting on SU8 photoresist polymer. The average half-wavelength in this

case is about l550 nm at a height of about 2 nm.

www.nature.com/scientificreports
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information figure S4), u1–4, were computed from potential energy
surface scans of the MMA molecule at various distances from cor-
onene which is a good analogue of graphene for computational
purposes. The PES scans were performed on four relative orienta-
tions of MMA with respect to coronene, which are the most com-
monly occurring configurations for depositions of isotactic PMMA
(i-PMMA) and syndiotactic PMMA (s-PMMA) over a graphene
substrate. These MMA monomer–coronene relative configurations
for the PES scans are shown in figure S3 (supporting information).
In order to maintain high-accuracy in the PES scans while improving
the computational efficiency the calculations were performed
employing the B97-D functional, which includes dispersion correc-
tions, along with a high quality basis set, and the final values were
suitably scaled as described in the Methods section. The required
structural details were obtained through geometry optimizations of
i-PMMA and s-PMMA with trans-gauche and trans-trans backbone
conformations, respectively27. The geometry optimizations were per-
formed on a 16l i-PMMA chain (total number of atoms 245 with 132
H-atoms) and a 32l s-PMMA chain (total number of atoms 485 with
260 H-atoms) using the B97-D functional and employing the def-
SVP28 basis set. The resulting optimized structures, which are helical
as expected29, are shown in Figure 7.

All of the potentials, i.e. the initial potentials from the PES scans
and the final composite potentials, have been fitted to the same
modified Lennard–Jones type potential of the general form:

U(z)~4e
s

z

� �12c

{
s

z

� �6c
� �

ð13Þ

In the case of the primitive potentials, u1–4 from the PES scans, the
parameter z corresponds to the transverse distance from the coro-
nene plane of themonomer’s carbon atomnearest to the plane. In the
case of the composite potentials, the function U corresponds to the
potential per unit area (Å22).
It is straightforward to find the non-linear spring stiffness per unit

area:
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At the equilibrium position, zeq, we have s/zeq 5 (1/2)1/6c, and
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The modified Lennard–Jones potential fitting parameters of the
interaction energy curves are given in the supporting information.
The primitive potentials are shown in figure S4 (see Supporting
Information). The final potentials have been constructed as a linear
combination of the primitive potentials from the PES scans. The
coefficients of the expansion were determined from the structural
details of the optimized i-PMMA and s-PMMA helices (details are
given in the Supporting Information) and from the AFM images of
Kumaki et al15. This cluster-model based approach of performing
calculations on fundamental and compact blocks of the system fol-
lowed by an empirical synthesis of the interactions corresponding to
the extensive system permits the use of, and calibration to, high-
accuracy methods such as those described in the Methods section.
These composite potentials have been fitted to the modified
Lennard–Jones form of equation 13, given per unit area and are
shown in figure 8. The fitting parameters and the non-linear spring
stiffness per unit area, K, for each case are given in Table 2. Overall,
our ideal model assumes dense deposition, flat adsorption scheme,
rigid polymer axis, and perfectly clean surfaces, all of which are
factors that may reduce (some may do so significantly) the K value
of the true (experimental) system.
These values correspond to the case which PMMA interacts with

one side of the graphene surface. However, in our mathematical
model we have considered interactions on both sides of the graphene.
For this reason we have additionally performed a two-parameter PES
scan on a coronene with two MMA molecules, one on each of the
coronene surfaces. The configuration corresponds to that used in

Figure 6 | (a) Embedded graphene flake under compression that fails with multiple rippling with small wavelength, (b) Flake buckling in air for m51.

For clarity the rippling amplitudes are not under scale.

Figure 7 | Axial and face view of a (top) 32l s-PMMA and a (bottom) 16li-
PMMA polymer chain. The structures are optimized at the DFT/B97-D/

def-SVP level.

www.nature.com/scientificreports
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PES1, and the scanning parameters are the distances R1, R2 between
either of the twomonomers to the coronene plane. The resulting scan
is shown in figure S5 of the supporting information. The presence of
the second MMAmolecule reduces the interaction very slightly, and
the overall interaction energy is 1.2% less compared to twice the
interaction energy of the corresponding single monomer case.
Taking these factors into account, the theoretical maximum values
for K are 21.77 and 40.17 GPa/nm, for s-PMMA and i-PMMA
respectively. An independent evaluation of the second spring length
is non-trivial. Thus, we have based our treatment of this term on
experimental results while also taking advantage of our (DFT based)
calculation for the first spring. Specifically, we form a family of
curves (see Supporting Information) from which estimates for an
effective spring length for the second spring can be obtained. This
analysis permits for a comprehensive and integrated treatment of
quantities from different scales. Overall, the agreement between
theory and experiment is satisfactory bearing in mind the assump-
tions of the DFT calculations and the assumed nature of vdW
interactions between graphene and polymer (e.g. clean surfaces,
decrease polymer porosity etc.).

Conclusions
The stability of embedded monolayer graphene flakes under axial
compressionwas examined experimentally bymeans of Raman spec-
troscopy and analytically by employing a combined Euler–Winkler
approach. A large range of graphene aspect ratios was tested. Care
was taken to ensure that the graphenewas resting flat on the substrate
and no residual strain or Raman frequency fluctuations within the
region under investigation were detected at the onset of the experi-
ment. For very short specimens in the loading direction it was
important to assess the effect of transfer length upon the efficiency
of stress transfer and to apply a transfer length correction to the
obtained raw data. Computational DFT methods were also used in
order to assess independently the level of interaction between gra-

phene and PMMA. The results have shown clearly that unlike a flake
compressed in air, the critical strain to failure for an embedded
graphene is not affected by the flake dimensions due to the presence
of the polymer constraint. The form of the buckled graphene at the
instability cannot be observed but evidence is provided that the flake
undergoes a small half wavelength (,2 nm) multiple wrinkling
(buckling) on the imposition of an axial strain of approximately
20.6%. The agreement between experiment and the DFT work
was satisfactory bearing inmind the limitations of the DFTmethods.

Methods
Sample preparation.Graphenemonolayers were prepared bymechanical cleavage of
HOPG (High Order Pyrolitic Graphite) and transferred onto PMMA bars. The
PMMA bars have dimensions of 2.9 mm thickness, width of 12 mm, length of 10 or
12 cm and covered on the top by a ,200 nm thick layer of SU8 photoresist (SU8
2000.5, MicroChem). The graphene samples were first located using an optical
microscope andmonolayers with the desired dimensions were chosen for testing. The
number of layers was identified with Ramanmeasurements. Finally a layer of PMMA
(495 PMMAA 3, MicroChem) was spin coated on the top with 6000 rpm. It is noted
that in the previous work the samples were spin coated with another polymer S1805
photoresist (Shipley). Graphene and the polymermatrix do not chemically interact so
the results are not influenced and no change in the Raman measurements was
observed. For compression measurements on an embedded graphene it is of
paramount importance for the flake or the region investigated to rest absolutely flat
on the polymer substrate. Bearing in mind that the surface of polished polymers
might exhibit a roughness of at least tens of nanometers, care was taken to map
carefully the area under investigation (approx. 10 mm2) to ensure that the Raman
wavenumber of the examined region corresponds to the stress-free values and no
fluctuations of Raman frequency that would possibly indicate graphene wrinkling,
were detected.

Mechanical testing.The new experimental data reported here were carried out with a
four-point-bending machine adjusted to the MicroRaman (InVia Reflex, Renishaw,
UK). The reason for switching from cantilever to 4-point-bend testing is to allow a
much better control of the strain imparted to graphene regardless of its position on
the beam and to thus induce a higher level of applied strain than previously. The
measurements were recorded with an excitation wavelength of 785 nm and laser
power ,1 mW. More details can be found in references 3, 4. The top surface of the
bars is compressed by deflecting the beam on the vertical direction. The deflection of
the beam is related with the compressive strain by eq. 16:

e(d)~4:48dt=L2 ð16Þ

where e is the strain, d, t are the deflection and the thickness of the beam, respectively,
and L is the length of the supporting span. The samples were placed in the middle of
the PMMA bar, thus the maximum compressive strain with a uniform distribution in
the middle of the bar is achieved. The strain was applied with an increment step of
,0.05%. Raman spectra were recorded after every increment of the strain. The values
of strain of equation 16 have been confirmed with measurements taken with strain
gauge. For flakes that exhibit residual stress (compressional) at the onset of the
experiment (zero applied strain), the beam is first flexed in tension so as to reach zero
strain in graphene and then the data are collected in compression from that point
onwards. This way a complete curve starting from zero graphene strain to first failure
and beyond is established. AFM images were recorded using a Dimension Icon
Microscope (Bruker) with ScanAsyst Air tips in the PeakForce tapping mode.

DFT analysis. All-electron density functional theory calculations including
dispersion corrections (DFT-D2) were performed using the generalized gradient
functional B97-D30 of Grimme. Results of the B97-D functional were tested against
higher accuracy methods and at different levels of theory. Specifically, we compared
results near the equilibrium of the PESs produced by B97-D with those using the
Grimme’s double-hybrid functional B2PLYP-D31 as well as with spin-component
scaled second-order Møller–Plesset perturbation theory (SCS(MI)-MP2)32,33.The
quality of the results obtained by SCS(MI)-MP2 for intra- and inter-molecular
interaction has been shown for a wide range of systems33,34 to be comparable to
methods of much higher computational cost such as coupled–cluster with single and
double and perturbative triple excitations (CCSD(T)) for dispersion type interactions.
The optimized scaling parameters that we used are cOS 5 0.17 and cSS 5 1.7533. The

Figure 8 | The composite interaction potentials per unit area. Ush, for s-

PMMA deposited horizontally on graphene, Usf, for s-PMMA deposited

face-down on graphene, and Uih, for i-PMMA deposited horizontally on

graphene. Dense depositions are assumed.

Table 2 | Fitting parameters, e, s, and c of the modified Lennard–Jones composite potential,Ush,Usf andUih, as well as the corresponding
non-linear spring stiffness per unit area, K

Configuration e (kJmol21Å22) s (Å) c K (kJmol21Å24) K (GPa/nm)

s-PMMA horizontal 0.25 2.96 0.67 0.66 11.0
s-PMMA face-down 0.30 2.75 0.71 1.04 17.3
i-PMMA horizontal 0.34 2.76 0.72 1.22 20.3
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B2PLYP-D results were practically the same with the SCS(MI)-MP2 results as can be
seen on figures SI-4a and SI-4b. The results from the B97-D functional were only
slightly overestimated compared to the SCS(MI)-MP2 results by about 11%. In all
cases the high quality triple-f def2-TZVPP35 basis set was employed. The empirical
parameterization of DFT-D methods partially accounts for basis set superposition
errors (BSSE) and counterpoise (CP) corrections36 are not needed as long as properly
polarized triple zeta basis sets are used, such as the ones used here30,37,38. However, for
the calculations using SCS(MI)-MP2 it is necessary to account for basis set
superposition errors (BSSE) and we have done so using the counterpoise correction
method36.

Tight convergence criteria were enforced on the SCF energy (1027 au), the one
electron density (rms of the density matrix up to 1027), as well as, the norm of the
Cartesian gradient (1024 au). All of the DFT calculations were performed using the
Gaussian package. The SCS(MI)-MP2 calculations were performed using Turbomole
program package.
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