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Abstract

In recent years, Deep Learning has become the

go-to solution for a broad range of applications,

often outperforming state-of-the-art. However,

it is important, for both theoreticians and practi-

tioners, to gain a deeper understanding of the dif-

ficulties and limitations associated with common

approaches and algorithms. We describe four

types of simple problems, for which the gradient-

based algorithms commonly used in deep learn-

ing either fail or suffer from significant difficul-

ties. We illustrate the failures through practi-

cal experiments, and provide theoretical insights

explaining their source, and how they might be

remedied.

1. Introduction

The success stories of deep learning form an ever length-

ening list of practical breakthroughs and state-of-the-

art performances, ranging the fields of computer vision

(Krizhevsky et al., 2012; He et al., 2016; Schroff et al.,

2015; Taigman et al., 2014), audio and natural language

processing and generation (Collobert & Weston, 2008;

Hinton et al., 2012; Graves et al., 2013; van den Oord et al.,

2016), as well as robotics (Mnih et al., 2015; Schulman

et al., 2015), to name just a few. The list of success stories

can be matched and surpassed by a list of practical “tips

and tricks”, from different optimization algorithms, param-

eter tuning methods (Sutskever et al., 2013; Kingma & Ba,

2014), initialization schemes (Glorot & Bengio, 2010), ar-

chitecture designs (Szegedy et al., 2016), loss functions,

data augmentation (Krizhevsky et al., 2012) and so on.

The current theoretical understanding of deep learning is

far from being sufficient for a rigorous analysis of the diffi-

culties faced by practitioners. Progress must be made from
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both parties: from a practitioner’s perspective, emphasizing

the difficulties provides practical insights to the theoreti-

cian, which in turn, supplies theoretical insights and guar-

antees, further strengthening and sharpening practical intu-

itions and wisdom. In particular, understanding failures of

existing algorithms is as important as understanding where

they succeed.

Our goal in this paper is to present and discuss families

of simple problems for which commonly used methods do

not show as exceptional a performance as one might ex-

pect. We use empirical results and insights as a ground

on which to build a theoretical analysis, characterising the

sources of failure. Those understandings are aligned, and

sometimes lead to, different approaches, either for an ar-

chitecture, loss function, or an optimization scheme, and

explain their superiority when applied to members of those

families. Interestingly, the sources for failure in our exper-

iment do not seem to relate to stationary point issues such

as spurious local minima or a plethora of saddle points, a

topic of much recent interest (e.g. (Dauphin et al., 2014;

Choromanska et al., 2015)), but rather to more subtle is-

sues, having to do with informativeness of the gradients,

signal-to-noise ratios, conditioning etc. The code for run-

ning all our experiments is available online1. In this ver-

sion, due to the lack of space, we focus on two families of

failures, and briefly describe two others in Section 4. We

refer the reader to (Shalev-Shwartz et al., 2017) for an ex-

tended version of this paper.

We start off in Section 2 by discussing a class of simple

learning problems for which the gradient information, cen-

tral to deep learning algorithms, provably carries negligi-

ble information on the target function which we attempt to

learn. This result is a property of the learning problems

themselves, and holds for any specific network architec-

ture one may choose for tackling the learning problem, im-

plying that no gradient-based method is likely to succeed.

Our analysis relies on tools and insights from the Statis-

tical Queries literature, and underscores one of the main

deficiencies of Deep Learning: its reliance on local proper-

ties of the loss function, with the objective being of a global

nature.

1 https://github.com/shakedshammah/

failures_of_DL. See command lines in Appendix D.

https://github.com/shakedshammah/failures_of_DL
https://github.com/shakedshammah/failures_of_DL
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Next, in Section 3, we tackle the ongoing dispute be-

tween two common approaches to learning. Most, if not

all, learning and optimization problems can be viewed as

some structured set of sub-problems. The first approach,

which we refer to as the “end-to-end” approach, will tend

to solve all of the sub-problems together in one shot, by op-

timizing a single primary objective. The second approach,

which we refer to as the “decomposition” one, will tend

to handle these sub-problems separately, solving each one

by defining and optimizing additional objectives, and not

rely solely on the primary objective. The benefits of the

end-to-end approach, both in terms of requiring a smaller

amount of labeling and prior knowledge, and perhaps en-

abling more expressive architectures, cannot be ignored.

On the other hand, intuitively and empirically, the extra su-

pervision injected through decomposition is helpful in the

optimization process. We experiment with a simple prob-

lem in which application of the two approaches is possible,

and the distinction between them is clear and intuitive. We

observe that an end-to-end approach can be much slower

than a decomposition method, to the extent that, as the

scale of the problem grows, no progress is observed. We

analyze this gap by showing, theoretically and empirically,

that the gradients are much more noisy and less informa-

tive with the end-to-end approach, as opposed to the de-

composition approach, explaining the disparity in practical

performance.

2. Parities and Linear-Periodic Functions

Most existing deep learning algorithms are gradient-based

methods; namely, algorithms which optimize an objective

through access to its gradient w.r.t. some weight vector w,

or estimates of the gradient. We consider a setting where

the goal of this optimization process is to learn some under-

lying hypothesis class H, of which one member, h 2 H, is

responsible for labelling the data. This yields an optimiza-

tion problem of the form

min
w

Fh(w).

The underlying assumption is that the gradient of the objec-

tive w.r.t. w, rFh(w), contains useful information regard-

ing the target function h, and will help us make progress.

Below, we discuss a family of problems for which with

high probability, at any fixed point, the gradient, rFh(w),
will be essentially the same regardless of the underlying

target function h. Furthermore, we prove that this holds

independently of the choice of architecture or parametriza-

tion, and using a deeper/wider network will not help. The

family we study is that of compositions of linear and peri-

odic functions, and we experiment with the classical prob-

lem of learning parities. Our empirical and theoretical

study shows that indeed, if there’s little information in the
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Figure 1. Parity Experiment: Accuracy as a function of the num-

ber of training iterations, for various input dimensions.

gradient, using it for learning cannot succeed.

2.1. Experiment

We begin with the simple problem of learning random par-

ities: After choosing some v
⇤ 2 {0, 1}d uniformly at ran-

dom, our goal is to train a predictor mapping x 2 {0, 1}d

to y = (�1)hx,v
⇤i, where x is uniformly distributed. In

words, y indicates whether the number of 1’s in a certain

subset of coordinates of x (indicated by v
⇤) is odd or even.

For our experiments, we use the hinge loss, and a simple

network architecture of one fully connected layer of width

10d > 3d
2 with ReLU activations, and a fully connected

output layer with linear activation and a single unit. Note

that this class realizes the parity function corresponding to

any v
⇤ (see Lemma 3 in the appendix).

Empirically, as the dimension d increases, so does the dif-

ficulty of learning, which can be measured in the accuracy

we arrive at after a fixed number of training iterations, to

the point where around d = 30, no advance beyond random

performance is observed after reasonable time. Figure 1 il-

lustrates the results.

2.2. Analysis

To formally explain the failure from a geometric perspec-

tive, consider the stochastic optimization problem associ-

ated with learning a target function h,

min
w

Fh(w) := E
x

[`(pw(x), h(x))] , (1)

where ` is a loss function, x are the stochastic inputs (as-

sumed to be vectors in Euclidean space), and pw is some

predictor parametrized by a parameter vector w (e.g. a neu-

ral network of a certain architecture). We will assume that

F is differentiable. A key quantity we will be interested in

studying is the variance of the gradient of F with respect to

h, when h is drawn uniformly at random from a collection
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of candidate target functions H:

Var(H, F,w) = E
h

�

�

�

�

rFh(w)� E
h0
rFh0(w)

�

�

�

�

2

(2)

Intuitively, this measures the expected amount of “signal”

about the underlying target function contained in the gradi-

ent. As we will see later, this variance correlates with the

difficulty of solving (1) using gradient-based methods2.

The following theorem bounds this variance term.

Theorem 1 Suppose that

• H consists of real-valued functions h satisfying

Ex[h
2(x)]  1, such that for any two distinct h, h0 2

H, Ex[h(x)h
0(x)] = 0.

• pw(x) is differentiable w.r.t. w, and satisfies

Ex

⇥

k ∂
∂w

pw(x)k2
⇤

 G(w)2 for some scalar G(w).

• The loss function ` in (1) is either the square loss

`(ŷ, y) = 1
2 (ŷ � y)2 or a classification loss of the

form `(ŷ, y) = r(ŷ · y) for some 1-Lipschitz function

r, and the target function h takes values in {±1}.

Then

Var(H, F,w)  G(w)2

|H|
.

The proof is given in Appendix B.1. The theorem implies

that if we try to learn an unknown target function, possibly

coming from a large collection of uncorrelated functions,

then the sensitivity of the gradient to the target function at

any point decreases linearly with |H|.

Before we make a more general statement, let us return to

the case of parities, and study it through the lens of this

framework. Suppose that our target function is some parity

function chosen uniformly at random, i.e. a random ele-

ment from the set of 2d functions H = {x 7! (�1)hx,v
⇤i :

v
⇤ 2 {0, 1}d}. These are binary functions, which are eas-

ily seen to be mutually orthogonal: Indeed, for any v,v0,

E
x

h

(�1)hx,vi(�1)hx,v
0i
i

= E
x

h

(�1)hx,v+v
0i
i

=

d
Y

i=1

E

h

(�1)xi(vi+v0
i
)
i

=

d
Y

i=1

(�1)vi+v0
i + (�1)�(vi+v0

i
)

2

which is non-zero if and only if v = v
0. Therefore, by

Theorem 1, we get that Var(H, F,w)  G(w)2/2d – that

is, exponentially small in the dimension d. By Chebyshev’s

inequality, this implies that the gradient at any point w will

2This should not be confused with the variance of gradient
estimates used by SGD, which we discuss in Section 3.

be extremely concentrated around a fixed point indepen-

dent of h.

This phenomenon of exponentially-small variance can also

be observed for other distributions, and learning problems

other than parities. Indeed, in (Shamir, 2016), it was shown

that this also holds in a more general setup, when the output

y corresponds to a linear function composed with a periodic

one, and the input x is sampled from a smooth distribution:

Theorem 2 (Shamir 2016) Let  be a fixed periodic func-

tion, and let H = {x 7!  (v⇤>
x) : kv⇤k = r} for some

r > 0. Suppose x 2 R
d is sampled from an arbitrary

mixture of distributions with the following property: The

square root of the density function ' has a Fourier trans-

form '̂ satisfying

R
x:kxk>r

ϕ̂2(x)dx
R
x
ϕ̂2(x)dx

 exp(�Ω(r)). Then if

F denotes the objective function with respect to the squared

loss,

Var(H, F,w)  O (exp(�Ω(d)) + exp(�Ω(r))) .

The condition on the Fourier transform of the density is

generally satisfied for smooth distributions (e.g. arbitrary

Gaussians whose covariance matrices are positive definite,

with all eigenvalues at least Ω(1/r)). Thus, the bound is

extremely small as long as the norm r and the dimension d
are moderately large, and indicates that the gradients con-

tains little signal on the underlying target function.

Based on these bounds, one can also formally prove that a

gradient-based method, under a reasonable model, will fail

in returning a reasonable predictor, unless the number of

iterations is exponentially large in r and d 3 . This provides

strong evidence that gradient-based methods indeed can-

not learn random parities and linear-periodic functions. We

emphasize that these results hold regardless of which class

of predictors we use (e.g. they can be arbitrarily complex

neural networks) – the problem lies in using a gradient-

based method to train them. Also, we note that the diffi-

culty lies in the random choice of v⇤, and the problem is

not difficult if v⇤ is known and fixed in advance (for ex-

ample, for a full parity v
⇤ = (1, . . . , 1), this problem is

known to be solvable with an appropriate LSTM network

(Hochreiter & Schmidhuber, 1997)).

Finally, we remark that the connection between parities,

difficulty of learning and orthogonal functions is not new,

and has already been made in the context of statistical

query learning (Kearns, 1998; Blum et al., 1994). This

refers to algorithms which are constrained to interact with

3Formally, this requires an oracle-based model, where given a
point w, the algorithm receives the gradient at w up to some ar-
bitrary error much smaller than machine precision. See (Shamir,
2016), Theorem 4, for details.
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data by receiving estimates of the expected value of some

query over the underlying distribution (e.g. the expected

value of the first coordinate), and it is well-known that par-

ities cannot be learned with such algorithms. Recently,

(Feldman et al., 2015) have formally shown that gradient-

based methods with an approximate gradient oracle can be

implemented as a statistical query algorithm, which implies

that gradient-based methods are indeed unlikely to solve

learning problems which are known to be hard in the sta-

tistical queries framework, in particular parities. In the dis-

cussion on random parities above, we have simply made

the connection between gradient-based methods and pari-

ties more explicit, by direct examination of gradients’ vari-

ance w.r.t. the target function.

3. Decomposition vs. End-to-end

Many practical learning problems, and more generally, al-

gorithmic problems, can be viewed as a structured com-

position of sub-problems. Applicable approaches for a so-

lution can either be tackling the problem in an end-to-end

manner, or by decomposition. Whereas for a traditional

algorithmic solution, the “divide-and-conquer” strategy is

an obvious choice, the ability of deep learning to utilize

big data and expressive architectures has made “end-to-end

training” an attractive alternative. Prior results of end-to-

end (Mnih et al., 2015; Graves et al., 2013) and decompo-

sition and added feedback (Gülçehre & Bengio, 2016; Hin-

ton & Salakhutdinov, 2006; Szegedy et al., 2015; Caruana,

1998) approaches show success in both directions. Here,

we try to address the following questions: What is the price

of the rather appealing end-to-end approach? Is letting a

network “learn by itself” such a bad idea? When is it nec-

essary, or worth the effort, to “help” it?

There are various aspects which can be considered in this

context. For example, (Shalev-Shwartz & Shashua, 2016)

analyzed the difference between the approaches from the

sample complexity point of view. Here, we focus on

the optimization aspect, showing that an end-to-end ap-

proach might suffer from non-informative or noisy gra-

dients, which may significantly affect the training time.

Helping the SGD process by decomposing the problem

leads to much faster training. We present a simple ex-

periment, motivated by questions every practitioner must

answer when facing a new, non trivial problem: What ex-

actly is the required training data, what network architec-

ture should be used, and what is the right distribution of de-

velopment efforts. These are all correlated questions with

no clear answer. Our experiments and analysis show that

making the wrong choice can be expensive.

Figure 2. Section 3.1’s experiment - examples of samples from

X . The y values of the top and bottom rows are 1 and −1, re-

spectively.

3.1. Experiment

Our experiment compares the two approaches in a com-

puter vision setting, where convolutional neural networks

(CNN) have become the most widely used and successful

algorithmic architectures. We define a family of problems,

parameterized by k 2 N, and show a gap (rapidly growing

with k) between the performances of the end-to-end and

decomposition approaches.

Let X denote the space of 28 ⇥ 28 binary images, with

a distribution D defined by the following sampling proce-

dure:

• Sample ✓ ⇠ U([0,⇡]), l ⇠ U([5, 28 � 5]), (x, y) ⇠
U([0, 27])2.

• The image xθ,l,(x,y) associated with the above sample

is set to 0 everywhere, except for a straight line of

length l, centered at (x, y), and rotated at an angle ✓.

Note that as the images space is discrete, we round the

values corresponding to the points on the lines to the

closest integer coordinate.

Let us define an “intermediate” labeling function y : X !
{±1}, denoting whether the line in a given image slopes

upwards or downwards, formally:

y(xθ,l,(x,y)) =

(

1 if ✓ < ⇡/2

�1 otherwise
.

Figure 2 shows a few examples. We can now define

the problem for each k. Each input instance is a tu-

ple x
k
1 := (x1, . . . ,xk) of k images sampled i.i.d. as

above. The target output is the parity over the image la-

bels y(x1), . . . , y(xk), namely ỹ(xk
1) =

Q

j=1...k y(xj).

Many architectures of DNN can be used for predicting

ỹ(xk
1) given x

k
1 . A natural “high-level” choice can be:
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• Feed each of the images, separately, to a single CNN

(of some standard specific architecture, for example,

LeNet-like), denoted N
(1)
w1

and parameterized by its

weights vector w1, outputting a single scalar, which

can be regarded as a “score”.

• Concatenate the “scores” of a tuple’s entries, trans-

form them to the range [0, 1] using a sigmoid func-

tion, and feed the resulting vector into another net-

work, N
(2)
w2

, of a similar architecture to the one defined

in Section 2, outputting a single “tuple-score”, which

can then be thresholded for obtaining the binary pre-

diction.

Let the whole architecture be denoted Nw. Assuming that

N (1) is expressive enough to provide, at least, a weak

learner for y (a reasonable assumption), and that N (2) can

express the relevant parity function (see Lemma 3 in the

appendix), we obtain that this architecture has the potential

for good performance.

The final piece of the experimental setting is the choice of a

loss function. Clearly, the primary loss which we’d like to

minimize is the expected zero-one loss over the prediction,

Nw(xk
1), and the label, ỹ(xk

1), namely:

L̃0�1(w) := E
x
k
1

⇥

Nw(xk
1) 6= ỹ(xk

1)
⇤

A “secondary” loss which can be used in the decomposi-

tion approach is the zero-one loss over the prediction of

N
(1)
w1

(xk
1) and the respective y(xk

1) value:

L0�1(w1) := E
x
k
1

h

N (1)
w1

(xk
1) 6= y(xk

1)
i

Let L̃, L be some differentiable surrogates for L̃0�1, L0�1.

A classical end-to-end approach will be to minimize L̃, and

only it; this is our “primary” objective. We have no explicit

desire for N (1) to output any specific value, and hence L
is, a priori, irrelevant. A decomposition approach would be

to minimize both losses, under the assumption that L can

“direct” w1 towards an “area” in which we know that the

resulting outputs of N (1) can be separated by N (2). Note

that using L is only possible when the y values are known

to us.

Empirically, when comparing performances based on the

“primary” objective, we see that the end-to-end approach

is significantly inferior to the decomposition approach (see

Figure 3). Using decomposition, we quickly arrive at a

good solution, regardless of the tuple’s length, k (as long

as k is in the range where perfect input to N (2) is solvable

by SGD, as described in Section 2). However, using the

end-to-end approach works only for k = 1, 2, and com-

pletely fails already when k = 3 (or larger). This may

0.3

1

k = 1

0.3

1

k = 2

0.3

1

k = 3

0.3

1

k = 4

Figure 3. Performance comparison, Section 3.1’s experiment.

The red and blue curves correspond to the end-to-end and decom-

position approaches, respectively. The plots show the zero-one

accuracy with respect to the primary objective, over a held out

test set, as a function of training iterations. We have trained the

end-to-end network for 20000 SGD iterations, and the decompo-

sition networks for only 2500 iterations.

be somewhat surprising, as the end-to-end approach opti-

mizes exactly the primary objective, composed of two sub-

problems each of which is easily solved on its own, and

with no additional irrelevant objectives.

3.2. Analysis

We study the experiment from two directions: Theoreti-

cally, by analyzing the gradient variance (as in Section 2),

for a somewhat idealized version of the experiment, and

empirically, by estimating a signal-to-noise ratio (SNR)

measure of the stochastic gradients used by the algorithm.

Both approaches point to a similar issue: With the end-to-

end approach, the gradients do not seem to be sufficiently

informative for the optimization process to succeed.

Before continuing, we note that a conceptually similar ex-

periment to ours has been reported in (Gülçehre & Bengio,

2016) (also involving a composition of an image recogni-

tion task and a simple Boolean formula, and with quali-

tatively similar results). However, that experiment came

without a formal analysis, and the failure was attributed to

local minima. In contrast, our analysis indicates that the

problem is not due to local-minima (or saddle points), but

from the gradients being non-informative and noisy.

We begin with a theoretical result, which considers our ex-

perimental setup under two simplifying assumptions: First,

the input is assumed to be standard Gaussian, and second,

we assume the labels are generated by a target function of

the form hu(x
k
1) =

Qk

l=1 sign(u>
xl). The first assump-

tion is merely to simplify the analysis (similar results can
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be shown more generally, but the argument becomes more

involved). The second assumption is equivalent to assum-

ing that the labels y(x) of individual images can be realized

by a linear predictor, which is roughly the case for simple

image labelling task such as ours.

Theorem 3 Let xk
1 denote a k-tuple (x1, . . . ,xk) of input

instances, and assume that each xl is i.i.d. standard Gaus-

sian in R
d. Define

hu(x
k
1) =

k
Y

l=1

sign(u>
xl),

and the objective (w.r.t. some predictor pw parameterized

by w)

F (w) = E
x
k
1

⇥

`(pw(xk
1), hu(x

k
1)
⇤

.

Where the loss function ` is either the square loss `(ŷ, y) =
1
2 (ŷ � y)2 or a classification loss of the form `(ŷ, y) =
r(ŷ · y) for some 1-Lipschitz function r.

Fix some w, and suppose that pw(x) is differentiable w.r.t.

w and satisfies E
x
k
1

⇥

k ∂
∂w

pw(xk
1k2
⇤

 G(w)2. Then if

H = {hu : u 2 R
d, kuk = 1}, then

Var(H, F,w)  G(w)2 ·O

 
r

k log(d)

d

!k

.

The proof is given in Appendix B.2. The theorem shows

that the “signal” regarding hu (or, if applying to our ex-

periment, the signal for learning N (1), had y been drawn

uniformly at random from some set of functions over X)

decreases exponentially with k. This is similar to the par-

ity result in Section 2, but with an important difference:

Whereas the base of the exponent there was 1/2, here it is

the much smaller quantity k log(d)/
p
d (e.g. in our exper-

iment, we have k  4 and d = 282). This indicates that al-

ready for very small values of k, the information contained

in the gradients about u can become extremely small, and

prevent gradient-based methods from succeeding, fully ac-

cording with our experiment.

To complement this analysis (which applies to an idealized

version of our experiment), we consider a related “signal-

to-noise” (SNR) quantity, which can be empirically esti-

mated in our actual experiment. To motivate it, note that a

key quantity used in the proof of Theorem 3, for estimating

the amount of signal carried by the gradient, is the squared

norm of the correlation between the gradient of the predic-

tor pw, g(xk
1) := ∂

∂w
pw(xk

1) and the target function hu,

which we denote by Sig
u

:

Sig
u
:=

�

�

�

�

E
x
k
1

⇥

hu(x
k
1)g(x

k
1)
⇤

�

�

�

�

2

.

1 2 3 4

�7

�15

Figure 4. Section 3.1’s experiment: comparing the SNR for

the end-to-end approach (red) and the decomposition approach

(blue), as a function of k, in log
e

scale.

We will consider the ratio between this quantity and a

“noise” term Noiu, i.e. the variance of this correlation over

the samples:

Noiu := E
x
k
1

�

�

�

�

hu(x
k
1)g(x

k
1)� E

x
k
1

⇥

hu(x
k
1)g(x

k
1)
⇤

�

�

�

�

2

.

Since here the randomness is with respect to the data rather

than the target function (as in Theorem 3), we can esti-

mate this SNR ratio in our experiment. It is well-known

(e.g. (Ghadimi & Lan, 2013)) that the amount of noise in

the stochastic gradient estimates used by stochastic gradi-

ent descent crucially affects its convergence rate. Hence,

smaller SNR should be correlated with worse performance.

We empirically estimated this SNR measure, Sigy/Noiy ,

for the gradients w.r.t. the weights of the last layer of N (1)

(which potentially learns our intermediate labeling func-

tion y) at the initialization point in parameter space. The

SNR estimate for various values of k are plotted in Fig-

ure 4. We indeed see that when k � 3, the SNR appears

to approach extremely small values, where the estimator’s

noise, and the additional noise introduced by a finite float-

ing point representation, can completely mask the signal,

which can explain the failure in this case.

In Section A in the Appendix, we also present a second,

more synthetic, experiment, which demonstrates a case

where the decomposition approach directly decreases the

stochastic noise in the SGD optimization process, hence

benefiting the convergence rate.

4. Additional Failure Families - Brief

Discussion

In an extended version of this paper, (Shalev-Shwartz et al.,

2017), we broadly discuss two additional families of fail-

ures. Here, due to lack of space, we present them briefly.

First, we demonstrate the importance of both the network’s
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architecture and the optimization algorithm on the training

time. While the choice of architecture is usually studied

in the context of its expressive power, we show that even

when two architectures have the same expressive power for

a given task, there may be a tremendous difference in the

ability to optimize them. We analyze the required runtime

of gradient descent for the two architectures through the

lens of the condition number of the problem. We further

show that conditioning techniques can yield additional or-

ders of magnitude speedups. The experimental setup for

this problem is around a seemingly simple problem — en-

coding a piece-wise linear one-dimensional curve. A sum-

mary of experimental results, when training with different

architectures and conditioning techniques, is found in Fig-

ure 5. Despite the simplicity of this problem, we show

that following the common rule of “perhaps I should use

a deeper/wider network”4 does not significantly help here.

Finally, we consider deep learning’s reliance on “vanilla”

gradient information for the optimization process. We pre-

viously discussed the deficiency of using a local property

of the objective in directing global optimization. We turn

our focus to a simple case in which it is possible to solve

the optimization problem based on local information, but

not in the form of a gradient. We experiment with archi-

tectures that contain activation functions with flat regions,

which leads to the well known vanishing gradient problem.

Practitioners take great care when working with such acti-

vation functions, and many heuristic tricks are applied in

order to initialize the network’s weights in non-flat areas

of its activations. Here, we show that by using a differ-

ent update rule, we manage to solve the learning problem

efficiently. Moreover, one can show convergence guaran-

tees for a family of such functions. This provides a clean

example where non-gradient-based optimization schemes

can overcome the limitations of gradient-based learning.

5. Summary

In this paper, we considered different families of problems,

where standard gradient-based deep learning approaches

appear to suffer from significant difficulties. Our analysis

indicates that these difficulties are not necessarily related

to stationary point issues such as spurious local minima or

a plethora of saddle points, but rather more subtle issues:

Insufficient information in the gradients about the underly-

ing target function; low SNR; bad conditioning; or flatness

in the activations (see Figure 6 for a graphical illustration).

We consider it as a first step towards a better understand-

ing of where standard deep learning methods might fail, as

well as what approaches might overcome these failures.

4See http://joelgrus.com/2016/05/23/

fizz-buzz-in-tensorflow/ for the inspiration be-
hind this quote.

(a) Linear architecture.

(b) Convolutional architecture.

(c) Convolutional architecture with conditioning.

(d) Vanilla deep auto encoder.

Figure 5. Examples for decoded outputs of several experiments,

learning to encode PWL curves. In blue are the original curves.

In red are the decoded curves. The plot shows the outputs for

two curves, after 500, 10000, and 50000 iterations, from left to

right. The convolutional architecture, with conditioning, clearly

outperforms others, both in terms of convergence rate and final

accuracy.

http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
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(a) Extremely small variance in the loss surface’s gra-
dient, w.r.t. different target functions, each with a very
different optimum.

�1 �0.5 0 0.5 1

�1

0

1

(b) Low SNR of gradient estimates. The dashed lines
represent losses w.r.t. different samples, each implying
a very different estimate than the average gradient.
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(c) Bad conditioning - 2 dimensional example of a loss
function’s quiver. Following the gradient is far from
being the best direction to go.

�1 �0.5 0 0.5 1

�1

0

1

(d) Completely flat activation - no information in the
gradient.

Figure 6. A graphical summary of limitations of gradient-based

learning.
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