
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Departmental Papers (ESE) Department of Electrical & Systems Engineering 

February 2005 

Fair Distributed Congestion Control in Multirate Multicast Fair Distributed Congestion Control in Multirate Multicast 

Networks Networks 

Saswati Sarkar 
University of Pennsylvania, swati@seas.upenn.edu 

Leandros Tassiulas 
University of Thessaly 

Follow this and additional works at: https://repository.upenn.edu/ese_papers 

Recommended Citation Recommended Citation 
Saswati Sarkar and Leandros Tassiulas, "Fair Distributed Congestion Control in Multirate Multicast 
Networks", . February 2005. 

Copyright 2005 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 13, Issue 1, February 2005, 
pages 121-133. 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply 
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing 
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/146 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/ese_papers
https://repository.upenn.edu/ese
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese_papers/146
mailto:repository@pobox.upenn.edu


Fair Distributed Congestion Control in Multirate Multicast Networks Fair Distributed Congestion Control in Multirate Multicast Networks 

Abstract Abstract 
We study fairness of resource allocation in multirate, multicast networks. In multirate networks, different 
receivers of the same multicast session can receive service at different rates. We develop a mathematical 
framework to model the maxmin fair allocation of bandwidth with minimum and maximum rate 
constraints. We present a necessary and sufficient condition for a rate allocation to be maxmin fair in a 
multirate, multicast network. We propose a distributed algorithm for computing the maxmin fair rates 
allocated to various source–destination pairs. This algorithm has a low message exchange overhead, and 
is guaranteed to converge to the maxmin fair rates in finite time. 

Keywords Keywords 
Algorithms, complexity theory, fairness, multicast 

Comments Comments 
Copyright 2005 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 13, Issue 1, 
February 2005, pages 121-133. 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way 
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or 
personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution must 
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, 
you agree to all provisions of the copyright laws protecting it. 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/146 

https://repository.upenn.edu/ese_papers/146


IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005 121

Fair Distributed Congestion Control in Multirate
Multicast Networks

Saswati Sarkar, Member, IEEE, and Leandros Tassiulas, Member, IEEE

Abstract—We study fairness of resource allocation in multirate,
multicast networks. In multirate networks, different receivers of
the same multicast session can receive service at different rates.
We develop a mathematical framework to model the maxmin fair
allocation of bandwidth with minimum and maximum rate con-
straints. We present a necessary and sufficient condition for a rate
allocation to be maxmin fair in a multirate, multicast network. We
propose a distributed algorithm for computing the maxmin fair
rates allocated to various source–destination pairs. This algorithm
has a low message exchange overhead, and is guaranteed to con-
verge to the maxmin fair rates in finite time.

Index Terms—Algorithms, complexity theory, fairness, multi-
cast.

I. INTRODUCTION

MULTICASTING provides an efficient way of transmit-
ting information from a sender to a set of receivers. A

single source node or a collection of source nodes send iden-
tical messages simultaneously to multiple destination nodes.
Single destination or unicast and broadcast to the entire net-
work are special cases of multicast. Multicasting reduces band-
width consumption as message replication takes place at only
the forking nodes. This is particularly useful for real-time mul-
tiparty communications like audio or video teleconferencing,
video-on-demand services, distance learning, etc., as these ap-
plications consume a lot of bandwidth. We would study resource
allocation for real-time multicast applications.

There are two possible transmission modes in multicast net-
works for loss tolerant real-time traffic like audio, video, etc. In
one, all receivers in the same session receive information at the
same rate. However, this unirate transmission has severe short-
comings for multicast networks. This is because of network het-
erogeneity. A single session may have many destinations. The
paths to different destinations may have different bandwidth ca-
pacities, e.g., one may consist of multimegabit links, such as,
(45 Mb/s) and another may have a 128 kb/s ISDN line. A single
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rate of transmission per session is likely to either overwhelm
the slow receivers or starve the fast ones, in absence of addi-
tional provisions. For real-time traffic, multirate transmission
can be used to counter network heterogeneity. The receivers of
the same session are allowed to receive at different service rates.
We would discuss several multirate encoding schemes later, but
we mention one of the possibilities now. A source encodes its
signal in several layers, and these layers can be combined at the
decoder for signal reconstruction. These layers are transmitted
as separate multicast groups, and receivers adapt to congestion
by joining and leaving these groups [8]. Precision of the recon-
struction improves with the number of layers received. This lay-
ered transmission scheme has been used for both video [21] and
audio [4] transmissions over the internet and has potentials for
use in ATM networks as well [11].

Layer bandwidth may be flexible or predetermined. In the
former, layer bandwidth can be tuned to closely match any de-
sired receiver rates with fine granularity [15]. The feasible set
can be assumed to be continuous in this case. In the latter, layer
bandwidths are predetermined and have coarse granularity. A
receiver either receives a layer fully or does not receive the
layer at all. It cannot partially subscribe to a layer. Effectively,
the network can only allocate a discrete set of rates to the re-
ceivers, whereas a continuous set of rates can be allocated when
receivers can subscribe to fractional layers. We study the con-
tinuous case here and have studied the discrete case in [20]. We
discuss how to attain a continuous allocation of rates in Sec-
tion IV.

We study fair allocation of rates in multirate, multicast net-
works. Max-min fairness is a well accepted definition of fairness
[3]. A bandwidth allocation is maxmin fair, if no receiver can be
allocated a higher service rate without lowering that of another
receiver having equal or lower rate. The objective is to serve
every receiver of every session at a fair rate. The service rate
of a receiver should depend only on the congestion in the path
leading to the receiver, and its processing capability. Attaining
this objective is complicated in multicast networks as different
receivers have different paths and processing capabilities.

We first review the previous work in this area. We have
proposed a routing and scheduling policy which stabilizes the
system, if the network can accommodate all the traffic demands
[18]. However, resource limitations may not allow fulfilling all
traffic demands, particularly for bandwidth expensive real-time
applications. Fairness of resource allocation becomes important
in such a scenario. Tzeng et al. have investigated the problem
of fair allocation of bandwidth to multicast sessions under the
constraint that all receivers of the same session must receive
service at the same rate [22]. However, under this unirate

1063-6692/$20.00 © 2005 IEEE
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TABLE I
SUMMARY OF SYMBOLS USED THROUGHOUT THE PAPER

transmission, due to network heterogeneity, service rate may
not match the path bandwidth and the processing capability
of every receiver. Fairness properties of a multicast network
improves if multirate transmission is used instead of single rate
transmission [17]. Chiung et al. [6] advocate simulcast, but that
does not utilize bandwidth efficiently as it requires multiple
transmission of the same information. Some well known net-
work protocols proposed for fair allocation of rates in layered
transmission, RLM (Receiver-driven Layered Multicast) [16]
and LVMR (Layered Video Multicast with Retransmissions)
[12] improve fairness among members of the same session,
but do not distribute the bandwidth fairly among members of
different sessions [13]. Li et al. [13] suggest a scheme for fair
allocation of layers for multisession layered video multicast
to rectify this defect in RLM and LVMR. The authors present
empirical evidence that the scheme can share bandwidth fairly
with TCP and improves inter-session fairness for networks
with multiple video sessions sharing only one link. Rubenstein
et al. [17] propose a centralized algorithm for computing the
maxmin fair rates in a multirate multicast network. Centralized
algorithms cannot be implemented in large networks.

In Section II, we formulate the problem of fair allocation of
bandwidth in multirate multicast networks. In Section III-A,
we present an algorithm for computing the maxmin fair
rates in an arbitrary network with any number of multicast
sessions. This algorithm requires only local information at
any node in the network and is thus amenable to distributed
computation. In Section III-B, we present a framework for
scalable distributed implementations of the above algorithm.
Our analytical results guarantee that the distributed algorithm
converges to the maxmin fair rates in finite time, and presents
worst case convergence time bounds. Our algorithm can be
used in internet and ATM networks. We have incorporated
minimum rate constraints keeping in mind ATM networks. In
Section III-C, we investigate using simulations the performance
of the distributed algorithm. In Section IV, we discuss several
features of the fairness framework. We conclude in Section V.
We have summarized the notations used throughout the paper
in Symbol Table I. Unless otherwise stated, the proofs can be
found in the Appendix.

II. NETWORK MODEL

We consider an arbitrary topology network with multicast
sessions. A multicast session is identified by a number , and is

associated with a source and destination set pair , where
is the source node of the session and is the set of destination

nodes. There is a tree associated with each session that carries
the traffic of the session. The tree can be established during con-
nection establishment phase in connection-oriented networks,
or can be established by some well known multicast routing pro-
tocol like DVMRP [7], MOSPF [14], CBT [2], and PIM [8] in
connectionless networks.

We call every source destination pair of a session a virtual
session. If a session has source and destination set , where

, then it corresponds to virtual sessions,
. For example, in Fig. 1, session 1 has two

receivers, , , and two virtual sessions,
and . Our objective is to achieve the maxmin fair

rate allocation for the virtual sessions. Every virtual session
(source–destination pair) has a minimum and a maximum rate.
These are decided from application requirements. For example,
the reception quality may be poor for a high fidelity video
transmission if the bandwidth is below a certain threshold,
which constitutes the minimum rate for the receiver.

Let there be virtual sessions in the net-
work. Rate allocation is an -dimensional vector

, with
being the rate allocated to the th virtual session of the th

session. For simplicity, henceforth, we will use a single index.
A rate allocation is feasible if the following
conditions hold.

1. , where and are, respectively,
the minimum and the maximum rates of virtual session
, ,

2. Let denote the set of sessions passing through link
, denote the set of virtual sessions of session

passing through link and denote the capacity of link
. The rate allocated to session in link , , under rate al-

location is the maximum of the rates allocated to the vir-
tual sessions in , i.e., . Then
the total bandwidth consumed by all sessions traversing
link cannot exceed ’s capacity, i.e., .
In other words,

capacity condition

Fig. 1 illustrates an example network with a few capacity and
maximum and minimum rate constraints. We assume here that
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Fig. 1. The numbers in brackets () denote the capacities of the respective links.
The capacity constraint for link e is max(r ; r ) + r � 7 and that for link
e is r + r � 6:5. The minimum and the maximum rate constraints are
4 � r � 5, 1 � r � 1 and 0 � r � 5. The maxmin fair rate vector
is (4, 3.5, 3). Under the maxmin fair rate allocation, link e is bottlenecked
w.r.t. virtual sessions (v; u ) and (v; u ) and e is bottlenecked w.r.t. virtual
session (v; u ). Link e is not bottlenecked w.r.t. any virtual session because
its capacity is not fully utilized. Consider another feasible rate vector (4, 4.5, 2).
Now no link is bottlenecked w.r.t. virtual session (v; u ).

the minimum rate requirements of all sessions can be satisfied.
If not, then the network can either not accept the session or lower
the minimum rate guarantee.

A feasible rate allocation vector is maxmin fair if it satisfies
the following property with respect to any other feasible rate
allocation vector : if there exists such that the th component
of is strictly greater than that of , then there exists

such that the th component of , is less than or equal to the
th component of , and the th component of

is strictly less than the th component of . The
bandwidth allocations according to are less even than those
according to in some sense. Refer to Fig. 1 for an example of
a maxmin fair allocation.

Lemma 1: Maxmin fair allocation exists uniquely.
Proof of lemma 1: We will present an algorithm which

attains the maxmin fair allocation in iterations (Theorem 1).
This proves the existence result.

Suppose two different rate allocations and are both
maxmin fair. There exists a component such that .
Without loss of generality . Since is maxmin
fair, there exists such that and . Thus,

. Since , from the maxmin fairness of
, there exists such that and . Thus,

. Continuing similar arguments, we get an infinite
sequence such that ,
and . It follows that the elements in this sequence
are all distinct. This contradicts the fact that the number of
components is finite.

Henceforth, we shall ignore the maximum rate constraints.
This does not cause any loss of generality because maximum
rate constraints can be incorporated by adding artificial links be-
tween receivers and the rest of the network. The capacity of an
artificial link equals the maximum rate of the receiver. The size
of the augmented network and hence the computational com-
plexity for the fair rates is similar to that of the given network.

Next, we introduce the concept of bottleneck links. A link
is said to be bottlenecked with respect to a virtual session

traversing if the following conditions hold.

• Capacity of link is fully utilized, i.e., the sum of the
rates allocated to the sessions traveling the link equals the
capacity of the link: .

• The virtual session has the maximum rate amongst all
virtual sessions of the same session traveling the link, i.e.,

, where is the session of the virtual ses-
sion .

• If any other virtual session traversing link has a rate
higher than that of virtual session , then ’s rate is less
than or equal to the minimum rate of some virtual session
in . Thus, if then .

Refer to Fig. 1 for an example of bottleneck links.
We now compare the definition of a bottleneck link with that

in the unicast context. First assume that the minimum rate con-
straints do not exist. In a unicast network, a link is bottlenecked
w.r.t. a session if its capacity is fully utilized and no other ses-
sion traversing the link has a greater rate. In a multirate multicast
network, the definition for a bottleneck link can be obtained by
replacing session with virtual session in the above definition.
Now assume that the minimum rate constraints exist. In the uni-
cast context, let be the bottleneck link of session . Then the
capacity of link is fully utilized like in the multicast case. How-
ever, a session traversing can have greater bandwidth than ,
but then ’s rate must equal ’s minimum required rate. In the
multicast case, let be the bottleneck link of virtual session .
Now the difference with the unicast case is that a virtual session

traversing link can have greater bandwidth than , and ’s rate
can be greater than ’s minimum required rate. The constraint
in this case is that ’s rate must be less than the minimum rate
requirement of its session in link , , and virtual sessions

and must belong to different sessions. Consider Fig. 1 for an
example. Let have capacity 6.5 units now. Let the minimum
rate requirements be (0, 4, 0). Consider an allocation (4, 4, 2.5).
Link is bottlenecked with respect to virtual session 3. Note
that . However, virtual sessions 1 and
3 are in different sessions, and .

Lemma 2 (Bottleneck Lemma): A feasible rate vector is
maxmin fair iff every virtual session has a bottleneck link.

Remark: The Bottleneck Lemma serves as a test for maxmin
fairness of a feasible rate allocation vector. It indicates that if a
rate vector is maxmin fair, then the rate of a virtual session is at
least for some link in its path if there are no minimum
rate requirements. In presence of minimum rate requirements,
this lower bound becomes ,
where is the set of sessions traversing link whose session
rates in link are greater than ’s rate.

III. A DISTRIBUTED SCHEME FOR COMPUTATION OF

THE MAXMIN FAIR RATES

We now present a distributed scheme for computing the
maxmin fair rates. We first describe the basic algorithm and
then discuss its distributed implementation.

A. Basic Algorithm

We describe the basic algorithm here. We first present a defi-
nition. In Table II, we have summarized other notations used in
this algorithm.

A virtual session is saturated under rate vector if there
exists a link in its path such that ’s capacity is fully utilized
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TABLE II
SUMMARY OF SYMBOLS USED IN THE RATE COMPUTATION ALGORITHM

and has the maximum rate amongst all virtual sessions of its
sessions that traverse , i.e.,

and

A session is saturated in a link if all the virtual sessions of the
session traveling link are saturated.

Now, we present the algorithm.

1. , , ,
link , virtual

session .
2.
3. For every link in the network, com-

pute the link control parameter .
If , then is the maximum
possible , which satisfies the equa-
tion, ,
else . Here,

.1

4. Compute for all virtual ses-
sions , where ,
if , else .

5. For every link in the net-
work compute the session rate in
link , for every session in ,

.
6. Compute the set of virtual sessions

unsaturated after the th iteration,
s.t.

and .
7. If , i.e., all virtual sessions

are saturated, the algorithm termi-
nates, else go to next step.

8. For every link , compute the set of
unsaturated sessions passing through
link at the end of the th itera-
tion:
.

9. For every link , for which ,
compute the bandwidth consumed by the

1This computation needs to be done for all unsatu-
rated sessions traversing link l only.

saturated sessions passing through
link , .

10. Go to step (2).

We now describe the algorithm’s operation. The maxmin fair
bandwidth is computed via an iterative procedure. The algo-
rithm classifies every virtual session as either saturated or un-
saturated. Initially, all virtual sessions are unsaturated, and their
status change from unsaturation to saturation. Ignore the min-
imum rate constraints for the initial intuition. At the beginning
of an iteration , every link computes a “fair share” for every
virtual session traversing (“link control parameter” ) as
per step 3. This fair share is assigned to every virtual session
traversing if there are no bandwidth constraints on other links.
The bandwidth restrictions of other links are considered as fol-
lows. A virtual session is allocated a rate equal to the min-
imum of the link control parameters on its path. In presence of
minimum rate requirements, a link additionally computes the
session link parameter, for every session traversing the
link, as . Thereafter, a virtual session
is allocated a rate equal to the minimum of its session link pa-
rameters in its path. Now, is the bandwidth allocation in
iteration . The algorithm subsequently checks the saturation
condition for each unsaturated virtual session. It turns out that
when a virtual session is saturated its bandwidth is maxmin fair,
and its bandwidth allocation does not change subsequently. The
algorithm terminates if all the virtual sessions are saturated, oth-
erwise there is at least one more iteration. In the latter case, the
algorithm makes computations which are used in the next iter-
ation. We describe them now. The bandwidth consumed by the
saturated sessions in a link, if any, are computed. This band-
width is subtracted from the link capacity, and the link con-
trol parameters are recomputed in the next iteration using this
residual capacity. We illustrate the operation of the algorithm
with an example.

Example 3.1.1: Consider the network of Fig. 1. The max-
imum rate constraints do not exist. Link control parameters are
as follows: , , , ,

, . Now, the session link control param-
eters are as follows. , , ,

, , , ,
. Computing the s as per step 4, we have

, , . Observe that virtual
sessions 1 and 3 are saturated, while virtual session 2 is not.
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. Thus, session 2 is saturated on all links. Session 1
is unsaturated on only those links which are on the path of vir-
tual session 2. , ,
if . , and .
Computations for the next iteration are as follows: ,

, , and for the rest of the
links. Now, , , . Thus,

. , . Now virtual session
2 is also saturated. So and the algorithm terminates.
The rates obtained upon termination are (4, 3.5, 3).

Theorem 1: The algorithm yields a maxmin fair rate alloca-
tion in at most iterations, where is the number of virtual
sessions.

The intuition behind the result is as follows: maxmin fair
sharing implies that if there are sessions sharing a link, each
session should get a “fair share” of the link bandwidth. If a ses-
sion is constrained to have a rate less than its fair share because it
is assigned a lower bandwidth on another link, then the residual
bandwidth is split fairly among other sessions. This is exactly
what the algorithm does.

Let be the set of links. Every step of this algorithm has a
complexity of . Since the algorithm must terminate
in iterations, the overall complexity of this algorithm is

.
The algorithm terminates in at most iterations in a special

case, i.e., if all the virtual sessions of the same session sharing
a link have the same minimum rate requirement ( if

and ) (Lemma 3). This condition on
minimum rates always holds in unicast networks because every
session has only one virtual session, and in multicast networks
without any minimum rate requirements.

Lemma 3: The algorithm terminates in at most
iterations, if for all , such that and

.

B. Distributed Implementation of the Basic Algorithm

We outline the distributed implementation of the basic algo-
rithm presented in the previous subsection. The details can be
found in technical report [19]. We will exploit the facts that: 1)
the computation of the session link parameters of sessions in
any link needs information only about the saturation status of
the sessions traversing the link and the previous iteration rates
of the unsaturated sessions traversing the link, and 2) a virtual
session (receiver) can determine its rate and saturation status if
it knows the session link rates and the bandwidth utilizations in
the links on its path.

Every node maintains an information record for each of its
outgoing links . The record maintains the following entries for
every session traversing link : 1) minimum session link rate:

; 2) session link rate; 3) rate bit; and 4) saturation entry. Every
link also stores its link control parameter. Note that the storage
in a record does not maintain separate information about the
virtual sessions of the session. Nodes interchange control mes-
sages during the distributed computation. The control messages
are: 1) backward rate packets; 2) forward rate packets; 3) probe
packets; and 4) saturation/unsaturation messages. The first two
are used to update the session link rates at the intermediate nodes
and the receiver rates at the receivers. The last two are used to

update the saturation status of the sessions and the receivers at
the intermediate nodes and the receivers, respectively.

Initially, all the sessions and virtual sessions are unsaturated.
Receivers send backward rate packets toward the respective
source with large rate values. Links compute their link control
parameters. The intermediate nodes modify the rate values in
the backward rate packets as they travel toward the source.
The rate value in a backward rate packet is decreased to the
minimum of the link control parameter and the current value in
the rate packet. The nodes record these modified rate values as
the session link rates. After this modification, nodes merge the
backward rate packets of a session. The merged backward rate
packet is transmitted toward the source with a rate value that
equals the maximum of those in the individual backward rate
packets.

A session source generates a forward rate packet after it re-
ceives a backward rate packet, with the same rate value as in the
incoming backward rate packet, and transmits it downstream.
Once a forward rate packet reaches a node, the node updates the
session link rates in each of its outgoing links, i.e., sets them
equal to the minimum of the rate value in the incoming forward
rate packet and the current session link rate in the incoming link.
This modified value is the current iteration session link rate of
the basic algorithm. The node then multicasts the forward rate
packet in each of its outgoing links on the path of the session,
with a rate value equal to that in the modified session link rate
field of the session. When a receiver receives a forward rate
packet, it records its rate and sends a probe packet toward the
source to query its saturation status.

An intermediate node determines the saturation status of the
session in the link when it receives a probe packet. A node re-
ceives probe packets of a session in each of its outgoing links
on the path of the session. It merges all of these into a single
probe packet, and sends it upstream. The content of the probe
packet reflects the saturation status of the session in the links
originating from the node [19].

When a source receives a probe packet, it generates a “satura-
tion” or an “unsaturation” message. The nature of the message
depends on the contents of the probe packet [19]. The interme-
diate nodes and the receivers update the saturation status of the
sessions based on the nature of this message. A receiver sends
a backward rate packet upstream on receiving an unsaturation
message but does not send any further control message if it re-
ceives a saturation message. The backward rate packets start a
new iteration.

Complexity: The distributed implementation terminates in
units of time where is the maximum round trip delay

from a source to a receiver in the network. The complexity can
be analyzed as follows. Let a receiver send a backward rate
packet at time . The forward rate packet returns to the
receiver in units of time. It sends a probe after receiving the
forward rate packet. The saturation message reaches the receiver
in units of time. Thus, one iteration is completed in units
of time. As Theorem 1 indicates, any node needs to perform at
most iterations. Note that the termination time does not ex-
plicitly depend on the number of links, whereas the complexity
of the basic distributed algorithm is . However, the
round trip delay depends on the number of links in the path
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of a session. The convergence time for the distributed imple-
mentation does not depend on the total number of links in the
network as many of the link computations can be performed in
parallel. The round trip delay combines the propagation and the
processing delays. The worst case bound of can be-
come large for a large network. However, as our experimental
results indicate, faster convergence is attained in practice.

C. Simulation Results

Using simulation, we evaluate the performance of the scheme
presented in Section III-B in a dynamic network where multicast
group memberships change. Simulation results indicate that the
convergence time is much less than the analytical worst case
bound of , and also corroborate that the control mes-
sage overhead is low.

We consider a 15-session 400-node random network for ex-
perimental evaluation. Nodes are points on a 20 20 grid. There
exists an edge between any two nodes with a probability
that depends on the euclidean distance between the nodes

, where is the decay constant. We as-
sume . We adopt this edge probability model because
distant nodes are less likely to have an edge between them. The
source of every session has been selected uniformly. A node is
a receiver of a session with a given probability which was 0.02
in this case. The session route consists of the shortest paths be-
tween the source and the destinations. Propagation delay in a
link is equal to the euclidean distance between the end nodes
of the link. Maximum round-trip propagation delay in this net-
work is 45.54 s. We ignore processing delays. Every link is
bidirectional. Receivers join and leave the sessions randomly as
per Poisson random processes, and do not have any minimum
rate requirement. Link occupancy (i.e., the number of sessions
traversing a link) changes as receivers join and leave. Maximum
number of receivers at any time is 96 and when all these re-
ceivers are present the average link occupancy is 1.118557 and
the maximum number of sessions traversing a link is 5.

First, we examine the convergence time of the algorithm in
this dynamic network. The computation restarts whenever there
is a session membership change. The computed rate for a user
may not converge to its maxmin fair rate before the next ses-
sion membership change. This occurs when there are frequent
changes. So we studied the discrepancy from the maxmin fair
rate at any time. If the maxmin fair rate of a receiver at time
is , and the computed rate at time is , then relative
computation error for receiver is at time
. Fig. 2 plots a moving average of the maximum of the relative

errors of the receivers and the average of the relative errors of
the receivers. The maximum and the average are taken over all
currently active receivers, and the moving average is computed
with a window of 5000 s. The algorithm restarts and the rela-
tive computation error increases to 1 every time there is a ses-
sion membership change. Subsequently, the relative computa-
tion error decreases steadily till the next change event. Since the
time window is large, the moving average of the errors does not
drop to zero. The moving average exhibits sharp increase over
the periods with more frequent session membership changes.
However, average errors are small in general (always less than

Fig. 2. We study the relative computation error in a dynamic network
with frequent session membership changes. Mean time between the session
membership changes is 171.33 s.

0.2). Thus, even in presence of frequent session membership
changes, the computed rate of an average receiver is close to
the maxmin fair rate. In this figure, a receiver’s average rate is
always above 80% of its maxmin fair rate. The maximum rela-
tive error is somewhat higher, indicating that the convergence is
slower for a few receivers.

Fig. 3(a) plots the percentage of receivers which attain the
maxmin fair rate before the next change versus the mean time
between changes. As expected, this percentage is low for a high
frequency of membership change, and increases with decrease
in the frequency of membership change. However, on an av-
erage, around 80% receivers converge to their maxmin fair rates,
when the average time between changes equal 500 s.

Fig. 3(b) presents the curve of average convergence time for
the receivers which converge to their maxmin fair rates, in be-
tween two membership change events versus the mean time be-
tween changes. This convergence time is low for a high fre-
quency of membership change, because when session member-
ship changes rapidly, only the receivers who need little time
to converge to the maxmin fair rates, actually converge to the
maxmin fair rates, and others do not converge. As the frequency
of membership change decreases, most of the receivers’ rates
converge to the maxmin fair values between the change events,
and the convergence time represents the convergence time of
an average receiver in the network. When the mean time be-
tween changes equal 2259.34 s, around 95.6% receivers’ rates
converge to the maxmin fair values between changes on an av-
erage. The mean convergence time of the converging receivers
in this case is 102.81 s. This represents the convergence time
of an average receiver, because the percentage of converging
ones is quite high. On an average, around 47 receivers are mem-
bers of different sessions at any time. Thus, worst case conver-
gence time of is 4280.76. Similarly, convergence time is
155.89 s in the same random network with 96 receivers. The
worst case bound is 8743.68 in this case. Thus, convergence
time is normally significantly better than the analytical bound
of .

Now we examine the message exchange overhead. We mea-
sure the number of control message bits traversing a link per
second. The control message comprises of rate packets, probe
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Fig. 3. We study the convergence speed and the control imformation exchange
complexity for a dynamic network with session membership changes. The
distributed computation does not always converge in between the changes,
on account of frequent session membership changes. (a) plots the average
percentage of receivers attaining their respective maxmin fair rates in between
the changes. (b) plots the average convergence time of these receivers. (c) plots
the maximum control information sent per unit time in any link, the maximum
is taken over all links. This control information comprises of rate packets,
probe packets and saturation/unsaturation messages.

packets and saturation/unsaturation messages. We plot the max-
imum of this overhead per second against the mean time be-
tween membership changes in Fig. 3(c). The maximum is taken
over all links. This maximum is always less than 10 b/s, and
decreases further with a decrease in the frequency of session
membership change. This is because as the session membership

changes less frequently, a larger number of receivers saturate in
between the changes, and a receiver stops exchanging messages
after it saturates. So, for a low frequency of membership change,
receivers do not send control messages for long periods of times
between the changes. Fig. 3(c) indicates that the message ex-
change complexity is indeed low for this algorithm. This plot
does not show the bytes consumed in the TCP and IP headers.
If IP headers are considered (20 octet [5]), then the maximum
overhead is around 58 b/s instead of 10, which is still low.

IV. DISCUSSION

In this section, we discuss certain generic features of the fair
rate allocation procedure.

Allocation of Rates: First we discuss how to attain contin-
uous rates. We would also discuss how to allocate the fair rates
once they are computed. Several approaches are possible.

1) Each source transmits at a rate equal to the maximum of
the fair rates allocated to its receivers. A source knows this
maximum value from the distributed computation. Rate
adaptive video gateways are used at the forking points
to transcode the signal into a lower bit rate such that the
rate in every link is equal to the maxmin fair session link
rate [1], [21]. These gateways control the rate by dropping
frames as necessary. Active network architecture [23] pro-
vides a framework for deployment of rate adaptive video
gateways within the network.

2) A second solution is to use layered encoding [4], [9], [24].
An information stream is partitioned in to a base layer,
comprising the information needed to represent the lowest
fidelity media and a number of enhancement layers. Some
number of these enhancement layers are combined by the
decoder with the base layer to recover a signal of incre-
mental fidelity. Oftentimes, layer bandwidth can be tuned
to provide the desired rates, e.g., by using an embedded
code. In an embedded code, any prefix of a valid code-
word is a valid codeword and if the code is chosen ap-
propriately, the prefix codeword corresponds to a lower
quality version of the longer codeword. Hence, one can
trivially form a layered code from an embedded code by
breaking up the longer code at arbitrary boundaries. More-
over, one can generate as many layers as desired and tune
the rates of the different layers since the embedded code
can be broken at arbitrary points. McCanne [15] presents
a low complexity video codec which uses an instance of
an embedded code, PVH (progressive video with hybrid
transform), and is thus amenable to dynamic rate control.
Once the fair rates are computed, the source partitions its
signal to form as many layers as there are distinct receiver
rates and tunes the layer bandwidth to match the receiver
rates. Each layer is sent as a separate multicast group,
and a receiver’s fair rate determines the number of layers
delivered to a receiver. The total number of layers trans-
mitted across a link equals the maximum number of layers
allotted to the session receivers downstream. Layers are
dropped at the forking points selectively. The advantage
of this approach is that it is an end-to-end one, while the
previous requires network participation.
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We would like to mention that neither of these approaches
is crucial for attaining the fair rates. We described the above
approaches as possibilities for attaining any desired bandwidth
granularity. The basic assumption in our case is that the band-
width can be allotted in reasonably fine granularity. If a per-
fect match between the layer bandwidth and the maxmin fair
receiver rates is not feasible, then the allocated rates can still
approximate the computed values. The receivers can subscribe
to as many layers as permitted by the computed fair rate. For in-
stance, if the source of session 1 in Example 3.1.1. (Fig. 1) can
transmit unit bandwidth layers only, then receivers and
will be allotted four and three layers, respectively. If the layer
granularity is fine, then the approximation will be satisfactory.

If the layer granularity is coarse, then the assumption of a
continuous feasible set is not valid, and discrete feasible sets
must be considered. Fairness in a discrete feasible set is vastly
different from fairness in a continuous feasible set, and neither
is a special case of the other. For example, the usual notions of
fairness either do not exist (e.g., maxmin fairness) or are com-
putationally NP-hard in the discrete case, while these are poly-
nomial complexity computable in the continuous case. Weaker
notions of fairness like maximal fairness need to be used in the
discrete case. If the granularity is fine, then the computation of
the maxmin fair allocation with a continuous set assumption and
subsequent approximation as discussed before gives a better ap-
proximation of the maxmin fair rates than the weaker notion.
Also, the computation strategy in the discrete case is different
from that in the continuous case. We address the discrete sce-
nario in [20].

Scalability: The rate allocation needs to consider virtual ses-
sion rates. Nevertheless, the distributed algorithm is designed so
that the system does not need separate entries for separate vir-
tual sessions traversing a link. Thus, the routers are oblivious of
the number and identity of the receivers downstream of a link.
Also, the amount of control messages of a session in a link in an
iteration is independent of the number of receivers downstream
of the link.

The system needs per-session states at the intermediate
nodes. Arguing in the lines of Grossglausser and Bolot [10],
implementing a multicast/multilayer service requires per-ses-
sion state in the routers anyway. So, the incremental cost of
maintaining some more information for each session and using
this additional information in the fair rate allocation policy is
much smaller than that in the unicast case. However, if these
additional session states become an issue, then this policy can
be used in the VPNs and intranets, and state aggregation may
be resorted to in the backbones. The algorithm will provide the
same fairness guarantees if individual sessions have bandwidth
guarantees from the backbone. In this case, the backbone will
be treated as a single link with only one session and capacity
equaling the bandwidth guarantee for the session.

Intermediate Feasibility: The intermediate rates are always
feasible (Lemma 7). So, during the computation, sources can
still transmit at intermediate rates, without causing congestion.

Dynamic Version: The computations must restart if the net-
work changes, i.e., if a new receiver joins a session, or an ex-
isting receiver leaves a session, or if the available link capacity
changes. So this algorithm is not appropriate when the sessions

have short lives, but operates very well if sessions have long
lives, and session memberships change less frequently. So, the
target applications are video conferencing, distance learning,
etc., and the application domains can be intranets and VPNs.

An interesting direction for future research will be to adapt
the algorithm for applications with a large number of receivers
that join and leave frequently, e.g., a CNN live telecast of an
Olympic event. We present possible approaches here. Receivers
do not have minimum rate constraints in these applications.
Maxmin fair rates are computed periodically. If a receiver leaves
an application in between, then the maxmin fair rates of the re-
maining ones are not altered. This may cause under-utilization
of link bandwidth. The amount of under-utilization will depend
on the frequency of the computation and the frequency of the
leave events. Note that the link bandwidth will be under-utilized
only in those links where the receiver which left had the highest
bandwidth among all receivers in its session. Consider the case
when a receiver joins an application. Assume that the receiver
has a dedicated bandwidth in its last link, and other existing re-
ceivers of the same application share other links in its path. This
is typically the case, e.g., quite a few users subscribe to a CNN
event in each domain. Maxmin fair bandwidth of the new re-
ceiver is the minimum of its dedicated bandwidth in its last link
and the bandwidth allocated to the application in the link before
the last. The maxmin fair bandwidth of the remaining receivers
are the same as before. If the last link is a shared medium, e.g.,
an ethernet connection, then it is likely that a few other users
using the shared medium have already subscribed to the applica-
tion. In this case, due to the multicast nature of the transmission,
the new receiver can be assigned the same bandwidth as the ex-
isting receivers without introducing any additional load in the
links. The challenge will be to accommodate the cases where a
receiver is the only one of its application in a link which is not
the last hop. In these cases which are likely to be infrequent, the
residual bandwidth in the applicable links can be used to serve
the new receiver in the intervals between the computations. Nor-
mally, the links have unused bandwidth to accommodate tran-
sients. The new receivers can also conduct RLM-like layer join
experiments to decide the amount of subscription in the interim
period. The existing receivers can utilize the residual bandwidth
generated by the leave events by the same mechanism. The dif-
ference between the bandwidth allocated to the receivers and the
maxmin fair allocation will depend on the frequency of compu-
tation and the network topology.

We now present techniques for attaining the maxmin fair rates
with partial recomputation in the event of topology changes. Let
the algorithm execute its th iteration2 when there is a change.
We first determine a value .

• When a receiver leaves, .
• When a receiver joins, ( is

the updated set of sessions traversing a link ).
• If the capacity of a link changes, .

In each of these cases, any virtual session with rate greater than
or equal to is considered unsaturated. The saturation state and
the rate of any other virtual session is not changed. In the last
case, if increases, and is the only bottleneck link of some

2Algorithm may also have terminated. In that case k = M .
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virtual session , the saturation state of is set unsaturated as
well.

The algorithm continues (starts if it had terminated) with the
updated saturation states and rate values. The algorithm can use
the previously computed rates and the saturation states of all
virtual sessions with rates less than . The rates of the other
virtual sessions are not used as they are rendered unsaturated.
The output still converges to the maxmin fair rates. The intu-
ition behind the result is that any change in the maxmin fair rate
of a virtual session , , does not affect the rates of receivers
that have maxmin fair rates lower than , but may affect those
of receivers with higher maxmin fair rates. This is because the
maxmin fair rate of a receiver is determined by that offered by
its bottleneck link, and a receiver does not share its bottle-
neck link with any other receiver which has maxmin fair rate
higher than that of . Thus, if the frequency of departure/arrival
is the same for all receivers, then 50% of the computation can
be re-used on an average.

The algorithm can also terminate prematurely after a few it-
erations so as to reduce the computation complexity. We present
some bounds on the rate of virtual sessions in the intermediate
steps for this purpose. The proof for theorem 1 shows that at
least one virtual session saturates in every iteration. A virtual
session attains its maxmin fair rate by the time it saturates. Thus,
at least virtual sessions attain their maxmin fair rates at the end
of iterations. If there are no minimum rate constraints, then it
follows from the proof for Lemma 3 that at the end of the th
iteration the rate of any virtual session is upper bounded
by its maxmin fair rate and lower bounded by the minimum of its
maxmin fair rate and the th smallest component in the maxmin
fair allocation. Thus, partial convergence is attained if the algo-
rithm terminates prematurely.

V. CONCLUSION

We have presented a quantitative framework that can model
the fair allocation of bandwidth in the multicast scenario, while
considering both fairness among the members of the same and
different sessions. We have presented an algorithm for com-
puting the maxmin fair rates in arbitrary multicast networks with
minimum rate requirements. We have also presented a frame-
work for a distributed implementation of the algorithm.

APPENDIX A
PROOF OF BOTTLENECK LEMMA

Proof of lemma 2: Let a virtual session not have a bot-
tleneck link under a feasible rate vector . If traverses a link ,
then at least one of the following holds.

1) Link has some unused capacity.
2) The rate of some other virtual session of the same session

as traversing is greater than that of , i.e., bandwidth
consumed by the session of in link is greater than ’s
rate.

3) A session traversing link consumes greater bandwidth
than in link . This bandwidth is greater than the min-
imum rate of session in link . Virtual session
does not belong to session .

If all links on ’s path satisfy the first two conditions, then ’s
rate can be increased without decreasing that of any other virtual
session. If some links on ’s path satisfy only the last property,
then to increase ’s rate, we must decrease the rate of some
virtual sessions having greater rate than that of . However we
can still increase ’s rate , without decreasing that of any other
virtual session having rate less than that of and still maintain
feasibility. Thus, is not a maxmin fair rate vector.

Let be a feasible rate vector such that each virtual session
has a bottleneck link. Consider any other feasible rate vector

. Let there exist a virtual session such that . Let
be a bottleneck link for virtual session .

. The last equality follows from the property of a
bottleneck link. Since is a bottleneck link w.r.t. virtual session
, its capacity is fully utilized, i.e., . From the

feasibility of , . Since ,
and (since virtual session traverses through link
), it follows that there exists a session such that .

From feasibility of , . Thus, . There exists
virtual session such that , . Thus,

. From the last condition for a link to be bottleneck w.r.t.
a virtual session, . Now . The first
inequality follows since . The second inequality and
the last equality have been argued before. Thus, if , then
there exists a virtual session such that . Hence,

is a maxmin fair rate vector.

APPENDIX B
PROOF OF CORRECTNESS AND TERMINATION GUARANTEE FOR

THE ALGORITHM FOR COMPUTATION OF MAXMIN FAIR RATES

(THEOREM 1)

We outline the proof as follows. We assume that the set of fea-
sible rate vectors is nonempty. The first part of the proof shows
that the output of this algorithm is maxmin fair. For this, we first
show that the link control parameters increase with every itera-
tion (Lemma 4). Thus, the virtual session rates and the session
rates do not decrease in subsequent iterations (Lemma 5). Using
this, we show that the rate allocation at the end of every iteration
is feasible (Lemma 7). Next we show that, if a virtual session sat-
urates in the th iteration, it has a bottleneck link in subsequent
iterations (Lemma 8). Since the algorithm terminates only when
all virtual sessions saturate, each virtual session has a bottleneck
link when the algorithm terminates. The rate allocation upon ter-
mination is also feasible by Lemma 7. Thus, maxmin fairness of
the rate allocation upon termination follows from the Bottleneck
Lemma. For the second part of the theorem we show in Lemma
9 that the algorithm terminates in at most iterations.

Lemma 4: If and the algorithm has not terminated in
iterations, .

Proof of lemma 4: We prove by induction. Let . The
algorithm cannot terminate in 0 iteration. , .
If , then , and the lemma holds
for link and iteration 1. Let . Since the feasible set
of rate vectors is nonempty, . , for
every session and link . Thus, , satisfies the inequality

. Since is the maximum pos-
sible which satisfies the above inequality, .
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The equality follows from the initialization of . Thus, the
lemma holds for .

Let the lemma hold for iterations and . We
show that the lemma holds for the th iteration. If ,
then . Let . Consider any virtual
session traversing through link , i.e., . If

, . Let
. Thus, , .

, since ,
and by induction hypothesis.
Since ( and

, ), . Thus,
.

for all (1)

Thus (2)

from

Thus, satisfies the inequality
. Clearly is the maximum

possible value of which satisfies the inequality and hence
there exists a and . Hence, the
result follows from induction.

Lemma 5: if for all virtual sessions
. if for all sessions and links .

Proof of lemma 5: Let . Now, ,
,

, for all virtual sessions . The last inequality
follows since . Thus, . Thus,
the result holds for . Let . If ,

. If , .
. .

Thus, . Thus,
.Since , and

, . Thus, . Hence
. The second part of the lemma follows from

the first and the fact that .
Lemma 6:

for all virtual sessions

links and (3)

Thus for all sessions

links and (4)

Remark: We will use this lemma in proofs of feasibility of
rate allocations (Lemma 7), the fact that every saturated virtual
session has a bottleneck link (Lemma 8) and the fact that the
algorithm terminates in finite number of iterations (Theorem 9).

Proof of lemma 6: We prove (3) by induction.
. The last inequality follows

since and , since
. Thus, (3) holds for .

Let (3) hold for . If , .
If ,

from induction hypothesis

since by Lemma

Thus, (3) holds for . Thus, (3) holds for all by induc-
tion. Now, (4) follows from (3) and the definition of .

Lemma 7: The rate allocation at the end of the th iteration
is feasible, .

Proof of lemma 7: We prove by induction. We first prove
the lemma for . Since the set of feasible rate vectors is
nonempty, a rate allocation where each virtual session ’s rate
equals its minimum rate, satisfies the capacity constraints. Thus,

satisfies the capacity constraints. Since ,
satisfies the minimum rate requirements. Thus, is feasible
and the lemma holds for .

Let the rate allocation at the end of the th iteration, , be
feasible. Consider the th iteration. .
The first inequality follows from Lemma 5 and the last from
the feasibility of . Thus, , for all virtual
sessions .

if

since then

Thus if

if (5)

If , from (5), .

from the feasibility of

If ,

from of Lemma and



SARKAR AND TASSIULAS: FAIR DISTRIBUTED CONGESTION CONTROL IN MULTIRATE MULTICAST NETWORKS 131

Since link was chosen arbitrarily, the rate vector at the end of
iteration , satisfies the capacity condition for every
link . Hence is feasible. Thus, the lemma follows by
induction.

Lemma 8: Let . Let and
, i.e., the algorithm does not terminate in iterations. Then

virtual session has a bottleneck link, under rate vector .
Proof of lemma 8: Let , i.e., virtual

session becomes saturated at the end of the th iteration. Thus,
there exists link such that

(6)

and (7)

By Lemma 6, . Let .

(8)

if (9)

from

(10)

from of Lemma

(11)

(12)

since

implying (13)

Now, (8) holds since and as
, , and thus .

Now, (12) follows from (8), (9), (10), and (11). (13) contradicts
(6).

Thus (14)

Consider the th iteration, .

since

from Lemma

from feasibility of

Thus (15)

Since , for all sessions , links , if
, for some , .

Thus, from (6) . This contradicts the feasi-
bility of ( is feasible by Lemma 7). Thus

(16)

Since , , . by
(7). and thus . Thus, from (16)

(17)

Let be a virtual session traversing through link and
.

from of Lemma

from

(18)

by assumption

by Lemma since

by

Thus (19)

Thus if

and (20)

from and

From (15), (17) and (20), link is bottlenecked w.r.t. virtual
session under rate vector .

Lemma 9: The algorithm terminates in at most iterations,
where is the number of virtual sessions in the system. The
algorithm terminates in at most iterations, if

for all , such that and .
Proof of lemma 9: For the first part, it is sufficient

to prove that is a proper subset of , s.t.
and . Since , the re-

sult follows. Let .
is well defined as (If more than one links
attain the minimum, choose any one of them as ). Since

, at least one virtual session in
(unsaturated virtual session) traverses through link . Thus,

. Thus, is the maximum which
satisfies
and observe that

since .

Thus (21)

Let such that

(22)
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Let . is well defined as
. Then is one that satisfies (21).

from (23)

Consider a (
as ).

from

from the definition of

and since

Thus

since

(24)

from of Lemma

Thus (25)

Consider any session . Let .

from feasibility of

from hypothesis

from of Lemma

Thus (26)

Now let . ,

as ). The reasoning is exactly the same as that
behind (24). ,
since . From (4) of Lemma 6,

(27)

From (26) and (27)

(28)

if from

(29)

since

from and

since (30)

Thus, from (25) and (30) ,
. Thus, ,
by construction, and . Thus,

is a proper subset of . This proves the first part.
For the second part, it is sufficient to show that every session

in is saturated at the end of iteration . We have just shown
that every session is saturated at the end of
iteration if . It we will be sufficient to show
that every session for which
is saturated at the end of iteration . For any such session ,

. From (4) of Lemma 6,

(31)

Consider a virtual session . There
exists such virtual sessions as session is not saturated at the
end of iteration . Note that .
The last inequality follows from (31). From the additional con-
dition in the second part in the lemma, Thus,

. Now from feasibility of , . Thus,
. The last inequality follows from

(31). Thus, for any virtual session
. Note that the capacity is fully utilized

in from (30). Thus, any virtual session
saturates in iteration . The result follows.

Proof of theorem 1: If the algorithm terminates in it-
erations, . Since is the set of all virtual ses-
sions, for every virtual session , there exists a , such that

, . Thus, by Lemma 8 virtual session
has a bottleneck link , under rate vector . By Lemma
7, is a feasible rate vector. Thus, is max-min fair by
Lemma 2. Lemma 9 shows that the algorithm terminates in at
most iterations.

Proof of lemma 3: The result follows from the second part
in Lemma 9.
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