
Fair Blind Signatures without Random Oracles

Georg Fuchsbauer and Damien Vergnaud

École normale supérieure, LIENS - CNRS - INRIA, Paris, France
http://www.di.ens.fr/{~fuchsbau,~vergnaud}

Abstract. A fair blind signature is a blind signature with revocable
anonymity and unlinkability, i.e., an authority can link an issuing session
to the resulting signature and trace a signature to the user who requested
it. In this paper we first revisit the security model for fair blind signatures
given by Hufschmitt and Traoré in 2007. We then give the first practical
fair blind signature scheme with a security proof in the standard model.
Our scheme satisfies a stronger variant of the Hufschmitt-Traoré model.

Keywords. Blind signatures, Revocable anonymity, Standard model,
Groth-Sahai proof system.

1 Introduction

A blind signature scheme is a protocol for obtaining a signature from an issuer
such that the issuer’s view of the protocol cannot be linked to the resulting mes-
sage/signature pair. Blind signatures are employed in privacy-related protocols
where the issuer and the message author are different parties (e.g., e-voting or
e-cash systems). However, blind signature schemes provide perfect unlinkability
and could therefore be misused by dishonest users. Fair blind signatures were
introduced by Stadler, Piveteau and Camenisch [SPC95] to prevent abuse of
unlinkability. They allow two types of blindness revocation: linking a signature
to the user who asked for the signature and identifying a signature that resulted
from a given signing session. A security model for fair blind signatures was
introduced by Hufschmitt and Traoré [HT07].

We first revisit their security model and give a stronger variant. We then
present the first efficient fair blind signature scheme with a standard-model secu-
rity proof (i.e., without resorting to the random oracle heuristic) in the strength-
ened security model. We make extensive use of the non-interactive proof system
due to Groth and Sahai [GS08] and of the automorphic signatures recently in-
troduced by Fuchsbauer [Fuc09] and do not use interactive assumptions.

1.1 Prior work

The concept of blind signatures was introduced by Chaum in [Cha83]. A blind
signature scheme is a cryptographic primitive that allows a user to obtain from
the issuer (signer) a digital signature on a message of the user’s choice in such
a way that the issuer’s view of the protocol cannot be linked to the resulting
message/signature pair.

Blind signatures have numerous applications including e-cash: they prevent
linking the withdrawal of money and the payment made by the same customer.
However, the impossibility to link withdrawals and payments might lead to
frauds (money laundering, blackmailing, . . .). Some applications therefore re-
quire means to identify the resulting signature from the transcript of a signature-
issuing protocol or to link a message/signature pair to the corresponding signing
session.

Fair blind signatures were introduced by Stadler, Piveteau and Camenisch in
[SPC95] to provide these means. Several fair blind signature schemes have been
proposed since then [SPC95,AO01,HT07] with applications to e-cash [GT03] or
e-voting [CGT06]. In [HT07], Hufschmitt and Traoré presented a formal security
model for fair blind signatures and a scheme based on bilinear maps that satisfies
it in the random oracle model under an interactive assumption. In a recent
independent work, Rückert and Schröder [RS10] proposed a generic construction
of fair partially blind signatures [AF96].

1.2 Our contribution

As a first contribution, we strengthen the security model proposed in [HT07].
In our model, the algorithm opening a transcript not only returns information
to identify the signature that resulted from it, but additionally outputs the user
that requested the signature and gives a proof of correct tracing.

We give a definition of blindness analogously to [Oka06], but additionally
provide tracing oracles to the adversary. We propose a traceability notion that
implies the original one. Finally, we formalize the non-frameability notions anal-
ogously to [BSZ05], where it is the adversary’s task to output a framing sig-
nature (or transcript) and a proof. We believe that our version of signature
non-frameability is more intuitive: no corrupt issuer can output a transcript, a
“framing” opening of it and a proof (in [HT07], the adversary must output a
message/signature pair such that an honest transcript opens to it). (cf. § 2.3 for
details.)

In 2008, Groth and Sahai [GS08] proposed a way to produce efficient non-
interactive zero-knowledge (NIZK) and non-interactive witness-indistinguishable
(NIWI) proofs for (algebraic) statements related to groups equipped with a bi-
linear map. In particular, they give proofs of satisfiability of pairing-product
equations (cf. § 4.2). In [Fuc09], Fuchsbauer introduced the notion of automor-
phic signatures whose verification keys lie in the message space, messages and
signatures consist of group elements only, and verification is done by evaluating
a set of pairing-product equations (cf. § 5). Among several applications, he con-
structed an (automorphic) blind signature in the following way: the user commits
to the message, and gives the issuer a randomized message; the issuer produces
a “pre-signature” from which the user takes away the randomness to recover a
signature. The actual signature is then a Groth-Sahai proof of knowledge of a
signature, which guarantees unlinkability to the issuing.

In this paper, we modify Fuchsbauer’s blind signature scheme in order to
construct the first practical fair blind signature scheme with a security reduc-

2

tion in the standard model. Our security analysis does not introduce any new
computational assumptions and relies only on falsifiable assumptions [Nao03]
(cf. § 3). First, we extend Fuchsbauer’s automorphic signature so it can sign
three messages at once. Then, since in fair blind signature schemes blindness has
to hold even against adversaries provided with tracing oracles, we use Groth’s
technique from [Gro07] to achieve CCA-anonymous group signatures: instead of
just committing to the tracing information, we additionally encrypt it (using
Kiltz’ tag-based encryption scheme [Kil06]) and provide NIZK proofs of con-
sistency with the commitments. In order to achieve the strengthened notion of
non-frameability, we construct simulation-sound NIZK proofs of knowledge of a
Diffie-Hellman solution which consist of group elements only and are verified by
checking a set of pairing-product equations (i.e. Groth-Sahai compatible proofs).

Since messages and signatures consist of group elements only and their veri-
fication is done by evaluating a set of pairing-product equations, our fair blind
signatures are Groth-Sahai compatible themselves which makes them perfectly
suitable to design efficient fair e-cash systems following the approach proposed
in [GT03]. In addition, our scheme is compatible with the “generic” variant1 of
Votopia [OMA+99] proposed by Canard, Gaud and Traoré in [CGT06]. Com-
bined with a suitable mix-net (e.g. [GL07]), it provides a practical electronic
voting protocol in the standard model including public verifiability, and com-
pares favorably with other similar systems in terms of computational cost.

2 The Model

2.1 Syntax

Definition 1. A fair blind signature scheme is a 10-tuple

(Setup, IKGen,UKGen,Sign,User,Ver,TrSig,TrId,ChkSig,ChkId)

of (interactive) (probabilistic) polynomial-time Turing machines ((P)PTs):

Setup is a PPT that takes as input an integer λ and outputs the parameters pp
and the revocation key rk. We call λ the security parameter.

IKGen is a PPT that takes as input the parameters pp and outputs a pair
(ipk, isk), the issuer’s public and secret key.

UKGen is a PPT that takes as input the parameters pp and outputs a pair
(upk,usk), the user’s public and secret key.

Sign and User are interactive PPTs such that User takes as inputs the parame-
ters pp, the issuer’s public key ipk, the user’s secret key usk and a bit string
m; Sign takes as input pp, the issuer’s secret key isk and user public key
upk. Sign and User engage in the signature issuing protocol and when they
stop, Sign outputs completed or not-completed while User outputs ⊥ or a
bit string σ.

1 This variant was used during the French referendum on the European Constitution
in May 2005.

3

Ver is a deterministic PT that on input the parameters pp, an issuer public key
ipk and a pair of bit strings (m,σ) outputs either 0 or 1. If it outputs 1 then
σ is a valid signature on the message m

TrSig is a deterministic PT that on input pp, an issuer public key ipk, a tran-
script of a signature issuing protocol and a revocation key rk outputs three
bit strings (upk, idσ, π).

TrId is a deterministic PT that on input pp, an issuer public key ipk, a pair
message/signature (m,σ) for ipk and a revocation key rk outputs two bit
strings (upk, π).

ChkSig is a deterministic PT that on input pp, an issuer public key ipk, a
transcript of a signature issuing protocol, a pair message/signature (m,σ)
for ipk and three bit strings (upk, idσ, π), outputs either 0 or 1.

ChkId is a deterministic PT that on input pp, an issuer public key ipk, a pair
message/signature (m,σ) for ipk and two bit strings (upk, π), outputs either
0 or 1.

For all λ ∈ N, all pairs (pp, rk) output by Setup(λ) all pairs (ipk, isk) output by
IKGen(pp), and all pairs (upk,usk) output by UKGen(pp):

1. if Sign and User follow the signature issuing protocol with input (pp, isk,upk)
and (pp,usk, ipk,m) respectively, then Sign outputs completed and User out-
puts a bit string σ that satisfies Ver(ipk, (m,σ)) = 1;

2. on input ipk, the transcript trans of the protocol and rk, TrSig outputs three
bit strings (upk, idσ, π) s.t. ChkSig(pp, ipk, trans, (m,σ), (upk, idσ, π)) = 1;

3. on input ipk, the pair (m,σ) and rk, TrId outputs two bit strings (upk, π)
such that ChkId(pp, ipk, (m,σ), (upk, π)) = 1.

2.2 Security Definitions

To define the security notions for fair blind signatures, we use a notation similar
to the one in [BSZ05] used in [HT07]:

HU denotes the set of honest users and CU is the set of corrupted users.
AddU is an add-user oracle. By calling this oracle, the adversary creates a new

user with keys (upk,usk). The oracle adds upk to HU and returns it to the
adversary.

CrptU is a corrupt-user oracle. The adversary calls this oracle with a pair
(upk,usk) and upk added to the set CU.

USK is a user-secret-key oracle enabling the adversary to obtain the private key
usk for some upk ∈ HU. The oracle transfers upk to CU and returns usk.

User is an honest-user oracle. The adversary impersonating a corrupt issuer
calls it with (upk,m). If upk ∈ HU, the experiment simulates the honest
user holding upk running the signature issuing protocol with the adversary
for message m. If the issuing protocol completed successfully, the adversary
is given the resulting signature. The experiment keeps a list Set with entries
of the form (upk,m, trans, σ), to record an execution of User, where trans is
the transcript of the issuing protocol and σ is the resulting signature. (Note
that only valid σ’s (i.e., the protocol was successful) are written to Set.

4

Sign is a signing oracle. The adversary impersonating a corrupt user can use it
to run the signature issuing protocol with the honest issuer. The experiment
keeps a list Trans in which the transcripts transi resulting from Sign calls
are stored.

Challengeb is a challenge oracle, which (w.l.o.g.) can only be called once. The
adversary provides two user public keys upk0 and upk1 and two messages m0

andm1. The oracle first simulates User on inputs (pp, ipk,uskb,mb) and then,
in a second protocol run, simulates User on inputs (pp, ipk,usk1−b,m1−b).
Finally, the oracle returns (σ0, σ1), the resulting signatures on m0 and m1.

TrSig (resp. TrId) is a signature (resp. identity) tracing oracle. When queried on
the transcripts (or messages) emanating from a Challenge call, they return ⊥.

Figure 1 formalizes the experiments for the following security notions:

Blindness. Not even the issuer with access to tracing oracles can link a mes-
sage/signature pair to the signature issuing session it stems from.

Identity Traceability. No coalition of users can produce a set of signatures
containing signatures which cannot be linked to an identity.

Signature Traceability. No one should be able to produce a message/signa-
ture pair which is not traced by any issuing transcript or two pairs which
are traced by the same transcript.

Identity Non-Frameability. No coalition of issuer, users and tracing author-
ity should be able to provide a signature and a proof that the signature
opens to an honest user who did not ask for the signature.

Signature Non-Frameability. No coalition of issuer, users and tracing au-
thority should be able to provide a transcript that either wrongfully opens
to an honest signature or an honest user.

We say that a fair blind signature achieves blindness if for all PPT adversaries
A, the following is negligible: |Pr[Expblind-1

A = 1]−Pr[Expblind-0
A = 1]− 1

2 . The
remaining security notions are achieved if for all PPT A, the probability that
the corresponding experiment returns 1 is negligible.

2.3 A Note on the Hufschmitt-Traoré Security Notions

Blindness. In [HT07], the challenge oracle (called “Choose”) is defined as fol-
lows: the adversary provides two user public keys upk0 and upk1 and a message,
and obtains a signature under upkb. This gives a weak security guarantee, as
the adversary—who impersonates the issuer—cannot actively participate in the
issuing of the challenge signature. We define our oracle in the spirit of [Oka06]:
the adversary impersonating the issuer chooses two users (and messages) which
interact with him in random order; he gets to see both resulting signatures and
has to determine the order of issuing.

Traceability Notions. Intuitively, identity traceability means that no coali-
tion of users and the authority can create a message signature pair that is not
traceable to a user, which is what was formalized in [HT07].

5

Expblind-b
A (λ)

(pp, rk)← Setup(1λ); (ipk, isk)← IKGen(pp)

b′ ← A(pp, ipk, isk : AddU,CrptU,USK,Challengeb,User,TrSig,TrId)

return b′

ExpIdTrac
A (λ)

(pp, rk)← Setup(1λ); (ipk, isk)← IKGen(pp)

Trans← ∅
(m1, σ1, . . . ,mn, σn)← A(pp, ipk, rk : AddU,CrptU,USK, Sign)

for i = 1 . . . |Trans| do (upki, idi, πi)← TrSig(pp, rk, ipk, transi)

for i = 1 . . . n do (upk′i, π
′
i)← TrId(pp, rk, ipk,mi, σi)

if ∃ i : upk′i = ⊥ or ChkId(pp, ipk, (mi, σi), upk′i, π
′
i) = 0

return 1

if some upk appears more often in (upk′1, . . . ,upk′n) than in

(upk1, . . . , upk|Trans|) then return 1

else return 0

ExpIdNF
A (λ)

(pp, rk)← Setup(1λ); (ipk, isk)← IKGen(pp)

Set← ∅; HU← ∅; CU← ∅
(upk,m, σ, π)← A(pp, ipk, isk, rk : AddU,CrptU,USK,User)

if Ver(pp, ipk,m, σ) = 0 or ChkId(pp, ipk,m, σ, upk, π) = 0 then return 0

if (upk,m, ·, σ) /∈ Set and upk ∈ HU then return 1; else return 0

ExpSigTrac
A (λ)

(pp, rk)← Setup(1λ); (ipk, isk)← IKGen(pp)

Trans← ∅
(m1, σ1,m2, σ2)← A(pp, ipk, rk : AddU,CrptU,USK, Sign)

let Trans = (transi)
n
i=1; for i = 1 . . . n do (upki, idi, πi)← TrSig(pp, rk, ipk, transi)

if Ver(pp, ipk,m1, σ1) = 1 and

∀ i : ChkSig(pp, ipk, transi,m1, σ1, upki, idi, πi) = 0 then return 1

if (m1, σ1) 6= (m2, σ2) and Ver(pp, ipk,m1, σ1) = 1 and Ver(pp, ipk,m2, σ2) = 1

and ∃ i : ChkSig(pp, ipk, transi,m1, σ1,upki, idi, πi) =

= ChkSig(pp, ipk, transi,m2, σ2, upki, idi, πi)) = 1

then return 1; else return 0

ExpSigNF
A (λ)

(pp, rk)← Setup(1λ); (ipk, isk)← IKGen(pp)

Set← ∅; HU← ∅; CU← ∅
(trans∗,m∗, σ∗, upk∗, id∗σ , π

∗)← A(pp, ipk, isk, rk : AddU,CrptU,USK,User)

let Set = (upki,mi, transi, σi)
n
i=1

if ∃ i : trans∗ 6= transi and ChkSig(pp, ipk, trans∗,mi, σi, upk∗, id∗σ , π
∗) = 1

then return 1

if (∀ i : upk∗ = upki ⇒ trans∗ 6= transi)

and ChkSig(. . . , trans∗,m∗, σ∗,upk∗, id∗σ , π
∗) = 1

then return 1; else return 0

Fig. 1. Security experiments for fair blind signatures

6

We propose the following experiment leading to a stronger notion: the adver-
sary gets the authority’s key and impersonates corrupt users, who, via the Sign
oracle can request signatures from the honest issuer. The latter is simulated by
the experiment and keeps a set Trans of transcripts of oracle calls. Eventually,
the adversary outputs a set of message/signature pairs. The experiment opens
all transcripts to get a list of users to which signatures were issued. Another list
of users is constructed by opening the returned signatures. The adversary wins if
there exists a user who appears more often in the second list than in the first, or
if ⊥ is in the second list or if any of the proofs output by the opening algorithm
do not verify. Note that the notion of [HT07] is implied by ours.

Non-Frameability Notions. Non-frameability means that not even a coali-
tion of everyone else can “frame” an honest user. For example, no adversary can
output a signature which opens to a user who did not participate in its issuing.
In [HT07], the adversary outputs a message/signature pair, which is then opened
by the experiment to determine if it “framed” a user. Analogously to [BSZ05]
(who defined non-frameability for group signatures), we define a stronger notion
requiring the adversary to output an incriminating signature, an honest user and
a valid proof, that the signature opens to that user. Note that only this formal-
ization makes the π output by the tracing algorithms a proof, as it guarantees
that no adversary can produce a proof that verifies for a false opening.
Identity Non-Frameability. In [HT07], the adversary wins if it produces a
pair (m,σ) such that, when opened to upk, we have (m,σ,upk) /∈ Set. This seems
to guarantee a strong notion of unforgeability where an adversary modifying a
signature wins the game. This is however not the case in the scheme proposed
in [HT07]: the final signature is a proof of knowledge of some values computed
by the issuer made non-interactive by the Fiat-Shamir heuristic; hence from a
given signature issuing session the user may derive several valid signatures on a
message m. For that reason, the model in [HT07] considers that two signatures
are different only if the underlying secrets are different. We adopt the same
convention in this paper in that we consider two signatures equivalent if they
have the same identifier.
Signature Non-Frameability. Non-frameability of signature tracing intu-
itively means: even if everyone else colludes against an honest user, they cannot
produce a transcript that opens to an honest signature. In the definition proposed
in [HT07], the adversary plays the issuer in that he gets his secret key. How-
ever, he has no possibility to communicate with honest users since the challenger
plays the issuer in the signature issuing sessions with honest users and the adver-
sary only gets the transcripts. His goal is to produce a new message/signature
pair (one that does not emanate from a User-oracle call) such that an honest
transcript opens to it.

We give the following security notion which we think is more intuitive. No
corrupt issuer can produce a transcript of an issuing session and one of the
following: either a public key of an honest user and a proof that this user par-
ticipated in the transcript whereas he did not; or a signature identifier of an
honest signature coming from a different session and a proof that the transcript

7

opens to it. Similarly to signatures we consider two transcripts equivalent if the
contain the same user randomness and the same issuer randomness.

Unforgeability. Consider an adversary that breaks the classical security notion
for blind signatures, one-more unforgeability, i.e., after q− 1 Sign-oracle queries,
he outputs q signatures on different messages. We show that the adversary must
have broken signature traceability: indeed since there are more signatures than
transcripts, either there is a signature which no transcripts points to, or there is
a transcript that points to two signatures.

3 Assumptions

A (symmetric) bilinear group is a tuple (p,G,GT , e,G) where (G, ·) and (GT , ·)
are two cyclic groups of prime order p, G is a generator of G, and e : G × G →
GT is a non-degenerate bilinear map, i.e., ∀U, V ∈ G ∀ a, b ∈ Z : e(Ua, V b) =
e(U, V)ab, and e(G,G) is a generator of GT .

The Decision Linear (DLIN) Assumption [BBS04], in (p,G,GT , e,G) states
that given (Gα, Gβ , Grα, Gsβ , Gt) for random α, β, r, s ∈ Zp, it is hard to decide
whether t = r + s or t is random.

The following two assumptions were introduced by [FPV09] and [Fuc09],
respectively. Under the knowledge of exponent assumption [Dam92], the first is
equivalent to SDH [BB04] and the second is equivalent to computing discrete
logarithms.

Assumption 1 (q-DHSDH). Given (G,H,K,X=Gx) ∈ G4 and q − 1 tuples(
Ai = (KGvi)

1
x+di , Ci = Gdi , Di = Hdi , Vi = Gvi , Wi = Hvi

)q−1

i=1
,

for di, vi ← Zp, it is hard to output a new tuple (A,C,D, V,W) that satisfies

e(A,XC) = e(KV,G) e(C,H) = e(G,D) e(V,H) = e(G,W) (1)

The next assumption states that, given (G,H, T) ∈ G3, it is hard to produce a
non-trivial (Gm, Hm, Gr, Hr) such that Gm = T r.

Assumption 2 (HDL). Given a random triple (G,H, T) ∈ G3, it is hard to
output (M,N,R, S) 6= (1, 1, 1, 1) such that

e(R, T) = e(M,G) e(M,H) = e(G,N) e(R,H) = e(G,S) (2)

4 Tools

We recall some tools from the literature which we use to construct our scheme.

8

4.1 A Signature Scheme to Sign Group Elements

We present the signature scheme from [Fuc09], which is secure against chosen-
message attacks under Assumptions 1 and 2. Its message space is the set of
Diffie-Hellman pairs DH := {(A,B) ∈ G2 | ∃α : A = Gα, B = Hα} w.r.t. two
fixed generators G,H ∈ G. Note that (A,B) ∈ DH iff e(A,H) = e(G,B).

Scheme 1 (Sig1).

Setup1 Given (p,G,GT , e,G), choose additional generators H,K, T ∈ G.
KeyGen1 Choose sk = x← Zp and set vk = Gx.
Sign1 A signature on (M,N) ∈ DH under public key Gx, is defined as(

S1 := (KT rM)
1

x+d , S2 := Gd, S3 := Hd, S4 := Gr, S5 := Hr
)
,

for random d, r ← Zp
Verify1 (S1, S2, S3, S4, S5) is valid on (M,N) ∈ DH under public key vk = X iff

e(S1, XS2) = e(KM,G) e(T, S4)
e(S2, H) = e(G,S3)
e(S4, H) = e(G,S5)

(3)

4.2 Groth-Sahai Proofs

We sketch the results of Groth and Sahai [GS08] on proofs of satisfiability of
sets of equations over a bilinear group (p,G,GT , e,G). Due to the complexity of
their methodology, we merely give what is needed for our results and refer to
the full version of [GS08] for any additional details.

We define a key for linear commitments. Choose α, β, r1, r2 ∈ Zp and define
U = Gα, V = Gβ , and u1 := (U, 0, G), u2 := (0, V,G), u3 := (W1,W2,W3)
where W1 := Ur1 , W2 := V r2 , for random r1, r2 ← Zp, and W3 is either

– soundness setting: W3 := Gr1+r2 (which makes ~u a binding key)
– witness-indistinguishable setting: W3 := Gr1+r2−1 (making ~u a hiding key)

Under key ck = (U, V,W1,W2,W3), a commitment to a group element X ∈ G
using randomness (s1, s2, s3)← Z3

p is defined as (with ι(X) := (0, 0, X))

Com
(
ck, X; (s1, s2, s3)

)
:= ι(X) ·

∏3
i=1 usii

= (Us1W s3
1 , V s2W s3

2 , XGs1+s2W s3
3) .

In the soundness setting, given the extraction key ek := (α, β), the committed
value can be extracted from a commitment c = (c1, c2, c3). On the other hand,
in the witness-indistinguishable (WI) setting, c is equally distributed for every
X. The two settings are indistinguishable under the DLIN assumption.

A pairing-product equation is an equation for variables Y1, . . . ,Yn ∈ G of the
form

n∏
i=1

e(Ai,Yi)
n∏
i=1

n∏
j=1

e(Yi,Yj)γi,j = tT ,

9

with Ai ∈ G, γi,j ∈ Zp and tT ∈ GT .

To show satisfiability of a set of equations of this form, one first makes com-
mitments to a satisfying witness (i.e., an assignment to the variables of each
equation) and then adds a “proof” per equation. Groth and Sahai describe how
to construct these: they are in G 3×3. In the soundness setting, if the proof is
valid, then Extr extracts the witness satisfying the pairing-product equation. In
the WI setting, commitments and proofs of different witnesses which both satisfy
the same pairing-product equation are equally distributed.

4.3 Commit and Encrypt

In order to build CCA-anonymous group signatures, Groth [Gro07] uses the fol-
lowing technique: a group signature consists of linear commitments to a certified
signature and Groth-Sahai proofs that the committed values constitute a valid
signature. CPA-anonymity follows from WI of GS proofs: once the commitment
key has been replaced by a perfectly hiding one, a group signature reveals no in-
formation about the signer. However, in order to simulate opening queries in the
WI setting, some commitments are doubled with a tag-based encryption under
Kiltz’ scheme [Kil06] and a Groth-Sahai NIZK proof that the committed and
the encrypted value are the same. To produce a group signature, the user first
chooses a key pair for a one-time signature scheme, uses the verification key as
the tag for the encryption and the secret key to sign the group signature.

By Sigot = (KeyGenot,Signot,Verot) we will denote the signature scheme
discussed in § 5.2 which satisfies the required security notion. By CEP (commit-
encrypt-prove) we denote the following:

CEP(ck,pk, tag,msg; (ρ, r)) :=(
Com(ck,msg; ρ), Enc(pk, tag,msg; r), NizkEq(ck,pk, msg, tag, ρ, r)

)
where Enc denotes Kiltz’ encryption and NizkEq denotes a Groth-Sahai NIZK
proof that the commitment and the encryption contain the same plaintext (cf.
[Gro07]). We say that an output ψ = (c, C, ζ) of CEP is valid if the ciphertext
and the zero-knowledge proof are valid.

5 New Tools

5.1 A Scheme To Sign Three Diffie-Hellman Pairs

We extend the scheme from § 4.1, so it signs three messages at once; we prove
existential unforgeability against adversaries making a particular chosen message
attack: the first message is given (as usual) as a Diffie-Hellman pair, whereas the
second and third message are queried as their logarithms, i.e., instead of querying
(Gv, Hv), the adversary has to give v explicitly. As we will see, this combines
smoothly with our application.

10

Scheme 2 (Sig3).

Setup3(G) Given G = (p,G,GT , e,G), choose additional generators H,K, T ∈ G.
KeyGen3(G) Choose sk = (x, `, u)← Z3

p and set vk = (Gx, G`, Gu).
Sign3((x, `, u), (M,N, Y, Z, V,W)) A signature on ((M,N), (Y, Z), (V,W)) ∈ DH3

under public key Gx, is defined as (for random d, r ← Zp)(
S1 := (KT rMY `V u)

1
x+d , S2 := Gd, S3 := Hd, S4 := Gr, S5 := Hr

)
Verify3 (S1, S2, S3, S4, S5) is valid on messages (M,N), (Y,Z), (V,W) under a

public key (X,L,U) iff

e(S1, XS2) = e(KM,G) e(T, S4) e(L, Y) e(U, V)
e(S2, H) = e(G,S3)
e(S4, H) = e(G,S5)

(4)

Theorem 1. Sig3 is existentially unforgeable against adversaries making cho-
sen message attacks of the form ((M1, N1),m2,m3).

Proof. Let (Mi, Ni, yi, vi) be the queries, (Ai, Ci, Di, Ri = Gri , Si) be the re-
sponses. Let (M,N, Y, Z, V,W) and (A,C,D,R = Gr, S) be a successful forgery.
We distinguish 4 types of forgers (where Yi := Gyi , Vi := Gvi):

Type I ∀ i : T riMiY
`
i V

u
i 6= T rMY `V u (5)

Type II ∃ i : T riMiY
`
i V

u
i = T rMY `V u ∧ MiY

`
i V

u
i 6= MY `V u (6)

Type III ∃ i : MiY
`
i V

u
i = MY `V u ∧ MiV

u
i 6= MV u (7)

Type IV ∃ i : MiY
`
i V

u
i = MY `V u ∧ MiV

u
i = MV u (8)

Type I is reduced to DHSDH. Let
(
G,H,K, (Ai, Ci, Di, Ei, Fi)

q−1
i=1

)
be an in-

stance. Choose and t, `, u ← Zp and set T = Gt, L = G` and U = Gu.
A signature on (Mi, Ni, Yi, Zi, yi, Vi,Wi, vi) is (after a consistency check)
answered as (Ai, Ci, Di, (EiM−1

i Y −`i V −ui)1/t, (FiN−1
i Z−`i W−ui)1/t). After a

successful forgery, return (A,C,D,RtMY `V u, StNZ`Wu), which is a valid
DHSDH solution by (5).

Type II is reduced to HDL. Let (G,H, T) be an HDL instance. Generate the
rest of the parameters and a public key and answer the queries by signing.
After a successful forgery, return

(MY `V uM−1
i Y −`i V −ui , NZ`WuN−1

i Z−`i W−ui , RiR
−1, SiS

−1),

which is non-trivial by (6).
Type III is reduced to HDL. Let (G,H,L) be an instance. Choose K,T ← G

and x, u ← Zp and return the parameters and public key (X = Gx, L, U =
Gu). Thanks to the yi in the signing queries, we can simulate them: return
((KT riMiL

yiV ui)
1

x+di , Gdi , Hdi , Gri , Hri). From (7) we haveMV uM−1
i V −ui =

Y `i Y
−` = Lyi−y, so from a successful forgery, we can return

(MV uM−1
i V −ui , NWuN−1

i W−ui , YiY
−1, ZiZ

−1)

which is non-trivial by (7).

11

Type IV is also reduced to HDL. Let (G,H,U) be an HDL instance. Choose
K,T ← G and x, ` ← Zp and return the parameters and public key (X =
Gx, L = G`, U). Thanks to the vi in the signing queries, we can simulate
them: return ((KT riMiY

`
i U

vi)
1

x+di , Gdi , Hdi , Gri , Hri). From a successful
forgery of Type IV we have MM−1

i = Uvi−v from (7), we can thus return
(MM−1

i , NN−1
i , ViV

−1,WiW
−1), which is non-trivial, (M,N, Y, Z, V,W) be-

ing a valid forgery and (Y,Z) = (Yi, Zi) by (8). ut

5.2 A Simulation-Sound Non-Interactive Zero-Knowledge Proof of
Knowledge of a CDH Solution

Let (G,F, V) be elements of G. We construct a simulation-sound non-interactive
zero-knowledge (SSNIZK) proof of knowledge (PoK) ofW s.t. e(V, F) = e(G,W).
We follow the overall approach by Groth [Gro06]. The common reference string
(CRS) contains a CRS for Groth-Sahai (GS) proofs and a public key for a EUF-
CMA signature scheme Sig. A proof is done as follows: choose a key pair for a
one-time signature scheme Sigot, and make a witness-indistinguishable GS proof
of the following: either to know W , a CDH solution for (G,F, V) or to know a
signature on the chosen one-time key which is valid under the public key from
the CRS;2 finally sign the proof using the one-time key. A SSNIZKPoK is veri-
fied by checking the GS proofs and the one-time signature. Knowing the signing
key corresponding to the key in the CRS, one can simulate proofs by using as a
witness a signature on the one-time key.

We require that a proof consist of group elements only and is verified by
checking a set of pairing-product equations. This can be achieved by using the
scheme from Scheme 1 and a one-time scheme to sign group elements using the
commitment scheme in [Gro09] based on the DLIN assumption.3

6 A Fair Blind Signature Scheme

The basis of our protocol is the blind automorphic signature scheme from [Fuc09]:
the user randomizes the message to be signed, the issuer produces a pre-signature
from which the user obtains a signature by removing the randomness; the final
signature is a Groth-Sahai proof of knowledge of the resulting signature.

2 In [Gro06] it is shown how to express a disjunction of two equation sets by a new
set of equations.

3 The strong one-time signature scheme used in [Gro06] works as follows: The verifica-
tion key is a Pedersen commitment to 0. To sign a message, using the trapdoor, the
commitment is opened to the message. By putting a second trapdoor in the com-
mitment scheme, we can simulate one signing query and use a forger to break the
binding property of the commitment scheme. In [Gro09], Groth proposes a scheme
to commit to group elements. Using his scheme rather than Pedersen commitments,
we can construct an efficient one-time signature scheme for group elements whose
signatures consist of group elements (see Appendix A).

12

In our scheme, in addition to the message, the issuer signs the user’s public
key, and an identifier of the signature, which the issuer and the user define jointly.
Note that the issuer may neither learn the user’s public key nor the identifier.
To guarantee provable tracings, the user signs what she sends in the issuing
protocol and the final signature. To prevent malicious issuers from producing
a transcript that opens to an honest signature, the proof contains a SSNIZK
proof of knowledge of the randomness introduced by the user. To guarantee
blindness against adversaries with tracing oracles, the elements that serve as
proofs of correct tracing are additionally encrypted and the transcript (and final
signature) is signed with a one-time key (cf. § 4.3).

To trace a signature, the authority extracts tracing information from the
commitments as well as signatures that act as proofs.

6.1 Setup and Key Generation

Setup. Choose a bilinear group G := (p,G,GT , e,G) and parameters (H,K, T)
for Sig3. Pick F,H ′ ← G, a commitment and extraction key (ck, ek) for Groth-
Sahai proofs, a key pair for tag-based encryption (epk, esk) and sscrs, a common
reference string for SSNIZKPoK.
Output pp := (G, G,H,K, T, F,H ′, ck, epk, sscrs) and rk := ek.

Key Generation. Both IKGen and UKGen is defined as KeyGen, i.e., the key
generation algorithm for Sig1 (and Sig3).

6.2 The Signature Issuing Protocol and Verification

The common inputs are (pp, ipk = Gx), the issuer’s additional input is isk = x,
the user’s additional inputs are (upk = Gy,usk = y, (M,N) ∈ DH).

1. User Choose η, v′ ← Zp and set P = Gη, Q = F η, V ′ = Gv
′
,W ′ = F v

′
.

Produce ξ ← SSNIZKPoK(sscrs, (P, V ′), (Q,W ′)).4

Choose (vk′ot, sk
′
ot)← KeyGenot(G) and set Σ′ ← Sign(usk, vk′ot).

5

Send the following
(a) Y = Gy, Z = Hy, vk′ot, Σ

′,
(b) cM = Com(ck,M); cN := Com(ck, N),

ψP , ψV , ~ψξ, with ψ� := CEP(ck, epk, vk′ot,�),
a proof φM that (M,N) ∈ DH and a proof φξ of validity of ξ,

(c) J := (KMLyUv
′
)

1
η ,

(d) a zero-knowledge proof ζ of knowledge of η, y and v′ such that
– Y = Gy;

4 A simulation-sound non-interactive proof of knowledge of Q and W ′ such that
e(V ′, F) = e(G,W ′) and e(P, F) = e(G,Q). (cf. § 5.2).

5 The message space for Sig is the set of DH pairs w.r.t. (G,H ′). Since all logarithms
of vkot are known when picking a key, the user can complete the second components
of the DH pairs.

13

– cV commits to Gv
′
; and

– cM commits to JηL−yU−v
′
K−1.

(e) sig′ ← Signot(sk
′
ot, (Y, Z,Σ

′, cM , cN , ψP , ψV , ~ψξ, φM , φξ, J, ζ, vk′ot)).

2. Issuer If Σ′, ψP , ψV , ~ψξ as well as φM , φξ, sig′ and the proof of knowledge
are valid, choose d, r, v′′ ← Zp and send:

A′ := (JT rUv
′′
)

1
x+d C := Gd D := F d R′ := Gr S′ := Hr v′′

The user does the following:

(a) set A := (A′)η, R := (R′)η, S := (S′)η, V := Gv
′+ηv′′

,W := Hv′+ηv′′
and

check whether (A,C,D,R, S) is valid on
(
(M,N), (Y,Z), (V,W)

)
under

ipk;
(b) choose (vkot, skot)← KeyGenot and define Σ = Sign(y, vkot);
(c) make commitments cA, cC , cD, cR, cS to A,C,D,R, S under ck;

(d) run CEP(ck, epk, vkot, ·) on Y,Z and Σ (let ψY , ψZ and ~ψΣ denote the
outputs);

(e) make a proof φY that (Y,Z) ∈ DH and proofs φS and φΣ of validity of
the signatures (A,C,D,R, S) and Σ;

(f) set sig← Signot

(
skot, (V,W,M,N, cA, cC , cD, cR, cS ,

ψY , ψZ , ~ψΣ , φY , φS , φΣ , vkot)
)
.

The signature on (M,N) is

(V,W, cA, cC , cD, cR, cS , ψY , ψZ , ~ψΣ , φY , φS , φΣ , vkot, sig) .

A signature is verified by verifying sig under vkot, checking the proofs φY , φS
and φΣ , and verifying the encryptions and NIZK proofs in ψY , ψZ and ~ψΣ .

Remark 1. As mentioned by [Fuc09], there are two possible instantiations of
the zero-knowledge proof of knowledge in 1.d: either using bit-by-bit techniques
(which does not increase the rounds of the protocol); or optimizing the amount
of data sent by adding 3 rounds using interactive concurrent Schnorr proofs.

Theorem 2. The above scheme is an unforgeable blind signature (in the classi-
cal sense) under the DLIN, the DHSDH and the HDL assumptions.

The proof of unforgeability is by reduction to unforgeability of Scheme 2, anal-
ogously to the proof in [Fuc09]. Note that by additionally extracting y and v′

from the proof of knowledge, the simulator can make the special signing queries.
The proof of blindness is also analogous to [Fuc09].

14

6.3 Tracing Algorithms

Opening of a Transcript (“Signature Tracing”). Given a transcript

(Y,Z,Σ′, cM , cN , ψP , ψV , ~ψξ, φM , φξ, J, ζ, vk′ot, sig
′) , v′′

verify Σ′, sig′, the proofs φM and φξ and the ciphertexts and proofs in ψP , ψV
and ~ψξ. If everything is valid, use rk = ek to open the commitments in ψP , ψV
and ~ψξ to P, V ′ and ξ respectively and set V := V ′P v

′′
= Gv

′+ηv′′
.

Return idσ := V , upk = Y and π := (V ′, P, v′′, ξ, Σ′). The proof π is verified
by checking V = V ′P v

′′
, verifying ξ on V ′ and P , and verifying Σ′ under Y .

Opening of a Signature (“Identity Tracing”). Given a valid signature

(V,W, cA, cC , cD, cR, cS , ψY , ψZ , ~ψΣ , φY , φS , φΣ , vkot, sig) ,

open the commitments in ψY , ψZ and ~ψΣ using ek and return upk = Y and
π = Σ. A proof π is verified by checking if Σ is a valid signature on (V,W)
under Y .

7 Security Proofs

Theorem 3. The above scheme is a secure fair blind signature scheme (in the
model defined in § 2) under the DLIN, the DHSDH and the HDL assumptions.

Due to space limitation, we sketch the security proofs of all security notions.

Blindness (under DLIN). In the witness-indistinguishability setting of Groth-
Sahai proofs, the commitments and proofs do not reveal anything—and neither
do the ciphertexts. Furthermore, for every M and V , there exist η and v′ that
explain J . In more detail: the proof proceeds by games, Game 0 being the origi-
nal game. In Game 1, we use the decryption key for the tag-based encryptions to
answer queries to trace signatures and identities. The zero-knowledge proofs in
the ψ’s guarantees that the committed and the encrypted values are the same;
the games are thus indistinguishable.

In Game 2, we replace the commitment key ck by a witness indistinguishable
one. In Game 3, we simulate the NIZK proofs in the ψ’s and in Game 4, we
replace the ciphertexts in the ψ’s by encryptions of 0. Games 3 and 4 are indis-
tinguishable by selective-tag weak CCA security of Kiltz’ cryptosystem (which
follows from DLIN): by unforgeability of the one-time signature, the adversary
cannot query a different transcript (or signature) with the same tag as the target
transcript (or signature), therefore we can answer all tracing queries.

In Game 5, we simulate the zero-knowledge proofs in Step 1d. In this game,
the adversary’s view is the following: J = (KMLyUv

′
)

1
η and M∗, V ∗ which are

either M and Gv
′+ηv′′

or not. Let small letters denote the logarithms of the
respective capital letters. Then for every m∗ = logM∗, v∗ = log V ∗ there exist

15

η, v′ such that v∗ = v′+ηv′′ and j = 1
η (k+m∗+yl+v′u), i.e., that make M∗, V ∗

consistent with J . In Game 5, which is indistinguishable from the original game,
the adversary has thus no information on whether a given transcript corresponds
to a given signature.

Identity Traceability (under DHSDH+HDL). An adversary wins if he
can produce a set of valid pairs (mi, σi) s.t. either (I) for one of them the tracing
returns ⊥ or the proof does not verify, or (II) a user appears more often in the
openings of the signatures than in the openings of the transcripts. By soundness
of Groth-Sahai, we can always extract a user public key and a valid signature.
If an adversary wins by (II), then we can use him to forge a Sig3 signature:

Given parameters and a public key for Sig3, we set up the rest of the param-
eters for the blind signature. Whenever the adversary queries his Sign oracle, we
do the following: use ek to extract (M,N) from (cM , cN), extract η, y and v′

from the zero-knowledge proof ζ. Choose v′′ ← Zp and query (M,N, y, v′+ ηv′′)
to signing oracle to receive (A,C,D,R, S). Return (A

1
η , C,D,R

1
η , S

1
η , v′′). If

the adversary wins by outputting a set of different (i.e., with distinct identi-
fiers (V,W)) blind signatures with one user appearing more often then in the
transcripts, then among the Sig3 signatures extracted from the blind signatures
there must be a forgery.

Identity Non-Frameability (under DLIN+DHSDH+HDL). Using a suc-
cessful adversary, we can either forge a signature by the user on vk′ot or a one-time
signature (which is secure under DLIN). More precisely, we call an adversary of
Type I if it reuses a one-time key from the signatures it received from the User
oracle. Since the signature A returns must not be contained in Set, it is differ-
ent from the one containing the reused one-time key. The contained one-time
signature can thus be returned as a forgery.

An adversary of Type II uses a new one-time key for the returned signature.
We use A to forge a Sig signature. The simulator is given parameters (H ′,K, T)
and a public key Y for Sig, sets it as one of the honest users’ upk and queries
its signing oracle to simulate the user. Having set H = Gh, the simulator can
produce Z = Hy = Y h in the User oracle queries. Since the vk′ot contained A’s
output was never queried, we get a valid forgery.

Signature Traceability (under DHSDH+HDL). If the adversary wins by
outputting a message/signature pair with an identifier (V,W) s.t. no transcript
opens to it, we can extract a Sig3 signature on (M,N, Y, Z, V,W) without hav-
ing ever queried a signature on any (·, ·, ·, ·, V,W). The simulation is done anal-
ogously to the proof of identity traceability. Consider an adversary outputting
two message/signature pairs with two different messages. With overwhelming
probability, the identifiers of the signatures are different (since v′′ is chosen ran-
domly by the experiment after the adversary chose v′ and η). Thus the simulator
only asked one query for (·, ·, ·, ·, V,W). The second signature can therefore be
returned as a forgery by the simulator. Lastly, if the messages are the same, the
signatures must be different, thus have different identifiers. One of the ChkSig
calls in the experiment returns thus 0.

16

Signature Non-Frameability (under DLIN+DHSDH+HDL). There are
two ways for an issuer to “wrongfully” open a transcript: either he opens it to a
user (not necessarily honest) and an identifier of a signature which was produced
by an honest user in another session; or it opens it to an honest user who has
not participated in the issuing session.

Framing an honest signature. Suppose the adversary impersonating the
issuer manages to produce a new opening of a transcript that leads to an honestly
generated signature.

We reduce this framing attack to break CDH, whose hardness is implied
by that of DLIN. Let (G,F, V ′) be a CDH challenge, i.e., we seek to produce
W ′ := F (logG V

′). Set up the parameters of the scheme setting H = Gh and
knowing the trapdoor for SSNIZKPoK. In one call of the adversary’s User oracle
calls we do the following: choose η ← Zp and use V ′ from the CDH challenge.
Simulate the proof of knowledge of W ′. Let v′′ be the value returned from the
adversary, and (V := V ′P η,W := V h) be the identifier of the resulting signature.

Suppose the adversary produces a proof (V̄ ′, P̄ , v̄′′, π̄, Σ̄) with (V̄ ′, P̄) 6=
(V ′, P) for the honest identifier (V,W). By simulation soundness of SSNIZKPoK,
we can extract W̄ ′ = F (logG V̄

′) and Q̄ = F (logG P̄). From V ′Gηv
′′

= V = V̄ ′P̄ v̄
′′

we get V ′ = V̄ ′P̄ v̄
′′
G−ηv

′′
and thus W ′ = W̄ ′Q̄v̄

′′
F−ηv

′′
is a CDH solution. If the

adversary recycles (V ′, P), then it must find a new v′′ which leads to a V of an
honest signature, and thus has to solve a discrete logarithm.

Framing an honest user. Suppose the adversary outputs an opening of a
transcript and a proof revealing an honest user that has never participated in
that transcript. Analogously to the proof for signature traceability, we can use
the adversary to either forge a signature under a user public key or to forge a
one-time signature.

8 Conclusion

We presented the first efficient fair blind signature scheme with a security proof in
the standard model. The scheme satisfies a new security model that strengthens
the one proposed by Hufschmitt and Traoré in 2007. The new scheme is efficient
(both keys and signatures consist of a constant number of group elements) and
does not rely on any new assumptions. As byproducts, we proposed an extension
of Fuchsbauer’s automorphic signatures and a simulation-sound non-interactive
zero-knowledge proof of knowledge of a Diffie-Hellman solution, both compatible
with the Groth-Sahai methodology.

Acknowledgments

This work was supported by the French ANR 07-TCOM-013-04 PACE Project,
the European Commission through the IST Program under Contract ICT-2007-
216646 ECRYPT II, and EADS.

17

References

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In
Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume
1163 of LNCS, pages 244–251. Springer, November 1996.

[AO01] Masayuki Abe and Miyako Ohkubo. Provably secure fair blind signatures
with tight revocation. In Colin Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 583–602. Springer, December 2001.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 56–73. Springer, May 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, August 2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, February 2005.

[CGT06] Sébastien Canard, Matthieu Gaud, and Jacques Traoré. Defeating malicious
servers in a blind signatures based voting system. In Giovanni Di Crescenzo
and Avi Rubin, editors, FC 2006, volume 4107 of LNCS, pages 148–153.
Springer, February / March 2006.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–
203. Plenum Press, New York, USA, 1983.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, August 1992.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable
anonymous constant-size fair e-cash. In CANS 2009: 8th International Con-
ference on Cryptology And Network Security, 2009. (to appear) Preliminary
version available at http://eprint.iacr.org/2009/146.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups. Cryptology
ePrint Archive, Report 2009/320, 2009. http://eprint.iacr.org/.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based
verifiability. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833
of LNCS, pages 51–67. Springer, December 2007.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, December
2006.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In
Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages
164–180. Springer, December 2007.

[Gro09] Jens Groth. Homomorphic trapdoor commitments to group elements. Cryp-
tology ePrint Archive, Report 2009/007, 2009. http://eprint.iacr.org/.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, April 2008.

[GT03] Matthieu Gaud and Jacques Traoré. On the anonymity of fair offline e-cash
systems. In Rebecca Wright, editor, FC 2003, volume 2742 of LNCS, pages
34–50. Springer, January 2003.

18

[HT07] Emeline Hufschmitt and Jacques Traoré. Fair blind signatures revisited. In
Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto,
editors, PAIRING 2007, volume 4575 of LNCS, pages 268–292. Springer,
July 2007.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
581–600. Springer, March 2006.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109.
Springer, August 2003.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without
random oracles. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume
3876 of LNCS, pages 80–99. Springer, March 2006.

[OMA+99] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tat-
suaki Okamoto. An improvement on a practical secret voting scheme. In
Masahiro Mambo and Yuliang Zheng, editors, ISW’99, volume 1729 of
LNCS, pages 225–234. Springer, November 1999.

[RS10] Markus Rückert and Dominique Schröder. Fair partially blind signatures.
to appear at AFRICACRYPT ’10, 2010.

[SPC95] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind sig-
natures. In Louis C. Guillou and Jean-Jacques Quisquater, editors, EURO-
CRYPT’95, volume 921 of LNCS, pages 209–219. Springer, May 1995.

19

A A One-Time Signature on Vectors of Group Elements

Our one-time signature is based on the simultaneous triple pairing assumption
(STP) stating that the following problem is hard:

Given random generators (gr, hr, gs, hs, gt, ht) ∈ G6, output (r, s, t) ∈
G3 \ {(1, 1, 1)} such that

e(gr, r) e(gs, s) e(gt, t) = 1 e(hr, r) e(hs, s) e(ht, t) = 1

In Groth [Gro09] proves that DLIN implies STP and presents a homomorphic
commitment scheme whose binding property is implied by the above assumption.
We transform his commitment scheme to a one-time signature scheme analogous
to the scheme in [Gro06] based on Pedersen commitments. The signature uses a
commitment with an additional trapdoor. The public key is a commitment to 0
and a signature is a trapdoor opening of the commitment to the message.

We give a scheme with message space Gn.

KeyGenot Choose xr, yr, xs, ys, xt, yt, x1, y1, . . . , xn, yn, v, w ← Zp such that xrys 6=
xsyr. Define gi := gxi , hi =: gyi for i = r, s, t, 1, . . . , n, c = gv, d = gw. Let

α, β, γ, δ s.t.
(
α β
γ δ

)
=

(
xr xs
yr ys

)−1

. The public key is

(c, d,~g = (gr, gs, gt, g1, . . . , gn),~h = (hr, hs, ht, h1, . . . , hn))

and the secret key is (α, β, γ, δ, xt, yt, x1, y1, . . . , xn, yn).
Signot To sign a message (m1, . . . ,mn) ∈ Gn. Choose t ← G and set a :=

c t−xt
∏
m−xii and b := d t−yt

∏
m−yii . Return (r = aαbβ , s = aγbδ, t).

Verifyot A signature (r, s, t) is verified on (m1, . . . ,mn) by checking

e(gr, r) e(gs, s) e(gt, t)
∏
e(gi,mi) = e(c, g)

e(hr, r) e(hs, s) e(ht, t)
∏
e(hi,mi) = e(d, g)

A signature produced by Signot is indeed accepted by Verifyot since:

e(gr, r) e(gs, s) e(gt, t)
∏
e(gi,mi) = e(gr, aαbβ) e(gs, aγbδ) e(gt, t)

∏
e(gi,mi)

= e(aαxr+γxs , g)e(bβxr+δxs , g) e(gt, t)
∏
e(gi,mi)

= e(a, g) e(gt, t)
∏
e(gi,mi)

= e(c t−xt
∏
m−xii , g) e(gt, t)

∏
e(gi,mi)

= e(c, g)e(t−xt , g) e(gt, t)
∏
e(m−xii , g)e(gi,mi)

= e(c, g)

and similarly

e(hr, r) e(hs, s) e(ht, t)
∏
e(hi,mi) = e(hr, aαbβ) e(hs, aγbδ) e(ht, t)

∏
e(hi,mi)

= e(aαyr+γys , g)e(bβyr+δys , g) e(ht, t)
∏
e(hi,mi)

= e(b, g) e(ht, t)
∏
e(hi,mi)

= e(d, g)

20

Assuming STP, the signature is strongly unforgeable under a one-time chosen
message attack.
Let (gr, hr, gs, hs, gt, ht) be an STP instance. If (gr, gs, hr, hs) is a Diffie-Hellman
(DH) tuple, (i.e., e(gr, hs) = e(gs, hr)), we have an STP solution (gs, g−1

r , 1),
since e(gr, gs)e(gs, g−1

r)e(gt, 1) = 1 and e(hr, gs)e(hs, g−1
r)e(ht, 1) = 1.

If (gr, gs, hr, hs) is not a DH-tuple, we choose ρ̄, σ̄, τ̄ , ρ1, σ1, τ1, . . . , ρn, σn, τn ←
Zp and set gi := gρir g

σi
s g

τi
t , hi := hρir h

σi
s h

τi
t , for 1 ≤ i ≤ n; and c := gρ̄rg

σ̄
s g

τ̄
t , d :=

hρ̄rh
σ̄
sh

τ̄
t . Since (gr, gs) and (hr, hs) are “linearly independent”, all these group el-

ements look random. We give the adversary the public key (c, d,~g,~h). The signing
query for (m1, . . . ,mn) is answered by returning r = gρ̄

∏
m−ρii , s = gσ̄

∏
m−σii ,

t = gτ̄
∏
m−τii . We have:

e(gr, r) e(gs, s) e(gt, t) = e(gr, gρ̄
∏
m−ρii)e(gs, gσ̄

∏
m−σii)e(gt, gτ̄

∏
m−τii)

= e(gρ̄rg
σ̄
s g

τ̄
t , g)

∏
(g−ρir g−σis g−τit ,mi)

= e(c, g)
∏
e(g−1

i ,mi)

and similarly

e(hr, r) e(hs, s) e(ht, t) = e(d, g)
∏
e(h−1

i ,mi).

Thus (r, s, t) is a valid signature for (m1, . . . ,mn) and since τ̄ and the τi’s are
perfectly hidden, this looks like a random signature produced by Signot.

Suppose the adversary outputs (m′1, . . . ,m
′
n, r
′, s′, t′) 6= (m1, . . . ,mn, r, s, t).

Dividing the verification relation for each signatures yields:

e(gr, r′r−1
∏

(m′im
−1
i)ρi) e(gs, s′s−1

∏
(m′im

−1
i)σi) e(gt, t′t−1

∏
(m′im

−1
i)τi) = 1

e(hr, r′r−1
∏

(m′im
−1
i)ρi) e(hs, s′s−1

∏
(m′im

−1
i)σi) e(ht, t′t−1

∏
(m′im

−1
i)τi) = 1

If (m′1, . . . ,m
′
n) = (m1, . . . ,mn), then (r′r−1, s′s−1, t′t−1) 6= (1, 1, 1) and these

relations provide a solution to the STP problem. Otherwise, if we denote I ⊂
{1, . . . , n}, the set of indices for whichm′i 6= mi and ni := m′im

−1
i , the probability

that the adversary’s output satisfies r′
∏
i∈S n

ρi
i = r is upper-bounded by 1/p

since the ρi’s are perfectly hidden. Therefore if (m′1, . . . ,m
′
n) 6= (m1, . . . ,mn),

we also obtain a solution to the STP problem with overwhelming probability.

21

