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Abstract—Mutual information-based image registration, cific regions of the brain [6], [7]. In general, the registration of
shown to be effective in registering a range of medical images, single-modality images allows monitoring changes over time,
is a computationally expensive process, with a typical execution \yhereas the registration of multimodality images combines the

time on the order of minutes on a modern single-processor com- complementary structural and functional information about a
puter. Accelerated execution of this process promises to enhance P y structu uncti ! : u

efficiency and therefore promote routine use of image registration Certain organ.
clinically. This paper presents details of a hardware architec-  There are many approaches to three-dimensional (3-D) image

ture for real-time three-dimensional (3-D) image registration. registration [8]. To justify hardware implementation, it is im-
Real-time performance can be achieved by setting up a network harative that the selected registration algorithm be as general
of processing units, each with three independent memory buses: and as flexible as possible. Moreover, this algorithm should be
one each for the two image memories and one for the mutual p : » 9 ) )
histogram memory. Memory access para”e"za’[ion and p|pe||n|ng’ accurate and rObust and must not requ”e manual Interaction.
by design, allow each processing unit to be 25 times faster than Voxel similarity-based algorithms fulfill the above criteria better
a processor with the same bus speed, when calculating mutualthan feature-based approaches [9]. In this paper, we present
information using partial volume interpolation. Our architecture the hardware implementation of an algorithm that uses the mu-
provides superior per-processor performance at a lower cost . . e )
compared to a parallel supercomputer. t_ual mforma_mon measure (_)f voxel similarity. Mutugl informa- _
] o ) o tion-based image registration can be fully automatic and appli-
__Index T.ermS._B'or.ne‘lj.'C“" image processing, digital systems, caple to single- or multimodality images of most organs and
Image registration, pipeline processing. supports both rigid and nonrigid transformation modes. Most
importantly, it is one of the most reliable, robust and promising
|. INTRODUCTION methods currently available [9]-[12].
EDICAL image registration is the process of alignin Mutual information-based image registration relies on the
two or more images that represent the same ar](,itcﬁ’ir}zximization of the mutual information between two images.
tual information is a function of two 3-D images and a

at different times, from different viewing angles or using dif- ¢ tion bet th Theca t ¢ i i
ferent sensors. These images can be of either the same sutljals ormation between them. The«s transtormation matrix
ontains information about rotation, translation, scaling, and

or different subjects. Image registration in medical imagin ) . .
) ge reg g gs ar, in the most general case. Mutual information-based

used to merge or compare images obtained from a variety™of", ) AR .
gistration uses an optimization algorithm that searches for

modalities, such as magnetic resonance imaging (MRI), co ¢ ‘ i trix that orients the two i h that
puted tomography (CT), positron emission tomography (PE'It 1e ranstormation matrix that onents the two images suc ,a
e mutual information between them is maximized. Powell’s

single photon emission computed tomography (SPECT), and U S : :
trasound. Common medical applications of image registratigﬁethOd’ the_ dpwn_hlll S|mpl_ex method and simulated annealing
are multimodality fusion of anatomical (CT or MRI) and funcd'® the optimization algorithms commonly employed for the
tional (PET or SPECT) images for accurate localization of a@Sk [13]. . . . . L

tive tumors, as well as delineation of their shape and size [1]{3 ,Mut.ual |nformat|on.—based_3—D Image registration IS an au-
registration of serial images for monitoring the progression B&r‘r_]anc.but _computat|onally mtgnswe task, whose typical exe-
regression of a disease [4], and postoperative follow-up [5], afiytion time is on the order of minutes on most modern desktop

brain atlas registration, in which a brain image of a given patie?ft)mpmerS [14], [1_5 J T_he total exec_ut|o_n time can easily exceed
n hour when registering 3-D cardiac image sequences (10-30

is morphed into a predefined template to identify and label sp_%- o ) . .
images per sequence), an emerging image registration applica-
tion [16]. Previous attempts to accelerate image registration by
Manuscript received June 2, 2003; revised September 6, 2003 and Septerntging parallel supercomputers [14], [17], [18] achieved signif-
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Our research focused on accelerating the calculation ofThe joint voxel intensity probabilityrr rr(a,b), i.e., the
mutual information by analyzing the main speed bottlenecksobability of a voxel in the reference image having an inten-
and overcoming them by developing an optimized hardwaséy a given that the corresponding voxel in the floating image
architecture for efficient calculation of the mutual informationhas an intensity, can be obtained from the joint or mutual his-
with the goal of achieving registration times on the orddogram of the two images. The mutual histogram represents the
of a second, using fewer processors than necessary wiant intensity probability distribution. In the process of mutual
using microprocessor-based computers. Mutual informatigrformation-based registration, the dispersion of values within
calculation is a memory-intensive task that does not fulblhhe mutual histogram is minimized, which in turn minimizes the
benefit from cache-based memory architectures presentjomt entropy and maximizes the mutual information.

most modern computers. Our novel Fast Automatic ImageCalculation of the mutual information can be divided into two
Registration (FAIR) architecture for hardware-accelerated agteps. The first step is to compute the mutual histogram. In the
tomatic image registration, presented in this article, enables 3sBcond step, both individual and joint entropies are calculated
image registration at speeds of at least one order of magnitygiim the mutual histogram data. These entropies are then used
above the fastest CPU-only software implementation withtg obtain the mutual information as per (2.2). Using mutual his-
higher speedup-per-processor ratio than with standard paraji®jram to compute individual entropies also ensures that only
computers. The improved speedup-per-processor ratio resti§se voxels inside the volume of overlap figure in the mutual
from a custom pipeline, which reduces the serial componentjaformation calculation.
the algorithm by employing parallel memory access techniquessince the transformed location of a voxel of the floating
previously used in volume rendering hardware to increase ff¢age may not coincide with the location of a voxel in the
voxel access rate [19]. As with parallel computers, distributedference image, interpolation is needed. Interpolation also
processing can be used to further enhance the processigghs in obtaining subvoxel accuracy. Typical interpolation
speed. Having a higher speedup-per-processor ratio allowsaMorithms include nearest neighbor, trilinear interpolation and
to achieve real-time registration with fewer processing unitgartial volume interpolation. Partial volume interpolation, as
Our solution results in a physically smaller, more economicgiiggested by Maest al.[12], is used to map the voxels in the
and highly scalable system, which, we believe, will promote aference image to their corresponding locations in the floating
wider use of medical image registration and extend its use inflage. Nearest neighbor interpolation was not considered
new areas such as four-dimensional (4-D) (3-D spadéme) because it does not provide subvoxel accuracy. Both trilinear
cardiac image registration [20] and image-guided surgefyterpolation and partial volume interpolation provide subvoxel
In the latter application, intraoperative images, such as thog€curacy. However, Maest al. [12] showed that trilinear in-
obtained from a real-time 3-D ultrasound or MRI scanner, ca8rpolation typically introduces new intensity levels as a result
be used to warp (update) the high-resolution preoperative Mg} interpolation, causing unpredictable variations in mutual
or CT images [21]-{25]. histogram values as the transformation matrix changes. On the
other hand, partial volume interpolation accumulates the eight
[I. ALGORITHM interpolation weights directly into the mutual histogram instead
of calculating a resulting intensity level and incrementing
that intensity level's mutual histogram count by one, as in
Image registration by maximization of mutual informationrilinear interpolation. Therefore, the main advantage of partial
was introduced by Wellgt al. [11]. The method attempts to volume over trilinear interpolation is that it produces a mutual
find the transformatiofi’ that best aligns a reference imaé, histogram, whose values change smoothly with small changes
with coordinates:, y, andz, and a floating imagé'/. in the transformation, thus resulting in a smoother mutual
information surface. Fig. 1 shows a comparison between
T = argmax M T (RI(z,y,2), FI (T(z,y,2))). (2.1) calculating the mutual histogram using trilinear interpolation
T and partial volume interpolation. Capekal.[10] showed the
Mutual information is calculated from individual and jointdifférence in mutual information surface smoothness when
using different interpolation schemes for mutual information
or generalized mutual information (a slight variant of mutual
information) calculation. The authors concluded that mu-
tual information, computed according to Maes, provides the
smoothest mutual information surface among statistical voxel
similarity measures.

A. Registration by Maximization of Mutual Information

entropies using the following equation
MI(RI,FI)=H(RI)+ H(FI)— H(RI,FI). (2.2)

The individual entropied? (RI) and H(FI) and the joint
entropyH (RI, FT) are computed as follows:

H(RI)= = prr(a)inpri(a) (2.3) B. Transformation Calculation
H(FI) = — me(b) Inprr(b) (2.4)  The transformation that maps the floating image to the refer-
b ence image is defined by a>4 4 transformation matrig’. The
H(RI,FI) = — ZPRI’FI(Q b)Inprr rr(a,b). (2.5) transformation matrix contains information about the rotation,

ab translation, scaling and shear parameters that are inherent to the
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Fig. 1. Mutual histogram calculation using (a) trilinear interpolation and (b) partial volume interpolation.

transformation being performed. The scaling parameters alsoin- MH (RI(7,), FI(Tfin: + & + §)) +

corporate voxgl scaling necessary to compare images wnh q#- = Uf fraca - Vf fracy - (1 = Ut fracs) (2.11)
ferent voxel sizes. Voxel scaling factors are constant for rigid (RI(.), FI@ it + & + 2)) +

registration and as such are excluded from optimization. Since n fint

the inverse transformatiofi’—') is needed to generate and vi- = Vffrace * (1 = Uf fracy)  Uf fracz (2.12)

sualize the transformed image, the algorithm tries to estimate it MH (RI(7,), FI(Tfint + § + 2)) +

instead of the direct transformation. The location of a given ref- = (1 = Vf frace) - Vf fracy - Vf frac: (2.13)
erence image vox@l, in the floating image is given by MH (RI@,), FTI(B ot + & + § + 2)) +
Ef = 11_1 Uy (26) = VUffracz * Uffracy * Vffracz- (214)

The process of accumulating the interpolation weights for
aevoxel in the floating image into the mutual histogram can
age divided into three steps: (&} calculation as per (2.6), (b)
calculation of interpolation weights [right-hand sides (RHS) of

.g)—(2.14)], and (c) accumulation of interpolation weights into
the mutual histogram as per (2.7)—(2.14).

Since the elements df! have both integer and fractional
components, the transformed location of a reference im
voxel 7,. also has an integer component;,,; = floor(vy)
and a fractional componefts ... = Ty modl. The integer
component is used to obtain the base memory address of
correspondin@ x 2 x 2 neighborhood in the floating image.
According to thg partial volume interpolation algo.rithm, th%_ Complexity Analysis
interpolation weights are calculated from the fractional com- ) ) ] ) .
ponents, which are accumulated into the mutual histogram afMutual information-based registration usually requires hun-
the coordinates set by their corresponding reference image &@ds of iterations (mutual information evaluations), depending
floating image values. Equations (2.7)—(2.14) show the partfl the_optlmlza_tlon algo_rlthm used to maximize the mutual in-
volume interpolation calculation process, whétej andz are formation function, the image complexity, and the degree of

unit vectors in ther, y, andz directions, respectively. initial misalignment. If real-time performance (in the order of
a second) is required, the mutual information calculation time

should be on the order of tens of milliseconds.
Constructing the mutual histogram, the first step in mutual
= (1 — ’Uffracz) - (1 — Uffracy) . (1 — Uffracz) (27) . . g . . g . . p N
~ S information calculation, involves performing partial volume in
MH (RI(v,), F1(in:®)) + terpolationn times, where: is less than or equal to the number
= V¢frace (1 = Vifracy) - (1 — Vffracs) (2.8) of voxels in the reference image. The numbfer of opgrations in
MH (RI(v,), FI(Tgint +9)) + the second step, the calculation of mutual information as per
(- ’ " (—v ) 2.9) (2.2), is a function of the size of the mutual histogram. Since the
B firace) T fracy firacz 7" number of bins in the mutual histogram is usually an order of
MH (RI(U,), FI(Ufins + 2)) +

MH (RI(5,), FI(Tfint)) +

magnitude smaller tham, it is the calculation of the mutual his-
(1 = v¢frace) - (L — Vffracy) - Vffracs (2.10) togram that dominates the mutual information calculation time.
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Table | shows the fractions of the total processing time spent TABLE |
on mutual histogram calculation and the remaining computa- MUTUAL HISTOGRAM CALCULATION COMPONENT PERIMAGE SiZE
tions for different image sizes. Mutual histogram calculatiof

Mutual Histogram

consumes approximately 99% or more of the total computatic ~ Image Size Calculation Serial
time for most practical medical images, and its computation. (voxels) Component Component
share varies only slightly depending on the specific algorithr  64x64x64 (2'%) 98.90% 1.10%
implementation and the processor, memory architecture, col 128x128x128 (2*!) 99.84% 0.16%
piler and operating system used to run the algorithm. 256x256x256 (2*) 99.97% 0.03%

Since the majority of the registration execution time is spent

on calculating the mutual histogram, accelerating mutual his-

togram calculation has been the focus of our work. Our analy$(§ optained the total re'gistration time.and the time spenton mu-
shows that the partial volume interpolation is the primary peTrL-'aI histogram cal_lculatlon_s. Mutua_ll histogram calcula’glon time
formance bottleneck in mutual histogram calculation. At Cup_eplendls oln the image SIZEI and is shown asl z;]\_fractlon of The
rent microprocessor speeds, the time of mutual histogram dg@ta! calculation time in Table 1. Since mutual histogram cal-

culation for 3-D images is dictated almost exclusively by thg|lation time depends on the number of voxels in the image, the

memory access time. From (2.7)—(2.14), 25 memory acces3¥&imum speedup predicted by Amdahl’s law also depends on
are needed to perform partial volume interpolation per voxme numlger of2l/oxels. Typical 3-D medlcal IMages are approxi-
of the reference image: 1 to access the reference image vdiRately2 t02°" voxels I:grge._Forthls range, lthebexpected max- p
(v,), 8 to access the 8-voxel neighborhood in the floating imad@4™ rehglstrﬁtlon speedup 1S a]!a[?]rommaltlely etgveen 90 an
and 16 accesses to the mutual histogram memory (8 reads a 8%? whent e(jexgchutlr]c;n time O_t e para fe hpart -etlzomes nrt]'-zg—
writes). Accesses to the reference image are sequential and l!)'QH) € compare W't t € exegutlon tlmep the senal part. The
efit from standard caching techniques. The mutual histogre{mn'mum calculation time achieved by this speedup is constant
memory has a small size (256256 or 64 K values) and thus ac-foragiven dataset,_and itis eq_uivalent_to the time the computer
cesses to it have high locality of reference. However, the floatif§€"ds On calculating mutual information from the mutual his-
image is accessed in a direction across the image that dep ggam (accu_mulatlon of Ioga_rlthms) for all |t_erat|ons 'e?d!”g
on the transformation being applied. Unless there is no rotdP to the_opnmal tran;fo.rmatlor? apd e.xecutlng the opt|m.|za-
tion component, this direction is not parallel to the direction ifion qlaorlththue majority of th'lf time is spent on computing
which voxels are stored, hence accesses have poor locality !%"‘”t ms, which on average takes 10-30 ms per iteration on

do not benefit from memory-burst accesses or memory-cachifigSt medern computers. In comparison, the time spent on the

schemes. Accesses to the floating image therefore depend®Riimization algorithmiis negligible (less than 0.1 ms). Consid-

most exclusively on the memory bus speed. Since memory géi_ng that a complete registration usually requires hundreds of
cess time does not evolve according to Moore’s law, mutual ilierations, the acceleration of mutual histogram calculation can
formation-based registration times are not expected to be sigﬁﬁguce registration time to no more than a few seconds.

icantly reduced in the near future by enhanced single-processor
computer architectures. IIl. MUTUAL HISTOGRAM CALCULATION : SIMILARITIES WITH

VOLUME RENDERING

D. Impact of Accelerating Mutual Histogram Calculation Mutual histogram calculation has many similarities with the

The speedup in registration achieved by accelerating twg casting algorithm used for volume rendering. In both cases,

mutual histogram calculation depends on the share of tft
overall registration execution spent on calculating the mut
histogram. Equation (2.15) shows Amdahl's law [26], whic
gives the resulting overall speedup for a process when a par . . . .
itis accelerated. The serial pditserial corresponds to the pro- traversed by casting rays parallel to thewis, coinciding with .

portion of the overall process execution time that is not beirl§e data rows. These same rays are cast through the floating

accelerated, while the parallel paftparallel corresponds to images, however, they may st_art _and end e'thef inside or
the proportion(1 — f_serial) that is being accelerated. outside the volume of the floating image, depending on the
characteristics of the transformation being applied (rotation,

translation, scaling, shearing). Fig. 2 shows an example of a

f-parallel -t set of rays being cast through the reference image and their
>> - (2.15) possible corresponding accesses in the floating image. Both
volume rendering and mutual histogram calculation try to
In our case, the serial part corresponds to the time spenta@mndense 3-D information into a 2-D matrix: the display buffer
the optimization algorithm and on the accumulation of logan the case of volume rendering, and the mutual histogram
rithms performed to obtain the mutual information value fromrmatrix in the case of mutual histogram calculation. A difference
the mutual histogram (2.2)—(2.5), while the parallel part corrés that volume rendering employs trilinear interpolation, which
sponds to the mutual histogram calculation. To determine theovides acceptable results for volume visualization, while

effective registration speedup resulting from accelerating monutual histogram calculation, as presented here, makes use of
tual histogram calculation, we ran several experiments in whiplrtial volume interpolation. This difference changes the focus

D image is traversed by casting rays through the 3-D dataset
r|1d performing interpolation to obtain equally spaced samples
rlong the ray. In the case of mutual histogram calculation,
t’;\o§econd volume is traversed too. The reference volume is

Speedup = |{ f_serial
beectib <f serial + <Speedup_parallel
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total time of mutual histogram calculation becomes equal to
the average pipeline stage calculation time times the number of
AAAAAAAA voxels in the reference image.

The first stage accesses the reference image memory se-
guentially and calculates the coordinates of the corresponding
floating image voxels. The integer part of the coordinates is
T passed to the floating image RAM controller as the floating
image address, while the fractional part is passed to the interpo-

(a) (b) lator. The second stage calculates the interpolation weights and

accesses the floating image. The third stage accumulates the
Fig.2. Ray casting through (a) the reference image and (b) through the floatingerpolation weights into the mutual histogram at the positions
image . given by the reference image value and the corresponding eight
floating image voxel values.

of optimization on how volume memory is accessed. In volume
rendering, the major bottleneck in the interpolation pipeline {3 parallel Memory Access Scheme
volume memory access, which is why it is highly desirable to
obtain near static RAM (SRAM) performance for the volume Each pipeline stage must have its own memory bus for
memory. This is solved by using custom memory-addressifgrallel execution. The first and second stage memory buses
and memory-caching techniques [19], [27]-[29] that perm@re used for the reference image and floating image memory
parallel access of ful? x 2 x 2 voxel neighborhood (useful accesses, respectively, while the third stage memory bus is used
for interpolation) and/or allowing the parallel access of whol@r mutual histogram memory accesses. The three memory
rays along the volume (for compositing). In the case of mipuses differ in size, speed and access requirements. The refer-
tual histogram calculation, a similar bottleneck exists whefce image memory is accessed sequentially, while the floating
accessing the floating image. Because the reference imagérage and mutual histogram memories are accessed randomly
accessed sequentially, it can be performed efficiently usifige-, nonsequentially). The reference image and floating image
memory-burst transfers. On the other hand, the number r8emories have a size of 16 M 9 each and the mutual
accesses to the mutual histogram RAM required for each intéistogram memory has a size of 6432, corresponding to
polated voxel is 16 times higher because of the use of parttamutual histogram of size 256 256. Since a pipeline’s stage
volume interpolation. Therefore, the performance bottlenecl@ency equals the latency of the slowest stage, it is important to
in mutual histogram calculation are in accessing floating imadj@inimize the memory access time of those stages that require

vivlvl¥|v¥v]Y

and mutual histogram memories. more than one access per voxel.
The mutual histogram memory has the most stringent access
V. FAIR ARCHITECTURE speed requirements since it needs to be accessed 16 times per

) . . interpolation. Because the mutual histogram memory is small,
The FAIR architecture is designed to accelerate mutual hisz5, e implemented using high-speed SRAM, which is at least

togram calculation by accelerating partial volume interpolatiof, o qer of magnitude faster than the dynamic RAMs used for
As described in Sections II-B and II-C, partial volume interpoy,q o images.

lation is performed by accessing one reference image voxel at Because the 3-D images are large, the use of high-speed
time, calculating the coordinates of the corresponding floatirgh '

the corresponding interpolation weights and finally updatin(,g;n x-y-z order) to perform interpolation. This kind of access

the mgtual histogram. 'I_'hese tasks need 1o he repeated . rtulefits from burst accesses and memory caching techniques,
voxel in the reference image. In a standard (single process king the use of a single Synchronous Dynamic RAM

software implementation of the algorithm, these tasks must RAM) bus for image storage a viable option. On the other

executed before processing the next voxel, which means t %d, the floating image must be accessed randomly and has

the total mutual histogram calculation time equals the pl’Ost tprovide eight voxel values per reference image voxel, which
of single voxel interpolation time and the number of voxels iE lis for a different way to store the floating image data'

the reference image. The FAIR architecture optimizes partia To overcome the floating image memory access bottleneck,

volume interp(_)lat_ion by means 9f pipelining, parallel MEMONfie FAIR architecture employs memory-addressing techniques
access, and distributed processing. similar to the ones used in volume rendering hardware to speed
up interpolation. Doggett and Meil3ner [19] presented a par-
allel memory addressing scheme called Cubic Addressing. The
The first level of algorithm parallelization comes frommain advantage of Cubic Addressing is that it enables parallel
pipelined execution. The FAIR architecture uses the 3-stagecess to & x 2 x 2 voxel neighborhood, thus greatly re-
pipeline shown in Fig. 3. This arrangement takes advantagedafcing the number of sequential memory accesses otherwise
the independence between the three partial volume interpal@eded for interpolation. It uses eight parallel memory modules
tion tasks listed in Section 1I-B. With pipelined execution, thand a custom address decoder to calculate the voxel addresses.

A. Pipeline
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floating image memory. This scheme takes advantage of the fast
burst-mode access of SDRAMSs to reduce the number of nec-
essary parallel memory modules. Size-2 burst accesses take the
same amount of time as single accesses on SDRAMSs. By storing
neighboring voxels sequentially along thalirection, a size-2
burst access to the four memory modules, starting on the neigh-
borhood voxels with the lowestcoordinate, will retrieve infor-
mation about two adjacent 2 2 y-z-plane neighborhoods. A
caching scheme here would not enhance performance because
the SDRAM random access time is comparable to the time re-
quired to perform the 16 mutual histogram SRAM accesses.

C. Distributed Processing

Mutual histogram calculation lends itself well to paral-
lelization by dividing up the reference image into a number of
nonoverlapping subvolumes and distributing them among an
equal number of processing units, each with its own mutual
histogram calculation pipeline [14]. Each processing unit has
the necessary RAM to store its part of the reference image, the
full floating image and the mutual histogram. A full copy of
the floating image is needed at each processing unit because
the portion of the floating image that matches the reference
Fig. 4. Memory module assignments of voxels in Cubic Addressinginage subvolume depends on the transformation and can be
_(a) Original spheme describgd in [19]. (b) Burst-access cubic addressjgated anywhere inside the floating image (Fig. 5)_ Each
implemented in the FAIR architecture. . . . . .

processing unit will calculate the partial mutual histogram

corresponding to its subvolume. When all processing units are
This memory arrangement is shown in Fig. 4(a). A similar adinished computing, the full mutual histogram can be obtained
dressing scheme that employs only four parallel memory madaly adding the partial mutual histograms. As shown in Fig. 3,
ules [Fig. 4(b)] is used in the FAIR architecture to access tleach processing unit has an input port to add the partial mutual
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TABLE 1
COMPARISON OFMUTUAL INFORMATION CALCULATION TIME IN MS
Image Size (voxels)

P4 ot Implementation 2" 2! 2%

Software (PIII, 1 GHz) 430 3500 28000
P3 FAIR (1 Unit) 62 430 3370

FAIR (2 Units) 36 220 1700
P2 7 7 VL.
pq ] [TTTTT] . .

FPGAs was the number of I/O pins. Internal resource utiliza-

(b) tion was about 60%. The image RAMs were implemented
using PC100 SDRAMSs, and the mutual histogram RAM was
Fig. 5. (a) Division of the reference image into four subvolumes to biemplemented using high-speed SRAMSs. The board operated at
assigneq to four individual FAIR progessing ur_1its for distribute_d computing‘,l clock rate of 80 MHz. It was connected to a host computer
(b) Possible gray level-coded floating image regions corresponding to reference ..
image subvolumes. using a PCI-7200 digital 1/0 board by ADLINK Technology
(Taipei, Taiwan). In Tables Il and lll, the actual timings are
pmpared with analogous software implementation timings on
-GHz Pentium Ill computer with a 133 MHz memory bus. In
our implementation, th&..., /t..x ratio was equal to 2.67. The
upper limit of the speedup presented in Table 1l was calculated
Tore = tvox - n F tiean - M2 + Haroner (4.1) using (4.2). The size pf th_e mutual histogram was 25856.
’ The software calculation time depends on the number of cache

misses, which in turn depends on the direction in which the

wheret,. is the calculation time per voxel (equal to the pipelin L . . .
P . (eq PP ﬁ_oatlng image is accessed. To reflect the different possible
stage latency)y, the number of voxels in the reference image

9 . . . . _\.~ cases, the average software calculation times were obtained by
m?, the size of the mutual histogram matrix (usu&ly bins); : . . . ) .
) . . . erforming a series of mutual information calculations with
tiran, the time required to transmit one mutual histogram valje . . . .
) i : - Iransformations covering the whole range of image rotation
between two processing units or between a processing unit anii] . : .
: . values with 5-degree increments. Our system achieved a
the host computer angl the number of processing units. The . "~ . .
. ; . L . Significant speedup-per-processor ratio in all cases. Using a
first term in theT;y formula is the time it takes for each unit . . .
) ) faster memory bus (i.e., increasifigy_r4as) and a faster 1/O
to calculate its share of the mutual histogram. The second term 4 . .
. o bus to transmit the mutual histogram to the host computer (i.e.,
corresponds to the time spent on transmitting the mutual h'rse_ducin t..0..) would increase the speed further
togram to the host computer. The third latency term, which is 9ftran P '
negligible, accounts for the time required to fill the mutual hisé
togram calculation pipelines and the partial mutual histogram$ _ o _
addition pipeline. Given that interpolation of a voxel requires 25 Mutual histogram calculation involves transforming the co-
memory accesses, the upper bound for the mutual histogram €&#linates of the voxels of the reference image to obtain their
culation speedup factor of an implementation witbrocessing corresponding locations in the floating image, and performing
units with respect to a computer (ignorifigency) is as follows: partial volume interpolation to calculate the weights to be added
to the mutual histogram. Typical mutual histogram sizes are be-
fPU_rRAM 25-n (4.2) tween 32x 32 and 256x 256. Studholme [30] showed that
fpc_ram (n 2. ( tiran varying the mutual histogram size in this range does not affect
+m
P the outcome of registration significantly.
where fpc_raar is the computer's RAM bus clock frequency The largest possible mutual histogram entry is equal to the
and fpu_ran is the processing unit's SDRAM clock fre-size of the reference image—a situation that arises when each
quency. This upper bound is the worst-case scenario dfitRge is uniform (has a single intensity). Because 3-D images
assumes that there are no cache hits when calculating #$€d in medical applications commonly have on the order of
complete mutual histogram on the computer. Furthermore, the Voxels @56 x 256 x 256 sized image), the smallest word
maximum theoretical speedup-per-processor achievable ugiggth for the mutual histogram RAM should be 24 bits, for pos-

histogram of the previous unit and an output port to transnfi
the result to the next unit or the host computer. The resulti
mutual histogram calculation time can be obtained as

Accuracy

Speedup =

tyoa

this architecture is 25, whelipc_ranr = fru_ran and itiveinteger mutual histogram values. Itis also necessary to have
n/p > m? - (tiran/tvor)- support for fractional values inside the mutual histogram since
partial volume interpolation provides a set of eight fractional

V. IMPLEMENTATION AND RESULTS values that are accumulated into the mutual histogram. So any

i numerical representation used to calculate the mutual histogram

A. Time should have more than 24 bits in the mantissa. This require-
As a proof of concept, the FAIR architecture was implement rules out the use of single-precision floating-point num-

mented in an external prototype board using Altera ACERers to accumulate and store the mutual histogram, since their
1K100 FPGAs. We implemented two processing units pemantissa is only 23 bits long. Better alternatives for mutual his-
board, each using two FPGAs. The limiting resource on thegram accumulation and storage are double-precision floating-
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TABLE Il
MUTUAL INFORMATION SPEEDUPRATES

Image Size (voxels)

T8 P b
Implementation 2 2 2
Speedup Upper Bound  Speedup  Upper Bound Speedup  Upper Bound
Software (PIII, 1 GHz) 1.00 1.00 1.00 1.00 1.00 1.00
FAIR (1 Unit) 6.94 9.02 8.14 13.88 8.31 14.88
FAIR (2 Units) 11.94 12.88 1591 25.77 16.47 29.46

point numbers and fixed-precision numbers with a word lengéven when using just one processing unit, was significant. For
greater than 24 bits. Double-precision floating-point numbeegslditional speed, the modularity of the architecture can be
have a dynamic range that is far in excess of what is necesploited to efficiently implement arrays of processing units
sary to perform mutual histogram calculation since all valuesing VLSI or FPGAs to perform distributed image registration.
are aligned (making the exponent bits unnecessary). Furth€he FAIR architecture allows reaching the maximum possible
more, implementing floating-point arithmetic requires considspeed predicted by Amdahl's law using far fewer processing
erably more resources than fixed-point, so we decided to usardats than standard multiprocessor computers. Distributed
fixed-point representation to accumulate and store the mutypabcessing alone can be implemented using multiprocessor
histogram. computers or computer clusters, but the benefits of using
In our prototype system, partial volume interpolation wagarallel memory access in the pipeline are not gained, thus
implemented using a 32-bit, fixed-point approach. The systeyielding significantly lower speedup-per-processor ratios,
used 8 bits for the fractional part, resulting in an accuracy aé reported earlier [14]-[18]. Custom processing units are
1/256th of a voxel dimension, and 24 for the integer part. TFaster, more compact, more power conserving and significantly
validate our approach, the fixed-point implementation wdess expensive than the nodes of a parallel supercomputer,
compared with a C++ implementation using double-precisioasulting in a smaller and more economical system suitable
floating-point accuracy. The rounding effect from the use dér clinical use. The cost of our prototype board, housing two
fixed-point arithmetic produced an offset error that resultaghits (processors), was approximately two thousand dollars.
in mutual information surface being elevated with respect ¥ comparable speedup can be obtained using a 16-processor
its analytical version, and a small reduction in the dynamarallel computer, but at a cost of tens to hundreds of thousands
range of the mutual information values across the mutuaf dollars. Real-time 3-D image registration made possible by

information surface by a small factor (less than 5% for 32-bihe FAIR architecture may lead to wider adoption of this useful
fixed-point), equivalent to a global linear scaling. These errotachnology in the diagnosis and treatment of human diseases.

neither changed the overall shape of the mutual information
surface nor the location of the maximum. The accuracy of
registration was therefore not affected. Experiments using
both single-modality (MRI against MRI and CT against CT) [1]
and multimodality (CT against MRI, PET against MRI, and
PET against CT) data sets yielded practically the same result%Z]
(with errors on the order of 1/100th of a voxel dimension)
using hardware-accelerated and software-based registration
approaches. (3]

VI. CONCLUSION 4]

Image registration through maximization of mutual informa-
tion is computationally intensive, demanding execution times|s]
on the order of minutes on modern desktop computers. Because
this algorithm is memory access limited, continuing rise in the 6]
microprocessor speed leads to only moderate increase in the al-
gorithm’s speed. To overcome this fundamental computing lim-
itation, we developed a new hardware architecture, called FAIR,
for distributed, real-time 3-D image registration.

The FAIR architecture derives its speed from 1) a custom
interpolation pipeline with independent memory busses and 2)
distributed processing. A practical implementation with stan- [g]
dard PC100 SDRAMSs, operating at 80 MHz, provided 8.3-fold
speed increase compared to a 1-GHz Pentium IlI compute|[9]
with PC133 SDRAMSs running at 133 MHz. This speedup,

(7]
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