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Abstract

Ranking alternatives is a natural way for humans
to explain their preferences. It is being used in
many settings, such as school choice (N'Y, Boston),
course allocations, and the Israeli medical lottery.
In some cases (such as the latter two), several
“items” are given to each participant. Without hav-
ing any information on the underlying cardinal util-
ities, arguing about fairness of allocation requires
extending the ordinal item ranking to ordinal bun-
dle ranking. The most commonly used such exten-
sion is stochastic dominance (SD), where a bundle
X is preferred over a bundle Y if its score is bet-
ter according to all additive score functions. SD is
a very conservative extension, by which few allo-
cations are necessarily fair while many allocations
are possibly fair.

We propose to make a natural assumption on the
underlying cardinal utilities of the players, namely
that the difference between two items at the top is
at least as large as the difference between two items
down the list. This assumption implies a prefer-
ence extension which we call diminishing differ-
ences (DD), where a X is preferred over Y if its
score is better according to all additive score func-
tions satisfying the DD assumption.

We give a full characterization of allocations
that are necessarily-proportional or possibly-
proportional according to this assumption. Based
on this characterization, we present a polynomial-
time algorithm for finding a necessarily-DD-
proportional allocation if it exists. Simulations
based on a simple random model show that
with high probability, a necessarily-proportional
allocation does not exist but a necessarily-DD-
proportional allocation exists. Moreover, that allo-
cation is proportional according to the underlying
cardinal utilities.

1 Introduction

Algorithms for fair assignment of indivisible items differ in
the kind of information they require from the users.
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Some algorithms require the users to rank bundles of items
(i.e, report a total order among the bundles). Examples are the
Decreasing Demand procedure [Herreiner and Puppe, 2002],
Approximate-CEEI procedure [Budish, 2011] and Undercut
two-agent procedure [Brams et al., 2012; Aziz, 2015]. The
computational and communicational burden might be large,
since the number of bundles is exponential in the number of
items.

Other algorithms require the users to evaluate individual
items (i.e, supply a numeric monetary value for each item).
Such algorithms are often termed cardinal. They often as-
sume that the users’ valuations are additive, so that the value
of a bundle can be calculated by summing the values of the
individual items. Examples are the Adjusted Winner proce-
dure [Brams and Taylor, 2000], approximate-maximin-share
procedure [Procaccia and Wang, 2014] and Maximum Nash
Welfare procedure [Caragiannis ef al., 2016]. In this setting
the communication is linear in the number of items, but the
mental burden may still be large, since assigning an exact
monetary value to individual items is not easy. This is espe-
cially true when items are valued for personal reasons (such
as when dividing inheritance) and do not have a market price.

This paper focuses on a third class of algorithms, which
only require the users to rank (i.e, report a total order among)
individual items. Such algorithms are often termed ordinal.

Ordinal algorithms are ubiquitous in mechanism design,
and are often used in real world applications, such as the
National Residency Matching Program [Roth and Peranson,
19971 (even when married couples insert their preferences to-
gether [Ashlagi ez al., 2014]), school choice applications [Ab-
dulkadiroglu and Sénmez, 20031, and university admittance
[Hassidim et al., 2016a; 2016b]. One reason for this is that it
is relatively easy for people to state ordinal preferences. An-
other reason is related to legacy systems: often the designer
can change the allocation mechanism, but can not change the
input procedure, as agents do not want to learn new ways to
insert their input to the system.

Ordinal algorithms are also common in Al and in fair di-
vision. Examples are the AL two-agent procedure [Brams et
al., 2013], optimal-proportional procedure [Aziz et al., 2015],
picking-sequence procedures [Brams and Kaplan, 2004; Bou-
veret and Lang, 2011] and the envy-free procedures of [Bou-
veret et al., 2010]. Such algorithms often assume that the
agents’ preferences are implicitly represented by an additive
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utility function, which is not known to the algorithm. This
creates ambiguity in the agents’ bundle rankings. For ex-
ample, if an agent ranks four items as w > = > y > z,
then, based on additivity, the algorithm can know that e.g.
{w,z} > {y,z} and {w,y} > {=, 2z}, but cannot know the
relation between {w, z} and {x,y}. Algorithms cope with
this problem in several ways.

1. Necessary-fairness criteria. An allocation is called
necessarily-fair if it is fair for all additive utility profiles con-
sistent with the reported item-rankings. Here, “fair” may be
substituted by any fairness criterion, such as envy-freeness or
proportionality, as well as Pareto-efficiency. Necessary fair-
ness is a strong requirement, which is not always satisfiable.
For example, the AL procedure finds a necessarily-envy-free
allocation, but only for two agents, and even then, it might
need to discard some of the items in order to keep its guaran-
tee for necessary-envy-freeness.

2. Possible-fairness criteria. An allocation is called
possibly-fair if it is fair for at least one additive utility profile
consistent with the reported item-rankings, Again, “fair” may
be substituted by proportional or envy-free or Pareto-efficient.
Possible fairness is a weak criterion; algorithms that only re-
turn possibly-fair allocations might be considered unfair by
users whose actual utility function is different than the one
assumed by the algorithm.

3. Scoring rules. A scoring rule is a function that maps
the rank of an item to a numeric score. A common example
is the Borda scoring rule [Young, 1974], where the least de-
sired item has a score of 1, the next item has a score of 2,
and so on. The score of a bundle is the sum of the scores of
its items. It is assumed that all agents have the same scor-
ing function. Le, even though agents may rank items differ-
ently, the mapping from the ranking to the numeric utility
function is the same for all agents [Bouveret and Lang, 2011;
Kalinowski et al., 2013; Baumeister et al., 2016; Darmann
and Klamler, 2016]. This strong assumption weakens the fair-
ness guarantee. Allocation may appear unfair to agents whose
actual scoring rule is different.

1.1 Contribution

The present paper suggests an alternative between the strong
guarantee of necessary-fairness and the weak guarantee of
possible-fairness and scoring-rule-fairness.

We assume that people care more about their high-valued
items than about their lower-valued items. Specifically, we
assume that the utility-difference between the best item and
the second-best item is at least as large as the utility between
the second-best and the third-best, and so on. We call this
assumption Diminishing Differences (DD). The DD assump-
tion is satisfied by the Borda scoring rule, as well as by many
other scoring rules, as well as by lexicographic preferences.

DD is justified in many settings where the agents are more
concerned about getting a most preferred item than about not
getting a least preferred item. For example, in a matching of
doctors to internships, it was reported that doctors care the
most about being assigned to one of their top choices [Bronf-
man et al., 2015a; 2015b].

Based on the DD assumption, we formalize several fairness
notions. We call an allocation necessarily-DD-fair (NDD-
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fair) if it is fair according to all additive utility profiles satis-
fying the DD assumption, and pessibly-DD-fair (PDD-fair)
if it is fair according to at least one additive utility profile sat-
isfying the DD assumption. Again, “fair” may be substituted
by envy-free or proportional or Pareto-efficient. The follow-
ing implications are obvious for any fairness criterion:

Nec-fair —> NDD-fair — PDD-fair — Pos-fair

In other words, the DD-fairness criteria are intermediate in
strength between necessary-fairness and possible-fairness. A
formal definition of these concepts appears in Section 3.

The first question of interest is to decide, given an item
ranking and two bundles, whether the NDD or the PDD rela-
tion holds between these bundles. We prove characterizations
of the NDD and PDD set relations that provide linear-time al-
gorithms for answering these questions (Section 4).

Next, we prove a necessary and sufficient condition for the
existence of an NDD-proportional (NDDPR) allocation. Es-
sentially, an NDDPR allocation exists iff it is possible to (a)
give all agents the same number of items and (b) give each
agent his best item. The proof is constructive and presents a
simple linear-time algorithm for finding an NDDPR alloca-
tion if it exists (Section 5).

It is interesting to compare the above condition to Con-
dition D of Brams er al. [2013], which is necessary and
sufficient for the existence of a NecPR allocation for two
agents. For NecPR, it is required that for every odd integer
k € {1,3,...,2n — 1}, the agents have a different set of k
best items; in particular, they should have a different worst
item (see Example 2 in Sec. 3). For NDDPR, it is only re-
quired that the agents have a different best item. This means
that an algorithm that returns NDDPR allocations may have
larger ‘recall’ than an algorithm that returns only NecPR al-
locations. On the other hand, the ‘precision’ of such an al-
gorithm might be lower (i.e, its output allocations may be
considered unfair by some agents). To assess the magnitude
of these effects, we present a simple preliminary simulation
experiment. We construct partially-correlated utility profiles
at random, estimate the probability that an NDDPR/NecPR
allocation exists, and check whether the NDDPR allocation
given by our linear-time algorithm is indeed proportional ac-
cording to the underlying cardinal utilities. We find that the
increase in recall is substantial and ranges between 20% and
40%, but the decrease in precision is not substantial: when
there are sufficiently many items, our simple NDDPR algo-
rithm almost always results in an allocation which is propor-
tional according to the cardinal utilities. While this experi-
ment is preliminary, it indicates that there is potential for fur-
ther investigation of NDDPR as a normative fairness criterion
(Section 6).

While our focus on this paper is on proportionality, we
have results on other criteria, namely envy-freeness and
Pareto-efficiency (Section 7). Whereas the DD assump-
tion has a substantial effect on fairness notions, we show
that the DD assumption does not lead to a new notion of
Pareto-efficiency (PE). We show that NDD-PE is equivalent
to necessary-PE and PDD-PE is equivalent to possible-PE. Fi-
nally, we show that checking whether an NDDEF allocation
exists is NP-complete.
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1.2 Related Work

Extending preferences over individual objects to sets of ob-
jects is a natural and principled way of succinctly encod-
ing preferences [Barbera et al., 2004]. One of the most
common set-extensions is stochastic dominance (SD). It
was developed for a different but related problem — ex-
tending preferences over individual outcomes to lotteries
on outcomes. If X,Y are lotteries, then X =SD Yy iff
Flu(X)] > E[u(Y)] for every weakly-increasing utility
function v [Hadar and Russell, 1969; Brandt, 2017]. In the
context of fair item allocation, SD leads to the notions of
necessary-fairness and possible-fairness [Aziz er al., 2015].
Other common extensions are downward-lexicographic (DL)
and upward-lexicographic (UL) [Cho, 2012; Bouveret et al.,
2010; Nguyen et al., 2015].

The DD extension, which is the focus of this paper, is
quite natural but has not been formalized in prior work. In-
terestingly, the DD extension is closely related to second-
order stochastic dominance (SSD). If X, Y are lotteries, then
X =950y iff Elu(X)] > Eu(Y)] for every utility
function u which is weakly-increasing and weakly-concave
[Hadar and Russell, 1969]. In the context of item assign-
ment, weak concavity is equivalent to increasing differences
— agents care more about not getting the worst item than
about getting the best item. Increasing differences make sense
in fair division of chores [Aziz et al., 2017]; in future work
we plan to study which of our results apply to that setting.

Besides fair division, set-extensions have been applied for
committee voting [Aziz et al., 2016a] and social choice cor-
respondences (see e.g., [Barbera er al., 2001]).

In social choice theory, it is common to study restricted
domains of preference profiles, such as single-peaked, single-
crossing or level-r-consensus [Mahajne et al., 2015; Nitzan
et al., 2017]. Many problems are much easier to solve in
such restricted domains than in the domain of all preferences
[Elkind and Lackner, 2014; Elkind et al., 2017]. The present
paper focuses on a restriction to preferences satisfying the DD
assumption, which has not been studied so far.

2 Preliminaries

There is a set N of agents with n = |N/|. There is a set M of
distinct items with M = |M|. A bundle is a set of items. A
multi-bundle is a multi-set of items, i.e, it may contain several
copies of the same item.

An allocation X 1is a function that assigns to each agent 4
a bundle X, such that M = X; U---U X,, and the X;-s are
pairwise-disjoint. Each agent ¢ has a strict ranking >;
on items. Each agent may also have a utility function w; on
(multi-)bundles. All utility functions considered in this paper
are positive and additive, so the utility of a (multi-)bundle is
the sum of the utilities of the items in it. A utility function
w; 1S consistent with >, on items if for every two items x, y:
w;({z}) > w;({y}) <= =z >; y. The set of all additive
utility functions consistent with >; is denoted by U (>-;). The
following definition is well-known:

Definition 1. For (multi-)bundles X;,Y;:
X, =Nee Y, < Vu; € U(h)

X; mPosy, «—  Ju eU():

~1

ui (X5) > ui(Y3)
ui(Xi) > u;i (i)

3 DD Utility Functions and Relations

Given a strict ranking >;, we assign to each item z a level,
denoted LEV,(z), such that the level of the best item is M,
the level of the second-best item is M — 1, etc (this is also
known as the Borda score of the item).

Definition 2. Let >; be a preference relation and w; a utility
function consistent with >;. u; has the Diminishing Differ-
ences (DD) property if, for every three items with consecutive
levels © =; y »; z such that LEV;(z) = LEV;(y) + 1 =
LEV,(2) + 2, it holds that u;(x) — u;(y) > ui(y) — us(2).

The set of all additive DD utility functions consistent with
; is denoted by UPP(~;). The Borda utility function is a
member of UPP. Another example of a member in UPP is
the function Lex;(x) := 2“¥Vi(*) by which bundles are or-
dered by whether they contain the best item, then by whether
they contain the second-best item, etc. An equivalent defini-
tion of UPP is given by the following lemma. The proof is
arithmetic and it is omitted.

Lemma 1. The following are equivalent:
(i) u; € UPP(=))
(i) For every four items x1,xo,x3, T4 With x1 >=; x3 and
To = Tq and x1 # To and T3 F# x4:
uz(xl) — uz(arg) ui(.ﬁg) — Ui($4)
LEV;(x1) — LEV;(z2) — LEV;(x3) — LEV;(24)

3.1 Diminishing-Differences Preference Relations

We are now ready to present our main objects of interest —
the Diminishing-Differences relations.

Definition 3. For (multi-)bundles X;,Y;:
Xi ZNPPY, = Vu eUPP(=):

i~

X; =PDD Y; <— du; € Z/{DD(}Z').'

1~

ui(Xi) > ui (V)
ui (X3) > ui(Y;)
Remark 1. Comparing Definitions 1 and 3, it is clear that:

X, =Neey, — x, =NPPy, — x, =PPPy, — Xx, =Posy,

~i T ~vi T ~vi T ~vi

3.2 Diminishing-Differences Fairness

For every integer k and bundle X;, define &k - X; as the multi-
bundle in which each item of X is copied k times. We define
proportionality by comparing, for each agent ¢, the bundle X;
copied n times, to the bundle of all items M.

Definition 4 (DD-proportionality). An allocation X is called

e Necessary-DD-proportional (NDDPR) if-

VieN:n-X; ZNPP M.
e Possible-DD-proportional (PDDPR) if-
Vie N:n-X; ZPPP M,

Definition 5 (DD-envy-freeness). An allocation X is called

e Necessary-DD-envy-free (NDDEF) if for all agents i, j:
X; mNPD ..

~J1
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e Possible-DD-envy-free (PDDEF) if for all agents 1, j:
X; =FPP X,

~1
We now show that the DD assumption significantly affects
the necessary and possible fairness requirements and results
in meaningful fairness concepts. We give examples with two
agents, so proportionality and envy-freeness coincide.

Example 1. Alice and Bob have the same preferences: 2m >
2m — 1> ... =4 > 3 > 2 > 1, for some m > 3. Both Alice
and Bob get m items: Alice gets 2m,2m — 1,..m + 3, m +
2,1 and Bob gets m + 1, m, ...3, 2. Intuitively this allocation
seems very unfair, since Alice gets all the m — 1 best items.
However, it is possibly-fair, since Bob’s utility function might
assign the a value near 0 to item 1 and a value near 1 to
all other items. In better accordance with our intuition, the
above allocation is not PDD-fair: by Theorem 2 below, Bob’s
bundle is not PDD-better than Alice’s bundle, since Alice’s
bundle is NDD-better and its level is strictly higher:

Example 2. Now, Alice and Bob have almost opposite pref-
erences, for some m > 2:

Alice: 2m =2m — 1> ... >4 >3 > 2> 1.
Bob:2>=3>=4>..>2m—1>2m > 1L

Intuitively we would expect that opposite preferences make
it easy to attain a fair division. However, in this case no
necessarily-fair allocation exists. This is because Alice and
Bob have the same worst item (1), and under the necessary-
fairness assumption, no one agrees to receives this item (since
the utility function of the agent who receives this item might
assign a value near 0 to this item and a value near 1 to all
other items). In contrast, our Theorem 3 shows that an NDD-
fair allocation exists. Intuitively, since it is possible to give
each agent his/her best items, they are willing to compromise
on the less important items.

4 Characterizing NDD and PDD Relations

In this section we are given a preference relation >; on items
and two multi-bundles X,Y, and have to decide whether
X =NDD 'y We begin by proving a convenient charac-
terization of the NDD relation. For the characterization, we
define the /evel of a multi-bundle as the sum of the levels of
the items in it: LEV(X) := >  _\ LEV(z) (this is equal
to the Borda score of X. Note that all copies of the same
item have the same level). We order the items in each multi-
bundle by decreasing level, so X = {x1,...,7 x|} where
x1 =; ... =; T)x| (the order between different copies of the
same item is arbitrary). For each k£ < |X| we define X}, as
the k best items in X, X, := {x1,...,2%}.

Theorem 1. Let X,Y be two multi-bundles. X =NPP'Y iff
O [X] > [V] and
(i) foreachk € {1,...,|Y|}: LEV;(X)) > LEV,;(Y%).
Proof. = : We have to prove that if (i) |Y| > LX , or (ii)
D

LEV(Y;) > LEV(X}) for some k, then X ZNPP Y| e,
there is a DD utility function u; such that u;(X) < u;(Y).

(@) If |Y] > | X]|, then take u;(z) = M? + LEV;(z). The
term M? is so large that the utility of a bundle is domi-
nated by its cardinality, so u;(X) < u;(Y).
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(if) If for some k, LEV;(Y}) > LEV,;(Xy), then let k be
the smallest integer that satisfies this condition; hence
Yy =i k. Let C := LEV;(x) — 1 and define u; as:
ui(z) = [LEV,(x) — C] - M?
u;(xz) = LEV,(2)

for x »=; xy,
forxzy =; ©

The term M? is so large that the utility of a bundle
is dominated by the level of its items that are weakly
better than xj, so again u;(X) < u;(Y).

<= : Assume that X ZNPP Y, and let u; be an addi-
tive function in UPP (=;) for which u;(Y) > u;(X). We

have to prove that either (/;) Y] > | X]| or @ LEV;(Y;) >
LEV,;(X}) for some k. There are two cases.

—

Case #1: |Y'| > | X|. Then (¢) is satisfied and we are done.

Case #2: |Y| < |X]|. Then, since u;(Y) > u;(X), there
must be some k € {1,...,|Y|} for which u;(Y%) > u;(Xk).

Consider the smallest k for which this inequality holds for
some u; € UPP(=;). So for j < k, there exists no function
in UPP (~;) which assigns to Y; a higher value than to X;.
This means that u;(yx) > u;(xy), and the difference is sub-
stantial enough to make the value of Yj, more than the value
of X, 1.e:

k—1

ui(yr) — ui(wk) > Z(Ui(ﬂfj) — ui(y;)) 1

j=1

By our ordering of the items, Vj < k it holds that y; = vy
and x; = xj. Hence, by Lemma 1, whenever z; # y;:

LEV;(yr) — LEV,(xg) S LEV;(y;) — LEV;(z;)
ui(yk) — ui(zy) ui(y;) — ui(x;)
_ LEvi(z;) — LEVi(y;)
o ui(ey) —ulyy) @

3)

(the right-hand side of (3) is a weighted average of the right-
hand sides of (2)).
Combining (1) and (3) gives:
k
LEV;(yr) — LEV,(xy) >

1
(LEV,(x;) — LEV;(y;))
— LEV;(Y) > LEV;(X}),

<.
Il

—

so condition (%) is satisfied and we are done. O

Example 3. Consider the following two bundles, where each
item is represented by its level for some specific agent:

X ={8,4,2} Y = {7,6}
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Note that |X| > |Y|, X is lexicographically-better than Y,
and even the Borda score of X is higher. However, the level
of the two best items of X is only 12, which is less than that
of the best two items of Y. Hence, by Theorem 1, it is not true
that X »NPP Y. Indeed, X is not better than' Y according
to all DD valuations. For example, let u(x) = LEV(z)2. The
function w has DD, but u(X) = 82 < 83 = u(Y).

Corollary 1. There is a linear-time algorithm to check
whether X = NPPy

The algorithm is obvious from Theorem 1 and is omitted.

Theorem 2. Let X,Y be two multi-bundles. Then X »-FPP
Y ifand only if Y ZNPP X or LEV,;(Y) = LEV,;(X).

Proof. <= : If Y ZNPD X, then by definition of NDD,
X has strictly more utility than Y for some consistent DD
utility function. If LEV,;(X) = LEV,(Y), then X has the
same Borda utility as Y. In both cases X =FPP Y.

= : Suppose that Y =NPP X and LEV,(Y) #
LEV,(X). So LEV,(Y) > LEV,;(X) By Theorem 1 we
must have Y| > |X]|, and for every k < |X|: LEV;(Y}) >
LEV,;(X}).

For every k, Theorem 1 is applicable to the multi-bundles
Xi, Y. So for any function u; € UPP(=;), ui(Yi) >
ui(Xy). Moreover, if LEV;(Y|x|) > LEV;(X|x|) then also
ui(Y)x)) > ui(X|x)) = ui(X); otherwise, LEV;(Y|x|) =
LEV;(X|x/) and u;(Y|x|) = ui(X|x|), so Y must have more
than | X| items, and since all items have positive utility, again
u;(Y) > u;(X). In all cases, for all DD consistent utility
functions, u;(Y") > u;(X). Hence, X 2FPP Y. O

Corollary 2. There is a linear-time algorithm to check
whether X = FPPP Y.

Corollary 3. It can be decided in polynomial time whether a
given allocation is NDDPR, NDDEF, PDDPR or PDDEF.

5 Existence of NDD-Proportional Allocations

In this section, we prove the following necessary and suffi-
cient condition for existence of NDDPR allocations.

Theorem 3. An NDDPR allocation exists if-and-only-if:

(a) The number of items is M = m - n, where m is an
integer and n is the number of agents, and -

(b) Each agent has a different best item.
In case it exists, it can be found in time O(M).
Proof of = . Suppose the two conditions are satisfied. We

are going to prove that the following simple algorithm pro-
duces an NDDPR allocation:

Repeat as long as there are items:
Fori = 1...n: give agent ¢ his best remaining item.
Fori: =n...1: give agent ¢ his best remaining item.

The proof proceeds in two steps. First, we identify a “worst
case” scenario of the algorithm. Second, we prove that even
in this scenario, the allocation is NDDPR.
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We will prove that the worst-case scenario is when (1) all
agents have the same set of n best items and the same set of
M — n worst items, and (2) all agents rank the M — n worst
items in exactly the same way (note that the agents must differ
in their ranking on the set of n best items since each agent
must still have a different top item).

For each agent ¢, we define two bundles:

X; — the bundle allocated to ¢ by the above algorithm.

Y; — the bundle that would be allocated to ¢ in the “worst-
case” scenario.

We will prove that the following are true for each agent ¢:

(a) X; ifv €Y, (i.e, Y; is indeed the worst-case
outcome of the algorithm),

(byn-Y; ZNPP M (even this worst-case is NDDPR).

The theorem follows from (a) and (b) by transitivity.
To prove (a), we use the following well-known characteri-
zation [Brams et al., 2013; Bouveret et al., 2010]:

X xNee Y if-and-only-if there exists a bijection
f:X — Ysuchthatforallz € X: z - f(x).

We use the bijection that maps the best item in X; to the best
item in Y;, the 2nd-best item in X; to the 2nd-best item in Y;,
and so on. We prove that for every k, the k-th best item in X;
is at least as good as the k-th best item in Y;. This is certainly
true for £ = 1 since the best items are the same. For k > 1,
when agent ¢ picks his k-th item (which is the k-th best item
in X;), the number of items already taken is kn — ¢ (if k is
even) or kn — (n — i + 1) (if k is odd). Therefore, agent i’s
best remaining item has a level of at least M — (kn — i) (if &
iseven) or M — kn+ (n—i+ 1) (if k is odd). This is always
at least as large as the level of the k-th-best item in Y.

To prove (b), we apply Theorem 1. The first condition is
[n - Y;| > |[M]|. Indeed, in our case |n - Y;| = n-m =
M = |M|. The second condition is that, for each
integer &’ € {1, ..., M}, the level of the best &’ items in n-Y;
minus the level of the best &’ items in M is weakly positive.
The following table shows the levels and their differences for
k' € {1,...,n} (recall that all items in M are distinct):

n-Y; M M ... M
M M M-1 M-n+1
Difference 0 1 n—1

Clearly the level difference is always weakly positive. The
total level difference after the best n items is n(n — 1)/2.

The following table shows the levels and their differences
fork e {n+1,...,2n}:

n-Y; M—-2n+1 M-—-2n+1 M —2n+1
M M—n M—-—n-—1 M —2n+1
Difference 7 —n i—n—+1 71— 1

Clearly, since ¢ > 1, the level difference in the table is weakly
larger than (1—n)+(1—n+1)+...+(1—-1) = —n(n—1)/2.
Since we already have a level difference of +n(n—1)/2 from
the previous n items, the total level difference remains weakly
positive. The total level difference in the table is —n(n —
1)/2 + n(i — 1) so the total level difference of the best 2n
items is n(: — 1).
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The following table shows the levels and their differences
fork’ e {2n+1,...,3n}:

n-Y; M—2n—1i+4+1 M—-2n—1i+1 M—2n—i+4+1
M M —2n M—2n-1 M—-3n+1
Difference 1—4 2—1 n—1

Clearly, each difference in the table is —(¢ — 1) or larger,
and there are n such differences. Since we already have a
level difference of +n - (i — 1) from the previous 2n items,
the total level difference remains weakly positive. The total
level difference in the table is n(n — 1)/2 — (n — 1)i so the
total level difference of the best 3n items is n(n — 1)/2.

We are now back at the same situation as after the best n
items, so we can repeat the same reasoning and conclude that
the level difference of the best k' items is always weakly-
positive. O

Proof of <. Let (p(1),...,p(n)) be an NDDPR alloca-
tion. Then for every agent i, n-X; ZNPP M. We now
apply the two conditions of Theorem 1.

(a) For all i: |n - X;| > [M| = n-|X;| > M. But this
must be an equality since the total number of items in all n
bundles is exactly M. Therefore, the total number of items is
n - | X;| which is an integer multiple of n.

(b) For all ¢, the level of the best item in n - X; must be
weakly larger than the level of the best item in M. So for
every ¢, X; must contains agent ¢’s best item. So the best
items of all agents must be different. O

6 NDD-Proportionality in Simulations

We compared the various fairness criteria using a quick
preliminary simulation experiment with 2 agents. First, we
checked to what extent the probability that an NDDPR allo-
cations exists is higher than the probability that an NecPR
allocation exists. These probabilities naturally depend on the
correlation between the agents’ rankings. When the rankings
are completely correlated, both NDDPR and NecPR alloca-
tions do not exist; when the rankings are completely inde-
pendent, both NDDPR and NecPR allocations exist with high
probability; the interesting zone is when the rankings are par-
tially correlated. To simulate such rankings, we determined
for each item a “market value” drawn uniformly at random
from [1,2]. We determined the value of each item to each
agent as the item’s market value plus noise drawn uniformly
at random from [—A, A], where A is a parameter. Based on
the cardinal values we determined the agent’s ordinal ranking.
Then, we checked whether there exists an NecPR/NDDPR al-
location. We did this experiment 1000 times for different val-
ues of A € {0.1,...,1} and for different numbers of items
— 2m items for m € {2,...,8}. Typical results are plotted
in Figure 1; the probability of existence of NDDPR alloca-
tions (balls) is clearly higher than that of NecPR allocations
(triangles):

Since we had randomly-generated cardinal values, we used
them for a secondary purpose — we checked whether, when
an NDDPR allocation exists, the one found by the simple al-
gorithm of Section 5 is proportional according to these val-
ues (dashed lines). Note that, since the randomization we
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used is completely uniform and does not use the DD assump-
tion, the probability that DD holds for both agents is very
low — 1/((2m — 1)!)2. Nevertheless, our NDDPR alloca-
tion (when it exists) is almost always proportional when the
number of items or the noise size are sufficiently large, which
further shows the robustness of our algorithm. We also
checked the probability of existence of PDDPR and PosPR al-
locations, and it was nearly 1.0. Thus, apparently the NecPR
requirement is too strong and the PDDPR and PosPR require-
ments are too weak, while the NDDPR requirement hits a
sweet spot between ‘recall” and ‘precision’: it allows us to
solve many instances (= high ‘recall’) and most solutions are
satisfactory (= high ‘precision’).

7 Pareto-efficiency and Envy-freeness

While the focus of this paper is on the effect of the DD condi-
tion on proportionality, we briefly survey below some results
that we have for Pareto-efficiency and envy-freeness.

7.1 Pareto-efficiency

In the preceding sections we saw that the DD condition has
a substantial effect on fairness notions: NDD-fair alloca-
tions are strictly easier (in terms of existence) than necessary-
fair allocations, and PDD-fair allocations are harder than
possibly-fair allocations (see examples in Subsection 3.2).
Interestingly, the DD condition does not have this effect on
Pareto-efficiency (PE).

An allocation is called Necessarily (NDD) PE if it is PE
according to all profiles with additive (DD) utility functions.

Theorem 4. Necessary-PE is equivalent to NDD-PE.

Proof. == : If an allocation is necessarily-PE, then by defi-
nition it is also NDD-PE.
<= : Suppose an allocation X is not necessarily-PE.
Then, by Aziz et al. [2016b] Thm 9, there are two options:
(1) X is not possibly-PE. Then, it is certainly not NDD-PE.
(i) X admits a Pareto-improving one-for-two-swap. l.e,
there are two agents Alice and Bob, such that Xp,;, con-
tains an item which Alice strictly prefers over two items in
X aAtice- Then X is not NDD-PE, since it is not PE accord-
ing to the utility profile in which u 4y, is lexicographic, and
uBob(2) = M? + LEV gy (7), so that his utility is dominated
by the number of items he has. O

Analogously, Possible-DD-PE is equivalent to Possible-
PE; proof is omitted. It is interesting that whereas DD leads to
new fairness notions, it does not lead a new efficiency notion.

7.2 DD-envy-freeness

Since every NDDEEF allocation is NDDPR, the two conditions
of Theorem 3 are necessary for the existence of NDDEF allo-
cations for any number of agents. In the special case of n = 2
agents, NDDPR is equivalent to NDDEF so these conditions
are also sufficient. But for n = 3 they are no longer sufficient.

Example 4. There are six items {1,...,6}. The preferences
of the three agents Alice Bob and Carl are:

Alice: 6 -5>=3>=4+»2+1
Bob:5-4>=3>=6>2>1
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Figure 1: NDD-proportionality in Simulations

Carl: 4 >-6>3>5+2>1

The conditions of Theorem 3 are clearly satisfied. However,
no NDDEF allocation exists. Proof: The preferences are the
same up to a cyclic permutation between 6 5 and 4, so the
agents are symmetric and it is without loss of generality to
assume that Alice receives item 1. Therefore Alice’s bundle is
{6,1} and her Borda score is 7. To ensure that Alice is not
envious, Bob must get {5,2} and Carl must get {3,4}. This
allocation is NDDPR but it is not NDDEF, since Bob Borda-
envies Carl. O

Since the NDDPR characterization does not work for ND-
DEF allocations even for three agents, it is an open problem
whether the existence of NDDEF allocations can be decided
efficiently. When the number of agents is not bounded, we
have the following hardness result:

Theorem 5. Checking the existence of NDDEF allocations is
NP-complete when there are n agents and at least 2n items.

The reduction is similar to the NP-completeness of check-
ing existence of NEF allocations [Bouveret ez al., 2010]. The
proof requires carefully checking that the reduction argument
works for NDDEF as well.

When the number of agents is constant (at least 3) and the
number of items is variable, the runtime complexity of check-
ing NDDEF existence is an open question: is it polynomial
like NDDPR, or NP-hard like NEF [Aziz et al., 2016c]?

8 Conclusions and Future Work

We formalized natural ways to compare sets by using the DD
(diminishing differences) assumption. The relations lead to
new fairness concepts which we studied in detail. In future
work, it will be interesting to identify other interesting set ex-
tensions that correspond to classes of utility functions. Other
future work includes extending some of our results to the case
where agents may express weak preferences, or where the
items have negative utilities (chores).
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