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Abstract—Mutual information-based image registration,
shown to be effective in registering a range of medical images,
is a computationally expensive process, with a typical execution
time on the order of minutes on a modern single-processor com-
puter. Accelerated execution of this process promises to enhance
efficiency and therefore promote routine use of image registration
clinically. This paper presents details of a hardware architec-
ture for real-time three-dimensional (3-D) image registration.
Real-time performance can be achieved by setting up a network
of processing units, each with three independent memory buses:
one each for the two image memories and one for the mutual
histogram memory. Memory access parallelization and pipelining,
by design, allow each processing unit to be 25 times faster than
a processor with the same bus speed, when calculating mutual
information using partial volume interpolation. Our architecture
provides superior per-processor performance at a lower cost
compared to a parallel supercomputer.

Index Terms—Biomedical image processing, digital systems,
image registration, pipeline processing.

I. INTRODUCTION

M EDICAL image registration is the process of aligning
two or more images that represent the same anatomy

at different times, from different viewing angles or using dif-
ferent sensors. These images can be of either the same subject
or different subjects. Image registration in medical imaging is
used to merge or compare images obtained from a variety of
modalities, such as magnetic resonance imaging (MRI), com-
puted tomography (CT), positron emission tomography (PET),
single photon emission computed tomography (SPECT), and ul-
trasound. Common medical applications of image registration
are multimodality fusion of anatomical (CT or MRI) and func-
tional (PET or SPECT) images for accurate localization of ac-
tive tumors, as well as delineation of their shape and size [1]–[3],
registration of serial images for monitoring the progression or
regression of a disease [4], and postoperative follow-up [5], and
brain atlas registration, in which a brain image of a given patient
is morphed into a predefined template to identify and label spe-
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cific regions of the brain [6], [7]. In general, the registration of
single-modality images allows monitoring changes over time,
whereas the registration of multimodality images combines the
complementary structural and functional information about a
certain organ.

There are many approaches to three-dimensional (3-D) image
registration [8]. To justify hardware implementation, it is im-
perative that the selected registration algorithm be as general
and as flexible as possible. Moreover, this algorithm should be
accurate and robust and must not require manual interaction.
Voxel similarity-based algorithms fulfill the above criteria better
than feature-based approaches [9]. In this paper, we present
the hardware implementation of an algorithm that uses the mu-
tual information measure of voxel similarity. Mutual informa-
tion-based image registration can be fully automatic and appli-
cable to single- or multimodality images of most organs and
supports both rigid and nonrigid transformation modes. Most
importantly, it is one of the most reliable, robust and promising
methods currently available [9]–[12].

Mutual information-based image registration relies on the
maximization of the mutual information between two images.
Mutual information is a function of two 3-D images and a
transformation between them. The 44 transformation matrix
contains information about rotation, translation, scaling, and
shear, in the most general case. Mutual information-based
registration uses an optimization algorithm that searches for
the transformation matrix that orients the two images such that
the mutual information between them is maximized. Powell’s
method, the downhill Simplex method and simulated annealing
are the optimization algorithms commonly employed for the
task [13].

Mutual information-based 3-D image registration is an au-
tomatic but computationally intensive task, whose typical exe-
cution time is on the order of minutes on most modern desktop
computers [14], [15]. The total execution time can easily exceed
an hour when registering 3-D cardiac image sequences (10–30
images per sequence), an emerging image registration applica-
tion [16]. Previous attempts to accelerate image registration by
using parallel supercomputers [14], [17], [18] achieved signif-
icant speed increases, but with a speedup-per-processor ratio
smaller than one. Due to communication delays, this ratio tends
to decrease as the number of processors increases. Rohlfinget
al. [14] report speedup-per-processor ratios between 1.00 and
0.32 for single and 64 processor configurations, respectively.
While such research is very valuable in understanding paral-
lelism, general purpose supercomputers are expensive and usu-
ally have limited availability for applications in clinical environ-
ments.
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Our research focused on accelerating the calculation of
mutual information by analyzing the main speed bottlenecks
and overcoming them by developing an optimized hardware
architecture for efficient calculation of the mutual information,
with the goal of achieving registration times on the order
of a second, using fewer processors than necessary when
using microprocessor-based computers. Mutual information
calculation is a memory-intensive task that does not fully
benefit from cache-based memory architectures present in
most modern computers. Our novel Fast Automatic Image
Registration (FAIR) architecture for hardware-accelerated au-
tomatic image registration, presented in this article, enables 3-D
image registration at speeds of at least one order of magnitude
above the fastest CPU-only software implementation with a
higher speedup-per-processor ratio than with standard parallel
computers. The improved speedup-per-processor ratio results
from a custom pipeline, which reduces the serial component of
the algorithm by employing parallel memory access techniques
previously used in volume rendering hardware to increase the
voxel access rate [19]. As with parallel computers, distributed
processing can be used to further enhance the processing
speed. Having a higher speedup-per-processor ratio allows us
to achieve real-time registration with fewer processing units.
Our solution results in a physically smaller, more economical
and highly scalable system, which, we believe, will promote a
wider use of medical image registration and extend its use into
new areas such as four-dimensional (4-D) (3-D spacetime)
cardiac image registration [20] and image-guided surgery.
In the latter application, intraoperative images, such as those
obtained from a real-time 3-D ultrasound or MRI scanner, can
be used to warp (update) the high-resolution preoperative MRI
or CT images [21]–[25].

II. A LGORITHM

A. Registration by Maximization of Mutual Information

Image registration by maximization of mutual information
was introduced by Wellset al. [11]. The method attempts to
find the transformation that best aligns a reference image,
with coordinates , , and , and a floating image .

(2.1)

Mutual information is calculated from individual and joint
entropies using the following equation

(2.2)

The individual entropies and and the joint
entropy are computed as follows:

(2.3)

(2.4)

(2.5)

The joint voxel intensity probability , i.e., the
probability of a voxel in the reference image having an inten-
sity given that the corresponding voxel in the floating image
has an intensity, can be obtained from the joint or mutual his-
togram of the two images. The mutual histogram represents the
joint intensity probability distribution. In the process of mutual
information-based registration, the dispersion of values within
the mutual histogram is minimized, which in turn minimizes the
joint entropy and maximizes the mutual information.

Calculation of the mutual information can be divided into two
steps. The first step is to compute the mutual histogram. In the
second step, both individual and joint entropies are calculated
from the mutual histogram data. These entropies are then used
to obtain the mutual information as per (2.2). Using mutual his-
togram to compute individual entropies also ensures that only
those voxels inside the volume of overlap figure in the mutual
information calculation.

Since the transformed location of a voxel of the floating
image may not coincide with the location of a voxel in the
reference image, interpolation is needed. Interpolation also
helps in obtaining subvoxel accuracy. Typical interpolation
algorithms include nearest neighbor, trilinear interpolation and
partial volume interpolation. Partial volume interpolation, as
suggested by Maeset al. [12], is used to map the voxels in the
reference image to their corresponding locations in the floating
image. Nearest neighbor interpolation was not considered
because it does not provide subvoxel accuracy. Both trilinear
interpolation and partial volume interpolation provide subvoxel
accuracy. However, Maeset al. [12] showed that trilinear in-
terpolation typically introduces new intensity levels as a result
of interpolation, causing unpredictable variations in mutual
histogram values as the transformation matrix changes. On the
other hand, partial volume interpolation accumulates the eight
interpolation weights directly into the mutual histogram instead
of calculating a resulting intensity level and incrementing
that intensity level’s mutual histogram count by one, as in
trilinear interpolation. Therefore, the main advantage of partial
volume over trilinear interpolation is that it produces a mutual
histogram, whose values change smoothly with small changes
in the transformation, thus resulting in a smoother mutual
information surface. Fig. 1 shows a comparison between
calculating the mutual histogram using trilinear interpolation
and partial volume interpolation. Capeket al. [10] showed the
difference in mutual information surface smoothness when
using different interpolation schemes for mutual information
or generalized mutual information (a slight variant of mutual
information) calculation. The authors concluded that mu-
tual information, computed according to Maes, provides the
smoothest mutual information surface among statistical voxel
similarity measures.

B. Transformation Calculation

The transformation that maps the floating image to the refer-
ence image is defined by a 44 transformation matrix . The
transformation matrix contains information about the rotation,
translation, scaling and shear parameters that are inherent to the
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Fig. 1. Mutual histogram calculation using (a) trilinear interpolation and (b) partial volume interpolation.

transformation being performed. The scaling parameters also in-
corporate voxel scaling necessary to compare images with dif-
ferent voxel sizes. Voxel scaling factors are constant for rigid
registration and as such are excluded from optimization. Since
the inverse transformation is needed to generate and vi-
sualize the transformed image, the algorithm tries to estimate it
instead of the direct transformation. The location of a given ref-
erence image voxel in the floating image is given by

(2.6)

Since the elements of have both integer and fractional
components, the transformed location of a reference image
voxel also has an integer component
and a fractional component . The integer
component is used to obtain the base memory address of the
corresponding neighborhood in the floating image.
According to the partial volume interpolation algorithm, the
interpolation weights are calculated from the fractional com-
ponents, which are accumulated into the mutual histogram at
the coordinates set by their corresponding reference image and
floating image values. Equations (2.7)–(2.14) show the partial
volume interpolation calculation process, where, and are
unit vectors in the , , and directions, respectively.

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The process of accumulating the interpolation weights for
a voxel in the floating image into the mutual histogram can
be divided into three steps: (a) calculation as per (2.6), (b)
calculation of interpolation weights [right-hand sides (RHS) of
(2.7)–(2.14)], and (c) accumulation of interpolation weights into
the mutual histogram as per (2.7)–(2.14).

C. Complexity Analysis

Mutual information-based registration usually requires hun-
dreds of iterations (mutual information evaluations), depending
on the optimization algorithm used to maximize the mutual in-
formation function, the image complexity, and the degree of
initial misalignment. If real-time performance (in the order of
a second) is required, the mutual information calculation time
should be on the order of tens of milliseconds.

Constructing the mutual histogram, the first step in mutual
information calculation, involves performing partial volume in-
terpolation times, where is less than or equal to the number
of voxels in the reference image. The number of operations in
the second step, the calculation of mutual information as per
(2.2), is a function of the size of the mutual histogram. Since the
number of bins in the mutual histogram is usually an order of
magnitude smaller than, it is the calculation of the mutual his-
togram that dominates the mutual information calculation time.
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Table I shows the fractions of the total processing time spent
on mutual histogram calculation and the remaining computa-
tions for different image sizes. Mutual histogram calculation
consumes approximately 99% or more of the total computation
time for most practical medical images, and its computational
share varies only slightly depending on the specific algorithm
implementation and the processor, memory architecture, com-
piler and operating system used to run the algorithm.

Since the majority of the registration execution time is spent
on calculating the mutual histogram, accelerating mutual his-
togram calculation has been the focus of our work. Our analysis
shows that the partial volume interpolation is the primary per-
formance bottleneck in mutual histogram calculation. At cur-
rent microprocessor speeds, the time of mutual histogram cal-
culation for 3-D images is dictated almost exclusively by the
memory access time. From (2.7)–(2.14), 25 memory accesses
are needed to perform partial volume interpolation per voxel
of the reference image: 1 to access the reference image voxel

, 8 to access the 8-voxel neighborhood in the floating image
and 16 accesses to the mutual histogram memory (8 reads and 8
writes). Accesses to the reference image are sequential and ben-
efit from standard caching techniques. The mutual histogram
memory has a small size (256256 or 64 K values) and thus ac-
cesses to it have high locality of reference. However, the floating
image is accessed in a direction across the image that depends
on the transformation being applied. Unless there is no rota-
tion component, this direction is not parallel to the direction in
which voxels are stored, hence accesses have poor locality and
do not benefit from memory-burst accesses or memory-caching
schemes. Accesses to the floating image therefore depend al-
most exclusively on the memory bus speed. Since memory ac-
cess time does not evolve according to Moore’s law, mutual in-
formation-based registration times are not expected to be signif-
icantly reduced in the near future by enhanced single-processor
computer architectures.

D. Impact of Accelerating Mutual Histogram Calculation

The speedup in registration achieved by accelerating the
mutual histogram calculation depends on the share of the
overall registration execution spent on calculating the mutual
histogram. Equation (2.15) shows Amdahl’s law [26], which
gives the resulting overall speedup for a process when a part of
it is accelerated. The serial part corresponds to the pro-
portion of the overall process execution time that is not being
accelerated, while the parallel part corresponds to
the proportion that is being accelerated.

(2.15)

In our case, the serial part corresponds to the time spent on
the optimization algorithm and on the accumulation of loga-
rithms performed to obtain the mutual information value from
the mutual histogram (2.2)–(2.5), while the parallel part corre-
sponds to the mutual histogram calculation. To determine the
effective registration speedup resulting from accelerating mu-
tual histogram calculation, we ran several experiments in which

TABLE I
MUTUAL HISTOGRAM CALCULATION COMPONENT PERIMAGE SIZE

we obtained the total registration time and the time spent on mu-
tual histogram calculations. Mutual histogram calculation time
depends on the image size and is shown as a fraction of the
total calculation time in Table I. Since mutual histogram cal-
culation time depends on the number of voxels in the image, the
maximum speedup predicted by Amdahl’s law also depends on
the number of voxels. Typical 3-D medical images are approxi-
mately to voxels large. For this range, the expected max-
imum registration speedup is approximately between 90 and
3000, when the execution time of the parallel part becomes neg-
ligible compared with the execution time of the serial part. The
minimum calculation time achieved by this speedup is constant
for a given dataset, and it is equivalent to the time the computer
spends on calculating mutual information from the mutual his-
togram (accumulation of logarithms) for all iterations leading
up to the optimal transformation and executing the optimiza-
tion algorithm. The majority of this time is spent on computing
logarithms, which on average takes 10–30 ms per iteration on
most modern computers. In comparison, the time spent on the
optimization algorithm is negligible (less than 0.1 ms). Consid-
ering that a complete registration usually requires hundreds of
iterations, the acceleration of mutual histogram calculation can
reduce registration time to no more than a few seconds.

III. M UTUAL HISTOGRAM CALCULATION : SIMILARITIES WITH

VOLUME RENDERING

Mutual histogram calculation has many similarities with the
ray casting algorithm used for volume rendering. In both cases,
a 3-D image is traversed by casting rays through the 3-D dataset
and performing interpolation to obtain equally spaced samples
along the ray. In the case of mutual histogram calculation,
a second volume is traversed too. The reference volume is
traversed by casting rays parallel to theaxis, coinciding with
the data rows. These same rays are cast through the floating
images; however, they may start and end either inside or
outside the volume of the floating image, depending on the
characteristics of the transformation being applied (rotation,
translation, scaling, shearing). Fig. 2 shows an example of a
set of rays being cast through the reference image and their
possible corresponding accesses in the floating image. Both
volume rendering and mutual histogram calculation try to
condense 3-D information into a 2-D matrix: the display buffer
in the case of volume rendering, and the mutual histogram
matrix in the case of mutual histogram calculation. A difference
is that volume rendering employs trilinear interpolation, which
provides acceptable results for volume visualization, while
mutual histogram calculation, as presented here, makes use of
partial volume interpolation. This difference changes the focus
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Fig. 2. Ray casting through (a) the reference image and (b) through the floating
image .

of optimization on how volume memory is accessed. In volume
rendering, the major bottleneck in the interpolation pipeline is
volume memory access, which is why it is highly desirable to
obtain near static RAM (SRAM) performance for the volume
memory. This is solved by using custom memory-addressing
and memory-caching techniques [19], [27]–[29] that permit
parallel access of full voxel neighborhood (useful
for interpolation) and/or allowing the parallel access of whole
rays along the volume (for compositing). In the case of mu-
tual histogram calculation, a similar bottleneck exists when
accessing the floating image. Because the reference image is
accessed sequentially, it can be performed efficiently using
memory-burst transfers. On the other hand, the number of
accesses to the mutual histogram RAM required for each inter-
polated voxel is 16 times higher because of the use of partial
volume interpolation. Therefore, the performance bottlenecks
in mutual histogram calculation are in accessing floating image
and mutual histogram memories.

IV. FAIR A RCHITECTURE

The FAIR architecture is designed to accelerate mutual his-
togram calculation by accelerating partial volume interpolation.
As described in Sections II-B and II-C, partial volume interpo-
lation is performed by accessing one reference image voxel at a
time, calculating the coordinates of the corresponding floating
image voxel neighborhood, accessing the floating image voxel
locations of the eight elements of the neighborhood, calculating
the corresponding interpolation weights and finally updating
the mutual histogram. These tasks need to be repeated for each
voxel in the reference image. In a standard (single processor)
software implementation of the algorithm, these tasks must be
executed before processing the next voxel, which means that
the total mutual histogram calculation time equals the product
of single voxel interpolation time and the number of voxels in
the reference image. The FAIR architecture optimizes partial
volume interpolation by means of pipelining, parallel memory
access, and distributed processing.

A. Pipeline

The first level of algorithm parallelization comes from
pipelined execution. The FAIR architecture uses the 3-stage
pipeline shown in Fig. 3. This arrangement takes advantage of
the independence between the three partial volume interpola-
tion tasks listed in Section II-B. With pipelined execution, the

total time of mutual histogram calculation becomes equal to
the average pipeline stage calculation time times the number of
voxels in the reference image.

The first stage accesses the reference image memory se-
quentially and calculates the coordinates of the corresponding
floating image voxels. The integer part of the coordinates is
passed to the floating image RAM controller as the floating
image address, while the fractional part is passed to the interpo-
lator. The second stage calculates the interpolation weights and
accesses the floating image. The third stage accumulates the
interpolation weights into the mutual histogram at the positions
given by the reference image value and the corresponding eight
floating image voxel values.

B. Parallel Memory Access Scheme

Each pipeline stage must have its own memory bus for
parallel execution. The first and second stage memory buses
are used for the reference image and floating image memory
accesses, respectively, while the third stage memory bus is used
for mutual histogram memory accesses. The three memory
buses differ in size, speed and access requirements. The refer-
ence image memory is accessed sequentially, while the floating
image and mutual histogram memories are accessed randomly
(i.e., nonsequentially). The reference image and floating image
memories have a size of 16 M 9 each and the mutual
histogram memory has a size of 64 K32, corresponding to
a mutual histogram of size 256 256. Since a pipeline’s stage
latency equals the latency of the slowest stage, it is important to
minimize the memory access time of those stages that require
more than one access per voxel.

The mutual histogram memory has the most stringent access
speed requirements since it needs to be accessed 16 times per
interpolation. Because the mutual histogram memory is small,
it can be implemented using high-speed SRAM, which is at least
an order of magnitude faster than the dynamic RAMs used for
the two images.

Because the 3-D images are large, the use of high-speed
SRAM is currently not cost effective for implementing image
memories. Between the two images, the reference image has
more relaxed requirements, since it is accessed sequentially (in
an x-y-z order) to perform interpolation. This kind of access
benefits from burst accesses and memory caching techniques,
making the use of a single Synchronous Dynamic RAM
(SDRAM) bus for image storage a viable option. On the other
hand, the floating image must be accessed randomly and has
to provide eight voxel values per reference image voxel, which
calls for a different way to store the floating image data.

To overcome the floating image memory access bottleneck,
the FAIR architecture employs memory-addressing techniques
similar to the ones used in volume rendering hardware to speed
up interpolation. Doggett and Meißner [19] presented a par-
allel memory addressing scheme called Cubic Addressing. The
main advantage of Cubic Addressing is that it enables parallel
access to a voxel neighborhood, thus greatly re-
ducing the number of sequential memory accesses otherwise
needed for interpolation. It uses eight parallel memory modules
and a custom address decoder to calculate the voxel addresses.
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Fig. 3. A FAIR processing unit.

Fig. 4. Memory module assignments of voxels in Cubic Addressing.
(a) Original scheme described in [19]. (b) Burst-access cubic addressing
implemented in the FAIR architecture.

This memory arrangement is shown in Fig. 4(a). A similar ad-
dressing scheme that employs only four parallel memory mod-
ules [Fig. 4(b)] is used in the FAIR architecture to access the

floating image memory. This scheme takes advantage of the fast
burst-mode access of SDRAMs to reduce the number of nec-
essary parallel memory modules. Size-2 burst accesses take the
same amount of time as single accesses on SDRAMs. By storing
neighboring voxels sequentially along thedirection, a size-2
burst access to the four memory modules, starting on the neigh-
borhood voxels with the lowestcoordinate, will retrieve infor-
mation about two adjacent 2 2 - -plane neighborhoods. A
caching scheme here would not enhance performance because
the SDRAM random access time is comparable to the time re-
quired to perform the 16 mutual histogram SRAM accesses.

C. Distributed Processing

Mutual histogram calculation lends itself well to paral-
lelization by dividing up the reference image into a number of
nonoverlapping subvolumes and distributing them among an
equal number of processing units, each with its own mutual
histogram calculation pipeline [14]. Each processing unit has
the necessary RAM to store its part of the reference image, the
full floating image and the mutual histogram. A full copy of
the floating image is needed at each processing unit because
the portion of the floating image that matches the reference
image subvolume depends on the transformation and can be
located anywhere inside the floating image (Fig. 5). Each
processing unit will calculate the partial mutual histogram
corresponding to its subvolume. When all processing units are
finished computing, the full mutual histogram can be obtained
by adding the partial mutual histograms. As shown in Fig. 3,
each processing unit has an input port to add the partial mutual
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Fig. 5. (a) Division of the reference image into four subvolumes to be
assigned to four individual FAIR processing units for distributed computing.
(b) Possible gray level-coded floating image regions corresponding to reference
image subvolumes.

histogram of the previous unit and an output port to transmit
the result to the next unit or the host computer. The resulting
mutual histogram calculation time can be obtained as

(4.1)

where is the calculation time per voxel (equal to the pipeline
stage latency); , the number of voxels in the reference image;

, the size of the mutual histogram matrix (usually bins);
, the time required to transmit one mutual histogram value

between two processing units or between a processing unit and
the host computer and, the number of processing units. The
first term in the formula is the time it takes for each unit
to calculate its share of the mutual histogram. The second term
corresponds to the time spent on transmitting the mutual his-
togram to the host computer. The third latency term, which is
negligible, accounts for the time required to fill the mutual his-
togram calculation pipelines and the partial mutual histograms
addition pipeline. Given that interpolation of a voxel requires 25
memory accesses, the upper bound for the mutual histogram cal-
culation speedup factor of an implementation withprocessing
units with respect to a computer (ignoring ) is as follows:

(4.2)

where is the computer’s RAM bus clock frequency
and is the processing unit’s SDRAM clock fre-
quency. This upper bound is the worst-case scenario and
assumes that there are no cache hits when calculating the
complete mutual histogram on the computer. Furthermore, the
maximum theoretical speedup-per-processor achievable using
this architecture is 25, when and

.

V. IMPLEMENTATION AND RESULTS

A. Time

As a proof of concept, the FAIR architecture was imple-
mented in an external prototype board using Altera ACEX
1K100 FPGAs. We implemented two processing units per
board, each using two FPGAs. The limiting resource on the

TABLE II
COMPARISON OFMUTUAL INFORMATION CALCULATION TIME IN MS

FPGAs was the number of I/O pins. Internal resource utiliza-
tion was about 60%. The image RAMs were implemented
using PC100 SDRAMs, and the mutual histogram RAM was
implemented using high-speed SRAMs. The board operated at
a clock rate of 80 MHz. It was connected to a host computer
using a PCI-7200 digital I/O board by ADLINK Technology
(Taipei, Taiwan). In Tables II and III, the actual timings are
compared with analogous software implementation timings on
a 1-GHz Pentium III computer with a 133 MHz memory bus. In
our implementation, the ratio was equal to 2.67. The
upper limit of the speedup presented in Table III was calculated
using (4.2). The size of the mutual histogram was 256256.
The software calculation time depends on the number of cache
misses, which in turn depends on the direction in which the
floating image is accessed. To reflect the different possible
cases, the average software calculation times were obtained by
performing a series of mutual information calculations with
transformations covering the whole range of image rotation
values with 5-degree increments. Our system achieved a
significant speedup-per-processor ratio in all cases. Using a
faster memory bus (i.e., increasing ) and a faster I/O
bus to transmit the mutual histogram to the host computer (i.e.,
reducing ) would increase the speed further.

B. Accuracy

Mutual histogram calculation involves transforming the co-
ordinates of the voxels of the reference image to obtain their
corresponding locations in the floating image, and performing
partial volume interpolation to calculate the weights to be added
to the mutual histogram. Typical mutual histogram sizes are be-
tween 32 32 and 256 256. Studholme [30] showed that
varying the mutual histogram size in this range does not affect
the outcome of registration significantly.

The largest possible mutual histogram entry is equal to the
size of the reference image—a situation that arises when each
image is uniform (has a single intensity). Because 3-D images
used in medical applications commonly have on the order of

voxels ( sized image), the smallest word
length for the mutual histogram RAM should be 24 bits, for pos-
itive integer mutual histogram values. It is also necessary to have
support for fractional values inside the mutual histogram since
partial volume interpolation provides a set of eight fractional
values that are accumulated into the mutual histogram. So any
numerical representation used to calculate the mutual histogram
should have more than 24 bits in the mantissa. This require-
ment rules out the use of single-precision floating-point num-
bers to accumulate and store the mutual histogram, since their
mantissa is only 23 bits long. Better alternatives for mutual his-
togram accumulation and storage are double-precision floating-
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TABLE III
MUTUAL INFORMATION SPEEDUPRATES

point numbers and fixed-precision numbers with a word length
greater than 24 bits. Double-precision floating-point numbers
have a dynamic range that is far in excess of what is neces-
sary to perform mutual histogram calculation since all values
are aligned (making the exponent bits unnecessary). Further-
more, implementing floating-point arithmetic requires consid-
erably more resources than fixed-point, so we decided to use a
fixed-point representation to accumulate and store the mutual
histogram.

In our prototype system, partial volume interpolation was
implemented using a 32-bit, fixed-point approach. The system
used 8 bits for the fractional part, resulting in an accuracy of
1/256th of a voxel dimension, and 24 for the integer part. To
validate our approach, the fixed-point implementation was
compared with a C++ implementation using double-precision
floating-point accuracy. The rounding effect from the use of
fixed-point arithmetic produced an offset error that resulted
in mutual information surface being elevated with respect to
its analytical version, and a small reduction in the dynamic
range of the mutual information values across the mutual
information surface by a small factor (less than 5% for 32-bit
fixed-point), equivalent to a global linear scaling. These errors
neither changed the overall shape of the mutual information
surface nor the location of the maximum. The accuracy of
registration was therefore not affected. Experiments using
both single-modality (MRI against MRI and CT against CT)
and multimodality (CT against MRI, PET against MRI, and
PET against CT) data sets yielded practically the same results
(with errors on the order of 1/100th of a voxel dimension)
using hardware-accelerated and software-based registration
approaches.

VI. CONCLUSION

Image registration through maximization of mutual informa-
tion is computationally intensive, demanding execution times
on the order of minutes on modern desktop computers. Because
this algorithm is memory access limited, continuing rise in the
microprocessor speed leads to only moderate increase in the al-
gorithm’s speed. To overcome this fundamental computing lim-
itation, we developed a new hardware architecture, called FAIR,
for distributed, real-time 3-D image registration.

The FAIR architecture derives its speed from 1) a custom
interpolation pipeline with independent memory busses and 2)
distributed processing. A practical implementation with stan-
dard PC100 SDRAMs, operating at 80 MHz, provided 8.3-fold
speed increase compared to a 1-GHz Pentium III computer
with PC133 SDRAMs running at 133 MHz. This speedup,

even when using just one processing unit, was significant. For
additional speed, the modularity of the architecture can be
exploited to efficiently implement arrays of processing units
using VLSI or FPGAs to perform distributed image registration.
The FAIR architecture allows reaching the maximum possible
speed predicted by Amdahl’s law using far fewer processing
units than standard multiprocessor computers. Distributed
processing alone can be implemented using multiprocessor
computers or computer clusters, but the benefits of using
parallel memory access in the pipeline are not gained, thus
yielding significantly lower speedup-per-processor ratios,
as reported earlier [14]–[18]. Custom processing units are
faster, more compact, more power conserving and significantly
less expensive than the nodes of a parallel supercomputer,
resulting in a smaller and more economical system suitable
for clinical use. The cost of our prototype board, housing two
units (processors), was approximately two thousand dollars.
A comparable speedup can be obtained using a 16-processor
parallel computer, but at a cost of tens to hundreds of thousands
of dollars. Real-time 3-D image registration made possible by
the FAIR architecture may lead to wider adoption of this useful
technology in the diagnosis and treatment of human diseases.
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