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NB: We are developing a summary table for recommendations for FAIR workflows against the FAIR 

Principles.  

 

Abstract (notes) 

• Computational workflows are an increasingly important part of the research landscape, and a 

key tool for: instrumentation data capture, data processing pipelines, data analytics, predictive 

modelling and simulation suites.  

• Properly designed workflows contribute to FAIR data principles [FAIR principles explained in 

this issue], since they provide the metadata and provenance necessary to describe their data 

products and they describe the involved data realms in a formalized, completely traceable way. 

• Workflows are method digital objects in their own right that are FAIR too; however they are not 

data, they are software. The FAIR principles for data are not directly applicable and need to be 

adapted and extended. 

• Workflows bring the FAIR principles to a new level to cater for their composite and living nature, 

their dependencies on their environment and their components, and their need for robust and 

portable execution. 

 

Introduction  

In data intensive science, e-infrastructures and software tools are heavily used to help scientists 

manage, analyze, and share increasing volumes of complex data [Atkinson 2017]. Data processing 

tasks like data cleansing, normalisation and knowledge extraction need to be automated stepwise 

in order to foster performance, standardisation and re-usability. Increasingly complex data 

computations and parameter-driven simulations need infrastructures and consistent reporting to 

enable systematic comparisons of alternative setups [Deelman 2017]. As a response to these needs, 

the practice of performing computational processes using workflows has taken hold in different 

domains such as the Life Sciences [Cohen-Boulakia 2017], biodiversity [Mathew 2014], astronomy 

[Freudling 2013], geosciences [Duffy 2012], social sciences [Turner 2015] and more generally 

machine learning systems such as TensorFlow. 

 

https://doi.org/10.5281/zenodo.2642531
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A workflow is a precise description of a procedure – a multi-step process to coordinate multiple 

tasks. In computational workflows, each task represents the execution of a computational process, 

such as running a code, the invocation of a service, the calling of a command line tool, access to a 

database, submission of a job to a compute cloud, or even the execution of another workflow.  

Figure 1 gives an example of a real workflow represented using the Common Workflow Language1 

[Amstutz 2016]. 

 

Computational workflows promise support for automation that scales across computational 

infrastructures and large datasets and shield users from underlying execution complexities and 

inter-resource incompatibilities. From an execution perspective they are a means to handle the 

work of accessing an ecosystem of software and platforms, managing data, securing access, and 

handling heterogeneities. From a reuse and reproducibility perspective the automated methods can 

be packaged and ported across computational platforms easing how we can create and execute 

workflows in different environments and among diverse skill/expertise levels of users. From a 

reporting perspective they are a means to specify and document the workflow design and report 

the methodology: accurately recording the data inputs, parameter configurations and history of 

their runs and the provenance of their output data products [Cuevas-Vicenttín 2012]. The 

provenance of a result (i.e., why and how a given result has been obtained by an analysis) enables 

the understandability and comparison of multiple results, and facilitates the exchange, 

standardisation and reusability of results. 

 

The rise in the use of workflows has been accompanied by the many diverse systems by which they 

can be implemented. At one end of the spectrum are ad-hoc scripts (Command Line, Python, Java, 

etc.) and interactive notebooks -which provide an intuitive interface to quickly interact with the 

analysis results (e.g., Jupyter2, RStudio3, Zeppelin4). At the other end are highly featured workflow 

management systems (WfMS) some aimed at general application s (e.g. KNIME5) whilst others have 

been adopted by specific communities with specialised features and component collections 

(Nipype6 for neuro-bioimaging).   

 

                                                                    
1 http://commonwl.org/  
2 https://jupyter.org/  
3 https://www.rstudio.com/  
4 https://zeppelin.apache.org/  
5 https://www.knime.com/  
6 https://nipype.readthedocs.io/  

http://commonwl.org/
https://jupyter.org/
https://www.rstudio.com/
https://zeppelin.apache.org/
https://www.knime.com/
https://nipype.readthedocs.io/
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Figure 1: A workflow for detecting variants in genome sequences.  

The workflow is specified in the Common Workflow Language viewed using the CWL Viewer. 

Any CWL compliant execution engine should be able to execute this workflow. 
https://w3id.org/cwl/view/git/5a67e91727c8eb44afff27f9e4774eafef579c58/detect_variants/detect_variants.cwl  

 

 

WfMS can roughly be divided into coarse-grained, with a prime focus on chaining locally hosted or 

distributed tools (e.g. Galaxy7, KNIME, Taverna8) and fine-grained focusing on optimising 

computational resources over Distributed Computing Infrastructures or HPC for applications 

(Pegasus9, Spark, SnakeMake10, Nextflow11, Dispel4Py12) and cloud-based container orchestration 

                                                                    
7 https://galaxyproject.org/  
8 http://taverna.org.uk  
9 https://pegasus.isi.edu/  
10 https://snakemake.readthedocs.io/en/stable/  
11 https://www.nextflow.io/  
12 https://pypi.org/project/dispel4py/  

https://w3id.org/cwl/view/git/5a67e91727c8eb44afff27f9e4774eafef579c58/detect_variants/detect_variants.cwl
https://galaxyproject.org/
http://taverna.org.uk/
https://pegasus.isi.edu/
https://snakemake.readthedocs.io/en/stable/
https://www.nextflow.io/
https://pypi.org/project/dispel4py/
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(Kubernetes13). Many WfMS mix the two kinds [Moreno 2019]. All WfMSs aim to handle common 

cross-cutting concerns on behalf of the workflow execution. Concerns include: resource scalability 

(optimisation, concurrency and parallelisation), secure execution (of tools in their environment, 

monitoring and fault handling); tracking (process logging and data provenance tracking) and data 

handling (secure access, movement, reference management). WfMSs vary how their users interact 

with them, for example by APIs or command lines, or for those with more limited programming 

skills, a GUI for authoring the workflow specification by “drag, drop and linking”.  WfMS may 

execute over HPC or geographically distributed clusters, clouds across systems, or even from 

desktops. They consequently vary in their mechanisms to prepare their components to become 

executable steps and must manage their portability and their dependencies on the infrastructure 

used to run them.  

 

Workflows are composed of modular building blocks that have been prepared with standardised 

interfaces to be linked together and run by a computational engine. Thus the key characteristic of 

computational workflows is the separation of the workflow specification from its execution, capturing 

the control flow order between components and explicitly exposing the dataflow and data 

dependencies between the inputs and outputs of the processing steps. This separation is 

fundamental to supporting workflow comprehension, design modularity, workflow comparisons 

and alternative execution strategies. A WfMS explicitly makes this distinction. Interactive 

notebooks can do so when organized appropriately by defining their dataflow in the form of 

interactive computational cells; i.e., input and output variables explicit in each cell, data 

dependencies are explicit on each cell, and the steps are executed in order. Notebooks can also be 

used as “meta workflows” as the steps can be scripts or command-line calls to a WfMS. Scripts tend 

to interleave data and computational processes, although systems such as YesWorkflow [McPhillips 

2015] seek to provide users of scripting languages with the means to annotate existing scripts with 

special comments that reveal their hidden computational modules and dataflows.  

 

We propose that FAIR Principles apply to workflows, and WfMSs, in two major areas: 

• Properly designed workflows contribute to FAIR data principles, since they provide the 

metadata and provenance necessary to describe their data products and they describe the 

involved data realms in a formalized, completely traceable way. 

• Workflows are Digital Objects in their own right, encapsulating methodological know-how that 

is to be found and published, accessed and cited, exchanged and combined with others, and 

reused as well as adapted.  

These two aspects are explored of the rest of the article. References to FAIR principles [Wilkinson 

2016] are given in brackets. 

FAIR Data and Workflows 

Key contributions of workflows to FAIR Data compliance lies in the standardisati0n of practices, in a 

world of expanding and diversifying processing tools and computational operating environments, 

and in the formal computer-interpretable capture of provenance data. Computational workflows 

are at their heart automated data processing machinery. The effectiveness of that automation is 

not only enhanced by FAIR data, automation changes expectations with respect to data quality, 

clear identification, explicitness of data organisations, structures and semantics, machine-readable 

                                                                    
13 https://kubernetes.io/  

https://kubernetes.io/
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licenses and access permissions. FAIR data would enable a WfMS to automatically make informed 

choices from the phase of the workflow design (e.g., by suggesting tools fitting data features when 

several alternative tools could be considered for a given data analysis step) to the phase of workflow 

execution (e.g., by validating the data against a step’s expected type).  A WfMS thus needs to be 

able to access precise information on data origin, the way of accessing it, and a set of associated 

metadata. Domains such as the Life Sciences have developed ontologies, vocabularies and services 

for data interoperability (I3) and identifier resolution (F1), i.e., efforts such as the Breeding API 

(BrAPI)14 to standardise the interface for exchanging data between applications and the EDAM 

ontology15 to precisely specify the input and output of tools executed in a workflow (see 

FAIRsharing.org for examples). The formalised and finer grained annotation of data carries a cost, 

which is arguably why a significant amount of workflow processing is still metadata wrangling, 

format transformations and identifier mapping [Garijo 2014].  

 

The workflow specification itself can be thought of as “prospective provenance”, that is, as a recipe 
to produce a data product that exposes the extent of the effort made to make the data FAIR that 

could be validated against emerging FAIR indicators [Metrics paper in this issue]. Determining 

whether the data produced by a workflow is FAIR is not straightforward and requires concrete 

criteria.  

 

The combination of FAIR data, FAIR tools (inputs, outputs, disclosure of the task, statistics) with 

FAIR Infrastructure [Hardisty in this issue] (metadata are available on the underlying resources for 

running workflows and managing results) would significantly assist in the operation of workflows. 

Examples include annotations on tools and libraries (e.g. Bio.tools16, Bioconductor, CRAN, PyPI) and 

on software containers (e.g. Biocontainers17). Standardised specifications on handling data formats 

and executables, automated handling of tool dependencies, and versioning and explicit metadata 

on computational resource needs would aide harmonisation of software tools execution and 

efficient job scheduling and data movement throughout different FAIR e-infrastructures.  

 

For data generation a standardised workflow specification and automated execution contributes to 

transparency, reproducibility, analytic validity, quality assurance and the attribution and 

comparison of results. If well designed workflows can automate the production of metadata 

descriptions of data products (F2, I2, I3, R1.3) and the deposition of data in searchable resources 

(F4).   Identifiers, licensing and access present interesting challenges in workflow execution: 

 

• Identifiers (F1, F3, A1) concerns include the propagation of identifiers through the workflow, 

tracking data citation [Groth in this issue] and the minting of identifiers for large numbers of 

intermediate results. Minids [Chard 2016] are proposed as light weight identifiers to 

unambiguous name, identify and reference research data products that can then optimise 

data exchange by reference this reducing unnecessary or insecure data movement. 

Workflows need to move data references through their engines not the data itself. 

                                                                    
14 https://brapi.docs.apiary.io/  
15 http://edamontology.org/  
16 http://bio.tools/  
17 https://biocontainers.pro/  

https://brapi.docs.apiary.io/
http://edamontology.org/
http://bio.tools/
https://biocontainers.pro/
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• Licensing (R1.1). As workflows often combine data, data licenses need to be respected, 

honoured and prop, as do licenses on the software used by the workflow tasks. Combining 

licenses is particularly tricky and can impact on the ability to license the workflow itself or its 

data products.   

• Data access (A1.1, A1.2): Single sign on to WfMS requires harmonised AAI propagation 

through the different tasks of the workflow which may be hosted by different service 

providers using different systems. 

 

 

Workflows intrinsically provide precise documentation of how the data has been generated (R1.2). 

The detailed record of the details of every executed process together with comprehensive 

information about the execution environment used to derive a specific data product is retrospective 

provenance, either observed by the WfMS or disclosed to it by the computational task itself. A great 

deal of work has focused on provenance tracking of [Herschel 2017] leading to standardisation 

efforts such as Prov [Khan 2019].  Challenges remain: provenance standards have yet to be fully 

embraced by WfMS, there are shortages of provenance processing tools, and automated 

provenance collection can be too fine-grained and too detailed to be of service to researchers [Alper 

2018].  The computational steps are themselves unFAIR. Although open source tools allow us to 

inspect procedures, many codes (especially those only available as run-time binaries) are black 

boxes or proprietary software that do not disclose the link between their inputs and outputs, 

breaking the provenance lineage of data. Steps in coarse-grained workflows are often wrapped 

applications with buried workflows and manual steps within. Data resources and tools do not 

always report basic metadata such as their version or licence in a standardised, machine 

processable way. Bioschemas18 aims to get such metadata marked-up in resources in a lightweight 

way. A greater problem is unFAIR service provision, whereby the components change their 

interfaces without notice breaking the workflows that use them. Given their data focus, the FAIR 

principles are chiefly focused on the availability of metadata rather than the quality of service of the 

databases, tools and the e-infrastructures the data exist within.  

 

FAIR Workflows as Digital Objects 

The initial FAIR criteria were envisioned for data. As workflows are digital objects in their own right 

it is natural to draw an analogy with data and to try to apply the FAIR Principles to them. The 

majority of workflows are not yet registered in specialised repositories or are stored in software 

repositories indistinguishable from other software.  Conventions for naming workflows still have to 

be devised (F1). Workflows range in the quality of their documentation, as are other software, 

described using proprietary or native programming languages.  

 

Researchers have been actively exploring ways to for workflows to be FAIR.  Workflow registries 

and repositories typically cater for specific WfMSs, such as KNIMEHub19 for KNIME and nf-core20 for 

Nextflow Life Science pipelines, to support findability and accessibility (F4), with description and 

metadata associated with deposited workflows (F2) and in some cases persistent, unique identifiers 

                                                                    
18 http://bioschemas.org/  
19 https://hub.knime.com/  
20 https://nf-co.re/  

http://bioschemas.org/
https://hub.knime.com/
https://nf-co.re/
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(F1). Access is typically baked into the workflow applications (A1), for example only Galaxy 

workflows are only available in dedicated Galaxy installations such as Workflow4Metabolomics21. 

Others such as (e.g. WINGS22) provide means to export workflows as Linked Data. Workflow 

findability in repositories has been studied [Starlinger 2012] alongside workflow similarity 

[Starlinger 2014] where workflows are compared based on their metadata and structure. For 

workflows to be accessible in the same way as data, they need to be archived and cited just as data 

is archived and cited using citation metadata [Smith 2016]. In the schema.org mark-up used by 

citation infrastructures such as Datacite, terms indicate data is derived from other data.  Ideally 

there should also derived from terms indicating the software or service used to perform that 

transformation harmonised with workflow provenance.   

 

myExperiment23 [De Roure 2009] is an attempt at a WfMS agnostic repository, pioneering 

approaches for workflow sharing and publishing with licenses, crediting authors when workflow 

designs were reused or repurposed, and packaging workflows into collections and with other digital 

objects such as associated data files and publications. The work laid the foundations for workflow 

based Research Objects24 [Belhajjame 2015] that allows for bundling of all the artefacts associated 

with an investigation or piece of research into one whole that can also be cited. The Figure 1 

workflow’s description files and links to executable containers and data files can be downloaded in a 
Research Object zip-based bundle along with citation metadata and assigned a DOI. The European 

Open Science Cloud for Life Sciences has started work to build a workflow registry using CWL with 

Research Objects federated with registries for tools (bio.tools) and containers (Biocontainers). 

 

Several attempts have been made to standardise workflow descriptions in order to aid 

discoverability (F2) and enable interoperability (I1). The Interoperable Workflow Intermediate 

Representation [Plankensteiner 2011] was proposed as a common bridge for translating fine-grain 

workflows between different languages independent of the underlying distributed computing 

infrastructure [Terstyanszky 2014]. GA4GH Workflow Execution Service and Task Execution 

Schema25, the Workflow Description Language26 and the Common Workflow Language (CWL) are 

recent community efforts to describe workflows. The CWL specification aims to describe workflows 

and command-line tool interfaces in a way that makes them portable and scalable across a variety 

of software and hardware environments and runnable by other CWL-compliant engines. This last 

point is critical. Workflow are not data, they are software that are intended to be executed. 

Workflows as software challenge the FAIR principles by their structure, forms, versioning, 

executability, and reuse.  

 

Structure. Workflows are inherently composite whose components can be workflows in a nested, 

fractal way. Workflows will be reused as sub-workflows. The distinction between a workflow and its 

components steps [Haendel 2016] is blurred. FAIR criteria can thus be applied simultaneously on 

multiple levels. To render a workflow findable relies on the findability of the involved tools and data 

                                                                    
21 https://workflow4metabolomics.org/  
22 http://www.wings-workflows.org/  
23 http://myexperiment.org/   
24 http://researchobject.org/  
25 https://www.ga4gh.org/  
26 https://software.broadinstitute.org/wdl/  

https://workflow4metabolomics.org/
http://www.wings-workflows.org/
http://myexperiment.org/
http://researchobject.org/
https://www.ga4gh.org/
https://software.broadinstitute.org/wdl/


8 
  

types as researchers often use these as search attributes. FAIR properties on the components - 

metadata, licensing, author credit, access authorization and so on – propagate to the workflow level 

and may be incompatible. Fundamentally, how we identify, cite and credit composite software is an 

open question [Katz 2014].  

 

Forms. When we speak of a FAIR workflow what do we mean? A workflow can be a CWL 

specification with test or exemplar data; an implementation of that design in a WfMS; an 

instantiation of that implementation ready to be run with input data and parameters set and 

computational services spun up; a run result with intermediate and final data products and 

provenance logs. Workflow-centric Research Objects attempt to create a metadata framework to 

capture and aggregate each form, but each may have different FAIR criteria. 

 

Versioning. Software is a living artefact to be maintained, updated, and eventually deprecated. The 

components, the WfMS itself and the underlying computational infrastructures they run on evolve 

and change. Workflow evolution is a form of provenance [R1. 2] that tracks any alteration of an 

existing workflow resulting in another version that may produce the same or different results 

[Casati 1998]. Moreover, to make methodological variants workflows will be recycled and 

repurposed: cloned, forked, merged and dramatically changed. Workflow repositories such as nf-

core embrace this software nature, building on top of collaborative development environments 

such as github that natively support versioning as well as testing and validation. FAIR principles 

have to address versioning and “fixivity” – the need to snapshot a workflow to fix its reproducible 

state and associate a persistent identifier. 

 

Executability. Workflows are executable objects. To be interoperable (I1) and reusable (R1) they 

need to be portable, encapsulating all their runtime dependencies. Lightweight container-based 

virtualisation solutions to distribute software and share execution environments (e.g. CONDA, 

Docker, Singularity) revolutionise workflow reusability. Nevertheless, workflows are time limited 

objects whose active lifespan is dependent on that of their components and WfMS as much as on 

their scientific relevance. Consequently CWL addresses both explicit support for containerised 

execution and the lifting of workflow description from the WfMS or application it is embedded in so 

that it may be runnable in other CWL-compliant engines even when no longer executable in its 

native form (A2). In workflow e-infrastructures (e.g. in local workstations or in cloud environments), 

resource limitations need to be defined by the workflow. Implicit security aspects and stability of 

the workflow environment need to be covered by the infrastructure and its components and not by 

the workflow. 

 

Reuse. Reusing workflows involves a continuum of situations from pure redo where the exact same 

workflow (same tools) is re-executed in the exact same environment with the exact same data and 

parameter settings, to workflow replication, where minor changes can be made usually in the 

workflow environment and/or parameter settings but the results remain the same, to workflow 

reproducibility where the aim of the analysis remains the same but the means (steps) or data may 

vary, to eventually workflow reuse where only part of the original workflow is considered with a 

possible different aim in workflow repurposing [Garijo 2017, Wroe 2006]. Regardless of intent, the 

workflow user must be confident that the expected results are generated. R1 means robust 

software practices [Artaza 2016, Taschuk 2017, Leprevost 2014] that entails: 
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• Proper testing of the computational workflow and its modules as well as the software tools that 

are invoked during workflow runtime; 

• Validation of interoperability claims that tests workflow replication on different platforms;  

• Validation of parameters to preclude workflow failure and faulty or unsafe results. The 

formulation of parameter must therefore be FAIR and must include documentation and 

explanation of their purpose and range definitions (testing of parameter ranges). The 

BioCompute Object specification [Alterovitz 2018] emphasises detailed representation and 

validation of parameters for regulatory approval of reusable computational pipelines for 

precision medicine.  

 

These thoughts lead to two conclusions (i) that treating FAIR workflows as data artefacts only goes 

so far, and that FAIR software principles should built on best practices for software maintainability, 

maturity and computation reproducibility guidelines [Stodden 2016] (ii) the individual parts, forms, 

versions and execution environments of a workflow need to be FAIR by themselves, leading to 

complex interdependencies which need to be covered by FAIR metrics.  

 

Conclusions (Notes) 

• Properly designed workflows contribute to FAIR data practices, since they provide the metadata 

and provenance necessary to describe their data products and they describe the involved data 

realms in a formalized, completely traceable way. The processing and production of FAIR data is 

not scalable without automation there remain major challenges. The transformational power of 

workflows for FAIR data. 

• Workflows are Digital Objects in their own right [REF Wittenburg paper in this issue], encapsulating 

methodological know-how that is to be found and published, accessed and cited, exchanged and 

combined with others, and reused as well as adapted. FAIR principles for software are different to 

data, and so will be their FAIR metrics/indicators, FAIR software is actually maintainable software 

using best software practices [Artaza 2016, Taschuk 2017] for maintainability and maturity; 

Reproducibility is essential 

• FAIR needs to be built in to WfMS and embedded in tools and practices and that will cost 
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