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Abstract

The Venice Commission in its Code of Good Practice in Electoral Matters spec-

ifies that (single-seat) constituencies should be drawn so that the size difference

of a constituency’s size from the average should not exceed a fixed limit while

its borders must not cross the borders of administrative regions, such as states

or counties.

Assuming that constituencies are of equal size within each of the administra-

tive regions, the problem is equivelent to the apportionment problem, that is,

the proportional allocation of voting districts among the administrative regions.

We show that the principle of maximum admissible departure is incompatible

with common apportionment properties, such as monotonicity and Hare-quota.

When multiple apportionments satisfy the smallest maximum admissible

departure property we find a unique apportionment by the repeated application

of the property. The allotment such that the differences from the average district

size are lexicographically minimized can be found using an efficient algorithm.

This apportionment rule is a well-defined allocation mechanism compatible with

and derived from the recommendation of the Venice Commission. Finally, we

compare this apportionment rule with mainstream mechanisms using data from
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Kóczy), sziklai.balazs@krtk.mta.hu (Balázs Sziklai)

Preprint submitted to Mathematical Social Sciences June 14, 2015

Kóczy László
Text Box
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.mathsocsci.2015.06.001



Hungary, Germany and the United States.

Keywords: apportionment, elections, Venice Commission, lexicographic

ordering

1. Introduction

Fair representation is the cornerstone of representative democracies. The

idea that each congressmen should represent the same number of citizens is as

old as the United States. We study the so-called apportionment problem (for

recent texts see Pukelsheim, 2014 or Chapter 1 of Kubiak, 2009): sharing a5

given number of seats among a given set of regions with known populations

in a fair way and look for mechanisms that provide a unique solution to each

problem. Such a unique solution leaves no room for political bargaining and

manipulation in designing or updating the legal framework for elections.

The stakes at the elections are very high and therefore the codification of10

any electoral law should be done with great care. Seemingly an easy problem,

establishing electoral districts1 with equal numbers of voters becomes nontriv-

ial, when they must fit into the existing administrative structure of a country.

There are alternative ways to approach the problem, generating a constant de-

bate even in countries with well-established democracies such as the United15

States. (For a comprehensive historical overview see Balinski and Young, 1982).

A new entrant to this debate, the European Commission for Democracy through

Law, better known as the Venice Commission published a comprehensive guide-

book on good electoral laws in 2002. The Code of Good Practice in Electoral

Matters (Venice Commission, 2002a) – consequently used in reviewing Albania’s20

and Estonia’s electoral law in 2011 (OSCE/ODIHR, 2011; Venice Commission

and OSCE/ODIHR, 2011) and forming an apparent basis to the modifications

1Voting terminology differs from country to country: We use electoral district or con-

stituency interchangeably to refer to a geographical area, the people and especially the voters

living there who elect one or more representatives. For simplicity we focus on single-seat

voting districts.
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Hungary introduced to in its electoral law in 2012 –, contains original recom-

mendations for a good practice of apportionment.

“Equality in voting power, where the elections are not being25

held in one single constituency, requires constituency boundaries to

be drawn in such a way that seats in the lower chambers represent-

ing the people are distributed equally among the constituencies, in

accordance with a specific apportionment criterion, e.g. the number

of residents in the constituency, the number of resident nationals30

(including minors), the number of registered electors, or possibly

the number of people actually voting ... Constituency boundaries

may also be determined on the basis of geographical criteria and

the administrative or indeed historic boundary lines, which often

depend on geography ... The maximum admissible departure from35

the distribution criterion adopted depends on the individual situa-

tion, although it should seldom exceed 10% and never 15%, except

in really exceptional circumstances (a demographically weak admin-

istrative unit of the same importance as others with at least one

lower-chamber representative, or concentration of a specific national40

minority).” (Venice Commission, 2002a, §§13–15 in Section 2.2)

Similar conditions are common, though not universal. In Georgia, where

the electoral law of 1999 did not set rules about the sizes of constituencies, the

number of voters per (single-seat) constituency ranged from some 3,600 voters

in the Lent’ekhi district or 4,200 in the Kazbegi districts to over 138,000 in45

Kutaisi City giving multiple times more influence to voters from Lent’ekhi or

the Kazbegi district than to those from Kutaisi City. The report of the Venice

Commission arrived to the conclusion that huge deviations like this question

the fairness of the whole election process (Venice Commission, 2002b). On the

other hand, in the United States, theoretically, no deviations from the equality50

of constituencies are permitted; “other common thresholds are 5 percent (e.g.,

New Zealand, Albania, and Yemen); 10 percent (e.g., Australia, Italy, and the
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Ukraine); 15 percent (e.g., Armenia, Germany, and the Czech Republic) and

20 percent (e.g., Zimbabwe and Papua New Guinea). In Canada, the indepen-

dent commissions charged with creating federal electoral districts are allowed to55

deviate by up to 25 percent from the provincial quotas, and even more under

‘extraordinary circumstances’.” (Handley, 2007). In Singapore the tolerance is

30%; a recent proposal to reform the constituency map of the United Kingdom

worked with a 5% permitted deviation from the average size (Balinski et al.,

2010). The draft version of the 2012 electoral law of Hungary adopted the Venice60

Commission’s recommendation almost word by word, but the 10-15% maximum

admissible departure between the population of any two constituency turned out

to be infeasible given the actual size of the parliament and the populations of

counties, if the constituencies cannot extend over county borders (Biró et al.,

2012; Bodnár, 2012). Even with the subsequent relaxation, allowing a 15% (at65

most 20%) departure from the average size of constituencies in the final version,

the requirements were just met.

We take this maximum admissible departure property and compare it with

the properties that had been used to evaluate and judge apportionment meth-

ods. As generally there may be more than one apportionments satisfying this70

property, we look for apportionments where the maximum admissible depar-

ture is the lowest, then applying the same idea to the second largest difference,

and so on. The naturally emerging leximin apportionment is unique (up to

symmetries) and can be calculated using an efficient algorithm.

We focus on the simple setting where (1) districts elect single represen-75

tatives, (2) forming even constituencies within each of the regions is possible

and (3) representation is proportional. The results generalise directly to multi-

representative districts. In designing the constituencies of a region not only the

obvious integer problem (such as having two equal-sized constituencies in a re-

gion with odd population), but contiguity requirements and town and township80

boundaries too, create additional constraints that make the actual apportion-

ment a little less equal. How the actual borders of the constituencies are drawn

is yet another question. The strategic, manipulative design of voting districts,
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known as gerrymandering (Gul and Pesendorfer, 2010; Chambers and Miller,

2013) may happen with equally-sized districts, too. Last, we assume that the85

role of regions, states or counties is purely administrative and that they do

not have sovereign interests. If they do, representatives are likely to vote in

blocks and the effect on voting outcomes is no longer proportional to the size

of the region’s population, hence in larger problems there is a systematic bias

in favour of larger regions. The literature on voting power and power indices90

(Penrose, 1946, Shapley and Shubik, 1954 and Banzhaf, 1965; for a recent sur-

vey see Felsenthal and Machover, 1998) study weighted voting situations such

as the European Council of Ministers (Kóczy, 2011), Penrose’s square root law

(Penrose, 1946) or the degressive proportionality (Laslier, 2012; Koriyama et al.,

2013) of the base+prop method (Pukelsheim, 2007) promoted in the Cambridge95

Compromise (Grimmett, 2012; Grimmett et al., 2011; Rose et al., 2012) and give

explicit recommendations on how to adjust for this. With the appropriate pop-

ulation adjustments, these problems, however, can be reduced to proportional

allocation.

In the following we first formalise the apportionment problem and critically100

discuss the (smallest) maximum admissible departure property. In Sections 4

and 5 we introduce the leximin solution for apportionment problems and then

apply this to apportionment problems from various countries: we compare the

leximin solution with the actual apportionment as outlined by the new electoral

law of Hungary and make a similar comparison for the German Bundestag and105

the United States House of Representatives. We conclude with a more technical

discussion of the related apportionment methods in literature.

2. The apportionment problem, mechanisms and their properties

An apportionment problem (p, H) is a pair consisting a vector

p = (p1, p2, . . . , pn)

of state populations, where P =
∑n

i=1 pi is the population of the country and

H denotes the number of seats in the legislature or House. Our task is to de-110
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termine the non-negative integers a1, a2, . . . , an with
∑n

i=1 ai = H representing

the number of constituencies in states 1, 2, . . . , n.

Let p ∈ Nn
+ and a ∈ Nn be the n-dimensional vectors that contain the

population sizes and the allotted number of seats respectively (where N+ =

{1, 2, 3, . . . }). An apportionment method or rule is a function M that assigns an115

allotment for each apportionment problem (p, H). The fraction pi

P H is called the

respective share of state i. Throughout the paper we will employ the following

notation: let x,y ∈ Rn, we say that x ≥ y if xi ≥ yi for i = 1, 2, . . . , n.

In the following we introduce several properties of apportionments.

Quota. Proportional representation is seldom possible as the respective shares120

of the states are hardly ever integer numbers. However if such case occurs i.e.

the fractions ai = pi

P H are integers for all i ∈ {1, . . . , n} then the allotment a is

said to have the exact quota property.

In any other case taking one of the nearest integers to the exactly propor-

tional share is a natural choice. An allotment a satisfies lower (upper) quotas, if125

no state receives less (more) constituencies than the lower (upper) integer part

of its respective share, that is ai ≥
⌊
pi

P H
⌋

for all i ∈ {1, . . . , n} and ai ≤
⌈
pi

P H
⌉

for all i ∈ {1, . . . , n}, respectively.

An allotment satisfies the quota property if it satisfies both upper and lower

quota. Similarly we say that an apportionment method M(p, H) satisfies lower130

(upper) quota if for any apportionment problem (p,H), M(p, H)i ≥ bpi

P Hc or

M(p, H)i ≤ dpi

P He respectively for all i ∈ {1, . . . , n} and satisfies quota if it

satisfies both of them.

Monotonicity. The individual states should not lose seats when more seats are

available in the House. Formally:135

Definition 1. An apportionment rule M is house-monotonic if M(p, H ′) ≥

M(p, H) for any apportionment problem (p, H) and House sizes H ′ > H.

A scenario where increasing the House size would decrease the number of

seats allotted to a state is often considered undesirable, perhaps even paradoxi-
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cal. An apportionment rule where this is possible is said to exhibit the Alabama140

paradox referring to a historical occurrence of the phenomenon in the case of

state Alabama. A rule is said to be house-monotonic if it does not suffer from

such weakness.

There is a related monotonicity requirement and an associated paradox when

populations are considered. The population paradox arises when the population145

of two states increases at different rates. Then it is possible that the state with

more rapid growth actually loses seats to the state with slower growth. Table 3

presents an example where the population paradox emerges.

Definition 2. An apportionment rule M is population-monotonic if M(p′, H)i ≥

M(p, H)i for any House size H and population sizes p,p′ such that p′i > pi,150

p′j > pj and
p′
i

pi
≥ p′

j

pj
while p′k = pk for k ∈ {1, 2, . . . , n}, k 6= i, j.

Note that this definition of population monotonicity is slightly stricter than

the one used in the literature in general, see for instance (Lauwers and Van Puyen-

broeck, 2008) or (Balinski and Young, 1982). However as we will see even this

strict property is violated by some rules.155

Balinski and Young (1975) provided a so-called Quota-method that is house-

monotonic and fulfills the quota property as well, but proved that no method

that is free from both Alabama and the population paradoxes satisfies quota

(Balinski and Young, 1982). In the next section we will provide examples ex-

hibiting these paradoxes.160

Smallest maximum admissible departure property. The next property character-

izes the recommendation2 made by the Venice Commission (2002a). Let ā = P
H

2Although the Venice Commission is flexible on what kind of data should be the distribution

criterion based on, it is clear that the difference from the average value is to be minimized.

The most common interpretation is that there should be a limit on the allowable departure of

the average number of registered voters per constituency (see Handley (2007)). We follow this

practice as well, nevertheless our results hold in general, irrespective of the chosen reference

data.
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denote the average size of a constituency, let δi be the difference in percent-

age, displayed by the constituencies of state i and let di be its absolute value.

Formally165

δi =

pi

ai
− ā
ā

and di = |δi| (1)

Definition 3. An apportionment rule M satisfies the q-fixed maximum ad-

missible departure property if

∣∣∣∣ pi
M(p,H)i

−ā
ā

∣∣∣∣ ≤ q for any apportionment problem

(p,H) and for each i ∈ {1, . . . , n}.

As we pointed out in the introduction European electoral laws impose a

fixed limit on maxi∈{1,...,n}{di} rather than minimizing it. The Venice Com-170

mission follows this practice as well. It can happen, however, that, given an

apportionment problem, no allotment exists that satisfy a certain limit, while

an allotment with smallest maximum admissible departure always exists. Thus

we focus on the latter concept. For a given apportionment problem (p, H) let

α(p,H) be the smallest maximum admissible departure that can be achieved with175

an allotment i.e.

α(p,H) = min
a∈A(n,H)

max
i∈{1,...,n}

{di} (2)

where A(n,H) denotes the set of n-dimensional non-negative vectors for which

the sum of the coordinates is H.

Definition 4. An apportionment rule M satisfies the smallest maximum admis-

sible departure property if

∣∣∣∣ pi
M(p,H)i

−ā
ā

∣∣∣∣ ≤ α(p,H) for any apportionment problem180

(p,H) and for each i ∈ {1, . . . , n}.

The philosophy behind the quota and the smallest maximum admissible de-

parture property is very similar, but not quite the same. The quota specifies how

many seats a state should receive at least and at most. If a state gets less than

its lower quota, then the allotment can be considered somewhat unfair from the185
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point of view of that particular state. The smallest maximum admissible depar-

ture property is concerned rather with the individual voter. If the population

sizes of the constituencies differ too much so does the voters’ influence. Not

surprisingly, the quota property plays more central role in the U.S. where the

states are large and highly independent. In Europe, where the countries consist190

of small and in some sense uniform counties, the smallest maximum admissible

departure property is more accepted.

3. The smallest maximum admissible departure property

In this section we review the basic features of the smallest maximum admis-

sible departure property. In the following we will omit the lower index of α(p,H)195

and write simply α. First let us note that α is not monotone decreasing in the

House size. To see this consider the allocation problem where p = (100, 200)

and let H = 3. Then it is possible to distribute the seats according to the

exact quota thus α = 0. However an increase of H by 1 renders both d1 and d2

positive.200

3.1. Upper bounds on the smallest maximum admissible departure

Obviously di is the smallest if state i receives either its lower or upper quota,

although it matters which one. Note that the closest integer to the respective

share not always yields the smallest difference from the average. Let us elabo-

rate on this relationship a little bit further. Let li =
⌊
pi

P H
⌋

and ui =
⌈
pi

P H
⌉
,205

respectively denote these quotas of state i and let βi denote the minimum dif-

ference achievable for state i. The maximum of these βi values, denoted by β,

is a natural lower bound for α. Formally:

βi = min

(∣∣∣∣ pi

li
− ā
ā

∣∣∣∣, ∣∣∣∣ pi

ui
− ā
ā

∣∣∣∣), β = max
i∈N

βi.

Empirical analysis shows that, in general, increasing H results in a lower α

ceteris paribus. The problem with small House sizes is that they imply a larger210

average constituency size. Divisibility issues can appear for smaller states that
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are only a few times as large as ā. It can happen that the average size of the

constituencies of state i is equally far away from ā for both the lower and upper

integer part of P
pi

, formally

pi

li
− ā
ā

=
ā− pi

ui

ā
. (3)

For instance, if li = 2 and ui = 3 then pi = 12
5 ā and di = 0.2. A simple215

computation shows that, in general, if (3) holds, then di = 1
2li+1 . The Table 1

summarizes the problematic state population sizes.

li − ui p∗i βi

1− 2 4
3 ā 0.333

2− 3 12
5 ā 0.2

3− 4 24
7 ā 0.143

4− 5 40
9 ā 0.111

5− 6 60
11 ā 0.091

Table 1: Critical state populations regarding divisibility. The first column shows the lower

and upper quotas, p∗i are the population levels where the minimal difference produced by

these is maximal, and βi is the corresponding worst case value of the minimal difference.

In other words, if there is a state with population 4
3 of the average con-

stituency size then α is at least 1
3 . For this value a lower d cannot be adhered220

to. One way to overcome this is to increase the house size H and thereby in-

crease the number of constituencies allocated to each state, in particular, to the

smallest state. Let i denote the smallest state and

γ
def
=


1

2li+1 if li 6= 0,

∞ if li = 0.

As the House size increases, li increases, and therefore γ decreases. Note

that γ is an upper bound for β but there is no obvious connection between γ225

and α. For instance, if we are able to distribute the seats according to the exact
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quota, then α is zero, but γ can be high. However let p1, p2 = 200 and p3 = 600

and let the House size equal to 7. Then γ = 1
3 , but α ≥ 0.4. We will further

analyze the relation of α, β and γ in Section 5 using real data.

3.2. Properties230

As we mentioned earlier, the quota and smallest maximum admissible de-

parture properties have different objectives. An apportionment method that

implements the latter will distribute less seats to a state than its lower quota

if the maximum admissible departure can be lowered in this way. Large states

serve as puffers where superfluous seats can be allocated or seats can be ac-235

quired if there are needed elsewhere as these do not change the average size of

constituencies dramatically. Table 2 demonstrates this process.

Method ⇒ Smallest max. adm. dep. quota

State Population seats pi

ai
δi seats pi

ai
δi

A 26 3 8.666 −0.138 2 13 0.293

B 27 3 9 −0.104 3 9 −0.104

C 28 3 9.333 −0.071 3 9.333 −0.071

D 29 3 9.666 −0.038 3 9.666 −0.038

E 91 8 11.375 0.131 9 10.111 0.006

Total 201 20 10.05 20 10.05

Table 2: quota vs. smallest maximum admissible departure. A simple example of 5 regions

and 20 seats with the number of seats ai, the population per seat pi
ai

and the difference from

the average δ.

In the above example the total population equals to 201 while the average

constituency size is 10.05. If we insist on applying the quota then State E must

receive at least 9 seats. As a result State A – the smallest one – gets only 2.240

The voters in State A have the least influence, nearly 30% less than on average.

On the other hand, if we apply the smallest maximum admissible departure

property, State A gets an extra seat and the largest bias is reduced to 13.8%.
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The next table shows an occurrence of population paradox when we try to

minimize the maximum admissible departure. The population of State C grows245

more rapidly than the population of State B, yet it loses a seat to State B. If

for instance we commit ourselves to the original seat distribution, where State

B gets 3 seats, the smallest maximum admissible departure jumps from 12.7%

to 16.3%. It is easy to check that the only allotment that falls within the 15%

limit proposed by the Venice Commission is the (3,4,7).250

State Population seats δi Population seats δi

A 69 3 0.114 69 3 0.003

B 70 3 0.130 80 4 -0.127

C 150 8 -0.091 172 7 0.071

Total 289 14 321 14

Table 3: Population paradox with smallest maximum admissible departure

Finally we note that the smallest maximum admissible departure prop-

erty is not compatible with house-monotonicity either. An apportionment rule

that minimizes the maximum admissible departure can produce the Alabama-

paradox.

State Population Seats pi

ai
δi Seats pi

ai
δi

A 69 3 23 0.114 4 17.250 −0.104

B 70 3 23.333 0.130 4 17.500 −0.091

C 150 8 18.750 −0.091 7 21.428 0.112

Total 289 14 20.642 15 19.266

Table 4: House-monotonicity and smallest maximum admissible departure

Table 4 shows an example where increasing the House size from 14 to 15255

causes State C to lose a seat. State C is the largest state hence its average

constituency size changes only a little when one of its seats is assigned else-

where. A house-monotone allotment such as a = (3, 4, 8) would have a 19.3% as

smallest maximum admissible departure almost twice as much as the allotment
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in the example. This also exceeds the 15% limit of the Venice Commission’s260

recommendation, making it an unfeasible solution.

In all of the three above examples the proposed allotment was the only

one that minimized the maximum admissible departure. Hence any apportion-

ment method that satisfies the smallest maximum admissible departure property

would be inherently incompatible with the house- or population monotonicity265

properties. Therefore there is no apportionment rule that is conform with the

recommendation made by the Venice Commission and is free from the Alabama

paradox or complies with the quota-property. We consider this as a conflict

between equality among states versus equality among voters. The Venice com-

mission clearly cast its vote in favour of the second.270

4. The lexicographically optimal solution

The recommendation of the Venice Commission gives a strong constraint

for the solution of an apportionment problem. However, the set of allowable

allotments can still be large, that may leave room for arbitrary political manip-

ulations. This in turn can have a similar effect as gerrymandering. As Balinski275

and Young (1975) also argue, having a well-defined allotment rule that leads to

a unique solution is the best way to avoid political issues in the apportionment

process.

In this section we introduce such a unique rule based on the smallest maxi-

mum admissible departure property, following the recommendation of the Venice280

Commission and give an efficient algorithm to compute such a solution. Our

definition is based on the lexicographic ordering of relative differences.

What is lexicographic ordering?. The term refers to alphabetic ordering, where

the words are compared letter-by-letter and the ordering is based on the first

difference. When it comes to real vectors the ordering is based on the first coor-285

dinates where these vectors differ. Formally vector x ∈ Rm is lexicographically

smaller than y ∈ Rm (denoted by x � y) if x 6= y and there exists a number

1 ≤ j ≤ m such that xi = yi if i < j and xj < yj .
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Returning to our model, given an apportionment problem (p, H) and an

allotment a, let ∆(a) denote a nonnegative n-dimensional vector, where the290

differences di(a) are contained in a non-increasing order. A solution a is said to

be lexicographically minimal, or simply leximin, if there is no other allotment a′

where ∆(a′) is lexicographically smaller than ∆(a).

Greedy leximin algorithm

Let us refer to a ∈ Nn as a pre-allotment if the
∑

i ai = H condition is295

relaxed. Let ai+ denote a pre-allotment adjusted from a, where ai+i = ai + 1

and ai+j = aj for each j 6= i. Similarly, let ai− denote a pre-allotment, where

ai−i = ai − 1 and ai−j = aj for each j 6= i. For simplicity, and to ensure the

uniqueness of the solution, we assume that di(a) is not equal to dj(a) for any

strictly positive pre-allotment a and pair of states i and j. (Note that this300

condition can be always satisfied if we perturb p, and it does not affect the

optimality of the solution.)

Phase 1: Let a[0] be a pre-allotment such that di(a[0]) is minimal for each state

i (i.e. equal to βi). Let the total number of seats allocated in a[0] be

l =
∑n

i=1 ai[0]. If l = H then STOP, a[0] is the leximin allotment.305

Phase 2: If l < H then for each t = 0, 1 . . . H − l − 1 do the following adjustment.

Let a[t+ 1] = ai+[t] for i ∈ {1, . . . , n} such that di(a
i+[t]) is minimal.

If l > H then for each t = 0, 1 . . . l −H − 1 do the following adjustment.

Let a[t+ 1] = ai−[t] for i ∈ {1, . . . , n} such that di(a
i−[t]) is minimal.

310

That is, we first find a pre-allotment a[0] that is lexicographically minimal

and then we simply increase (or decrease) the number of seats in a greedy way,

we add (or remove) a seat to (or from) state i if the increased difference is the

smallest for this state. In what follows we show that these greedy adjustments

lead to leximin pre-allotments in each step, and therefore a leximin allotment315

at the end of the process.
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Theorem 5. The greedy leximin algorithm results in the leximin solution for

the apportionment problem.

Proof. If
∑n

i=1 ai[0] = l = H then a[0] is the leximin allotment, obviously. Since

ai[0] =
⌊
pi

ā

⌋
or ai[0] =

⌈
pi

ā

⌉
for each state i, the difference |l −H| must be less320

than or equal to n.

Suppose that l < H, the case of l > H can be proved in a similar way. Let us

show by induction for t = 0, 1, . . . ,H − l, that a[t] is the leximin pre-allotment

when l+ t seats are available, so in particular, a[H − l] is the leximin allotment

for the original problem. The statement is true for t = 0, suppose that it is true325

for an arbitrary t : 0 ≤ t < H − l and let us verify the statement for t+ 1.

Suppose for a contradiction that there exists a pre-allotment b where the to-

tal number of seats allocated is l+t+1 and b is leximin among the pre-allotments

with the same number of seats, so in particular, ∆(b) is lexicographically smaller

than ∆(a[t+ 1]).330

Let a[0]≤ = {a : a[0] ≤ a}, that is set of pre-allotments where each state has

at least as many seats as in a[0]. First we shall observe that for any a ∈ a[0]≤,

di(a) < di(a
i+), i.e., when we increase the number of seats in any state i the

absolute difference from the average size in state i can only increase. This implies

that if a[0] ≤ a ≤ a′ and a 6= a′ then ∆(a) ≺ ∆(a′). The greedy algorithm335

allocates the remaining seats gradually, therefore a[0] ≤ a[1] ≤ · · · ≤ a[H − l].

Furthermore, b ∈ a[0]≤ must hold, because if bi < ai[0] for a state i then there

must be another state j such that bj > aj [0], and since di(b) > di(b
i+) ≥

di(a[0]) and dj(b) > dj(b
j−) ≥ dj(a[0]), we could decrease the departure of b

from the average size in both states i and j by moving one seat from j to i,340

contradicting to the optimality of b.

First we prove that ∆(a[t]) ≺ ∆(b). Let i be a state where bi > ai[t]

(there must be such a state since b allocates one more seat than a[t]). Then

a[0] ≤ bi− ≤ b implies ∆(bi−) ≺ ∆(b). Therefore ∆(b) ≺ ∆(a[t]) would

imply ∆(bi−) ≺ ∆(a[t]), which is in contradiction with our assumption since345

bi− is an allotment with l + t seats.
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Let us now assume that when adjusting the pre-allotment a[t] to a[t + 1]

in the greedy algorithm we increase the number of seats in country i. Suppose

that the difference di(a[t + 1]) is the rth largest, i.e., di(a[t + 1]) is the rth

entry of vector ∆(a[t + 1]). The first r − 1 entries of ∆(a[t]) and ∆(a[t + 1])350

are the same, so ∆(a[t]) ≺ ∆(b) ≺ ∆(a[t + 1]) implies that the first r − 1

entries of b are also the same, so in each of the corresponding r − 1 states

all these three pre-allotments assign the same number of seats (thus they are

identical for these r − 1 states). Regarding state i, it must be the case that

di(b) ≤ di(a[t + 1]) (otherwise b would not be lexicographically smaller than355

a[t+ 1]), therefore bi ≤ ai[t+ 1]. From the latter it follows that among the rest

of the n − r states there must be one, say j, where bj > aj [t + 1] = aj [t] since

both b and a[t+ 1] allocate l+ t+ 1 seats, and they are not identical. Therefore

bj ≥ aj [t] + 1, which implies dj(a[t]j+) ≤ dj(b). But ∆(b) ≺ ∆(a[t + 1]) also

implies dj(a[t]j+) ≤ dj(b) < di(a[t+ 1]) = di(a[t]i+), leading to a contradiction360

with the selection of i in the greedy algorithm.

Note that both Phase 1 and Phase 2 can be conducted in n2 steps, if one

step means a comparison of two differences.

5. Data Analysis

In this section we first evaluate the 2011 Electoral Law of Hungary that365

triggered our interest in the recommendations of the Venice Commission at the

first place. Then we look at the United States House of Representatives and the

German Bundestag and discuss the allocation of seats according to the leximin

method.

5.1. Hungary370

The 2011 Electoral Law of Hungary drastically decreased the number of seats

in the parliament and fixed the number of constituencies at 106. The law also

proposed a seat distribution among the counties. Although the apportionment

method was not provided, the law prescribed some principles for subsequent
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redistribution of seats. These conditions closely followed the directives of the375

Venice Comission. The law requires that the difference between the population

of any constituency and the average constituency size should be within 15%.

The only exception is if a constituency would extend over the county border

or its connectivity could not be ensured. In these cases higher difference is

allowed, but if it ever exceeds 20% then a new allotment should be provided.380

Table 7 compares the seat distribution proposed by the law with the one that

is produced by the leximin algorithm3.

County Voters
Seats Difference (δi)

law leximin law leximin

Budapest 1 407 470 18 17 1 6.95

Baranya 325 943 4 4 5.26 5.26

Bács-Kiskun 438 352 6 6 −5.63 −5.63

Békés 308 471 4 4 −0.38 −0.38

Borsod-Abaúj-Zemplén 567 910 7 7 4.8 4.8

Csongrád 345 945 4 5 11.72 −10.63

Fejér 351 237 5 5 −9.26 −9.26

Győr-Moson-Sopron 364 894 5 5 −5.73 −5.73

Hajdú-Bihar 439 618 6 6 −5.35 −5.35

Heves 257 490 3 3 10.87 10.87

Jász-Nagykun-Szolnok 324 869 4 4 4.91 4.91

Komárom-Esztergom 255 396 3 3 9.97 9.97

Nógrád 170 463 2 2 10.1 10.10

Pest 973 668 12 12 4.81 4.81

Somogy 268 844 4 4 −13.18 −13.18

Szabolcs-Szatmár-Bereg 450 556 6 6 −3 −3

Tolna 196 751 3 3 −15.28 −15.28

Vas 215 773 3 3 −7.09 −7.09

3To calculate δi we used the demographic data of the 2010 election.
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Veszprém 300 081 4 4 −3.09 −3.09

Zala 242 236 3 3 4.3 4.3

Total 8 205 967 106 106

Table 5: The seat distribution and the differences from the average district size

by the Electoral Law and by the leximin algorithm

Note that only two out of 20 counties have a different number of seats allot-

ted. The average constituency size in Heves County is 85830 which is 30.87%

higher than the average constituency size of Tolna. Therefore voters in Tolna385

have 30.87% more influence than those living in Heves. If we allow 20% dis-

crepancy from the average constituency size then the difference between voters’

influence can be as high as 50%. Interestingly, it is not these counties where

the apportionment by law differs from the results of the 7 common methods

calculated by Bodnár (2012), but Pest and Somogy.390

Upper bounds on the smallest maximum admissible departure

The following figure shows how the smallest maximum admissible departure

from the average constituency size (α) changes as we increase the House size

from 50 to 180. To calculate the smallest maximum admissible departure the

leximin method was used.395

Increasing House size indeed implies smaller α, although it is far from being

monotone. The upper bounds imposed by γ are clearly visible. The graph never

crosses 33.33%, and for higher H values the upper limits are 20% and 14.28%.

This implies that α coincides with β in most of the cases. A deeper analysis

shows that α = β is true for a broader range of H. From the [50, 400] interval400

there are only two exceptions, namely, when the House size equals to 87 and 88.

But even for these values it is true that α < γ. Our conjecture is that for real

life data α rarely differs from β, therefore γ can be an effective upper bound

for both. That means that if one would like to meet the Venice Commission’s

recommendation, then the House size should be set so high that the lower quota405
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Figure 1: The decline of smallest maximum admissible departure compared to increasing

House size using voter data from 2006 and 2010.

of the smallest county is at least 3 for the strict 15% limit.

Due to the demographic changes the local minimum of α shifted from 106 to

108 in four years. It can easily happen that in the near future 106 seats would

mean the local maximum for α. A solution for this issue would be to choose

the House size from an interval rather than fixing it. Although this seems to410

lead to an unpredictable system, in reality it would imply only a minor change

from one election to the next as there would be one or two counties that would

receive extra seats or have to give up one.

Monotonicity

Figure 2 shows how frequently the Alabama-paradox occurs as the House415

size changes.

The anomaly occurs only in the two largest counties4. As we mentioned ear-

lier, the explanation is simple: large counties behave as puffers. They can store

4For higher House sizes the paradox occurs in the next largest county, Borsod-Abaúj-

Zemplén as well.
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Figure 2: The number of constituencies in Budapest and in Pest county in view of House size

constituencies without affecting the leximin ordering too much and ‘borrow’

seats for smaller counties that are crucial for the leximin ordering.420

Changing the size of the regions

Finally, another way to lower the smallest maximum admissible departure

is to increase the size of the administrative units that bundles the constituen-

cies. Instead of counties we can use regions requiring only that no constituency

extends over the region border. Table 6 summarizes the results for regions.425

For instance, Northern Hungary consists of Borsod-Abaúj-Zemplén, Heves

and Nógrád counties. By the law 7, 3 and 2 seats are assigned to them respec-

tively, altogether 12. Heves produces the highest difference from the average:

10.87%. However if we treat these three counties as one administrative unit

then it receives 13 seats and the sizes of its constituencies will be 76605, only430

1.05% lower than the average. In this way Western Transdanubia generates the

highest average 3.37% which is only a fraction of the 15.28% that Tolna county

produces.
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Region Voters
Number of seats Difference. (%)

law leximin law leximin

Northern Hungary 995 863 12 13 10.87 1.05

Northern Great Plain 1 215 043 16 16 5.35 1.90

Southern Great Plain 1 092 768 14 14 11.72 0.83

Central Hungary 2 381 138 30 30 4.81 2.53

Central Transdanubia 906 714 12 12 9.97 2.40

Western Transdanubia 822 903 11 11 7.09 3.37

Southern Transdanubia 791 538 11 10 15.28 2.25

Total 8 205 967 106 106

Table 6: The optimal seat distribution where no constituency extends over the region border

5.2. The German Bundestag

Similarly to the Hungarian election system, Germans voters may cast two435

votes5. The first vote decides – with simple relative majority – the fate of 299

seats. With this vote the residents can choose their candidate of choice in their

own district. The second vote is the more important one, with it the voters

can decide which party to support from the regional electoral list. Based on the

proportion of second votes, the rest of the mandates – another 299 seats – are440

distributed to the parties who have achieved at least 5 percent of valid second

votes. It may happen that according to the second votes a party should receive

less seats than it actually gained with the first votes. In such cases the party is

allowed to keep the mandates that exceed its proportional share - these are the

so called overhang seats. Indeed, after the 2013 elections the Bundestag was445

formed with 631 representatives, and this number can theoretically be as high

as 897.

Here we analyze the seats that are elected directly with the first votes using

data from the 2013 elections (?). The average constituency size is 207 180.

5The resemblance is not by chance. The German election system was a case model when

the Hungarian Electoral Law was first scripted in 1989.
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Although the leximin algorithm refines the seat distribution a little, it cannot450

change the enormous bias caused by Bremen, where the average constituency

size is 241 912 (+16.76%). Furthermore, the constituencies of Bremen are not of

the same size – the larger of the two has 256 547 voters (+23.83%). Interestingly,

this does not even produce the largest difference. The Hamburg-Mitte district

– the central district of Hamburg – has an even higher number of voters, 256455

862 voters (+23.98%), while Deggendorf in Bayern has 155 082 or -25.15%

that is even larger difference. These examples show that creating equally sized

constituencies within an administrative region may cause further complications.

For more on the apportionment issues related to the German election system

see (?).460

County Voters
Seats Difference (δi)

law leximin law leximin

Baden-Württemberg 7 689 895 38 37 −2.32 0.32

Bayern 9 472 738 45 46 1.60 −0.60

Berlin 2 505 718 12 12 0.79 0.79

Brandenburg 2 065 944 10 10 −0.28 −0.28

Bremen 483 823 2 2 16.76 16.76

Hamburg 1 281 918 6 6 3.12 3.12

Hessen 4 413 271 22 21 −3.17 1.44

Mecklenburg-Vorpommern 1 350 705 6 7 8.66 −6.86

Niedersachsen 6 117 473 30 30 −1.58 −1.58

Nordrhein-Westfalen 13 253 554 64 64 −0.05 −0.05

Rheinland-Pfalz 3 092 424 15 15 −0.49 −0.49

Saarland 796 072 4 4 −3.94 −3.94

Sachsen 3 406 430 16 16 2.76 2.76

Sachsen-Anhalt 1 930 880 9 9 3.55 3.55

Schleswig-Holstein 2 251 796 11 11 −1.19 −1.19

Thüringen 1 834 259 9 9 −1.63 −1.63

Total 61 946 900 299 299
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Table 7: The seat distribution and the differences from the average district size

in the Bundestag in the 2013 elections compared with the same data induced

by the leximin algorithm

5.3. The United States House of Representatives

Much of the literature of apportionment is based on the problems encoun-

tered at the regular updates of seat allocation in the United States House of

Representatives. In the following we explain how and why our recommended al-

location for the US House of Representatives differs and how the current method465

fares in general when compared with our leximin approach.

5.3.1. The leximin vs. the equal proportions method

To further illustrate the properties of the leximin rule let us compare it with

the equal proportion (EP) method (Huntington, 1921), that is used to distribute

the seats of the US House of Representatives. The method of Equal Proportions470

first distributes one seat to each state, then the remaining seats are allocated

one at a time, to the state with the highest ‘priority number’. Priority of state

i is determined by the formula pi√
k(k+1)

, where k runs from 1 until all the seats

are distributed. It is a house-monotone apportionment rule, but it does not

satisfy quota (although it rarely produces a non-quota solution). The table475

of the apportionment of the 2010 US census compared with the result of the

leximin algorithm can be found in the appendix Appendix A; Figure 3 provides

a visual summary.

The two resulting allotments are very similar. In fact there are only two

states where the solutions differ: California and Montana. The scenario is480

the same we have seen before. The largest state lends a seat to one of the

smaller ones and the smallest maximum admissible departure drops by almost

10%. It is quite surprising that the voters of Rhode Island - where the average

constituency size is the smallest - have 88% more influence than the voters of

Montana. Although the leximin allotment reduces this gap somewhat, the only485
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Figure 3: The number of citizens per representative according to the leximin method (in

thousands). In parentheses the same figure for the EP method (where different). Note the

dramatic swing for Montana.

efficient solution would be to drastically increase the House size. As there are 50

states and seven among them end up with only one representative each, the size

of the House of Representatives can be considered rather small. Figure 4 shows

how the smallest maximum admissible departure changes for higher House sizes.

Smallest maximum admissible departures490

As it can be anticipated the smallest maximum admissible departure of the

leximin solution never exceeds 33.3% however for the EP there is no such limit.

To make certain that the smallest maximum admissible departure is below 20%

we have to ensure that the smallest state, Wyoming a) receives at least two

representatives and b) the constituency size obtained this way is within 20%495

of the average. A simple calculation shows that the smallest House size that

guarantees these two criteria is 871 - a little more than twice its current size.

As it is unlikely that the House of Representatives will be expanded in such
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Figure 4: The smallest maximum admissible departure in view of the House size

fashion the influence of the voters will continue to vary from state to state. A

temporary solution would be to increase the number of representatives by seven.500

The smallest maximum admissible departure for both the leximin and the EP

solution meets its minimum at House size 442. In that case the highest gap

between voters influence is ‘only’ 55.19%.

6. Conclusion

More and more countries adopt fairness measures in their electoral law that is505

based on, or similar to the recommendation of the Venice Commission (2002a).

Based on the smallest maximum admissible departure property we introduce

the well-defined Leximin Rule.

Our apportionment method is not the first. The problem of apportionment

goes centuries back, the problem has been around ever since the new member510

states and population changes required a new seat allocation in the US House of

Representatives. Balinski and Young (1982) give an illuminating theoretical and

historical overview of the problem of apportionment and the political debates
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that arose due to it. Methods like Hamilton’s (also called the Method of Largest

Remainders), Jefferson’s (Method of Greatest Divisors, but in Europe often515

referenced as the d’Hondt method), or the Huntingdon-Hill or Equal Proportions

method, the currently used method in the US House of Representatives have

all been developed as responses to practical problems with apportionment such

as the emergence of one or another paradox. Lauwers and Van Puyenbroeck

(2006) compare some of these methods.520

Apportionment problems are most often used for allocating seats among

administrative or political regions based on the population size of these regions:

states in the US House of Representatives, countries in the EU parliament and

so on. Our paper focuses on these applications. Apportionment is also used

for the allotment of seats to parties based on the outcome of an election, in525

fact, sometimes both segmentations appear at the same time; the so-called bi-

apportionment is used in some European countries and the problem has been

studied by Demange (2012) and Serafini and Simeone (2012).

The Lexicographic Rule is, to the best of our knowledge, an original appor-

tionment method, although lexicographic solution concepts have already been530

proposed by Gambarelli (1999) and Gambarelli and Palestini (2007). The clos-

est model is by Serafini and Simeone (2012), where the relative differences from

the target quotas are lexicographically minimized in the bi-apportionment prob-

lem. However, their target quotas are not the same as ours (when restricted to

a one-dimensional case), and their methods proposed are more complex, since535

they are designed for the more general bi-apportionment problem.

There are also papers on minimizing the relative difference over pairs of

constituencies. Burt and Harris (1963) proposed this concept in for the US

House of Representatives, but then it got criticized by Gilbert and Schatz (1964).

A recent overview on this concept is given by Edelman (2006). Our problem540

is different from this one, and it is easy to construct an example where the

solutions minimizing the relative difference of any two constituencies and the

maximum departure from the average size differ. So far, it seems, none of these

models are compatible with the recommendation of the Venice Commission.

26



The smallest maximum admissible departure property is very natural and545

provides greater equality among citizens concerning their voting power than

other apportionment principles. Unfortunately, the property and therefore the

Leximin Rule turn out to be incompatible with the quota, the population- and

house-monotonicities over the class of apportionment problems, so that the Al-

abama and population paradoxes may arise when using it. It seems we have550

just introduced a new method that fails all existing industry standards! Indeed

these properties emerged over century-long debates over the election rules for

the US House of Representatives and cannot be just ignored. On the other hand

the proposal of the Venice Commission is a very natural and plausible one, it is

comparable to the quota, while the violations of monotonicity are hardly sur-555

prising in an integer problem. The fact that more and more countries consider

the smallest maximum admissible departure property as its de facto standard

to evaluate, improve and design apportionment among regions may be seen as

an indication that this is a natural and valid property whose incompatibility

with some old thoughts from the New World is interesting to be aware of, but560

is perhaps time to update them in a representative democracy. And finally, a

third reading is just to note the emergence of two incompatible schools of ap-

portionment that may coexist thanks to minor differences in our understanding

of representative democracy.
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Appendix A. The seat distribution of the US House of Representa-

tives by the equal proportion method and by the lex-

imin algorithm

State Voters
Number of seats Difference (%)

EP leximin EP leximin

Alabama 4 802 982 7 7 3.46 3.46

Alaska 721 523 1 1 1.51 1.51

Arizona 6 412 700 9 9 0.24 0.24

Arkansas 2 926 229 4 4 2.92 2.92

California 37341989 53 52 0.87 1.03

Colorado 5 044 930 7 7 1.39 1.39

Connecticut 3 581 628 5 5 0.78 0.78

Delaware 900 877 1 1 26.74 26.74

Florida 18 900 773 27 27 1.51 1.51

Georgia 9 727 566 14 14 2.24 2.24

Hawaii 1 366 862 2 2 3.84 3.84

Idaho 1 573 499 2 2 10.69 10.69

Illinois 12 864 380 18 18 0.55 0.55

Indiana 6 501 582 9 9 1.63 1.63

Iowa 3 053 787 4 4 7.41 7.41

Kansas 2 863 813 4 4 0.72 0.72

Kentucky 4 350 606 6 6 2.01 2.01

Louisiana 4 553 962 6 6 6.78 6.78

Maine 1 333 074 2 2 6.22 6.22

Maryland 5 789 929 8 8 1.82 1.82

Massachusetts 6 559 644 9 9 2.54 2.54

Michigan 9 911 626 14 14 0.39 0.39

Minnesota 5 314 879 8 8 6.52 6.52

Mississippi 2 978 240 4 4 4.75 4.75
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Missouri 6 011 478 8 8 5.72 5.72

Montana 994416 1 2 39.90 30.04

Nebraska 1 831 825 3 3 14.09 14.09

Nevada 2 709 432 4 4 4.70 4.70

New Hampshire 1 321 445 2 2 7.04 7.04

New Jersey 8 807 501 12 12 3.26 3.26

New Mexico 2 067 273 3 3 3.04 3.04

New York 19 421 055 27 27 1.20 1.20

North Carolina 9 565 781 13 13 3.52 3.52

North Dakota 675 905 1 1 4.90 4.90

Ohio 11 568 495 16 16 1.72 1.72

Oklahoma 3 764 882 5 5 5.93 5.93

Oregon 3 848 606 5 5 8.29 8.29

Pennsylvania 12 734 905 18 18 0.46 0.46

Rhode Island 1 055 247 2 2 25.76 25.76

South Carolina 4 645 975 7 7 6.62 6.62

South Dakota 819 761 1 1 15.33 15.33

Tennessee 6 375 431 9 9 0.33 0.33

Texas 25 268 418 36 36 1.24 1.24

Utah 2 770 765 4 4 2.54 2.54

Vermont 630 337 1 1 11.31 11.31

Virginia 8 037 736 11 11 2.80 2.80

Washington 6 753 369 10 10 4.98 4.98

West Virginia 1 859 815 3 3 12.77 12.77

Wisconsin 5 698 230 8 8 0.21 0.21

Wyoming 568 300 1 1 20.04 20.04

Total 309 183 463 435 435 max : 39.9 max : 30.04
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