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FAIR: a Fast Algorithm for document Image

Restoration
Thibault Lelore, Frédéric Bouchara

Abstract—We present in this paper the FAIR algorithm: a
Fast Algorithm for document Image Restoration. This algorithm
has been submitted to different contests where it showed good
performance in comparison to the state of the art. In addition,
this method is scale invariant and fast enough to be used
in real-time applications. The method is based on a double-
threshold edge detection approach which makes it possible to
detect small details while remaining robust against noise. The
performance of the proposition is evaluated on several types of
degraded document images where considerable background noise
or variation in contrast and illumination exist.

Index Terms—Image enhancement, Image edge detection, Im-
age segmentation, Image processing, Image restoration

I. INTRODUCTION

Binarization is one of the initial steps in most

document image analyses and understanding systems

(initial classification, Optical Character Recognition, etc.). It

plays a key role in document processing since its performance

affects quite critically the degree of success in a subsequent

character segmentation and recognition. Degradations appear

frequently and can be due to several reasons which range

from the acquisition source type to environmental conditions.

Numerous document image binarization methods try to

find a threshold (local or global) which separates text and

background thanks to a statistical criterion. Global methods

assume that the statistical distribution of background and

foreground color is constant for the entire image. An example

of such an approach was proposed by Otsu [1]. In this

algorithm the global threshold is found by maximizing the

separability of the classes. Unfortunately, this approach

doesn’t work when documents contain stamps or a high range

of contrast.

In local methods the threshold is adjusted using local

computation. Bernsen proposed a method based on the

minimal and the maximal values of a local window [2]. Other

works used the standard deviation and mean values [3], [4]

or a local contrast thresholding [?]. Gatos proposed a method

in two main steps: the gray levels of the background are first

computed thanks to Sauvola’s algorithm and used to binarize

the image efficiently [5]. Recently, a new method combined

different thresholding methods and then applied a classifier on

binarization results to iteratively classify the uncertain pixels

as foreground or background [7]. Other works extend the

local thresholding approach by integrating spatial information

into a Bayesian framework thanks to a Markov Random

T. Lelore and F. Bouchara are with the LSIS laboratory, Southern Uni-
versity of Toulon-Var, BP 20132, 83957 La Garde Cedex, France. E-mail:
thibault.lelore@gmail.com, bouchara@univ-tln.fr

Fig. 1. Illustration of classical drawbacks of Canny edge detector [17]. (a,c)
Original documents, (b) No closed boundary and (d) spurious edge responses.

Field model [8], [9]. Howe proposed to add an automatic

parameter tuning to the model using a binarization instability

measurement [10]. However, these approaches lead to a time

consuming minimization of a complex energy function which

is incompatible with real-time processing.

Another approach has the binarization preceded by an

edge detection preprocessing step [11]–[16]. This approach is

motivated by two main assumptions: text and background are

supposed to be mixed in a binary way which leads to sharp

transitions. In addition, background artifacts or variations (due

to shadows for instance) are supposed to be smooth and have

little response to edge detection operators (which is usually

the case). This assumption is for instance particularly relevant

in the case of bleed-through, due to seeping of ink from

the reverse side, or show-through. In addition, edge-based

algorithms generally have the advantage of being insensitive

to the size of the characters. Indeed, from a given size, the

edges of objects are detected regardless of their size.

However, edge detectors suffer from the classical drawback

of disjointed contours (figure 1(a,b)) which is a critical prob-

lem in the case of documents binarization.

To solve this problem, Cao et al. [11] proposed a modified

version of the Canny algorithm which aims at closing the

letters’s boundary by using the orientation computed at the

end of the edge. In a recent work, Chen et al. [12] proposed

an improvement of this approach by adding to edge orientation

some information about the distance from nearby edges. The

resulting contour is then used to estimate the values of two

predefined thresholds. The result of high thresholding is used

as the initialization step of a region growing algorithm. The

final result is obtained by combining the previous result with

the low threshold binary image.

With a similar approach Li et al. [13] proposed a method

based on the Laplacian operator to select pixels involved in

the computation of the global threshold. In [14], Ramirez

et al. introduced the notion of transition pixels to represent

pixels close to edges. From this transition set they compute
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a gray-intensity threshold using classical statistical methods.

Block and Rojas [15] proposed an optimization for the

energy computation of transition pixels using the differences

between the original document and a blurred version of the

image. They use some rules based on the size of connected

components to remove the misclassified objects. In the same

spirit, Fabrizio et al. [16] search for regions having minimal

contrast1 and use a morphological operator (Toggle Mapping)

to find the class. They finally find the class of homogeneous

regions using the size and class of these regions’ boundaries.

All these methods usually require the estimation of sev-

eral parameters (such as the size of the analysis window)

which have to be adjusted differently for each image. These

drawbacks make these algorithms ineffective on documents

containing several kinds of text font. Such a problem is

particularly significant for the approaches based on a learning

process such as MRF models.

With the emergence of handheld multimedia devices (PDA,

smartphone, etc.), new applications of these algorithms have

also emerged where computation time as well as robustness

are crucial. An example of such an application is given by

the Google image recognition project Goggles [18], which

aims at developing searches based on pictures taken by

handheld devices. In this paper, we propose an algorithm for

the binarization of text-based images. The method can be

considered to be parameter-free (as seen in section III-B, the

parameters don’t greatly affect the quality of the binarization)

and, since it is edge-based, scale-independent. It can hence

compute binarized images with the same efficiency, whatever

the content (font size, variable background intensity, shadows,

smear, smudge, low contrast, bleed-through...). The proposed

algorithm requires very short computational time without

sacrificing performances as indicated by the results of several

contests where parts of the algorithm have been submitted:

• A preliminary version of the S-FAIR sub-processing (see

section II-A) has been submitted in the DIBCO09 contest

[19] and finished 9th out of 43 submitted algorithms.

• The present S-FAIR sub-processing has been submitted

to the two following contests:

– ICFHR 2010 - Quantitative Evaluation of Bina-

rization Algorithms [20] (First out of 6 submitted

algorithms for the first type of documents and second

out of 6 for the second type of documents.)

– H-DIBCO10 [21] (3rd out of 17 submitted algo-

rithms.)

• A preliminary version of the FAIR algorithm, which is

the subject of the present paper, has finished at the 1st

place out of 18 algorithms in the DIBCO11 contest [22]

and 2nd place out of 24 in the H-DIBCO12 [23]

The rest of paper is organized as follows. The proposed

method is described in the next section. In section III, the

performance of this algorithm is assessed and compared with

other methods in the literature. Section IV offers the conclu-

sion.

1For the DIBCO Contest, they use a hysteresis threshold

Fig. 2. Block diagram of the proposed algorithm (see section II-B for a
complete description).

Fig. 3. Details on the sub-process S-FAIR.

II. PROPOSED METHOD

The proposed method is described in figure 2.

The idea developed in the FAIR algorithm is to combine

the results of two different ternary images given by the S-

FAIR algorithm (described in the next subsection) using two

different thresholds: the first ternary image is considered

as noise-free but without some important edges, the other

contains each character’s edges but with some additional noise.

From this merging, we identify problematic areas where some

differences occur between the two images. The final binary

image is then obtained by recalculating the class of pixels

around these problematic areas using a new neighborhood (not

the classic square window).

A. The S-FAIR sub-processing

The S-FAIR sub-process (for Simplified FAIR) that we

propose is based on a simple algorithm (see figure 3) that

can be divided in two main steps as follows:

• In a first step, a rough localization of the text is achieved

using an edge-detection algorithm based on a modified

version of the well-known Canny method.

• From the previous result, pixels in the immediate vicinity

of edges are labeled in in ’text’ or ’background’ thanks

to a clustering algorithm. The remaining pixels (far from

an edge pixel) are labeled as ’unknown’. The result is

hence a three class image.

Using an additional labeling process described in sub-

section II-B4 (to remove the ”Unknown” label), this algorithm

itself becomes a binarization method. The above-mentioned

two steps are discussed in the next sub-sections.
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Fig. 4. (left) Original documents, (right) Three values images produced by
S-FAIR.

1) Text area detection: In our approach, text localization is

based on the well-known Canny algorithm. The given result

of this edge detector is strongly conditioned by the tuning of

the two parameters Tu and Tl which correspond to the upper

and lower thresholds of the hysteresis process.

Applied on a text document with sub-optimal values,

Canny algorithm usually leads to several kinds of problems

(as illustrated in figure 1). However, it is worth nothing that

in our approach, tuning this threshold is not critical. Indeed,

edge detection step consist only in a rough localization of the

text’s position and is followed by a labeling process which

enhances the estimation’s precision.

As seen in the literature [24], [25], the estimation of T
is achieved by applying the Otsu algorithm to the gradient

magnitude computed thanks to the Sobel operator. From the

threshold To computed by the Otsu method, we simply define

Tu = k.To where k is the only parameter of the sub-process.

The second threshold Tl is usually computed from Tu by

a simple linear relation: Tl = α.Tu with α usually chosen in

[0.3, 0.5].

2) Model estimation around edges: The second step of the

algorithm is devoted to the classification of the pixels close to

the edges previously detected. To this aim, we simply define

our observational model as a slow varying underlying image

disturbed by a centered white Gaussian additive noise, that is:

oi = (1− zi).(µ
b
i + nb

i ) + zi.(µ
t
i + nt

i) (1)

In the previous equation, oi is the observation image at

site i. µb
i and µt

i are the noiseless version of respectively the

background and the text. zi is the hidden binary variable to

be estimated with zi = 0 for the background and zi = 1 for

the text. We assume that the covariance matrices (Σt and

Σb) of the noise (nt
i and nb

i ) only depends on the nature

(text or background) of the pixel under consideration. The

values of µb
i and µt

i are estimated for each pixels i in the

vicinity of the edges along with the values of zi. Conversely,

the noise is assume to be independent of the site i and the

values of Σt and Σb remain constant for all the pixels of

the image. Another reason for this choice is to estimate with

greater precision and robustness these parameters which are

notoriously sensitive to noise.

Let N(s) be an (n × n) square window centered on

edge pixel s (detected in the previous step). Such a window

contains both text and background and, thanks to the previous

assumption, the statistical distribution of its pixels can be

modeled by the mixture of the two d-dimensional Gaussian

processes Nd(µ
b,Σb) and Nd(µ

t,Σt) (where d = 1 or d = 3
for, respectively, a gray level or a color image). To compute the

parameters of this model we use the EM algorithm [26], the

principle of which we are going to recall in order to introduce

our notation.

The EM algorithm is a classical approach to estimate the

parameters of a mixture model by iteratively applying the

following two steps:

• The Expectation step (E-step) computes the expected

value, with respect to the conditional distribution of z
given o, of the log likelihood function log (P (o, z/Ψs))
where Ψs is the parameter vector of the model computed

at pixel s, o = {oi/i ∈ Ns} and z = {zi/i ∈ Ns}.

• The Maximization step (M-step estimate Ψs by maxi-

mizing Q(Ψs/Ψ
(q)
s ) = E

z/o,Ψ
(q)
s

[log (P (o, z/Ψs))]

In the above, (q) represents the iteration step of the algo-

rithm.

In the case of a Gaussian mixture model, the log likelihood

function is given by:

L(o, z,Ψs) =
∑

i∈N(s)

(

zi logF (i, t) + (1− zi) logF (i, b)

)

(2)

with

F (i, c) = πc
s.Nd(oi;µ

c
s,Σ

c) (3)

where
(

πt
s, π

b
s

)

control the ”mixing” value between

the Gaussians, c is the class (either ′b′ or ′t′) and

Ψs = (πt
s, π

b
s, µ

t
s, µ

b
s) is the vector of unknown parameters

estimated during the M-step.

The E-step estimates the quantity Q(Ψs/Ψ
(q)
s ) by comput-

ing, thanks to the Bayes theorem, the conditional distribution

of the zi given our current estimate of the parameters Ψq
s at

step (q):

t
c(q)
i = P (zi/oi,Ψ

q
s) (4)

=
π
c(q)
s Nd(oi;µ

c
s,Σ

c)

π
t(q)
s Nd(oi;µt

s,Σ
t) + π

b(q)
s Nd(oi;µb

s,Σ
b)

The Q(Ψs/Ψ
(q)
s ) quantity is hence given by:

Q(Ψs/Ψ
(q)
s ) =

∑

i∈N(s)

(

t
t(q)
i logF (i, t) + t

b(q)
i logF (i, b)

)

(5)

Thanks to the quadratic form of logF (i, c), the maxi-

mization of Q(Ψs/Ψ
(q)
s ) with respect to Ψs (the M-step) is

straightforward and can be achieved separately for the different
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Fig. 5. Example of threshold problems. (a) input image, (b) high threshold
misses some edges, (c) low threshold detects noise. We can also notice that
sharp transitions in background are detected as text.

terms:

πc(q+1)
s =

1

n2

∑

i∈N(s)

t
c(q)
i (6)

µc(q+1)
s =

∑

i∈N(s) t
c(q)
i oi

∑

i∈N(s) t
c(q)
i

(7)

The initialization of parameter Ψs is achieved by using the

classical K-Means.

Since the second order properties of the two Gaussian

processes are supposed to be constant,
(

Σt,Σb
)

constitutes

a global parameter of our model and is hence classically

estimated at each (q) step using the whole image. Each (i, j)
component of the two covariance matrices is hence given by:

Σc(q)(i, j) =

∑

s t
c(q)
s

(

os(i)− µc
s(i)

(q)
) (

os(j)− µc
s(j)

(q)
)

∑

s t
c(q)
s

(8)

The two steps of the EM algorithm are iteratively applied

alternating with the estimation of
(

Σt,Σb
)

for each edge pixel

until convergence. For the remaining pixels close to edges (i.e.

belonging to at least one window N(s)) we estimate the two

values (t̃t, t̃b) by computing the mean value of the (tt, tb):

t̃ci =
1

#s/N(s) ∋ i

∑

s/N(s)∋i

tc(Ψs) (9)

where s ∈ {edge} and {edge} is the set of all edge pixels.

The final class of a pixel i is estimated thanks to the

following rule:

zi =







unknown if mins∈{edge}d(i, s) > n/2

0 else if t̃i
t
< t̃i

b

1 else
(10)

where d(i, s) is the city-block distance between pixels i and

s, and n is the size of the window N(s).
At the end of this stage, all the pixels of the image close

to edges are labeled either ’text’ or ’background’, the other

pixels are temporary labeled as ’unknown’ (figure 4).

B. The FAIR algorithm

Before describing FAIR, we shall first clarify some aspects

of S-FAIR on which it is based. The results given by S-

FAIR presents two main problems. The first one, illustrated by

figure 5 (b,c), is a classical problem when using a thresholding

approach: there is no optimal threshold value. A high value

Fig. 6. Detection of misclassified text pixels. First row: (left) Input image,
(middle) Three-values image created by the fusion stage, (right) in red, the
problematic text pixels (Zpit) and in green, the surrounding area used to

compute labels (Zpi
b
). Second row: a new ternary image is produced using

Nf (s) and the process reiterate until convergence.

of k leads to text with open edges. Conversely, a low value

of k leads to an accurate detection of the text but at the

cost of a significant noise. The second problem of S-FAIR is

encountered when the background contains sharp transitions

which are then detected as text.

The idea developed in the FAIR algorithm is to combine

the results of S-FAIR obtained with two different thresholds

(see figure 2d). The image is then filtered in a second step

by taking advantage of the particular noise induced by this

process. This post-filtering will be described below. As we

shall see, the two kinds of misclassified text pixels (noise and

sharp transition, see figure 5) share some properties which give

us the possibility of removing them using the same process.

The global description of FAIR is summarized in figure 2.

1) Double thresholding: To achieve the double thresholding

we introduce a new parameter (K = 1.0) to adjust the

parameter of the two S-FAIR sub-processes (see II-A1). The

low threshold kl is chosen in order to get all the edges of the

text. Typically we take kl = 1.4 ∗K. The high threshold kh

is taken equal to 1.66 ∗K to limit noise influence.

2) Merging: The two previous results are then combined

into a ternary image, by respectively associating the numerical

values 1, 0.5 and 0 to the symbolic labels ’text’, ’unknown’

and ’background’, and then computing the new ternary image

Im as:

Im = max(Ikl , Ikh)

3) Post-filtering process: The approach described in

the previous paragraph gives an image with over-detected

text labels with many false detections. That’s why this

post-filtering process considers only the case of misclassified

text pixels.

If we consider figure 6(b-c), we can observe that both

kinds of misclassified text pixels are neighboring pixels of

’unknown’ label (see figure 6 (d)). However, such neighboring
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pixels are sometimes correctly classified. The post-process

has to take this into account to remove only misclassified text

pixels.

The filtering is achieved in two steps. The first step

removes stains which are detected as connected components

only surrounded by ’unknown’ pixels (such as the stain above

the C in figure 6(C)).

The second step is iterative and is defined as follows: Let

Zt(i) be the set of pixels of ’text’ label at the ith iteration. We

define Zpt(i) as the set of text pixels which are suspected to

be misclassified as follows:

Zpt(i) = Zt(i) ∩ D5(Z
u(i)) (11)

where Zu(i) is the set of pixels of ’unknown’ label at the

ith iteration and D5(.) is a morphological dilation using a

5 ∗ 5 diamond-shape structuring element.

At each iteration of the algorithm, a new label for each pixel

s ∈ Zpt(i) is computed. To this aim we define the following

neighborhood of s:

Nf (s) = N(s) ∩
(

Zpt(i) ∪ Zpu(i)
)

(12)

where N(s) is the neighborhood defined in section II-A2

and Zpu(i) is computed in the same way as Zpt(i) but this

time the text regions grows into the ’unknown’ regions. The

size of the structuring element used to compute Zpu(i) will

be discussed in section II-C. The computation at each stage is

achieved thanks to the EM algorithm (eq. 5-10) but using the

new neighborhood Nf (s).
This iterative process ends when the labels remain

unchanged between two iterations.

To illustrate how this approach works, let’s consider the two

cases defined by the small circles 1 and 2 of figure 6. In both

cases text pixels are neighboring of ’unknown’ pixel.

Case 1 corresponds to the detection of spurious text pixels

due to a sharp transistion of the background. Thanks to the

definition given by eq. 12, the new neighborhood Nf (s) only

contains pixels of the dark side of the background. This kind

of situation is detected in the clustering step of section II-A2

when the two mean values µb
s and µt

s are close. The label of

pixel s is then defined as ’unknown’.

In case ’2’ the neighborhood Nf (s) contains both text and

background pixels which leads to the detection of two different

processes. The final label then remains unchanged.

4) Final labeling: The last step of the algorithm is devoted

to the labeling of remaining unknown pixels. Intuitively, it

would be natural to consider that an unknown pixel adjacent to

a known one gets the same label. This consideration leads to a

first naive approach based on the propagation of the label from

known pixels thanks to a growing region strategy. However,

this method is highly dependent on the initial pixel from which

the growing region starts, and may lead to the propagation of

misclassification if the label of this pixel is noisy (figure 7).

Fig. 7. (left) Original document, (right) Problem to define the class near the
black line. The arrows show how the misclassified text pixels will expand.

In a recent work, Su et al. proposed an iterative algorithm to

classify this type of pixels using neighborhood labels and their

corresponding contrast and intensity features [7].

We have defined a different strategy in two steps: we first

extract the connected unknown area and then assign the same

label to all the pixels belonging to this area. Extraction of a

connected area can be done very quickly by using a connected

component algorithm such as the method described in [27].

Although this method is less accurate than Su’s [7], this step

is both quick and satisfactory in terms of binarization quality.

The estimation of the label assigned to the resulting area

depends on the labels of its neighboring pixels, which, by

definition, are all known. This estimation is achieved by

applying the following rule:

zI =

{

1(text) if N t > β.N b

0(background) else
(13)

where N t, N b are respectively the number of text and back-

ground pixels in the boundary of the Ith area and β is a

weighting used to adjust the sensitivity of the algorithm to the

text.

C. Parameters

Although the algorithm presented above includes some

free parameters, most of them can be considered as having

little or no influence. We will detail here what impact each

parameter has on the quality of binarization.

The less important parameter is probably the weighting ’β’ of

eq.13. Indeed, while this parameter can produce bad results

if the value is maladjusted, a unique value works on all test

images with near-optimal results (we used β = 1 in our

experiments).

The various neighborhood we use in this method can also be

taken as constant with negligible consequences for all images

tested, either because they do not strongly influence the result

or because the best value appears not to fluctuate much for

different images:

• The size of the neighborhood used in II-A2 should be large

enough to correctly estimate the model, but small enough not

to suffer from the ”global thresholding” problem and being

fast enough (see Introduction). The experimental results show

us that n = 3 is a good compromise. Hopefully, this size does

not depends on the size of the text nor on the image resolution.
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Fig. 8. Text area detection problems. input image (middle), Problematic
DIBCO11 version (top), proposed method (bottom). (b) and (d) ternary
images, (c) and (e) binarized images.

• The post-processing neighborhood (Zpu(i), see section

II-B3) is a little bit more complex: three parameters are

involved. Two of them determine the subset of pixels to keep

for the model estimation (size and shape of the structuring

element) while the latter corresponds to the size of the window.

After studying the influence of these parameters, it seems

that the shape of the element is the less critical: the choice

was focused on a diamond-shape structuring element because

it is fast to compute and has good geometric properties.

The size of this element is a bit more important because it

determines the pixels to keep for the model estimation. A too

small value would remove too much pixels from the analysis

window, while a too high value could add pixels previously

considered as problematic. However, this influence remains

low. According to the tests we have achieved, for a width of

the structuring element ranging from 5 to 50 pixels, the F-

Measure varies from 93.20 (5 ∗ 5) to 93.55 (29 ∗ 29). We have

achieved similar assessments on the size of the window N(s)
and we have found that changes in F-Measure are less than

one percent. For the various tests, we have set this value to

(75 ∗ 75) which is a good compromise between computation

time and performance.

The parameter which most strongly influences the bina-

rization outcome is the parameter K which controls the text

area detection. It is indeed these areas that affect the rest of

the algorithm and thus deserve particular attention to prevent

bad detection. A particular tuning of this value can give good

results for some images and be ineffective for others. Such a

problem occurs for instance in the DIBCO11 competition for

two images: PR6 and PR7 (see figure 8). Indeed, the detected

text areas were too numerous and the algorithm thus labeled

the large ’unknown’ area as text. This particular problem

can be solved in different ways. One can assume that the

largest ’unknown’ area is necessarily ’background’, but this

solution involves making assumptions about the layout of the

documents. Another solution would be to use the ratio of

’text’ labels to ’background’ labels to detect problems, but

this would imply re-estimating the whole image and thus be

more time-consuming. We chose to add the additional step

described in section II-B3 which removes the ’text’ connected

components surrounded by ’unknown’ labels. This way, a lot

of erroneous labels are removed and the ’unknown’ areas are

Fig. 9. Evolution of the F-Measures as function of T 1
u and T 2

u (means calcu-
lated on 54 images). The shaded area corresponds to parameter combinations
that avoid the use of double thresholding (T 1

u > T 2
u ).

then correctly classified.

Due to our ’double threshold’ approach, parameter K implic-

itly corresponds to four parameters: low (Tl) and high (Tu)

Canny’s threshold for both sub-processes. We first decided to

study how the low parameter impact binarization output by

varying α, the ratio between the two thresholds: Tl = α.Tu.

We found that the same value works on all test images with

near-optimal result when α = 0.38. We then studied the impact

of the upper threshold of the two sub-processes. As shown by

figure 9, the value did not greatly influence the binarization

outcome and the best result was obtain with T 1
u = 1.4 and

T 2
u = 1.66. We then set kl and kh presented in section II-B1

according to these values. In addition, the figure 9 indirectly

shows the impact of the double thresholding: the shaded areas

represents areas where the merging process is impossible

(T 1
u > T 2

u ). We hence can see that the F-Measure has increased

by approximately 1% thanks to that improvement.

III. EXPERIMENTAL RESULTS

This section presents an assessment of the proposed method,

based on its comparison with several algorithms from the

literature. The retained criteria are first the algorithms’

run time, then the results obtained in the binarization of

handwritten and typewritten documents through three different

methods: the F-measure proposed in the DIBCO09 contest,

visual considerations and the recognition rate of an optical

character recognition software (ABBYY FineReader 9.0 [28]).

To compare the results of our algorithm, the documents used

in our benchmarking are derived from several sources such

as the Oulu database2, the DIBCO contests [19], [21]–[23] or

private collections. The implementation of our algorithm don’t

use the computational extensive version proposed in II-A2.

Instead, we use the fast K-Means algorithm to estimate the

various values of our model, but you will find a performance

comparison between the two implementations in table II.

A. Run time

For the run time comparison, we have chosen five different

algorithms from the literature. Our algorithms (k-means and

EM version) are compared with three fast and well-known

methods: the Otsu method [1] (Chung’s optimization [30]),

2http://www.mediateam.oulu.fi/MTDB/
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TABLE I
COMPARISON OF RUN TIMES (MILLISECONDS/MEGAPIXEL) ON VARIOUS KINDS OF IMAGES.

Image type Otsu Shafait Sauvola Fabrizio Ramirez FAIR
k-means

FAIR
EM

Handwritten
Max. 10.4 85.7 10 021.1 1 979.3 2 023.2 755.1 35 789
Mean 6.8 79.3 6 480.6 1 227.3 1 460.1 619.8 30 489
Min. 2.2 65.2 750.0 823.5 1 040.9 578.3 27 890

Typewritten
Max. 10.6 83.5 7 041.7 2 449.2 2 513.1 725.6 33 485
Mean 9.5 79.5 4 089.0 1 547.5 1 430.8 670.5 31 563
Min. 8.9 75.7 1 252.2 540.7 936.2 547.2 29 990

Natural scenes
Max. 15.3 84.7 10 722.0 7 038.0 2 744.0 782.4 34 450
Mean 13.0 78.8 4 113.5 3 190.4 1 603.3 575.1 28 044
Min. 9.0 72.9 976.7 1 886.7 1 180.7 517.5 26 672

Fig. 10. Binarization of live images using a smartphone. (top) Grey input,
(middle) Otsu’s method, (bottom) proposed method.

the original [4] and an optimized version [31] of Sauvola’s

algorithm. We have also compared our algorithms with two

recent proposals by using the binary code proposed by their

authors: the algorithm of Fabrizio et al. [16] and the method

of Ramirez et al. [14]. For all these algorithms we have run

the binarization of 27 documents 200 times under the same

environment (Intel® Core i7 @ 2.8 GHz, 2GB Memory)

and we have implemented the algorithms in C++ except

for Fabrizio and Ramirez’s methods, for which we used the

authors’ binary code. The documents are quite large (between

1.5 and 6.9 mega pixels) and taken from the different sources

mentioned above. Note that, this EM version is implemented

for the general case (i.e. for a color image) and involves

matrix calculations which explains the long run times.

The comparison of execution times is summarized in table I.

As expected the fastest results are given by the Otsu method

which is simply based on a global thresholding approach.

Roughly speaking, our proposal is about ten time as slow as

Shafait’s optimization of the Sauvola algorithm but twice as

fast as the algorithms of Ramirez and Fabrizio which have

comparable performance.

We can note that there is a large gap between the maximum

and minimum values for the original Sauvola’s method due

to the different window sizes (13 ∗ 13 to 50 ∗ 50). Shafait’s

optimization makes the run time quite independent on the size

of the window and leads to an improvement by a factor of 50.

We can also observe similar gaps for Fabrizio’s, Ramirez’s

and our methods but they have different explanations. They

are due to the fact that the run time highly depends on the

number of detected edges. However, our algorithm remains

reasonably sensitive as indicated by the value of the run

time variance (16 ms/megapixel for our algorithm, 176

ms/megapixel for Ramirez’s algorithm and 320 ms/megapixel

for Fabrizio’s algorithm).

In order to assess the relevance of this method in a mobile

context, we have implemented the k-mean version of the FAIR

algorithm on a smartphone (ARM Qualcomm®MSM8660 @
1.2 GHz, 1GB Memory, resolution: 720 ∗ 480) to binarize

natural scenes taken from the camera. With such equipment,

our method processes around 1 frames per second. In

comparison the Otsu’s method processes 60 frames per

second in the same context. However, as shows figure 10

which gives some examples of results, the global thresholding

of the Otsu’s method is unable to cope with the natural-

lighting scenes.

B. Binarization quality

In this section, we compare the binarization quality of

our approach with the following five methods: Otsu [1],

Sauvola [4], Chen [12], Ramirez [14] and Fabrizio [16]. This

comparison is based on the F-measure used in the DIBCO

contest (Eq.14) when a ground-truth is available, and when

there is none, on visual considerations.

The F-measure (FM) is defined by the following expression:

FM = 100 ∗
2 ∗ Pr ∗ Rc

Pr + Rc
(14)

with: Rc =
TP

TP + FN
and Pr =

TP

TP + FP

TP, FP, TN and FN denote respectively the true positive,

false positive, true negative, and false negative values.



8

50%

60%

70%

80%

90%

100%

F-measure

H01 H02 H03 H04 H05 H06 H07 P01 P02 P03 P04 P05 P06 P07

Chen Otsu Sauvola FabrizioRamirez FAIRS-FAIR

80%

90%

100%

F-measure

H01 H02 H03 H04 H05 H06 H07 P01 P02 P03 P04 P05 P06 P07

Chen Sauvola FabrizioRamirez FAIRS-FAIR

Fig. 11. Performance comparison in terms of F-measure without adjusting
parameters (top) and with optimum parameters (bottom).

We first compared the performance of our algorithm using

the DIBCO’09 documents3. These documents were of two

types: manuscript (H01 to H07) and printed (P01 to P07).

The ground truth was provided by the contest organizer, so

the evaluation was considered objective.

In order to assess the sensitivity of the algorithms with

respect to their tuning parameters we ran two types of

experiments: in the first test we used the same parameters

for all the images (figure 11, top). In the second test, these

parameters were adjusted for each image (figure 11, bottom).

In the first kind of tests (without tuning), the parameters were

set according to the recommendations given by the authors

(we suggest the readers to see the original papers). For the

second kind of tests, the whole range of possible parameter

combinations was exhaustively explored. Note that there are

two special cases: Otsu’s algorithm has no tuning parameter

and two of the three parameters of Fabrizio’s algorithm

can be adjusted automatically. Incidentally, in order not to

degrade this method’s results, this ’automatic tuning’ was not

disabled in the first kind of tests.

As we can see, our algorithm, which depends on a unique

parameter defined by the value of K (section II-A2 and II-B),

clearly outperforms other methods, both with and without

parameter tuning. When using the same parameter for all the

images, the average of the F-measures for our algorithm is

equal to 94.6% (Chen: 75.48, Otsu: 78.74, Ramirez: 83.20,

Sauvola: 86.34, Fabrizio: 91.07). When using parameter

tuning, this result increases slightly to 95.16% (Chen: 91.14,

Sauvola: 91.71, Ramirez: 91.90, Fabrizio: 92.61) which

clearly indicates that our algorithm is not too sensitive to the

value of K – the weight of each S-FAIR sub-processes).

The results of our method (using the expectation-maximisation

algorithm or the K-Means algorithm) are summarized in table

II using the new comparison criteria also used in DIBCO11

[22]. We keep the same parameter for each image.

We have also applied the different algorithms on several

images with severe degradations. Since there is no ground truth

available, the comparison is based on visual considerations.

Some results and original image are given in figure 12. Based

on visual criteria, the proposed binarization gives the best

results on heavily degraded documents. Our solution looks

3We also included the sample images (H06, H07, P06 and P07) available
at: http://users.iit.demokritos.gr/∼bgat/DIBCO2009/samples/

TABLE II
BINARIZATION EVALUATION USING VARIOUS DATABASES: DIBCO9

(H01-P07) ; H-DIBCO 2010 (H01’-H10’) ; DIBCO11 (HW1-PR8) ;
H-DIBCO 2012 (H01”-H14”)

Method Expectation-Maximisation K-Means

Docs FM PSNR DRD MPM FM PSNR

H01 95.203 21.844 1.278 0.2 95.2005 21.8456
H02 92.529 24.714 3.277 0.101 92.578 24.7445
H03 94.368 19.531 1.714 0.413 94.3924 19.5432
H04 90.055 18.402 4.021 1.077 90.0698 18.4134
H05 90.324 21.274 3.363 0.419 90.2588 21.2476
H06 96.036 28.522 0.946 0.118 95.9941 28.4779
H07 96.225 23.594 0.788 0.086 96.3033 23.697
P01 94.472 18.675 1.606 0.38 94.4737 18.6871
P02 97.117 19.146 1.247 0.474 97.1021 19.1293
P03 98.31 22.377 0.943 0.157 98.3009 22.3564
P04 93.345 18.587 2.543 0.393 93.3218 18.5828
P05 92.129 16.426 2.396 1.871 91.9682 16.3533
P06 97.147 26.625 0.968 0.069 97.1325 26.6045
P07 97.331 19.902 2.024 1.061 97.3008 19.8552

H01’ 95.152 19.858 1.874 0.665 95.1356 19.8478
H02’ 94.203 22.891 2.26 0.19 94.2081 22.9011
H03’ 96.12 22.638 0.927 0.255 96.0043 22.5295
H04’ 92.527 19.088 2.06 0.191 92.4458 19.0428
H05’ 95.81 23.107 1.248 0.183 95.7229 23.0146
H06’ 94.529 21.582 1.233 0.098 94.4605 21.5546
H07’ 94.696 21.268 1.498 0.108 94.6711 21.2475
H08’ 92.602 19.305 1.772 0.541 92.5769 19.2974
H09’ 94.579 22.84 1.297 0.231 94.6333 22.8955
H10’ 88.252 18.811 3.51 0.203 88.2338 18.8082

HW1 89.5 15.985 5.219 4.389 89.4569 15.9647
HW2 95.894 24.2 1.03 0.029 95.8759 24.1839
HW3 94.454 20.84 1.402 0.136 94.4407 20.8324
HW4 93.662 19.263 1.598 0.555 93.4817 19.1605
HW5 95.218 19.571 1.889 2.471 95.2245 19.5792
HW6 92.274 19.41 2.297 0.644 92.3577 19.4661
HW7 95.101 23.927 1.195 0.089 95.0364 23.8824
HW8 94.822 23.098 1.182 0.034 94.8611 23.1328
PR1 94.072 17.157 2.997 2.333 94.0032 17.1102
PR2 80.507 12.707 10.61 31.19 80.5598 12.7347
PR3 95.762 18.151 1.44 0.292 95.6525 18.0474
PR4 93.238 18.416 3.005 0.164 93.1658 18.3732
PR5 93.415 17.431 2.015 1.067 93.2731 17.3486
PR6 88.321 19.02 7.055 3.541 88.3361 19.034
PR7 93.832 25.025 2.1 0.252 93.8634 25.0453
PR8 88.349 15.283 3.234 0.455 88.0973 15.213

H01” 95.773 23.094 2.364 0.124 95.6691 22.982
H02” 85.38 16.468 5.572 1.017 85.3794 16.4716
H03” 89.709 18.89 5.621 1.775 89.7757 18.9235
H04” 94.639 22.867 1.632 0.176 94.5684 22.8112
H05” 95.647 22.767 1.188 0.357 95.574 22.6934
H06” 94.602 21.406 2.078 0.923 94.5299 21.3458
H07” 92.791 20.2 1.728 0.202 92.7321 20.1852
H08” 95.807 22.167 1.335 0.244 95.6965 22.0434
H09” 95.593 20.032 1.666 0.341 95.574 20.0161
H10” 94.388 19.623 2.656 0.484 94.3902 19.6288
H11” 93.726 19.769 2.564 0.923 93.7105 19.7629
H12” 95.065 22.404 1.235 0.091 94.9853 22.3325
H13” 92.315 21.333 1.97 0.284 92.3651 21.37
H14” 96.57 24.988 0.895 0.016 96.5542 24.9721

Average 93.583 20.675 2.325 1.187 93.55 20.654

less sensitive to background noise but more sensitive to the

text details. Indeed, thanks to Canny’s algorithm, background

artifacts or variations (due to shadows for instance) are re-

moved right from the start. Furthermore, the clustering process

add some robustness around edges. The combination of these

two processes gives our algorithm the ability to deal with

highly degraded documents. Finally, the last step (labeling the

uniform areas as Background or Text) adds to our solution a

multi-scale behavior because the size of uniform areas does
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Fig. 12. Example of old manuscripts binarization. (a) Original, (b) Otsu’s method [1], (c) Ramirez’s method [14], (d) Chen’s method [12], (e) Fabrizio’s
method [16], (f) Sauvola et al. method [4], (g) Proposed method

Fig. 13. Some binarization output of the proposed method.

Fig. 14. Document image portion and its corresponding OCR results.
(a) Original, (b) Otsu’s method [1], (c) Ramirez’s method [14], (d) Chen’s
method [12], (e) Fabrizio’s method [16], (f) Sauvola et al. method [4],
(g) Proposed method

not matter. Our solution is hence very precise around edges

while working well with big fonts. Other results are given in

figure 13.

In order to compare the recognition rate using an OCR,

we use the MediaTeam Oulu Document Database [32] and

recent scanning of books and magazines. Some documents

were artificially degraded: we down-sampled the gray-scale

input images, added some noise, and drew shadows and lights.

We evaluated the performances of the different algorithms

TABLE III
LEVENSHTEIN DISTANCE FROM THE GROUND TRUTH

Methods Distance Recall percent

Proposed method 497 97.487 %
Ramirez 550 96.953 %

Chen 685 96.205 %
Sauvola 700 96.122 %
Fabrizio 744 95.879 %

Otsu 1489 91.752 %

by comparing the Levenstein distance from the ground-truth

and the results obtained with the well-known OCR engine

ABBYY FineReader 9.0 [28]. In figure 14 we give an example

of results obtained on a document. With this example, we can

see that our method produces a noise-free document while

extracting the characters correctly.

The results obtained on the sixteen documents are summa-

rized in table III. These results show the good performances of

the algorithms, except for the Otsu method. This bad behavior

is due to the global parameter which is not correctly estimated

when documents contain pictures or non-uniform illumination.

We can also mention that Sauvola’s method cannot deal with

documents having various font sizes due to the size of the

analysis window, so titles are often not correctly recognized.

IV. CONCLUSION

In this paper, we present an efficient algorithm for

the binarization of seriously degraded manuscripts. The

advantages of this algorithm are multiple:

(1) it is simple in principle and hence easy to implement;

(2) the main parameter is directly linked to text detection

sensibility and gives good results in most cases; (3) it is

efficient for various types of images (manuscript, typewritten,

natural scene) and can cope with different contents (font

sizes or types, background intensity, ...); (4) it is suitable

for parallel implementation since it is SIMD4 compatible

and can be implemented in dedicated massively parallel

processor (Xetal IC3D for instance). Indeed, several SIMD

implementations of each step have been proposed in the

literature (see for instance [33] for the Canny algorithm, [34]

for the connected component estimation and [35] for the

4Single instruction, multiple data
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clustering step).

We have compared this algorithm with several methods

in the literature. The evaluation has been carried out on

various kinds of manuscripts or typographic documents and

is based on four different criteria: the computational time, the

F-measure, some visual considerations and the result an OCR

algorithm. In conclusion, with respect to the last three quality

criteria, our approach outperforms all the other methods. The

good performances are coupled with low computation time

since this algorithm is roughly ten times as fast as some

recent techniques and only twice as slow as the optimized

version of the Sauvola algorithm.

For future work, we plan to develop algorithms for parallel

architectures and speed up estimation of local means.
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