
Fair and Efficient Secure Multiparty
Computation with Reputation Systems?

Gilad Asharov, Yehuda Lindell, and Hila Zarosim??

Dept. of Computer Science, Bar-Ilan University, Israel
{asharog,zarosih}@cs.biu.ac.il, lindell@biu.ac.il

Abstract. A reputation system for a set of entities is essentially a list of
scores that provides a measure of the reliability of each entity in the set.
The score given to an entity can be interpreted (and in the reputation
system literature it often is [12]) as the probability that an entity will
behave honestly. In this paper, we ask whether or not it is possible to
utilize reputation systems for carrying out secure multiparty computa-
tion. We provide formal definitions of secure computation in this setting,
and carry out a theoretical study of feasibility. We present almost tight
results showing when it is and is not possible to achieve fair secure com-
putation in our model. We suggest applications for our model in settings
where some information about the honesty of other parties is given. This
can be preferable to the current situation where either an honest ma-
jority is arbitrarily assumed, or a protocol that is secure for a dishonest
majority is used and the efficiency and security guarantees (including
fairness) of an honest majority are not obtained.

Keywords: secure multiparty computation, reputation systems, new models

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrustful
parties P1, . . . , Pm wish to compute a function of their inputs in the presence of
adversarial behavior. The security requirements of such a computation are that
nothing beyond the output should be learned (privacy), the output received
must be correctly computed (correctness), the parties must choose their inputs
independently of each other (independence of inputs), and either no parties
receive output or all parties receive output (fairness). The formal definition of
security requires that the result of a secure protocol be like the outcome of an

? This research was supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
n. 239868.

?? Hila Zarosim is grateful to the Azrieli Foundation for the award of an Azrieli Fel-
lowship.

ideal execution where an incorruptible trusted party is used to compute the
function for all the parties. We remark that if there is no honest majority, then
it is impossible to achieve fairness in general [8].

Under the assumption that the majority of the parties are honest, there exist
protocols with full security [3, 7, 15]. However, the security of known protocols
totally collapses when this assumption does not hold; in particular, the adversary
can learn the inputs of the honest parties. Based on this, it may seem prudent
to use protocols that guarantee security except for fairness when any number
of parties are corrupted [15]. Unfortunately, all known protocols of this type
have the property that just one corrupted party can prevent the parties from
terminating successfully, and can even breach fairness. Moreover, it is known
that there exist no protocols that simultaneously achieve full security for the case
of honest majority, and security-with-abort (i.e., without fairness) when there is
no honest majority [18]. This leads to the following unfortunate situation: the
parties need to make a decision in advance whether to run a protocol that is
secure as long as there is an honest majority and thereby risk losing privacy if
they are wrong, or to run a protocol that is secure for any number of corruptions
and thereby give up on any hope of obtaining fairness. To make things worse,
this decision is essentially made with no concrete information.

Reputation systems. A reputation system is a system whose aim is to predict
agents’ behavior in future transactions. Such systems evaluate the data about
agents’ previous transactions and estimate the probability that an agent will
behave honestly or dishonestly in future transactions [12]. Reputation systems
are very popular today in the electronic commerce market and in peer to peer
systems [2]. They are used in these contexts to choose which vendors are trust-
worthy, to determine the level of service obtained by a peer, and more. There
is considerable work on how to construct reliable reputation systems, maintain
them and so on. Such systems provide us with information regarding the honesty
of parties, and therefore could be utilized.

Reputation systems and secure computation. In this paper, we study the
use of reputation systems in order to carry out secure multiparty computation.
We consider a model where all parties are given a reputation vector (r1, . . . , rm)
with the interpretation that the probability that party Pi is honest is ri. An-
other possible interpretation of this model is that there exists an adversary who
attempts to corrupt as many parties as possible. Then, ri is the probability
that party Pi remains uncorrupted, and can depend on the security measures
employed by party Pi. The main question that we ask is:

Can reputation systems be utilized in order to achieve fair and efficient
secure multiparty computation?

This model differs from the standard model of secure computation since all
parties are given information about the honesty of the other parties and the
level at which they can be trusted. Thus, there is hope that this can be used
to achieve more than is possible in the standard model. For example, it may be
possible to use protocols that require an honest majority (that are more efficient

than those for a dishonest majority, and in addition also guarantee fairness),
without just arbitrarily hoping that a majority of the parties are honest. It is
important that this actually models a more general setting than just that of
reputation systems; see below.

1.2 Our Results

Our main contributions are as follows. First, we suggest this novel model for
secure computation and provide formal definitions of security in this model.
Next, we study the problem of secure computation with reputation systems
from a theoretical perspective. Specifically, we ask under what conditions on the
reputation vector it is possible to achieve fair secure multiparty computation.
We stress that our focus is on fairness since without this requirement one can just
ignore the reputation system entirely and run a protocol like [15] that assumes
no honest majority and guarantees security without fairness. We present both
feasibility and impossibility results for this setting.

Regarding feasibility, we provide a criterion for when the reputations are
such that there exists a subset of parties for which a majority are honest, except
with negligible probability. Thus, when a reputation vector fulfills the criterion,
it is possible to have this subset run a secure protocol that assumes an honest
majority. Using the protocol of [10], this subset can be used to run the protocol
for many other parties who just provide input and receive output (and it does not
matter how many of these other parties are corrupted). Regarding impossibility,
we present another criterion on the reputations and show that when this criterion
is fulfilled it is impossible to securely toss a coin. This is proven by showing a
reduction to the case of two-party coin tossing in the standard model of secure
computation, for which the impossibility of fair coin tossing is well known [8].
Interestingly, we show that in the case of constant reputation values (that do
not depend on the security parameter), our characterization is tight. That is, we
prove the following very informally stated theorem:

Theorem 1.1 (Feasibility Characterization – Informal Statement) Let
Rep be a reputation system. Then, there exist protocols for securely computing
every family of functionalities F with complete fairness with respect to Rep if and
only if the number of parties with reputation greater than 1/2 is superlogarithmic
in the security parameter n.

As we have mentioned, the positive result is obtained by showing that when
the condition on the number of parties with reputation greater than 1/2 is ful-
filled then there exists a subset of parties within which there is an honest ma-
jority, except with negligible probability. Thus, standard protocols for secure
computation with fairness can be run by this subset.

The main question that this leaves is whether or not it is possible to use a
reputation system to achieve fairness in a different and more “interesting” way
than just finding a subset for within which there is an honest majority. We show

that in fact it is impossible to utilize reputations systems in any other way, and
so our upper bound is almost tight.1

We also show how it is possible to use our feasibility result given a concrete
reputation system; This is not immediate since our theoretical feasibility result is
asymptotic also in the number of parties and requires finding a subset of parties
whose reputation values fulfill a special property.

Reputation systems with correlations. The aforementioned basic model im-
plicitly assumes independence between parties, since each party Pi is corrupted
with probability ri as given in the reputation vector. This therefore does not
model the case that Pi and Pj are both corrupted if and only if some Pk is cor-
rupted. We therefore also study the more general setting where the probabilities
that parties are corrupted may be correlated. In this setting, we show that as
long as the correlations are “limited” in the sense that each party is dependent
on only ` other parties, then an honest majority exists (except with negligi-
ble probability) if the expected number of honest parties is “large enough”. We
formally define what it means for correlations to be limited to `, and give a
criterion on the required expected number of honest parties. We prove this using
martingales.

We remark that although this extension allows a more general type of repu-
tation system, real-world reputation systems work by providing a vector stating
the individual probabilities that every party is corrupted. Thus, we view the
basic model as our main model.

Covert security. We observe that the model of security in the presence of
covert adversaries [1], where the guarantee is that any cheating is detected by
honest parties, is particularly suited to our setting where there is an existing
reputation system. This is due to the fact that any cheating will go immediately
punished by reporting such a cheating to the reputation system manager. In
addition, we observe that it is possible to use the protocol of [9] that is only
twice as expensive as a semi-honest information-theoretic protocol, and provides
a deterrent of 1/4 (meaning that any cheating is detected with probability at
least 1/4). Such protocols have been proven to be highly efficient.

Applications to other settings. Our basic model for secure computation
with reputations actually relates to any setting where additional information
about the honesty of the parties is known. Two examples of such settings are
as follows. First, consider an environment with an access control scheme where
there is non-negligible probability of impersonation. Expressing this probability
of cheating as a reputation system and using our protocols, it is possible to
neutralize the threat from the impersonators. A second example relates to a set
of servers where intrusion detection tools provide an indication as to whether
or not a given server has been compromised. Rather than naively assuming

1 We remark that in the general case that the parties’ reputations may depend on
the security parameter, our results are not completely tight; in the full version of
this paper, we present a concrete example of reputation values for which neither our
feasibility result nor impossibility result holds.

that a majority of the servers have not been compromised, it is possible to use
the indicators of the intrusion detection system within our protocol in order to
obtain a more robust solution. This setting fits in very nicely with numerous
recent projects that offer a secure computation service, where a set of servers
carry out the computation and security is guaranteed as long as a majority of
them are not compromised [4, 5].

2 Definitions – The Basic Model

2.1 Reputation Vectors and Secure Computation

Let f be an m-ary functionality and let π be an m-party protocol for computing
f . A reputation vector r for the protocol π is a vector in Rm such that for
every i, the value ri indicates the probability that party Pi is honest in an
execution of π. We assume that r is public information, and is obtained from an
external authority that handles the reputation system. Our goal in this work is to
study the advantages that such public information can provide in constructing
secure protocols. We remark that reporting malicious behavior of individuals
and maintaining the reputation system is out of this scope of this work. A huge
amount of work deals with how to adapt the reputation of an individual in case
it has been corrupted. Incorporating cryptography to this task and proving the
system that indeed the entity behaves inappropriately, seems as an appealing
future direction.

In the standard setting of secure computation, we are given a fixed m-ary
function and our goal is to construct a secure m-party protocol π for computing
f . Thus the functionality to be computed is fixed and hence its arity is fixed
as well. However, in this paper we wish to work asymptotically in the number
of parties as well, and this makes things more complicated. The reason that we
work in this way is so that we can reason about the probability that some subset
of parties of a given size is corrupted. In order to see this, consider a protocol
that is secure as long as the majority of the parties are honest. Then, consider
the case that all parties are honest with probability 3/4 (and otherwise they
are corrupted). Clearly, for a sufficiently large number of parties it is possible
to apply the Chernoff bound in order to argue that the probability that there is
no honest majority is negligible. However, this is only possible when we consider
an asymptotic analysis over the number of parties. We stress that just like the
use of a security parameter, in a real instantiation of a protocol one would set a
concrete allowed error probability (e.g., 2−40) and verify that for the given real
number of parties and their reputation vector, the protocol error is below this
allowed probability.

Toward this end, we consider a family of functionalities, each with a different
arity, rather than considering a fixed functionality. We require the existence
of a polynomial-time process that is given the requested arity m and security
parameter n and outputs a circuit Cn,m for computing the functionality fm; this
suits the natural case that f computes the same function for each m and the

only difference is the number of inputs (e.g., statistics like median, majority and
so on). Formally,

Definition 2.1 Let F = {fm}m∈N be an infinite family of functionalities, where
fm is an m-ary functionality. We say that F is a PPT family of functionalities if
there exists a polynomial p(·) and a machine M that on input n and m outputs
a circuit Cn,m in time at most p(n+m) such that for every x1, . . . , xm, it holds
that Cn,m(x1, . . . , xm) = f (m)(1n, x1, . . . , xm).

We define a family of protocols Π(m,n) in the same way, and say that it is
polynomial time if there exists a polynomial p(·) such that the running time of
all parties is bounded by p(m+ n). We will consider the case where the number
of parties m = m(n) is bounded by a polynomial in the security parameter n.
This makes sense since any given party cannot run more than poly(n) in any
case, and so if the number of parties m(n) is superpolynomial in n, then it will
not be possible to even send a single message to all other parties.

Summary. We consider secure computation with m = m(n) parties, where
m : N → N is bounded by a polynomial in n.2 The parties run a protocol
Π(m,n), which is an m-party protocol with security parameter n, that securely
computes the functionality fm in the class F = {fm(n)}n∈N. Finally, the parties
have for auxiliary input a reputation vector rm such that for every i ∈ [m], the
probability that party Pi is corrupted is rmi . As we will see, we will require that
for all large enough values of n (which also determines m = m(n)), the protocol
Π(m,n) securely computes fm with respect to the reputation vector rm. Thus,
we also need to consider a family of reputation vectors, one for each value of m;
we denote the family of reputation vectors for every n by Rep = {rm(n)}n∈N.

2.2 Security with Respect to a Reputation Vector

We assume that the reader is familiar with the standard definition of security for
secure computation (see [14, 6]). We modify the definition to allow for a varying
number of parties, that is, m(n) for a given function m : N→ N.

Definition 2.2 Let m : N→ N be a function. We say that the protocol Π t(·)-
securely computes the functionality F = {fm(n)}n∈N with respect to m(·), if for
every ppt adversary A, there exists a ppt simulator S, such that for every ppt
distinguisher D, there exists a negligible function µ(·) such that for every n ∈ N,
every I ⊆ [m(n)] with |I| ≤ t(m(n)), every x ∈ ({0, 1}∗)m(n) and z ∈ {0, 1}∗, it
holds that: ∣∣Pr

[
D
(
idealF,S(z),I (n,m,x)

)
= 1
]

−Pr
[
D
(
realΠ,A(z),I (n,m,x)

)
= 1
]∣∣ ≤ µ(n).

2 We remark that the naive approach of takingm to be a parameter that is independent
of n does not work, since security would also need to hold when m is superpolynomial
in n. However, in such a case, one cannot rely on cryptographic hardness. In addition,
bounding m by a polynomial in n is natural in the sense that parties cannot run in
time that is superpolynomial in n in any case.

The protocol of GMW [15, 14] satisfies this definition, and is secure even
when the number of parties m is a function of n, as long as it is polynomial.
Formally, let Π(m,n) denote the GMW protocol with the following change. Let
F = {fm(n)}n∈N be a functionality. Then, upon input 1n, 1m, each party runs
the polynomial-time process to obtain the circuit Cn,m for computing fm. They
then proceed to run the GMW protocol with m parties on this circuit. We are
interested here in the version of GMW that assumes an honest majority and
guarantees fairness. Thus, we have:

Fact 2.3 Let F = {fm(n)}n∈N be a functionality and let Π denote the GMW
protocol as described above for F . Then, for every polynomial m(·) : N→ N, the

protocol Π(m,n) m(n)
2 -securely computes F with respect to m(n).

Having defined security with respect to a varying number of parties, and thus
actually being asymptotic also in the number of parties, we proceed to include
the reputation system as well. The definition is the same except that instead of
quantifying over all possible subsets of corrupted parties of a certain size, the set
of corrupted parties is chosen probabilistically according to the given reputation
vector rm = (rm1 , . . . , r

m
m). We denote by I ← rm the subset I ⊆ [m] of parties

chosen probabilistically where every i ∈ I with probability 1−rmi (independently
of all j 6= i). We note that the output of ideal and real includes 1n, 1m,x, z
and I. Thus the probabilistic choice of I is given to the distinguisher.

Definition 2.4 (Security with Respect to (m(·),Rep)) Let m(·), Rep, F and
Π be as above. We say that Π securely computes F with respect to (m(·),Rep), if
for every ppt adversary A, there exists a ppt simulator S, such that for every
ppt distinguisher D, there exists a negligible function µ(·) such that for every
n ∈ N, every x ∈ ({0, 1}∗)m(n) and z ∈ {0, 1}∗, it holds that:∣∣∣ Pr

I←rm(n)

[
D
(
idealF,S(z),I (n,m(n),x)

)
= 1
]

− Pr
I←rm(n)

[
D
(
realΠ,A(z),I (n,m(n),x)

)
= 1
] ∣∣∣ ≤ µ(n)

Observe that a protocol that is secure with respect to a reputation vector is
allowed to always fail for a certain subset I of corrupted parties, if that specific
corruption subset is only obtained with negligible probability with the reputation
vectors in Rep.

3 A Theoretical Study

In this section we explore our model, and ask under what conditions on the
reputation vector, security can be obtained. We first observe that when an honest
majority (over all or just a subset of parties) can be guaranteed except with
negligible probability, then it is possible to run protocols that are secure with an
honest majority like [15, 14] and [21]. We then present a simple condition on a
family of reputation vectors that determines whether or not an honest majority

on a subset exists. We also present a condition on the reputation vectors for
which it is impossible to securely compute the coin tossing functionality. This
is shown by reduction to the impossibility of computing two-party coin tossing
with fairness [8]. Finally, we show that when the reputations are constant, then
the above conditions are complementary. In the full version we give an example
of a reputation vector with probabilities that depend on n for which neither of
our conditions apply.

3.1 Feasibility

Reputation Vectors and Honest Majority We begin by presenting a simple
property for evaluating whether or not a family of reputation vectors guarantees
an honest majority, except with negligible probability. It is clear that if all parties
have reputation ri >

1
2 + ε for some constant ε, then there will be an honest

majority except with probability that is negligible in the number of parties; this
can be seen by applying the Chernoff bound. Likewise, if at least two thirds of the
parties have reputation ri >

3
4 + ε, then a similar calculation will yield an honest

majority except with negligible probability. However, these calculations require
a large subset of parties to have high reputation, and the use of Chernoff requires
that we use the same probability for a large set. Thus, this does not address the
case that 1/4 of the parties have very high reputation (almost 1), another half
have reputation 1/2, and the remaining 1/4 have low reputation. In order to
consider this type of case, we use the Hoeffding Inequality [19]. This enables us
to relate to the overall sum (or equivalently, average) of the reputations of all
parties. Using this inequality, we obtain a very simple condition on reputation
vectors. Namely, given a family Rep = {rm(n)}n∈N and a polynomial m = m(n),
we simply require that for all sufficiently large n’s, the average of the reputations

is greater than: 1/2 + ω

(√
logm
m

)
, or, equivalently, that the expected number

of honest parties is greater than: m/2 + ω
(√
m · logm

)
.

Before proceeding to the formal proof, we first state the Hoeffding Inequal-
ity [19] (see also [13, Sec. 1.2]). In our specific case, all of the random variables
have values between 0 and 1, and we therefore write a simplified inequality for
this case.

Lemma 3.1 (The Hoeffding Inequality) Let X1, . . . , Xm be m independent
random variables, each ranging over the (real) interval [0, 1], and let µ = 1

m ·
E[
∑m
i=1Xi] denote the expected value of the mean of these variables. Then, for

every ε > 0, Pr
[∣∣∣∑m

i=1Xi
m − µ

∣∣∣ ≥ ε] ≤ 2 · e−2ε2·m.

Claim 3.2 Let m : N → N be such that O(logm(n)) = O(log n), let Rep =
{rm(n)}n∈N be a family of reputation vectors and let m = m(n). If it holds that

m∑
i=1

rmi >
⌊m

2

⌋
+ ω

(√
m · logm

)
,

then there exists a negligible function µ(n) such that for every n,

Pr
I←rm

[
|I| ≥

⌊m
2

⌋]
< µ(n) .

Proof: Fix n and let m = m(n). For every i ∈ [m], let Xi be a random
variable that equals 1 when party Pi is honest, and 0 when it is corrupted. Thus,

Pr[Xi = 1] = ri. Let X̄ =
∑m
i=1Xi
m . Using linearity of expectations, we have that

E[X̄] = 1
m

∑m
i=1 ri.

There is an honest majority when |I| < m
2 ; equivalently, when

∑m
i=1Xi ≥

bm/2c + 1. Let ∆ = (
∑m
i=1 ri) − bm/2c = m · E[X̄] − bm/2c. By the Hoeffding

inequality:

Pr

[
m∑
i=1

Xi ≤
⌊m

2

⌋]
= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤
⌊m

2

⌋
−m · E

[
X̄
]]

= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤ −∆

]
= Pr

[
m∑
i=1

Xi −m · E
[
X̄
]
≤ −m · ∆

m

]

= Pr

[∑m
i=1Xi

m
− E

[
X̄
]
≤ −∆

m

]
≤ 2e−

2∆2

m .

The above holds for all n and m = m(n). Asymptotically, by the assumption

in the claim, ∆ = ω(
√
m · logm) and thus ∆2

m = ω(logm). Hence we have

that, Pr
[
|I| ≥

⌊
m
2

⌋]
= Pr

[∑m
i=1Xi ≤

⌊
m
2

⌋]
≤ 2e−

2∆2

m < 2e−ω(logm) which is
negligible in m. Since m(·) is a function such that O(logm(n)) = O(log n), it
holds that e−ω(logm(n)) is a function that is negligible in n, as required.

Intuitively, in order to use the above for secure computation, all the parties
need to do is to run a protocol that is secure with an honest majority (like
GMW [15]). Since there is guaranteed to be an honest majority except with
negligible probability, then this is fine. We stress, however, that for this to work
we need to use Fact 2.3 since here we refer to the version of GMW for which the
number of parties m is a parameter, and is not fixed. We therefore conclude:

Theorem 3.3 Let F be as above, and let Π = {Π(m,n)} be the GMW protocol
of Fact 2.3. Let m(·) be a function such that O(logm(n)) = O(log n), let m =
m(n) and let Rep be as above. If

m∑
i=1

rmi >
⌊m

2

⌋
+ ω(

√
m logm) ,

then Π securely computes F with respect to (m(·),Rep).

The proof of this is immediate; if there is an honest majority then the real
and ideal executions are indistinguishable, and there is an honest majority except
with negligible probability.

Subset Honest Majority In order to achieve secure computation with com-
plete fairness, it suffices to have a subset of parties for which there is guaranteed
to be an honest majority except with negligible probability [10]. This works by
having the subset carry out the actual computation for all other parties. Specif-
ically, all the parties send shares of their inputs to the subset, who compute
shares of the output and return them. In more detail, the protocol of [10] works
as follows. Let T ⊆ [m(n)] be the subset of parties that carry out the actual com-
putation; these are called the servers. All the parties distribute their inputs to
the set of servers T using VSS (verifiable secret sharing) with threshold |T |/2+1.
The servers then compute shares of the outputs by computing the circuit gate by
gate. At the output phase, the servers send the appropriate shares of the outputs
to each party, who then reconstructs the output. See [10] for details, and for a
proof that the protocol is secure as long as a majority of the parties in T are
honest. Thus, as long as there exists a subset of parties T ⊆ [m(n)] with honest
majority except with negligible probability, there exists a protocol for this m(·)
and family of reputation vectors. Thus, we have:

Claim 3.4 Let F , m(·) and Rep be as above. If there exists a negligible func-
tion µ(·), such that for every n there exists a subset Tn ⊂ [m(n)] for which

PrI←rm(n)

[
|Tn ∩ I| ≤ |Tn|2

]
≤ µ(n), then there exists a (non-uniform) protocol

Π that securely computes F with respect to (m(·),Rep).

The proof of this claim is the same as the proof of Theorem 3.3: if there
is a subset with an honest majority then the security of [10] holds, and the
probability that there is not an honest majority is negligible. There is one subtle
point here, which is that the protocol as described is non-uniform since the
subset Tn may be different for every n. Nevertheless, as we will see below, our
criteria for the existence of such a subset is such that an appropriate subset Tn
can always be efficiently computed from the reputation vector rm(n) (assuming
its existence).

Criteria on the reputation vector. Our next goal is to analyze when a family
of reputation vectors guarantees a subset of parties with an honest majority,
except with negligible probability. We first present the technical criteria, and
then explain its significance below.

Claim 3.5 Let m(·), and Rep be as above. For every n and subset Tn ⊆ [m(n)],

let ∆Tn
def
=
∑
i∈Tn r

m(n)
i − |Tn|2 . If there exists a series of subsets {Tn}n∈N (each

Tn ⊆ [m(n)]) such that
(∆Tn)

2

|Tn| = ω(log n), then there exists a negligible function

µ(·) such that for every n, PrI←rm(n)

[
|I ∩ Tn| > |Tn|

2

]
≤ µ(n).

Proof: The proof of this claim is very similar to that of Claim 3.2, and uses
the Hoeffding inequality. Let {Tn}n∈N be a series of subsets as in the claim. Fix
n and T = Tn. Then, for every i ∈ T , let Xi be a random variable that equals 1

when the party is honest and 0 when it is corrupted. An identical calculation to
that carried out in the proof of Claim 3.2 yields that for every n,

Pr
I←rm(n)

[
|I ∩ Tn| >

|Tn|
2

]
= Pr

[∑
i∈Tn

Xi ≤
|Tn|

2

]
≤ 2e−

2(∆Tn
)2

|Tn| . (1)

Since
(∆Tn)

2

|Tn| = ω(log n), we conclude that PrI←rm(n)

[
|I ∩ Tn| > |Tn|

2

]
≤ 2e−ω(logn)

which is negligible in n, as required.

Combining Claim 3.5 with Claim 3.4 we conclude that:

Corollary 3.6 Let F , m(·) and Rep be as above. For every n and subset Tn ⊆
[m(n)], let ∆Tn

def
=
∑
i∈Tn r

m(n)
i − |Tn|2 . If there exists a series of subsets {Tn}n∈N

(each Tn ⊆ [m(n)]) such that
(∆Tn)

2

|Tn| = ω(log n), then there exists a (non-

uniform) protocol Π that securely computes F with respect to (m(·),Rep).

Efficiently finding the subset Tn. The non-uniformity of the protocol is due
to the fact that in general, the subset Tn may not be efficiently computable from
the reputation vector. Nevertheless, we show now that assuming the existence of
a subset Tn fulfilling the condition, it is easy to find a subset T ′n (not necessarily
equal to Tn) that also fulfills the condition.

In order to see this, first note that for any size t, the largest value of ∆ (over
all subsets Tn ⊆ [m(n)] of size t) is obtained by taking the t indices i for which

ri is largest. This follows since ∆Tn = (
∑
i∈Tn ri) −

|Tn|
2 and so replacing an ri

in the sum with a larger rj always gives a larger ∆Tn . This gives the following
algorithm for finding an appropriate subset:

1. Given rm, sort the values in decreasing order; let ri1 , . . . , rim be the sorted
values.

2. For every j = 1, . . . ,m, compute ∆j =
(∑j

k=1 rik

)
− j

2 .

3. Let j be the index for which
(∆j)

2

j is maximum over all j’s. Then, output

the subset T = {i1, . . . , ij}.

In order to see that this fulfills the requirement, observe that by the above
observation, the maximum value of ∆Tn for all possible subsets Tn is one of
the values of ∆1, . . . ,∆m. Therefore, if there exists a subset that fulfills the
requirement, the subset output by the algorithm also fulfills the requirement.

A Protocol for the Concrete Setting. Our protocols above are proven se-
cure under the assumption that there exists a subset Tn fulfilling the required
asymptotic property. However, concretely, how can a set of parties know that
there exists such a subset, and which subset to take? This turns out to be very
easy since the Hoeffding inequality is exact, and not asymptotic. Thus, for a
given error parameter δ (e.g., δ = 2−40 or δ = 2−80) and subset Tn, it is possible

to simply compute ∆Tn and then check if 2e−
2(∆Tn

)2

|Tn| < δ (this bound is obtained
similarly to the bound in the proof of Claim 3.2; see Eq. (1) for more details).
By the algorithm given above for finding the subset, it is possible to efficiently
find an appropriate Tn with an error below the allowed bound, if one exists. (If
one does not exist, then the parties know that they cannot run the protocol.)
We remark that for efficiency, it is best to take the smallest subset that gives a
value below the allowed error parameter, since this means that the protocol run
by the parties has less participants, and so is more efficient.

Inaccurate reputation system. Sometimes, the reputation system may be
inaccurate, where the true reputation value of the party is ε-far from its public
value. This error may arise in both directions, that is, sometimes the public
reputation might be lower than the true one, and sometimes it might be higher.
However, it is easy to generalize our results to deal with this case as well, while
taking the reputation as the minimum guaranteed value and considering the
worst case scenario.

3.2 Impossibility

We now turn to study under what conditions on the family of reputation vectors
it is not possible to achieve (general) secure computation. We stress that we focus
on the question of fairness here since one can always ignore the reputation vector
and run a general protocol for secure computation with abort that is resilient
to any number of corrupted parties. We therefore consider the problem of coin
tossing, since it is impossible to fairly toss a coin without an honest majority [8]
(or, more accurately, with only two parties).

Let m(·) be a function and let Rep = {rm(n)}n∈N be a family of reputation
vectors. For every n, we denote by H1/2

n the set of all indices i of parties Pi such

that 1
2 < r

m(n)
i < 1. Recall that m(·) denotes the number of parties and so the

size of the set H1/2
n is bounded by m(n). We denote by F = {fm(n)

CT }n∈N the

coin-tossing functionality: f
m(n)
CT (1n, . . . , 1n) = (U1, . . . , U1), where U1 denotes a

uniform random bit; i.e., the output of the function is the same random bit for
all parties.

The idea behind our proof of impossibility is as follows. Consider first for
simplicity the case that all the reputations are at most 1/2, and thus H1/2

n is
empty. This means that the expected number of corrupted parties is at least
half and thus, intuitively, any protocol that is secure with respect to such a
reputation vector must be secure in the presence of a dishonest majority. We
show that this implies the existence of a two party protocol for fair coin tossing.
We also prove impossibility when H1/2

n is not empty but the probability of all
parties in H1/2

n being corrupted is non-negligible. In this case, we show that since
security must hold even when all parties in H1/2

n are corrupted, we can reduce to
fair coin tossing even here.

Theorem 3.7 Let m(·) be polynomially bounded, and let Rep be a family of
reputation vectors. If there exists a polynomial p(·) such that for infinitely many

n’s it holds that the probability that all parties in H1/2
n are corrupted is at least

1
p(n) , then there does not exist a protocol Π that securely computes the multiparty

coin-tossing functionality F = {fm(n)
CT }n∈N with respect to (m(·),Rep).

Proof Sketch: Assume the existence of a protocol Π that securely computes

the family F = {fm(n)
CT }n∈N with respect to a polynomial m(·) and a family of

reputation vectors Rep, and that there exists a polynomial p(·) such that for
infinitely many n’s, PrI←rm(n)

[
H1/2
n ⊆ I

]
≥ 1

p(n) . We show that this implies the

existence of an infinitely-often3 non-uniform two-party protocol π′ = 〈P ′0, P ′1〉 for
the coin-tossing functionality that is secure in the presence of malicious adver-
saries, in contradiction to the fact that fair coin tossing cannot be achieved [8].4

We start with an informal description of our transformation and we provide
an informal explanation of why it works; we then describe in Protocol 3.8 the
construction of π′, the formal proof appears in the full version of this paper. We
begin with the simpler case where Rep is such that for infinitely many n’s, H1/2

n

is empty; that is, each party is honest with probability at most 1/2. We use this
to construct a two-party protocol π′ in which on security parameter n, the two
parties P ′0 and P ′1 emulate an execution of the m = m(n)-party protocol Π(m,n)
by randomly choosing which of the m parties in Π(m,n) is under the control of
P ′0 and which of the parties in Π is under the control of P ′1. This can be done
by tossing m coins, and giving the control of each (virtual) party for which the
coin is 0 to P ′0, and the control of each (virtual) party for which the coin is 1 to
P ′1. The two parties then emulate an execution of the m-party protocol Π for
the coin-tossing functionality fmCT , and determine the resulting bit according to
the outputs of the (virtual) parties under their control.

Loosely speaking, we claim that the security of Π implies that this emulation
is secure as well. To see this, note that in an execution of π′, the m-party protocol
Π is invoked when each of the parties of Π is under the control of P ′0 with
probability 1/2 and under the control of P ′1 with probability 1/2. Thus, for every
adversary controlling one of the parties in π′, we expect to have about half of the
parties in Π under its control (since each party in Π is under the adversary’s
control with probability 1/2). Since Π is secure with respect to a family of
reputation vectors Rep such that H1/2

n is empty (and so, rmi ≤ 1
2 for every i), Π

is secure when the expected number of the corrupted parties is
∑
i (1− rmi) ≥ m

2 ,
and thus can handle the number of corruptions in the emulation carried out by
the two party protocol π′.

So far, we have ignored two issues in the construction of π′. First, the coin
tossing we use to decide which of the parties is controlled by P ′0 and which
is controlled by P ′1 is only secure with abort, and so an adversary controlling
P ′0 or P ′1 might abort before the other party sees the output of the coin tossing.
However, we show that in this case the honest party can simply output a random
bit and this adds no bias to the output. Intuitively, the reason that this works

3 This means that the security of the protocol holds for infinitely many n’s.
4 We note that the proof of impossibility of two-party coin tossing of [8] holds also for

infinitely-often non-uniform protocols (the proof of [8] holds for every fixed n).

is that if a party aborts before beginning the emulation of Π, then it has no
meaningful information and so cannot bias the outcome. Thus, the other party
may just output a random bit. Second, after the emulation ends, each of the
parties P ′0 and P ′1 should determine their outputs. Recall that each of the two
parties has a subset of the m parties in Π under its control and hence at the end
of the emulation of Π, each of P ′0 and P ′1 sees a set of outputs (as each party in
Π has an output). However, we expect that when the parties play honestly, all
parties in Π output the same output. Moreover, even if some of the parties in Π
are corrupted, by the security of Π, the output of the honest parties should be
the same (except with a negligible probability). Therefore, intuitively it seems
that P ′0 (resp. P ′1) can determine its output by considering the set of all outputs
of the parties under its control. If all those parties have the same output, then
P ′0 outputs the common bit. Since we expect the event of not all parties having
the same output happen only with a negligible probability, in this case P ′0 (resp.
P ′1) can just output a ⊥ symbol. However, when trying to formalize this idea, a
technical problem arises because the expected number of honest outputs in π′

may be larger than the expected number of honest outputs in Π (recall that in
π′ the expected number of honest parties is m

2 whereas in a real execution of
Π the expected number of honest parties is

∑
i r
m
i ≤ m

2). We overcome this by
having the honest party in π′ not consider the set of all outputs of the parties
under its control, but rather choose a subset of the outputs that is expected to
be of size

∑
i r
m
i . To do this, the parties in π′ must know the vector rm and

hence the protocol we construct is non-uniform.

So far we only discussed the case that for infinitely many n’s, H1/2
n is empty.

Now, assume that this does not hold and H1/2
n is non-empty. In this case, the

construction of π′ fails because in the execution simulated by π′, each party is
corrupted with probability 1

2 whereas in the real execution of Π, we have parties
whose probabilities to be corrupted are strictly less than 1

2 . For example, assume
that a certain party Pi in Π(m,n) is honest with probability 0.9 (and hence -
corrupted with probability 0.1). However, by the way π′ is defined, this party will
be under the control of the adversary with probability 1

2 . In this case, it might
be that π′ is not secure even though Π is secure, simply because the party Pi
is more likely to be corrupted in π′ than in Π(m,n). However, we show that if
for infinitely many n’s, the probability of all parties in H1/2

n being corrupted is
polynomial in n, then Π must remain (infinitely often) secure even conditioned
on the event that the parties in H1/2

n are corrupted. This will imply that we can
slightly modify the construction of π′ such that one of the parties always controls
the parties in H1/2

n , and obtain that even though these parties are more likely to
be corrupted when π′ simulates Π than in real executions of Π, the simulation
carried out by π′ still remains secure.

A formal construction of π′ is given in Protocol 3.8 and the full proof that π′

securely computes the two-party coin-tossing functionality with fairness appears
in the full version of this paper.

PROTOCOL 3.8 (Protocol π′ = 〈P ′
0, P

′
1〉 for two-party coin-tossing)

– (Non-uniform) auxiliary input: 1n, rm(n).
– The Protocol:

1. Set up subsets for emulation: Parties P ′0 and P ′1 invoke m = m(n)
executions of the f2

CT functionality with security-with-abort in order
to obtain m coins; let b ∈ {0, 1}m be the resulting coins. If one of the
parties receives ⊥ (i.e., abort) for output, then it outputs a random
bit and halts.
Otherwise, the parties define I0 = {i | bi = 0}∪H1/2

n , and I1 = [m]\I0.
2. Emulate Π: The parties P ′0 and P ′1 emulate an execution Π =

Π(m(n), n) for computing fm
CT where P ′0 controls the parties in I0

and P ′1 controls the parties in I1; all parties use input 1n.
3. Determine outputs:

(a) Party P ′0 selects a subset S0 ⊆ I0 of the (virtual) parties under
its control as follows. For every i ∈ H1/2

n , Pi is added to S0 with
probability rmi ; for every i ∈ I0 \ H1/2

n , Pi is added to S0 with
probability 2rmi (note that since i 6∈ H1/2

n , it holds that rmi ≤ 1
2

and hence 2rmi is a valid probability).
P ′0 outputs the bit b ∈ {0, 1} if all the virtual parties in S0 output
b in Π. Otherwise, it outputs ⊥.

(b) Party P ′1 selects a subset S1 ⊆ I1 of the (virtual) parties under
its control by adding each Pi (for i ∈ I1) with probability 2rmi (as
before, i 6∈ H1/2

n and hence 2rmi is a valid probability).
P ′1 outputs the bit b ∈ {0, 1} if all the virtual parties in S1 output
b in Π. Otherwise, it outputs ⊥.

3.3 Tightness of the Feasibility and Impossibility Results

Our feasibility result states that if there exists a series of subsets {Tn}n∈N (each

Tn ⊆ [m(n)]) such that
(∆Tn)

2

|Tn| = ω(log n), then there exists a secure protocol.

In contrast, our impossibility result states that if for infinitely many n’s, the
probability that all parties in H1/2

n are corrupted is 1/p(n), then there exists no
protocol. In this section, we clarify the relation between these two results.

Constant reputations. We consider the case that all reputations are con-
stant. This is somewhat tricky to define since the reputation vectors are modeled
asymptotically themselves (each vector of length m(n) can have different values
and thus can depend on n). We therefore define “constant” by saying that there
exists a finite set R = {r1, . . . , rL} such that all reputation values (in all vectors)
in Rep are in R, and 1 /∈ R (if 1 ∈ R then this is an uncorruptible trusted party
and secure computation is trivial). In this case, we say that Rep has constant
reputations. We have the following theorem:

Theorem 3.9 Let m(·) be a polynomial, and let Rep be a family of constant
reputations. Then, there exist protocols for securely computing every PPT family
of functionalities F with respect to (m(·),Rep), if and only if it holds that |H1/2

n | =
ω(log n).

Proof: The existence of protocols for every family of functionalities F when
|H1/2
n | = ω(log n) can be seen as follows. Let r be the smallest value greater

than 1/2 in R. This implies that all reputations in H1/2
n for all n are at least r.

Thus, ∆
H

1/2
n

=
∑
i∈H1/2

n

(
r
m(n)
i − 1

2

)
≥
∑
i∈H1/2

n

(
r − 1

2

)
= |H1/2

n | ·
(
r − 1

2

)
. Now,

take Tn = H1/2
n and we have that

(∆Tn)
2

|Tn| ≥
|Tn|2·(r− 1

2)
2

|Tn| = |Tn| ·
(
r − 1

2

)2
=

ω(log n), where the last equality holds because (r − 1/2)2 is constant, and by
the assumption |Tn| = |H1/2

n | = ω(log n). Thus, by Corollary 3.6, there exists a
protocol for every family F .

For the other direction, assume that it is not the case that |H1/2
n | = ω(log n),

for every n. This implies that there exists a constant c such that for infinitely
many n’s, |H1/2

n | ≤ c · log n. Now, let r′ be the highest value in R. It follows
that for every i ∈ H1/2

n , ri ≤ r′. Thus, for infinitely many n’s the probability
that all parties in H1/2

n are corrupted is at least (1 − r′)−c·logn. Since (1 − r′)
is constant, (1 − r′)−c·logn is 1/poly(n). Thus, by Theorem 3.7, there exists no
protocol for coin-tossing (and so it does not hold that all functionalities can be
securely computed).

We conclude that in the case of constant reputations, our results are tight.
In the full version we give an example of a family of reputation vectors with
non-constant reputations, for which neither our upper bound nor lower bound
applies.

4 Secure Computation with Correlated Reputations

Until now, we have considered reputation systems where the probability that
each party is corrupted is independent of the probability that all other parties
are corrupted. This follows directly from how we define reputation systems (and,
indeed, the way these systems are typically defined in other fields). A natural
question that arises is what happens when the probabilities that parties are
corrupted are not independent; that is, when there is a correlation between the
probability that some party Pi is corrupted and the probability that some Pj
(or some subset of other parties) is corrupted. In this section we take a first
step towards exploring the feasibility of fair secure computation with correlated
reputation systems.

We begin by extending Definition 2.4 to this more general case. First, observe
that a reputation system can no longer be represented as a vector of probabilities,
since this inherently assumes independence. (Specifically, no vector can represent
a corruption situation where with probability 1/2 both parties P1 and P2 are
corrupted and with probability 1/2 they are both honest.) Thus, we represent
a reputation system with m = m(n) parties where m : N → N is bounded by
a polynomial in n by a probabilistic polynomial-time sampling machine M that
receives the security parameter n ∈ N and outputs a set I ⊆ [m(n)], such that
Pi is corrupted if i ∈ I. We call (m,M) the reputation system.

The definition of security is the natural extension of Definition 2.4. Specifi-
cally, we say that a protocol Π securely computes F with respect to a reputation

system (m,M) if all is the same as in Definition 2.4 except that the set I of
corrupted parties is chosen by running M(1n).

We remark that unlike the case of reputation vectors, it does not suffice to
look at the expected number of honest parties here. In order to see this, consider
the case of m parties such that with probability 1/100 all the parties but one
are corrupted, and with probability 99/100 all the parties are honest. According
to this, the expected number of honest parties is 1 · 1/100 + 99/100 ·m which is
greater than 0.99m. Nevertheless, the probability that there is a dishonest ma-
jority is 1/100 which is clearly non-negligible. Thus, in the setting of correlated
reputations where there is dependency between parties, a high expected number
of honest parties does not imply that there is an honest majority except with
negligible probability.

We show that when the “amount of dependence” between the parties is
limited, then it is possible to obtain fair secure computation. In a nutshell, we
show that if each party is dependent on at most `(m) other parties, where `(m) is
some function, and the expected number of honest parties in a sampling by M is
m
2 +ω(`(m) ·

√
m logm), then there is an honest majority except with negligible

probability. Given this fact, it is possible to run any multiparty computation
protocol that is secure with an honest majority. Thus, in contrast to the above
example, we conclude that when dependence is limited, it is possible to use
the expected number of honest parties in order to bound the probability of a
dishonest majority. This is a direct generalization of Theorem 3.3, where the
bound in Theorem 3.3 is obtained by setting `(m) = 1. This result is proven by
defining a martingale based on the random variables indicating the corruption
status of each party, and then applying Azuma’s inequality. We also consider a
generalization of our model, where a party can be correlated also with all other
m− `(m) parties, but only to a very small extent. In addition, as with the case
of reputation vectors, we also show how to extend this result to the case of a
large enough subset with high enough expectation.

Another way to interpret the aforementioned result is as follows. In practical
applications the reputation system is usually represented as a vector, although
dependency between the parties may exist. Thus, the parties do not have all the
information about the honesty of the parties. However, our analysis shows that
the vector of reputations alone may still be useful. By linearity of expectation,
the expected number of honest parties is the sum of reputations even if those
are somehow dependent. Therefore, if this sum is large enough, honest major-
ity is guaranteed except with negligible probability, even if there exists some
correlation between the parties.

We now provide our definition for “limited correlations” and a formal state-
ment of the main result. The full proof, together with additional results appear
in the full version of this paper.

Defining limited dependence. Let X1, . . . , Xm be Boolean random variables
such that Xi = 1 if and only if Pi is honest, or equivalently if and only if i /∈ I. We
begin by defining what it means for two parties to be dependent on each other.
It is important to note that in our context the naive approach of saying that Pi

and Pj are dependent if the random variables Xi and Xj are dependent does not
suffice. In order to see this, assume that there are three parties P1, P2 and P3,
such that P3 is honest if and only if only one of P1 and P2 is honest, and that P1

and P2 are honest with probability 1/2 (independently of each other). Clearly,
by the standard notion of dependence P1 and P2 are independent. However, the
honesty or lack thereof of P1 and P2 is influenced by P3; stated differently, the
random variables X1 andX2 are not independent when conditioning onX3. Since
we need to consider the global context of who is honest and who is corrupted,
in such a case we should define that P1 and P2 are correlated.

Based on the above discussion, we define a new notion of dependency that
we call correlation amongst P, where P = {P1, . . . , Pm} is the set of all parties.
Intuitively, we say that a pair of parties Pi and Pj are correlated amongst P if
there exists a subset of parties in P such that the random variables Xi and Xj

are not independent when conditioning on the corruption status of the parties in
the subset. We stress that Pi and Pj are correlated as soon as the above holds for
any subset. We believe that this is quite a natural definition that captures the
intuitive meaning of dependence where the probability that a party is corrupted
can depend on coalitions amongst other parties and whether or not they are
corrupted. Formally:

Definition 4.1 (Correlated Amongst P) Let (m,M) be a reputation sys-
tem. We say that parties Pi and Pj are correlated amongst P if there exists a
subset S ⊆ [m], and Boolean values bi, bj , {bk}k∈S such that

Pr
[
Xi = bi ∧Xj = bj

∣∣∣ {Xk = bk}k∈S
]

6= Pr
[
Xi = bi

∣∣∣ {Xk = bk}k∈S
]
· Pr
[
Xj = bj

∣∣∣ {Xk = bk}k∈S
]
.

LetD(i) be the set of all parties Pj for which Pi and Pj are correlated amongst
P. Intuitively, we say that a reputation system has an `-limited correlation if for
every i it holds that the size of D(i) is at most `; that is the number of parties
with which any party Pi is correlated is at most `.

Definition 4.2 (`-Limited Correlation) Let (m,M) be a reputation system
and ` = `(m). We say that (m,M) has an `-limited correlation if for every i ∈ [m],
it holds that |D(i)| ≤ `(m).

An honest majority in `-limited correlated reputation systems. We
show that if the expected number of honest parties in an `-limited correlated
reputation systems is large enough, as a function of m and `, then an honest
majority is guaranteed except with negligible probability. The proof of this fact
uses martingales and Azuma’s inequality, and appears in the full version of this
paper. Recall that Xi is a random variable that equals 1 when Pi is honest; thus∑m
i=1Xi gives the number of honest parties. We show that the probability that

this sum is less than m/2 is negligible.

Theorem 4.3 Let m : N→ N be a function such that O(logm(n)) = O(log n),
let (m(n),M) be a family of reputation systems, and let ` = `(m) where m =
m(n). If (m(n),M) has an `-limited correlation and

E

[
m∑
i=1

Xi

]
≥ m

2
+ ω

(
`(m) ·

√
m logm

)
,

then there exists a negligible function µ(·) such that for every n,

Pr

[
m∑
i=1

Xi ≤
m

2

]
< µ(n).

The full proof and additional results appear in the full version of the paper.

5 Reputation and Covert Security

In the model of secure computation in the presence of covert adversaries [1],
the security guarantee is that if a party cheats then it will be detected cheating
with some probability ε (this probability is called the deterrent). The deterrent
parameter ε can be tailored depending on the requirements. For ε = 1/2, the cost
of computing is between 2 and 4 times the cost of protocols that are secure for
semi-honest adversaries. Thus, this is much more efficient than security in the
presence of malicious adversaries. The model of covert adversaries is particularly
suited to a setting with reputation systems since if cheating is detected, then an
immediate “punishment” can be incurred via a report to the reputation system
manager. Thus, the use of protocols that are secure for covert adversaries makes
real sense here.

In addition to the above, we observe that great efficiency can be obtained by
using the protocol of [9]. This protocol assumes an honest majority and obtains
security in the presence of covert adversaries with deterrent 1

4 , at just twice
the cost of obtaining information-theoretic security in the semi-honest model.
Thus, this protocol is extremely efficient. Combining this with the fact that
it is possible to run the protocol on the smallest subset that yields an honest
majority except with probability below the allowed error δ (see Section 3.1),
we have that large-scale computation involving many thousands of participants
can be efficiently computed by taking a much smaller subset to run the protocol
of [9].

References

1. Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Pro-
tocols for Realistic Adversaries. In 4th TCC, Springer-Verlag (LNCS 4392),
pages 137-156, 2007.

2. M. Babaioff, J. Chuang and M. Feldman. Incentives in Peer-to-Peer Systems. In
Algorithmic Game Theory (Chapter 23), Cambridge University Press, 2007.

3. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages
1–10, 1988.

4. P. Bogetoft, D.L. Christensen, I. Damg̊ard, M. Geisler, T.P. Jakob-
sen, M. Kroigaard, J.D. Nielsen, J.B. Nielsen, K. Nielsen, J. Pagter,
M.I. Schwartzbach and T. Toft. Secure Multiparty Computation Goes Live.
In Financial Cryptography, pages 325–343, 2009.

5. D. Bogdanov, S. Laur and J. Willemson. Sharemind: A Framework for Fast
Privacy-Preserving Computations. In the 13th ESORICS, Springer (LNCS
5283), pages 192–206, 2008.

6. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

7. D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure
Protocols. In 20th STOC, pages 11–19, 1988.

8. R. Cleve. Limits on the Security of Coin Flips when Half the Processors are
Faulty. In 18th STOC, pages 364–369, 1986.

9. I. Damg̊ard, M. Geisler and J.B. Nielsen. From Passive to Covert Security at
Low Cost. In the 7th TCC, Springer (LNCS 5978), pages 128–145, 2010.

10. I. Damg̊ard and Y. Ishai. Constant-Round Multiparty Computation Using a
Black-Box Pseudorandom Generator. In CRYPTO 2005, Springer (LNCS 3621),
pages: 378–394, 2005.

11. D. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis
of Randomized Algorithms (1st ed.). Cambridge University Press, New York,
NY, USA.

12. E. Friedman, P. Resnick and R. Sami. Manipulation-Resistant Reputation Sys-
tems. In Algorithmic Game Theory (Chapter 27), Cambridge University Press,
2007.

13. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge
University Press, 2001.

14. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

15. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987. For details see [14].

16. V. Goyal, P. Mohassel and A. Smith. Efficient Two Party and Multi Party
Computation Against Covert Adversaries. In EUROCRYPT 2008, Springer-
Verlag (LNCS 4965), pages 289–306, 2008.

17. S. Halevi, Y. Lindell, and B. Pinkas. Secure Computation on the Web: Com-
puting without Simultaneous Interaction. In CRYPTO 2011, Springer (LNCS
6841), pages 132–150, 2011.

18. Y. Ishai, J. Katz, E .Kushilevitz, Y. Lindell and E. Petrank. On Achieving the
”Best of Both Worlds” in Secure Multiparty Computation. In SIAM J. Comput.
40(1), pages 122–141, 2011.

19. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
In Journal of the American Statistical Association, 58(301):13-30, March 1963.

20. M. Mitzenmacher and E. Upfal. 2005. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New York,
NY, USA.

21. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols
with Honest Majority. In 21st STOC, pages 73–85, 1989.

