
 Open access Journal Article DOI:10.1109/TVLSI.2011.2128353

Fair and Consistent Hardware Evaluation of Fourteen Round Two SHA-3 Candidates
— Source link

Miroslav Knezevic, K. Kobayashi, Jun Ikegami, Shin'ichiro Matsuo ...+10 more authors

Institutions: Katholieke Universiteit Leuven, Tohoku University

Published on: 01 May 2012 - IEEE Transactions on Very Large Scale Integration Systems (IEEE)

Topics: Field-programmable gate array, Application-specific integrated circuit and Gate array

Related papers:

 FPGA Implementations of the Round Two SHA-3 Candidates

Throughput vs. area trade-offs in high-speed architectures of five round 3 SHA-3 candidates implemented using xilinx
and altera FPGAs

 Compact FPGA implementations of the five SHA-3 finalists

Fair and comprehensive methodology for comparing hardware performance of fourteen round two SHA-3 candidates
using FPGAs

 Lightweight implementations of SHA-3 candidates on FPGAs

Share this paper:

View more about this paper here: https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-
1e06i1yh4g

https://typeset.io/
https://www.doi.org/10.1109/TVLSI.2011.2128353
https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g
https://typeset.io/authors/miroslav-knezevic-1i1syx1pd9
https://typeset.io/authors/k-kobayashi-m7t5x7v7no
https://typeset.io/authors/jun-ikegami-wynw5b3ff4
https://typeset.io/authors/shin-ichiro-matsuo-34me9brc5n
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/institutions/tohoku-university-34pgdphc
https://typeset.io/journals/ieee-transactions-on-very-large-scale-integration-systems-23miu8e8
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/topics/application-specific-integrated-circuit-2vch5b68
https://typeset.io/topics/gate-array-sa2lv4df
https://typeset.io/papers/fpga-implementations-of-the-round-two-sha-3-candidates-1bjy696m3z
https://typeset.io/papers/throughput-vs-area-trade-offs-in-high-speed-architectures-of-4dob3m85fa
https://typeset.io/papers/compact-fpga-implementations-of-the-five-sha-3-finalists-2mp93i2z5s
https://typeset.io/papers/fair-and-comprehensive-methodology-for-comparing-hardware-40lnt2i1y0
https://typeset.io/papers/lightweight-implementations-of-sha-3-candidates-on-fpgas-4etnlydi3o
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g
https://twitter.com/intent/tweet?text=Fair%20and%20Consistent%20Hardware%20Evaluation%20of%20Fourteen%20Round%20Two%20SHA-3%20Candidates&url=https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g
https://typeset.io/papers/fair-and-consistent-hardware-evaluation-of-fourteen-round-1e06i1yh4g

1

Fair and Consistent Hardware Evaluation of
Fourteen Round Two SHA-3 Candidates

Miroslav Knežević∗, Kazuyuki Kobayashi†, Jun Ikegami†, Shin’ichiro Matsuo‡, Akashi Satoh¶, Ünal Kocabaş∗,

Junfeng Fan∗, Toshihiro Katashita¶, Takeshi Sugawara§, Kazuo Sakiyama†, Ingrid Verbauwhede∗, Kazuo Ohta†,

Naofumi Homma§, Takafumi Aoki§

Abstract—The first contribution of our paper is that we propose a platform, a design strategy and evaluation criteria for a fair and consistent

hardware evaluation of the second-round SHA-3 candidates. Using a SASEBO-GII FPGA board as a common platform, combined with well

defined hardware and software interfaces, we compare all 256-bit version candidates with respect to area, throughput, latency, power and

energy consumption.

Our approach defines a standard testing harness for SHA-3 candidates, including the interface specification for the SHA-3 module on our

testing platform. The second contribution is that we provide both FPGA and 90 nm CMOS ASIC synthesis results and thereby are able to

compare the results. Our third contribution is that we release the source code of all the candidates and by using a common, fixed, publicly

available platform, our claimed results become reproducible and open for a public verification.

Index Terms—Hash Function, SHA-3 Competition, Hardware Evaluation, FPGA, ASIC, SASEBO-GII.

✦

1 INTRODUCTION

S Ince collisions on standard hash functions were re-
ported in 2004 [1], [2], improvements to hash attack

methods and improvements to hash algorithms have been
investigated at a similar, rapid pace [3]. For this reason,
NIST decided to initiate the development of a new hash
standard. Similar to the development of the present block
cipher standard – AES, NIST uses a competition model that
has been proved to assure a fair selection among various
candidates [4].

The competition is organized in three phases, with the
second phase scheduled to complete by the end of summer
2010. Out of the original 64 submissions to the first phase,
fourteen candidates have been selected for detailed analysis
in the second phase (BLAKE, BMW, CubeHash, ECHO,
Fugue, Grøstl, Hamsi, Keccak, JH, Luffa, Shabal, SHAvite-
3, SIMD, Skein). NIST will then reduce this set to an even
smaller number during the third, final phase.

The selection of winning candidates is driven by con-
sidering security properties as well as implementation effi-
ciency of the proposed hash algorithms both in hardware
and software. However, a systematic cryptanalysis of hash
functions is not well established, and it is hard to measure
the cryptographic strength of a hash function beyond ob-
vious metrics such as digest length. For this reason, the
implementation efficiency of hardware and software plays
a vital role in the selection of the finalist.

∗Katholieke Universiteit Leuven, ESAT/SCD-COSIC and IBBT, Kasteelpark
Arenberg 10, B-3001 Leuven-Heverlee, Belgium, Email: {mknezevi, ukocabas,
jfan, iverbauw}@esat.kuleuven.be
†The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo
182-8585, Japan, Email: {k-kazu, jike, saki, ota}@ice.uec.ac.jp
‡National Institute of Information and Communications Technology, 4-2-1
Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan Email: smatsuo@nict.go.jp
§Graduate School of Information Sciences, Tohoku University Aoba 6-6-05,
Aramaki, Aoba-ku, Sendai, 980-8579, Japan
¶Research Center for Information Security, National Institute of Advanced
Industrial Science and Technology, 1-18-13, Sotokanda, Chiyoda, Tokyo 101-0021,
Japan, Email: {akashi.satoh, toshiro.katashita}@aist.go.jp

There are several projects that have evaluated the hard-
ware efficiency of the SHA-3 candidates [5], [6], [7], [8],
[9]. However, the validity and consistency of the evaluation
criteria and methods of such research are not well discussed
yet. In order to evaluate the hardware efficiency over a set
of SHA-3 candidates, we need to fix an evaluation envi-
ronment (i.e., platform), an implementation method (i.e.,
design strategy), and a performance comparison method
(i.e., evaluation criteria). A consensus on such points is
required for a fair and consistent comparison.

The performance evaluation of hardware, including the
measurement of power consumption, execution time, and
hardware resources, is a rather complex problem. There
are several reasons for this. Most importantly, the design
space for hardware performance evaluation is larger than
that of software. Additional design constraints (such as
low-area, max-throughput, and min-energy) are required
to define an optimal implementation. Second, accurate and
generic performance evaluation metrics are hard to ob-
tain. A throughput can be characterized provided that the
hardware design can be accurately timed. The area metrics
depend strongly on the target technology (ASIC/FPGA).
A measurement of the power consumption is the most
difficult, and it is almost never mentioned in publications.

In this paper we try to address most of these issues and
therefore, we summarize our contributions as follows.

• First, we propose a platform, a design strategy, and
evaluation criteria for a fair and consistent hardware
evaluation of the SHA-3 candidates.

• Second, we use a prototyping approach by mapping
each of the 256-bit version hash candidates onto a
SASEBO-GII FPGA board [10]. The hash candidates
are then evaluated with respect to throughput, latency,
hardware cost, and power and energy consumption.

• Third, we provide synthesis results in 90 nm CMOS
technology with respect to throughput and circuit size.
In addition, we provide power and energy consump-

tion estimates.
• Finally, by releasing the source code of all the candi-

dates and by using a common, fixed, publicly available
platform, our claimed results become reproducible and
open for public verification.

1.1 Related Work

Recently, several research groups have proposed compre-
hensive performance evaluation methods, which evaluate
a set of hash algorithms on a common platform.

• Tillich et al. [11] developed RTL VHDL/Verilog code
for all SHA-3 candidates. They present synthesis re-
sults in 180 nm CMOS technology. In order to reach
the highest degree of accuracy, they further perform
the place & route for the best versions of all fourteen
candidates [5].

• Gaj et al. [6] developed a scripting system called
ATHENa, targeted towards FPGA. A fair comparison
is achieved by defining a standard interface and by au-
tomatic design space exploration. Furthermore, in [12]
they report a comparison of all 512-bit version SHA-3
candidates using the same methodology.

• Baldwin et al. [13] propose a standard interface to
achieve a fair comparison and illustrate their approach
by providing the hardware figures for all fourteen
SHA-3 candidates. They evaluate hardware designs
and test for all message digest sizes (224, 256, 384, and
512 bits) and also include the padding as part of the
hardware for the SHA-3 hash functions.

• Henzen et al. [8] evaluated all fourteen second-round
SHA-3 candidates using 90 nm CMOS technology. All
designs were placed & routed and the post-layout
figures were reported.

• Guo et al. [9] presented post place & route figures for
all fourteen candidates in 130 nm CMOS technology.

2 GENERAL REQUIREMENTS FOR HARDWARE

EVALUATION

In this section, we reconsider the main requirements for
conducting a fair and consistent hardware evaluation of
the fourteen SHA-3 candidates.

First, we comment on the feasibility of compact im-
plementations. Second, we discuss the speed performance
metrics and power/energy consumption. Then, we open a
question concerning fair comparison and consistent hard-
ware evaluation of the remaining SHA-3 candidates. Fi-
nally, we present an attempt to classify the candidates
with respect to their design properties. This classification
will be useful, later on, for drawing some conclusions and
comparing different candidates.

2.1 Area: Lower Bound on Compact Implementations

Depending on the application scenarios, one of the decision
points, prior to starting with the hardware evaluation,
is a choice of the actual architecture. Therefore, we pro-
vide a lower bound estimation on each of the fourteen
candidates and argue that, given the required security
margins, there are no candidates suitable for a lightweight

implementation. Our estimation is simply based on the
minimum amount of total memory needed for a certain
algorithm. We define the state size to be the size of the
chaining variable (see Table 1). We also refer to the work
of Ideguchi et al. [14], that studies the RAM requirements
of various SHA-3 candidates for the low-cost 8-bit CPUs.
Furthermore, we estimate the size of the required memory
with respect to the number of gate equivalences (GE),
which represents the lower bound size. Finally, we provide
figures for current, compact implementations of some of
the second-round candidates.

TABLE 1

Memory Requirements for the SHA-3 Candidates.

Candidate
State Total Total Total
Size Memory [14] Memory† Area
[bit] [bit] [GE] [GE]

BLAKE 512 768 4,608 13,560 [15]
BMW 512 1,536 9,216 N/A‡

CubeHash 1,024 1,024 6,144 7,630 [16]
ECHO 2,048 2,560 15,360 82,800 [17]
Fugue 960 960 5,760 59,220 [18]
Grøstl 512 1,024 6,144 14,620 [19]
Hamsi 512 768 4,608 N/A‡

JH 1,024 1,024 6,144 N/A‡

Keccak 1,600 1,600 9,600 N/A‡

Luffa 768 768 4,608 10,340 [20]
Shabal 1,408 1,408 8,448 23,320 [16]

SHAvite-3 896 1,024 6,144 N/A‡

SIMD 512 3,072 18,432 N/A‡

Skein 512 768 4,608 N/A‡

Estimates for versions with 256-bit digest size are given.
† We estimate the size of a single flip-flop to be 6 GE.
‡ To the best of our knowledge, as of November 2010,

these candidates had no published figures
for low-cost hardware implementations.

Comparing the lower bound size of all fourteen candi-
dates with the size of state of the art lightweight block
ciphers, e.g., PRESENT [21] and KATAN & KTANTAN [22],
we conclude that all candidates are rather suited for a so-
called welterweight category. Therefore, in this work, we
focus only on the high-throughput variants of all second-
round candidates.

2.2 Speed: Latency versus Throughput

Regarding the speed of a hash candidate, we distinguish
two performance figures. Depending whether the input
message is a long (we consider very long messages in this
case) or a short one (e.g., 256 bits or less), we evaluate the
throughput and the latency, respectively. The throughput is
defined as the amount of information processed per unit of
time (bits/s), while the latency represents the time delay
necessary for processing a certain amount of information
from start to end (s).

This approach provides a fair comparison and an accu-
rate evaluation for each of the candidates. In both cases,
the speed performance is a function of several factors:
maximum frequency, number of clock cycles necessary for
a hash operation, number of cycles necessary for input and
output, and the input block size. Furthermore, the latency
also depends on the message size and the presence of

the finalization function. Later, in Section 3.3, we provide
formulae that support the previous discussion.

2.3 Power versus Energy

The power consumption of a hash design is measured
during a complete hash operation. The total power con-
sumption can be seen as the sum of the static and the
dynamic power dissipation. The energy cost is therefore
the integral of the power consumption over the period of
a hash operation. In order to obtain a standardized nJ/bit
metric, the energy cost is normalized to the input block size
and to the message length for long and short messages,
respectively.

2.4 Fair Comparison

An important requirement for an open competition such
as the SHA-3 competition is a fair comparison. To achieve
this goal, we need to consider the following two aspects.
First, the evaluation environment needs to be open and
available to all designers and evaluators. It also needs to
be unified and common for all the candidates. Second,
the claimed results need to be reproducible and open for
public verification. By using a common, fixed platform and
making our code publicly available, we achieve the desired
goal.

2.5 Classification of Candidates

Another interesting issue to consider is the great diversity
of all the second-round candidates. Therefore, we first
classify all the algorithms with respect to their design
properties. Figure 1 represents such a classification.

Sponge

Wide-pipe

Narrow-pipe

8-bit Sbox

ARX

4-bit Sbox/Boolean

BLAKE

CubeHash

Keccak

JH

Hamsi

Luffa

Skein

SIMD

Shabal

Grøstl

SHAvite-3

ECHO

Fugue

Blue
Midnight
Wish

Fig. 1. Round 2 SHA-3 Candidates Classified with Respect

to Their Design Properties (courtesy of Dai Watanabe from

Hitachi Ltd, the designer of Luffa hash function).

With respect to the main source of non-linearity used in
a design, all fourteen candidates can be classified into three
main groups, as indicated by the three parts of the pie.

• 8-bit Sbox based: ECHO, Fugue, Grøstl, SHAvite-3.
• 4-bit Sbox/Boolean based: Hamsi, JH, Keccak, Luffa.
• Addition Rotation XOR (ARX) based: Blake, BMW,

CubeHash, Shabal, SIMD, Skein.

Another classification by comparing the size of the com-
pression function to the digest size and the input block size
is possible, as indicated by the concentric circuits on the
pie. If the output length of the intermediate compression
function is equal to the digest size, the structure is called
a narrow-pipe. The candidates with the output length of
the compression function larger than the final hash length
are classified as wide-pipe. Finally, the candidates whose
compression function size and digest size are fixed, and
whose input block size is determined by considering a
trade-off between security and efficiency are called the
sponge constructions. Therefore, depending on the size of
the compression function, the candidates can again be
classified into three subgroups.

• Narrow-pipe: Blake, Hamsi, SHAvite-3, Skein.
• Wide-pipe: BMW, ECHO, Grøstl, JH, SIMD.
• Sponge: CubeHash, Fugue, Keccak, Luffa, Shabal.

Finally, we classify the candidates with respect to their
input block size.

• 32-bit: Fugue, Hamsi.
• 256-bit: CubeHash, Luffa.
• 512-bit: Blake, BMW, Grøstl, JH, Shabal, SHAvite-3,

SIMD, Skein.
• 1024-bit: Keccak.
• 1536-bit: ECHO.

Another classification, with respect to the number of
cycles necessary for performing the hash operation, is also
possible but would highly depend on the implementation
strategy. Therefore we do not consider it at this time. How-
ever, this observation becomes interesting later, in Section 4,
where the implementation results are discussed in detail.
Next, we discuss our proposed evaluation scheme. We
describe the evaluation environment, hardware/software
interface, design strategy, evaluation metrics and finally, we
provide the experimental results.

3 HARDWARE EVALUATION PLATFORM FOR

SHA-3 CANDIDATES

EoM	

idata	

load	
fetch	

odata	

ack	

zbus_rstn	

Control	

FPGA

Cryptographic	

FPGA

zbus_clk	

16	
16	

usb_txen	

usb_rxfn	

usb_rdn	

usb_wr	

usb_d	8	

SASEBO-GII	

PC	
 init	

modified	

SASEBO-	

Checker	

Oscillo-	

scope	

Fig. 2. Evaluation Environment Using SASEBO-GII.

Figure 2 illustrates the target platform for our evalua-
tion, which includes a SASEBO-GII board, a PC and an
oscilloscope. The SASEBO board includes two FPGAs: a
control FPGA and a cryptographic FPGA. On the PC, a test

program enables a user to enter a sample message, which
is transmitted to the control FPGA through a USB interface.
The control FPGA controls the data flow to send this mes-
sage to the cryptographic FPGA, where hash operations are
performed. After the hash operation is done, the digest is
returned to the PC through the control FPGA. As illustrated
in Fig. 2, the interface between the control FPGA and the
cryptographic FPGA is fixed and common among all SHA-
3 candidates.

The control FPGA checks the latency of a single hash
operation that is performed on the cryptographic FPGA
and reports the number of clock cycles to the PC. The PC
then reports two different performance metrics. One is the
number of clock cycles including the interface overhead
while the other one is excluding the cycles for the data
input and output.

During message hashing, we also measure the power
consumption of the hashing operation. This trace, in combi-
nation with the performance data, enables a precise charac-
terization of the power dissipation and energy consumption
of the SHA-3 candidate on the cryptographic FPGA.

3.1 Hardware and Software Interface

A key concept in our approach is the use of a standard
interface to integrate the hash algorithms inside the cryp-
tographic FPGA. In this section, we describe the major
principles of this interface. We also compare our ideas with
those of several other proposals, including the interfaces
defined by Chen et al. [23], by Gaj et al. [24], and by
Baldwin et al. [25].

In the following observations, it is useful to refer to the
method used to interface SHA-3 candidates in software.
For that purpose, the software implementations use an
Application Program Interface (API) defined by NIST [26].
Three function calls are used:

• void init(hashstate *d) initializes the algo-
rithm state of the hash, which is typically stored in
a separate structure in order to make the hash imple-
mentation re-entrant.

• void update(hashstate *d, message *s)

hashes a message of a given length and updates the
hash state. The message is chopped into pieces of a
standard length called a block. In case the message
length is not an integral number of blocks, the API will
use a padding procedure which extends the message
until it reaches an integral number of blocks in length.

• void finalize(hashstate *d, digest *t) ex-
tracts the actual digest from the hash state.

A hardware interface for a SHA-3 module emulates a
similar functionality as the software API interface. The
hardware interface therefore needs to address the following
issues.

Handshake protocol: The hash interface needs to syn-
chronize data transfer between the SHA-3 module and the
environment. This is done by using a handshake protocol
and one can distinguish a master and a slave protocol,
depending on which party takes the initiative to establish
the synchronization. The interface by Chen [23] uses a slave

protocol for the input and output of the algorithm. The in-
terfaces by Baldwin [25] and Gaj [24] define a slave protocol
for the input and a master protocol for the output. The
former type of interface is suited for a co-processor in an
embedded platform, while the latter one is suited for high-
throughput applications that would integrate the SHA-3
module using First Input First Output (FIFO) buffers. The
interface in our proposal uses a slave protocol.

Wordlength: Typical block and digest lengths are wider
(e.g., 512 bits) than the word length that can be provided
by the standard platforms (e.g., 32 bits). Therefore, each
hash operation will result in several data transfers. While
this overhead is typically ignored by hardware designers,
it is inherently part of the integration effort of the SHA-3
module. In our proposal, we use a 16-bit interface, which
size is driven by the size of the data-bus shared among the
control FPGA and the cryptographic FPGA.

Control: The functions of the software API need to be
translated to the equivalent control signals in hardware.
One approach, followed by Gaj, is to integrate this control
as in-band data in the data stream. A second approach
is to define additional control signals on the interface, for
example to indicate the message start and end. This is the
approach taken by Chen and Baldwin. We follow the same
approach in our proposal as well.

Padding: Finally, padding may or may not be included in
the SHA-3 hardware module. In the latter case, the hard-
ware module implicitly assumes that an integer number of
blocks will be provided for each digest. Common padding
schemes are defined by in-band data formatting, and this
makes it possible to implement the padding outside of
the hardware module. The interface proposal by Baldwin
explicitly places the padding hardware into the interface.
The other interface proposals leave the padding to be done
outside of the hardware module. However, Chen assumes
that the hardware padding will only be implemented at the
word-level, while Gaj supports bit-level padding as well.
We follow the approach of Chen.

Note that there are many solutions to the interface issue,
and that we present only one approach. We also observe
that the key issue for a fair comparison is to use a common
interface for all the candidates. In addition, and that is very
important, we show that our performance evaluation mech-
anism allows to factor out the overhead of the interface
communication.

3.2 Design Strategy

Besides a standard platform, our approach also defines a
design strategy. As classified by Schaumont et al. [27] there
are three types of cores that can be distinguished with
respect to their implementation scope (register mapped,
memory mapped and network mapped). Similar to this
approach, Tillich [28] proposes the following classification:

• Fully Autonomous Implementation (Fig. 3a): Equivalent
to a register mapped implementation proposed by
Schaumont et al. [27]. In this architecture, one transfers
the message data to a hash function over multiple clock
cycles, until a complete message block is provided. The
hash module buffers a complete message block locally,

Core	

Function	

Input	

Register	

Core	

Function	

Input	

External
Memory	

Register	

Core	

Function	

Input	

(a)	
 (b)	
 (c)	

Fig. 3. Three Types of Architectures: (a) Fully Autonomous.

(b) with External Memory. (c) Core Functionality.

before initializing the hash operation. Therefore, this
architecture can work autonomously, and the resulting
hash module is well suited for the integration into
other architectures (e.g., System-on-Chip).

• Implementation of the Core Functionality (Fig. 3b): This
architecture has only the core part of a hash function,
and ignores the storage of a full message block. In other
words, this architecture ignores the influence of a fixed
interface on the total hardware performance.

• Implementation with External Memory (Fig. 3c): Equiva-
lent to a memory mapped implementation proposed
by Schaumont et al. [27]. In this architecture, only
data necessary for executing the hashing calculation
is stored in registers. Other data (e.g., intermediate
values) is stored in the external memory. In general,
the external memory is less expensive than the register
based memory. Therefore, the architecture becomes a
low-cost implementation. However, this architecture
requires additional clock cycles for accessing the exter-
nal memory, and therefore it is not suitable for high-
throughput implementations.

In this work, we choose the Fully Autonomous architec-
ture. Additionally, we estimate influence of the standard
hardware interface on each of the fourteen candidates. Our
choice of a 16-bit data width is driven by the specification of
the common evaluation platform, i.e., SASEBO-GII board.
In addition, we provide evaluation metrics that allow us
to estimate the hardware performance for an arbitrary data
width as well. One can easily obtain the figures by taking
into account the highest achievable frequency and the input
block size of each of the candidates. Furthermore, we
provide the hardware figures by factoring out the overhead
introduced by the standard interface.

Input /Output	
Interface	

Hash	

Value	

Register	

Cryptographic FPGA	

idata	

init	

EoM	

zbus_clk	

zbus_rstn	

load	

fetch	

ack	

odata	

EN / start	

Ld_msg	

busy	

hash	

16	

16	
256	
 Message	

Register	

Intermediate	

Value Register	

Hash Function	

Core	

Fig. 4. Architecture of Cryptographic FPGA.

Figure 4 shows the detailed architecture of the crypto-
graphic FPGA which we use for evaluating hardware per-
formance. The cryptographic FPGA consists of an interface
block which controls input and output, and a core function
block which executes a hashing process. There are several
SHA-3 candidates which need to keep an input message
during the hashing process. In our environment, we use a
message register file for that purpose.

3.3 Platform Specific Evaluation Topics

We implement fourteen SHA-3 candidates on the crypto-
graphic FPGA, Xilinx Virtex-5 (xc5vlx30-3ff324) placed on
the SASEBO-GII evaluation board. We check the hardware
performance in terms of speed and hardware cost. The
speed performance is evaluated by calculating latency or
throughput, depending on the message length. It is calcu-
lated using the input block size, the maximum clock fre-
quency, and the total number of clock cycles with or with-
out the communication overhead. The cost performance is
evaluated with the number of slices, registers, and LUTs
for FPGA and the number of gate equivalences for ASIC.
A design that has a high throughput with a low hardware
cost is regarded as efficient. The power consumption of a
hash design is measured during a complete hash operation.
The energy cost is therefore the integral of the power
consumption over the period of a hash operation. In order
to obtain a standardized nJ/bit metric, the energy cost is
normalized with respect to the input block size and to the
message length for long and short messages respectively.

In order to make the following discussion easier we
introduce notations that are used further in the paper.

B : Input block size,
w : Word size (interface data width),
I : Total number of clock cycles,

Iin : Number of clock cycles for loading one message block,
Iout : Number of clock cycles for outputting the message digest,
Icore : Number of clock cycles for completing the hash process,
Ifinal : Number of clock cycles for the finalization,

Iw : Number of clock cycles for transmitting one word of data,
fmax : Maximum clock frequency,

T : Throughput,
L : Latency,
M : Size of the message without padding,
Mp : Size of the message with padding,
H : Size of the message digest (hash output).

A hash function executes a hashing process for each data
block of input block size, and uses the result as a chaining
value for the next input data block to perform the whole
hashing process. The number of clock cycles needed for
hashing M bits of data can be expressed as

I =
Mp

B
(Iin + Icore) + Ifinal + Iout . (1)

Here,
Mp

B
is the number of hash core invocations where

the hash core processes a B-bit data block per single
invocation. Note that the coefficients of Ifinal and Iout are
both equal to one, since these processes are only executed
when outputting the final message digest. The number of
clock cycles needed for the input of the message block and

the output of the hash result can be evaluated as

Iin =
B

w
Iw ,

Iout =
H

w
Iw . (2)

In our specific protocol, we use w = 16 bits and
Iw = 3 cycles. The former is driven by the evaluation
platform specification, while the latter is a result of a
simple acknowledgement-based protocol. As a result, the
final throughput can be expressed as

T =
Mpfmax

Mp

B

(

Iin + Icore

)

+ Ifinal + Iout

, (3)

It is also useful to estimate the throughput of the core
function only, by factoring out the interface part. Therefore,
we write

TCore =
Mpfmax

Mp

B
Icore + Ifinal

. (4)

When Mp is sufficiently large, for example in the case
of hashing a long message, Ifinal and Iout are negligible in
Eq. 3 and Eq. 4. In this case, the throughput is approximated
as

TLongMessage =
Bfmax

Iin + Icore
,

TLongMessageCore =
Bfmax

Icore
. (5)

On the other hand, when Mp is small, for example in
the case of hashing a short message for authentication, we
cannot ignore Ifinal and Iout. Moreover, as the latency is
an important metric for a short message (rather than the
throughput), we use Eq. 6 to compare the speed perfor-
mance of the SHA-3 candidates.

L =
Mp

T
,

LCore =
Mp

TCore

. (6)

Finally, we calculate power and normalized energy per
bit consumption for both short and long messages. By PU

and PF we denote the power consumption during the
update and the final phase, respectively, and by f we
denote the operating frequency.

PShortMessage =

Mp

B
IcorePU + IfinalPF

Mp

B
Icore + Ifinal

,

EShortMessage =

Mp

B
IcorePU + IfinalPF

Mf
,

PLongMessage = PU ,

ELongMessage =
PUIcore
Bf

. (7)

4 FPGA EVALUATION RESULTS

In this work, we implement SHA-256 and all fourteen SHA-
3 candidates aiming at high-throughput hardware imple-
mentations1. Although it is not possible to completely factor
out the designer’s influence in our comparison, all fifteen
algorithms were prototyped and tested using the same eval-
uation platform. Each of them was evaluated according to
the metrics indicated above, comparing speed performance,
area, power consumption and energy consumption.

Table 2 shows a comprehensive summary of the mea-
surement results. Bold and gray data represent the best
and the worst result in its class, respectively. As with
all measurement data, it is important to understand the
assumptions used when collecting these numbers. The table
includes the following quantities for each candidate.

• The input message block size in bits;
• The highest clock frequency achievable on the Virtex-5

FPGA (xc5vlx30-3ff324) in MHz.
• The latency in terms of clock cycles. Several cases are

shown: the cycle count of the input interface overhead
(Iin); the cycle count of the output interface overhead
(Iout); the cycle count of the core function (Icore); and
the cycle count of the final processing (Ifinal). All
mentioned measures are defined in Section 3.3.

• The throughput of the design in Mbps. This value is
calculated assuming that the FPGA is operating at the
maximum achievable clock frequency for the given
design. Both the throughput with (T) and without
(TCore) interface overhead is shown.

• The latency of the design for short messages in µs. This
value is calculated assuming that the FPGA is oper-
ating at the maximum achievable clock frequency for
the given design. Both the latency with (L) and without
(LCore) interface overhead is shown. We choose the size
of a short message to be 256 bits prior to padding.

• The area cost of the design, in terms of occupied Virtex-
5 slices, number of slice registers, and number of slice
LUTs. The number of occupied slices provides the
primary area measure in this case, while the numbers
of slice registers and slice LUTs illustrate the actual
utilization of the occupied slices.

• The power consumption of the design for long and
short messages. For long messages, the average power
consumption includes only the core functionality. For
short messages, the average power consumption in-
cludes the core functionality and the finalization. The
power consumption is measured directly on the core
power supply of the FPGA. The power consumption is
measured with the FPGA operating at 24 MHz which
is the default operating frequency of the board.

• The energy consumption of the design for long and
short messages. The energy consumption is normalized
with the input block size and the message length
for long and short messages, respectively (expressed
in nJ/bit). Also in this case, the difference between
long-message energy and short-message energy relates

1. We release the Verilog/VHDL source code for these 15 algorithms at
http://www.rcis.aist.go.jp/special/SASEBO/SHA3-en.html.

to the inclusion of the finalization processing in the
measurement.

As can be seen from the amount of reported data in
Table 2, there are many different dimensions where the
comparison is possible. Since our main goal is a high-
throughput implementation of all the candidates, we pro-
vide Fig. 5 where the candidates are compared with respect
to the highest achievable throughput. We also offer the
throughput estimates assuming different interfaces. The
throughput is first estimated for the core function. Next,
we provide the throughput figures assuming the ideal
interface, meaning that we use only Iw clock cycles for the
input and another Iw clock cycles for the output. Finally,
we measure the throughput assuming a realistic interface
width (from 16 bits to 128 bits).

Here, we draw an interesting, somewhat natural conclu-
sion. The influence of the interface width is more noticeable
for the candidates that have a small number of rounds and a
larger size of the input block. Therefore, one may notice that
the influence of the fixed interface is especially noticeable
for BMW, Grøstl, Keccak, and Luffa.

In order to have a complete picture regarding the hard-
ware cost that one needs to pay for implementing a high-
throughput version of each candidate, we provide Fig. 6.
The left-hand side of the figure represents a throughput
versus area graph, ignoring the influence of the fixed
interface, while the right-hand part shows the same graph
by taking the interface into account. The candidates within
the dashed ellipse are the ones with the largest Through-
put/Area ratio.

Due to the very small number of rounds of the core
function, the hash candidate BMW provides the highest
core throughput among all candidates. The hardware price,
however, due to the heavy unrolled architecture, is large
(BMW also consumes most of the hardware resources).
Other candidates that have noticeably high core through-
put are Keccak, Grøstl and Luffa. Furthermore, Luffa and
Keccak achieve a high core throughput with a relatively
small hardware cost.

Assuming a fixed interface with parameters w = 16 bits
and Iw = 3, which indeed complies with our evaluation
platform, Luffa achieves the highest throughput. Luffa also
has the highest hardware efficiency since it achieves the
highest throughput with a relatively small hardware cost.
Other candidates that have noticeably high throughput in
this case are Keccak and SHAvite-3.

To have a complete picture regarding the latency of all
candidates with respect to different sizes of the unpadded
message, we provide Fig. 7. The left-hand side represents
the core latency of all candidates versus message size, while
the right-hand side represents the latency by taking the 16-
bit interface into account. It is interesting to observe that for
short messages, with less than 512 bits, CubeHash, Shabal,
and Fugue show rather high core latency. This is due to the
fact that these candidates have a large number of rounds
in the final stage of the hashing process. The stair-steps
on the graph appear due to the fact that an additional
message block for padding is needed whenever we hash an
unpadded message with size equal to the input block size
of the algorithm. Since the input block size of Fugue and

T
A

B
L

E
2

R
e

s
u

lt
s

o
f

th
e

S
H

A
-3

C
a

n
d

id
a

te
s

o
n

V
ir

te
x
-5

(x
c
5

v
lx

3
0

-3
ff

3
2

4
).

In
p

u
t

M
ax

.
T

o
ta

l
N

u
m

b
er

o
f

L
o

n
g

M
es

sa
g

e
S

h
o

rt
M

es
sa

g
e

N
u

m
b

er
N

u
m

b
er

N
u

m
b

er
P

o
w

er
[W

]
E

n
er

g
y

[n
J
/
bi
t]

S
H

A
-3

B
lo

ck
C

lo
ck

C
lo

ck
C

y
cl

es
[c

y
cl

es
]

T
h

ro
u

g
h

p
u

t
L

at
en

cy
[µ
s
]

o
f

o
f

o
f

C
an

d
id

at
e

S
iz

e
F

re
q

I i
n

I o
u
t

I c
o
r
e

I f
in

a
l

[M
b

p
s]

M
=

25
6

b
it

s
O

cc
u

p
ie

d
S

li
ce

S
li

ce
L

o
n

g
S

h
o

rt
L

o
n

g
S

h
o

rt
[b

it
s]

[M
H

z]
T

T
C
o
r
e

L
L
C
o
r
e

S
li

ce
s

R
eg

is
te

rs
L

U
T

s
M

sg
M

sg
M

sg
M

sg
S

H
A

-2
56

51
2

26
0

96
48

68
0

81
2

1,
95

8
0.

81
5

0.
26

2
60

9
1,

22
4

2,
04

5
0.

21
0.

21
0.

65
1.

30

B
L

A
K

E
-3

2
51

2
11

5
99

48
22

0
48

7
2,

67
6

1.
44

3
0.

19
1

1,
66

0
1,

39
3

5,
15

4
0.

27
0.

27
0.

49
0.

98
B

M
W

-2
56

51
2

34
96

48
2

2
17

8
8,

70
4

4.
35

3
0.

11
8

4,
35

0
1,

31
7

15
,0

12
0.

41
0.

41
0

.0
7

0
.2

7
C

u
b

eH
as

h
16

/
32

-2
56

25
6

18
5

48
48

16
16

0
74

0
2,

96
0

1.
81

6
1.

03
8

5
9

0
1,

31
6

2
,1

8
2

0
.2

3
0

.2
3

0.
61

7.
27

E
C

H
O

-2
56

1,
53

6
14

9
31

5
48

99
0

55
3

2,
31

2
3.

10
1

0.
66

4
2,

82
7

4,
19

8
9,

88
5

0.
28

0.
28

0.
75

4.
49

F
u

g
u

e-
25

6
32

78
6

48
2

37
31

2
1,

24
8

2.
01

3
0.

70
5

4,
01

3
1,

04
3

13
,2

55
0.

36
0.

37
0.

95
3.

28
G

rø
st

l-
25

6
51

2
15

4
96

48
10

10
74

4
7,

88
5

1.
06

5
0.

13
0

2,
61

6
1,

57
0

10
,0

88
0.

31
0.

31
0.

25
1.

00
H

am
si

-2
56

32
21

0
6

48
4

5
67

2
1,

68
0

0.
68

1
0.

19
5

71
8

8
4

1
2,

49
9

0
.2

3
0

.2
3

1.
19

1.
52

JH
-2

56
51

2
20

1
96

48
39

0
76

2
2,

63
9

0.
91

0
0.

19
4

2,
66

1
1,

61
2

8,
39

2
0.

25
0.

25
0.

80
1.

60
K

ec
ca

k
(-

25
6)

1,
02

4
20

5
19

2
48

24
0

97
2

8
,7

4
7

1.
28

8
0.

11
7

1,
43

3
2,

66
6

4,
80

6
0.

29
0.

29
0.

29
1.

16
L

u
ff

a-
25

6
25

6
2

6
1

48
48

9
9

1
,1

7
2

7,
42

4
0

.6
5

5
0

.1
0

3
1,

04
8

1,
44

6
3,

75
4

0.
24

0.
24

0.
36

1.
07

S
h

ab
al

-2
56

51
2

22
8

96
48

50
15

0
80

0
2,

33
5

1.
50

9
0.

87
7

1,
25

1
2,

06
1

4,
21

9
0

.2
3

0
.2

3
0.

94
7.

62
S

H
A

v
it

e-
3 2

5
6

51
2

25
1

10
8

48
38

0
88

0
3,

38
2

0.
77

3
0.

15
1

1,
06

3
1,

36
3

3,
56

4
0.

24
0.

24
0.

73
1.

45
S

IM
D

-2
56

51
2

75
96

48
46

0
27

0
83

5
2.

53
3

0.
61

3
3,

98
7

6,
69

3
13

,9
08

0.
29

0.
29

1.
09

2.
17

S
k

ei
n

-5
12

-2
56

51
2

91
10

2
48

19
19

38
5

2,
45

2
2.

06
6

0.
41

8
1,

37
0

1,
95

6
4,

97
9

0.
30

0.
30

0.
47

1.
86

Fig. 5. Maximum Throughput for Various Types of Interface with Iw = 3. Target Platform: Virtex-5 (xc5vlx30-3ff324) FPGA

Board.

(a) (b)

Fig. 6. Throughput versus Area graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target

Platform: Virtex-5 (xc5vlx30-3ff324) FPGA Board.

(a) (b)

Fig. 7. Latency versus Message Size graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target

Platform: Virtex-5 (xc5vlx30-3ff324) FPGA Board.

Hamsi is only 32 bits and in order to have a clear graphical
representation, we approximate their latency performance
with the linear segments.

In order to explore the influence of a fixed interface on
the minimum latency, we additionally provide Fig. 8. Here,
we assume the length of the short unpadded message to
be 256 bits. It can be noticed that Luffa has the shortest
core latency among all candidates. Even when including
the interface overhead, Luffa shows the best performance.
The candidates with a larger number of cycles needed for
the finalizing stage, such as CubeHash, Fugue, and Shabal,
have noticeably high core latency. The biggest influence of
a fixed standard interface is again demonstrated by BMW.

Finally, in Fig. 9 we show a latency versus area graph.
Regarding the core latency versus area, we can select the
set of candidates which show somewhat better performance
compared to others, and those are: Luffa, Keccak, SHAvite-
3, Hamsi, Blake, and Skein. With respect to the total la-
tency (including the interface overhead) versus area, the
set containing Hamsi, Luffa, and SHAvite-3 shows the best
performance. These candidates show the smallest Latency-
Area product.

4.1 Power and Energy Consumption

As mentioned in Section 2.3, we distinguish between
a platform-dependent power (static power) and an
algorithm-dependent power consumption (dynamic
power). We measured the static power dissipation of the
Virtex-5 FPGA on SASEBO-GII to be around 200 mW.
Hence, the power numbers listed in Table 2 are dominated
by the static power. To have an accurate comparison,
we simply compare the candidates with respect to their
algorithmic properties by measuring the dynamic power
only, as depicted in Fig. 10a (the dynamic power is simply
obtained by subtracting the static power from the total
power consumption).

Due to the similar behavior during the update and the
final phase, the difference between the power consumption
for long and short messages is negligible. On the other
hand, the dynamic energy consumption (see Fig. 10b) dif-
fers for long and short messages and is especially noticeable
for candidates which require additional cycles for the final-
izing stage (CubeHash, Fugue, Grøstl, Shabal, and Skein).
ECHO and Keccak also have the same discrepancy, and
this is due to the large input block while hashing a short
message of only 256 bits. Since BMW is the largest design
among all candidates, its power consumption is thereby the
largest as well. However, due to the very small number of
cycles needed for a hashing operation, BMW on the other
hand consumes the least amount of energy.

4.2 Algorithmic Features versus Implementation Re-

sults

Recalling the classification from Fig. 1 we conclude that
no obvious connection can be made between the hardware
performance and the design properties of the fourteen can-
didates. As an illustration we provide the fact that the top
5 designs with respect to the core throughput are Keccak

(4-bit Sbox/Boolean, Sponge, 1024-bit), BMW (ARX, wide-
pipe, 512-bit), Grøstl (8-bit Sbox, wide-pipe, 512-bit), Luffa
(4-bit Sbox/Boolean, Sponge, 256-bit) and SHAvite-3 (8-
bit Sbox, narrow-pipe, 512-bit). They, all together, basically
cover the complete design space as defined in Section 2.5.

However, several interesting conclusions can still be
made by observing some of the algorithmic features versus
the implementation results. Therefore, we observe that
the narrow-pipe designs (BLAKE, Hamsi, SHAvite-3, and
Skein) offer relatively low core throughput. Grøstl, Keccak,
and Luffa, on the other hand, provide high throughput
regardless of the interface type (none of them is a narrow-
pipe design). Designs with very small input block size of
only 32 bits (Fugue and Hamsi) offer a relatively small core
throughput. ECHO, which is the candidate with the largest
input block size also offers a small throughput, but this is
more because ECHO has the largest number of rounds for
hashing a block of the message.

As a conclusion of this section we argue that the Sponge
based candidates with the light non-linear part (4-bit
Sbox/Boolean based) and large “input block size/number
of rounds” ratio (Keccak and Luffa) show somewhat better
overall performance in comparison to the other candidates.
Due to the simplicity of the design, they have the shortest
critical path, which in combination with the large “input
block size/number of rounds” ratio results in high through-
put and low latency.

5 ASIC EVALUATION RESULTS

In order to have a complete picture regarding the possible
hardware platforms, we synthesized the code of SHA-256
and all fourteen SHA-3 candidates using the STM 90 nm
CMOS technology. We used Synopsys Design Compiler
version A-2007.12-SP3. The tool automatically estimated
power consumptions by using its own signal switching
model for the datapaths, and thus we did not control test
vectors for the power estimation.

We synthesized several circuits from one design by
changing speed constraints (maximum frequency), and
chose the three circuits, which showed the smallest size,
the highest throughput, and the highest efficiency (through-
put/gate). The result are presented in Table 3.

Our results are based on synthesis and we only provide
the core throughput and the core latency as measures of
speed. However, as we further plan to tape out the can-
didates which will be chosen in the third, and final round
of the competition, and to use a very similar evaluation
platform (SASEBO-R), we provide estimates of the interface
influence on the ASIC performance as well.

Similar to the previous section, we provide the following
figures:

• Fig. 11 – Maximum throughput of all fourteen candi-
dates assuming various types of interface.

• Fig. 12 – Throughput versus area graph.
• Fig. 13 – Latency versus message size graph.
• Fig. 14 – Minimum latency of all fourteen candidates

assuming various types of interface.
• Fig. 15 – Latency versus area graph.
• Fig. 16 – Power and energy consumption.

Fig. 8. Minimum Latency for Various Types of Interface with Iw = 3. Target Platform: Virtex-5 (xc5vlx30-3ff324) FPGA

Board.

(a) (b)

Fig. 9. Latency versus Area graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target Platform:

Virtex-5 (xc5vlx30-3ff324) FPGA Board.

(a) (b)

Fig. 10. (a) Dynamic Power Consumption. (b) Dynamic Energy Consumption. Target Platform: Virtex-5 (xc5vlx30-3ff324)

FPGA Board.

TABLE 3

Synthesis Results of the SHA-3 Candidates using 90 nm CMOS Technology.

SHA-3 Max. Max. Core Min. Core Total Dynamic Dynamic Energy Hardware
Candidate Freq.† Throughput† Latency† Area Power‡ [pJ/bit] Efficiency

[MHz] [Mbps] [µs] [GE] [mW] Long Msg Short Msg [kbps/GE]

SHA-256
735 5,536 0.09 18,677 3.11 2.31 4.62 290.6
356 2,680 0.19 13,199 2.09 1.55 3.09 203.0
117 878 0.58 11,332 1.77 1.32 2.63 77.4

BLAKE-32
286 6,668 0.08 36,944 10.84 4.66 9.31 180.5
260 6,061 0.08 30,292 4.94 2.12 4.25 200.1
147 3,412 0.15 23,214 3.77 1.62 3.24 147.0

BMW-256
101 25,937 0.04 128,655 9.25 0.36 1.44 201.6
84 21,603 0.05 115,001 8.46 0.33 1.32 187.9
67 17,262 0.06 105,566 7.47 0.29 1.16 163.5

CubeHash16/32-256
515 8,247 0.37 35,548 7.07 4.42 53.00 232.0
352 5,834 0.55 21,336 4.07 2.54 30.53 264.1
172 2,749 1.12 16,320 3.60 2.25 26.98 168.5

ECHO-256
362 5,621 0.27 101,068 17.24 11.11 11.11 55.6
260 4,040 0.38 97,803 8.88 5.73 34.36 59.6
147 2,278 0.67 57,834 8.32 5.36 32.16 39.4

Fugue-256
170 2,721 0.32 56,734 3.57 2.23 7.66 48.0
113 1,808 0.49 45,553 3.01 1.88 6.46 37.9
78 1,245 0.71 46,683 2.92 1.82 6.27 26.7

Grøstl-256
338 17,297 0.06 139,113 22.52 4.40 17.59 124.3
258 13,196 0.08 86,191 12.74 2.49 9.95 153.1
128 6,547 0.16 56,665 7.85 1.53 6.13 115.5

Hamsi-256
971 7,767 0.04 67,582 6.94 8.67 11.11 114.9
544 4,348 0.08 36,981 3.44 4.31 5.51 117.6
352 2,817 0.12 32,116 2.80 3.50 4.48 87.7

JH-256
763 10,022 0.05 54,594 2.94 2.24 4.48 183.6
694 9,117 0.06 42,775 2.07 1.57 3.14 213.1
353 4,639 0.11 31,864 2.13 1.63 3.25 145.6

Keccak(-256)
781 33,333 0.03 50,675 6.36 1.55 6.21 657.8
541 23,063 0.04 33,664 3.62 0.88 3.54 685.1
355 15,130 0.07 29,548 3.52 0.86 3.44 512.0

Luffa-256
1010 28,732 0.03 39,642 5.14 1.81 5.42 724.8
538 15,293 0.05 19,797 2.85 1.00 3.01 772.5
263 7,466 0.10 19,359 2.91 1.02 3.07 385.6

Shabal-256
592 6,059 0.34 34,642 5.80 5.66 45.30 174.9
544 5,565 0.37 30,328 3.13 3.05 24.42 183.5
351 3,593 0.57 27,752 3.16 3.08 24.65 129.5

SHAvite-3256

625 8,421 0.06 59,390 3.61 2.68 5.36 141.8
493 6,637 0.08 42,036 2.46 1.83 3.66 157.9
207 2,784 0.18 33,875 2.41 1.79 3.57 82.2

SIMD-256
285 3,171 0.16 138,980 13.56 12.18 24.37 22.8
261 2,906 0.18 122,118 10.77 9.67 19.35 23.8
113 1,259 0.41 88,947 10.74 9.64 19.29 14.2

Skein-512-256
251 6,734 0.15 43,132 17.17 6.37 25.48 76.4
206 5,551 0.18 28,782 4.42 4.68 18.73 87.7
50 1,347 0.76 22,562 3.25 3.25 13.01 79.0

†Only the first subrow in each row is relevant for comparison of Max. Frequency, Max. Core Throughput, and Min. Core Latency.
‡The power consumption is estimated for the frequency of 100 MHz.

Since the designs were implemented to achieve the high-
est throughput, only the first subrow in each row is relevant
for comparison of maximum frequency, maximum core
throughput, and minimum core latency. Therefore, we mark
(in bold and gray) fastest and slowest designs by observing
the first subrows only. For other columns, we mark the
extreme results by observing every subrow in each row.

5.1 Correlation between ASIC and FPGA results

By observing the provided graphs we argue that there is a
good level of correlation between the ASIC and the FPGA
results, with a few considerable differences. For example,
when observing Fig. 6a and Fig. 12a, we notice that Fugue
and Grøstl and differ considerably, while Blake and Hamsi
differ noticeably. Further comparing Fig. 6b versus Fig. 12b,
Fig. 9a versus Fig. 9a, and Fig. 9b versus Fig. 15b we notice

that Fugue, Grøstl, and JH differ considerably. Another con-
siderable difference is in the power/energy consumption
for BMW, ECHO, and Grøstl. These three candidates are the
largest in area among all, and since the power is estimated
and measured using different platforms (ASIC and FPGA),
this difference is acceptable. Therefore, we conclude that
the obtained FPGA results represent rather reliable way of
estimating the ASIC performance, especially with respect
to speed and area.

6 CONCLUSION

For a complete hardware evaluation, there are plenty of
evaluation platforms to be considered. Therefore, fixing
one is crucial for conducting a fair and a consistent com-
parison. In this paper, we propose an evaluation platform
and a consistent evaluation method to conduct a fair

Fig. 11. Maximum Throughput for Various Types of Interface with Iw = 3. Target Platform: STM 90 nm CMOS Technology,

Synthesis Results.

(a) (b)

Fig. 12. Throughput versus Area graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target

Platform: STM 90 nm CMOS Technology, Synthesis Results.

(a) (b)

Fig. 13. Latency versus Message Size graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target

Platform: STM 90 nm CMOS Technology, Synthesis Results.

Fig. 14. Minimum Latency of all 14 Candidates assuming Various Types of Interface with Iw = 3. Target Platform: STM

90 nm CMOS Technology, Synthesis Results.

(a) (b)

Fig. 15. Latency versus Area graph: (a) Core Function only. (b) Fixed Interface with w = 16 bits and Iw = 3. Target Platform:

STM 90 nm CMOS Technology, Synthesis Results.

(a) (b)

Fig. 16. (a) Dynamic Power Consumption. (b) Dynamic Energy Consumption. Target Platform: STM 90 nm CMOS

Technology, Synthesis Results.

hardware evaluation of the remaining SHA-3 candidates.
This proposal meets the requirements analyzed from actual
hash applications and conditions of standard selection. The
platform includes a SASEBO-GII evaluation board, evalu-
ation software, and appropriate interface definition. Using
this method, we implement all the second-round SHA-3
candidates and obtain the resulting cost and performance
factors. This technical study provides a fair and a consistent
evaluation scheme. At the end, we hope that by sharing our
experience we contribute to the SHA-3 competition and by
providing the proposed methodology we influence other
similar future selections of the standard cryptographic al-
gorithms.

ACKNOWLEDGMENT

The authors would like to thank Dai Watanabe from Hitachi
Ltd, the designer of Luffa hash function, for providing
valuable inputs regarding the classification of the SHA-3
candidates.

This work is supported in part by the IAP Pro-
gramme P6/26 BCRYPT of the Belgian State, by FWO
project G.0300.07, by the European Commission under con-
tract number ICT-2007-216676 ECRYPT NoE phase II, by
K.U.Leuven-BOF (OT/06/40), and by the Research Council
K.U.Leuven: GOA TENSE. This research was supported by
Strategic International Cooperative Program (Joint Research
Type), Japan Science and Technology Agency.

REFERENCES

[1] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,”
in Advances in Cryptology — EUROCRYPT 2005, vol. 3494 of Lecture
Notes in Computer Science, Springer, 2005.

[2] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-
1,” in Advances in Cryptology — CRYPTO 2005, vol. 3621 of Lecture
Notes in Computer Science, Springer, 2005.

[3] W. E. Burr, “Cryptographic Hash Standards: Where Do We Go from
Here?,” IEEE Security and Privacy, vol. 4, no. 2, pp. 88–91, 2006.

[4] National Institute of Standards and Technology (NIST), “Crypto-
graphic Hash Algorithm Competition.”

[5] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. Schmidt, and
A. Szekely, “Uniform Evaluation of Hardware Implementations of
the Round-Two SHA-3 Candidates.” The Second SHA-3 Candidate
Conference, 2010.

[6] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehen-
sive Methodology for Comparing Hardware Performance of Four-
teen Round Two SHA-3 Candidates using FPGAs,” in Cryptographic
Hardware and Embedded Systems — CHES 2010 [29], pp. 264–278.

[7] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, and
W. P. Marnane, “FPGA Implementations of the Round Two SHA-3
Candidates,” in Proceedings of 20th International Conference on Field
Programmable Logic and Applications — FPL 2010, 2010.

[8] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. K.
Gürkaynak, “Developing a Hardware Evaluation Method for SHA-
3 Candidates,” in Cryptographic Hardware and Embedded Systems —
CHES 2010 [29], pp. 248–263.

[9] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and
Comprehensive Performance Evaluation of 14 Second Round SHA-3
ASIC Implementations.” The Second SHA-3 Candidate Conference,
2010.

[10] National Institute of Advanced Industrial Science and Technology
(AIST), Research Center for Information Security (RCIS), “Side-
channel Attack Standard Evaluation Board (SASEBO).”

[11] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. Schmidt, and
A. Szekely, “High-Speed Hardware Implementations of BLAKE, Blue
Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Kec-
cak, Luffa, Shabal, SHAvite-3, SIMD, and Skein.” Cryptology ePrint
Archive, Report 2009/510, 2009. http://eprint.iacr.org/.

[12] K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive Com-
parison of Hardware Performance of Fourteen Round 2 SHA-3
Candidates with 512-bit Outputs Using Field Programmable Gate
Arrays.” The Second SHA-3 Candidate Conference, 2010.

[13] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill,
and W. P. Marnane, “A Hardware Wrapper for the SHA-3 Hash
Algorithms,” in Signals and Systems Conference — ISSC 2010, IET Irish,
pp. 1–6, 2010.

[14] K. Ideguchi, T. Owada, and H. Yoshida, “A Study on RAM Require-
ments of Various SHA-3 Candidates on Low-cost 8-bit CPUs.” Cryp-
tology ePrint Archive, Report 2009/260, 2009. http://eprint.iacr.org/.

[15] L. Henzen, J.-P. Aumasson, W. Meier, and R. C.-W. Phan., “VLSI
Characterization of the Cryptographic Hash Function BLAKE,” 2010.
Available at http://131002.net/data/papers/HAMP10.pdf.

[16] M. Bernet, L. Henzen, H. Kaeslin, N. Felber, and W. Fichtner, “Hard-
ware implementations of the SHA-3 candidates Shabal and Cube-
Hash,” Midwest Symposium on Circuits and Systems, vol. 0, pp. 515–
518, 2009.

[17] L. Lu, M. O’Neil, and E. Swartzlander, “Hardware Evaluation of
SHA-3 Hash Function Candidate ECHO.” Presentation at the Clauce
Shannon Institute Workshop on Coding and Cryptography 2009,
2009.

[18] S. Halevi, W. E. Hall, and C. S. Jutla, “The Hash Function Fugue.”
Submission Document, 2008.

[19] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck,
M. Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler, and
M. Mayrhofer, “Compact Hardware Implementations of the SHA-
3 Candidates ARIRANG, BLAKE, Grøstl, and Skein.” Cryptology
ePrint Archive, Report 2009/349, 2009. http://eprint.iacr.org/.

[20] S. Mikami, N. Mizushima, S. Nakamura, and D. Watanabe, “A
Compact Hardware Implementation of SHA-3 Candidate Luffa,”
2010. Available at http://www.sdl.hitachi.co.jp/crypto/luffa/
ACompactHardwareImplementationOfSHA-3CandidateLuffa
20101105.pdf.

[21] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher,” in Cryptographic Hardware and Embedded
Systems — CHES 2007, vol. 4727 of Lecture Notes in Computer Science,
pp. 450–466, Springer, 2007.

[22] C. D. Cannière, O. Dunkelman, and M. Knežević, “KATAN and
KTANTAN – A Family of Small and Efficient Hardware-Oriented
Block Ciphers,” in Cryptographic Hardware and Embedded Systems —
CHES 2009, vol. 5747 of Lecture Notes in Computer Science, pp. 272–288,
Springer, 2009.

[23] P. S. Z. Chen, S. Morozov, “A Hardware Interface for Hashing
Algorithms.” Cryptology ePrint Archive, Report 2008/529, 2008.
http://eprint.iacr.org/.

[24] CERG at George Mason University, “Hardware Interface of a Secure
Hash Algorithm (SHA). Functional Specification,” October 2009. http:
//cryptography.gmu.edu/athena/.

[25] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill,
and W. P. Marnane, “A Hardware Wrapper for the SHA-3 Hash
Algorithms.” Cryptology ePrint Archive, Report 2010/124, 2010.
http://eprint.iacr.org/.

[26] National Institute of Standards and Technology (NIST), “ANSI C
Cryptographic API Profile for SHA-3 Candidate Algorithm Submis-
sions,” 2008.

[27] P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede, “Embed-
ded Software Integration for Coarse-Grain Reconfigurable Systems,”
Parallel and Distributed Processing Symposium, International, vol. 4,
p. 137, 2004.

[28] The SHA-3 Zoo, “SHA-3 Hardware Implementations.” http://ehash.
iaik.tugraz.at/wiki/SHA-3 Hardware Implementations.

[29] Cryptographic Hardware and Embedded Systems, CHES 2010, 12th In-
ternational Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, vol. 6225 of Lecture Notes in Computer Science, Springer,
2010.

