
INFORMATIQUE THÉORIQUE ET APPLICATIONS

L. BREVEGLIERI

Fair expressions and regular languages over lists

Informatique théorique et applications, tome 31, no 1 (1997), p. 15-66.

<http://www.numdam.org/item?id=ITA_1997__31_1_15_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1997__31_1_15_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 31, n° 1, 1997, pp. 15-66)

FAIR EXPRESSIONS

AND REGULAR LANGUAGES OVER LISTS (*) (**)

by L. BREVEGLIERI

Abstract. — fn this paper a formalism is proposed,, named fair expressions, partly introduced in
[Bre94], that extends regular expressions to lists, hoving strings as components. This formalism uses
classical regular operators, i.e. catenation and iîs closure, and novel ones, namely the operator
of mer ge and its closure, which are natural for lists. Fair expressions allow to define languages
of lists, named fair languages, which can be compared to word languages by flattening the lists
into strings. In this paper the basic properties of fair languages are briefty summarized and also
extended with respect to previous works [Bre94]: hierarchy, semilinearity, closure, decidability and
comparison with the Chomsky hierarchy are dealt with. The family of fair languages is however f ar
larger than the regular one; as a novel contribution this paper investigates its subfamilies that are
comparable with regular languages. The main resuit is that the regular subfamilies of fair languages
constitute a proper hierarchy. These subfamilies are then characterized and the ir properties are
explored, showing that they are, in gênerai, more mathematically tractable than fair languages. The
conclusion lists comparisons with related works, open problems and research directions.

Résumé. - Cet article propose un formalisme, appelé expressions équitables, qui a été
partiellement introduit en [Bre94], et qui étend les expressions régulières aux listes dont les
composantes sont des mots. Ce formalisme utilise les opérateurs rationnels classiques, c 'est-à-dire
la concaténation et l'étoile, ainsi que de nouveaux opérateurs tels que celui de fusion et sa fermeture,
qui sont des opérateurs naturels sur les listes. Les expressions équitables permettent de définir des
languages de listes appelés languages équitables qui peuvent être comparés aux langages de mots, les
listes une fois converties en mots par concaténation des composantes. Dans cet article les propriétés
fondamentales des languages équitables sont brièvement rappelées et généralisées par rapport aux
travaux antérieurs [Bre94]: hiérarchie, semilinéarité, clôture, décidabilité et comparaison avec la
hiérarchie de Chomsky sont traités. Cette famille contient strictement celle des langages réguliers;
l'étude des sous-familles comparables à celle des langages réguliers est une contribution originale
de ce travail. Le résultat principal est que ces sous'familles régulières de langages équitables forme
une hiérarchie propre. Ces sous-familles ensuite caractérisées et leurs propriétés sont explorées,
et nous montrons ainsi qu'elles sont mathématiquement plus manipulables que celle des langages
équitables. En conclusion nous mentionnons des travaux qui sont reliés à notre recherche, nous
posons des problèmes ouverts et indiquons des directions de recherche.

(*) Received May 1996, acceptée February 1997.
(**) Work partially supported by a grant of the "Ministero dell'Université e délia Ricerca

Scientifica e Tecnologica" (MURST 60%) (Ministery of the University and of the Scientific and
Technological Research), Italy/and by a grant of ESPRIT-BRA "Algebraic and Syntactic Methods
In Computer Science H", (ASMICS II), Special Contract n° 6317, European Union.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/97/01/$ 7.00 © AFCET-Gauthier-Villars



16 L. BREVEGLIERI

1. INTRODUCTION

In order to extend the modeling capacity of formai language theory to
some complex phenomena, we consider in this work lists of strings and sets
of lists or list languages. A list is an ordered séquence of strings, separated
by delimiters. We propose a new approach for defining fair expressions and
list languages, similar to the use of regular expressions for defining regular
languages. To this purpose the classical operators of string catenation and its
closure (the Kleene star) are extended to lists and two new natural operators
over lists are introduced: the merge operator and its closure. Catenation
builds a new list by appending two lists, as usuals, while merge builds a
new list by ordely interleaving the components of two lists.

A list of strings can be interpreted as the trace of a concurrent System:
the letters represent atomic actions, each component (a string) represents
a séquence of actions executed in a single time slot and the whole list (a
séquence of strings) represents a séquence of time slots. In [Bre93, Bre94,
Fri94] it is proved that the list languages generated by fair expressions
coincide with the sets of the traces representing parallel programme schemes.
Fair expressions were introduced in [Bre94] (a complete treatment can be
found in [Bre93, Fri94]), but a summary of their définition and properties,
with some extensions, is included in this paper for completeness. The paper
is focused instead on the comparison between fair languages and regular
(or rational) ones.

Since a list of strings separated by a délimiter can be viewed itself as a
single string defined over an alphabet extended with the délimiter (the "word
image" of the list), a natural définition of regularity can be given for lists: a
list language is regular if and only if its word image is regular. A second,
but weaker, définition of regularity for lists is based on the notion of free
segmentation of the strings belonging to a regular language. This smaller
family of regular list languages is named simple regular list languages. The
central result is that the three families of simple regular, regular and fair list
languages are strictly included, thus forming a proper hierarchy.

Several closure properties of fair languages and (simple) regular list
languages are then investigated. It is shown that by combining (simple)
regular list languages via various opérations (homomorphism, replication,
catenation, star, etc.) one obtains intermediate families of list languages.
Standard language décision problems (membership, emptiness, équivalence,
containment, etc.) are investigated for fair languages and (simple) regular
list languages. This complètes the picture of the properties of fair languages

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGU AGES OVER LISTS 1 7

and their regular subfamilies. Finally, comparisons with existing language
models, e.g. the Chomsky hierarchy, and alternative formalizations help in
understanding the generative power of lists.

The paper is organized as follows. In section 2 the définitions and the
opérations on lists are summarized. In section 3 fair expressions, and fair
and regular list languages are defined. In section 4 simple examples of
list languages are presented, and in section 5 a more complex example is
discussed. In section 6 a hierarchy property is proved. In section 7 the
gênerai properties of the introduced families of list languages are proved:
semilinearity, closure and decidability. In section 8 a comparison with the
Chomsky hierarchy and AFL is carried out. In section 9 fair expressions
are partially formalized in an algebraic way. Finally, in section 10 open
problems and research directions are discussed.

2. LISTS OF STRINGS

Lists, having strings as their éléments, are objects similar, under many
respects, to strings. Lists are séquences of strings, separated by delimiters,
whereas strings are séquences of characters. We extend the string opérations,
e.g. catenation and Kleene star, to the lists, also introducing a new operator
and its closure; this operator is named merge and is natural for lists.

2.1. Définition of list

A listx over some non-void finite alphabet S is a linearly ordered set of
strings (also including the empty string e), and is denoted as:

x = [xi\X2]...] xn] Xi G E* for 1 < i < n

Note that we always assume that (;) ^ E; the special character (;) is a
separator, not a letter of the alphabet E. The string x% E S*, with 1 < i < n,
is said to be the ith component of the list x_. List names are usually
underlined, to distinguish them from strings; the same notation is frequently
used to distinguish list sets from word sets.

The null list, containing no components, is denoted [ ]; it must not be
confused with the list [e], where e is the empty string, because the list [e]
contains one component. The sets of all the lists are denoted as follows,
similarly to strings. Given an alphabet E, the two sets of lists:

EW = {[xy, x2; . . . ; xn]\xt ES* for 1 < i < n} U {[ ]}

S W = {[xi; X2\ •••\xn]\xl GE* for 1 < i < n} = E'*' - {[ ]}

vol. 31, n° 1, 1997



18 L. BREVEGLÎERI

are called the universal list language and the [ ]-free (null-free) universal

list language, respectively, over the alphabet E; the superscripts M and
M stay for any nurnber of components, including none, and at least one
component, respectively.

A list x is said to be [e]-free (epsilon-free) if and only if it does not
contain any s-component (ernpty component), Le., iff x = [xi; x2 ; . .. ; x-n]

and Xi G E+ for any n and i with 1 < i < n\ the null list [ ] is
conventionally considered as being [ej-free (for it contains no component
at all). The concept of [ ]-freedom must not be confused with that of
[ëj-freedom. The £-components can be omitted in a list, provided that
the sourrounding separators (;) are preserved; for instance [a; e] — fa;],
[s: a] = [;a] and [e; e] = [;].

A sublist of a list x G S'*l is a subsequence of the components of x, Le.

if x_ = [x\\ X2] . • • ; xn], for some n > 1, then x' = [#&; Xfc+i; . . . ; o;^],
for some 1 < k < h < n, is a sublist of x. The null list is conventionally
assumed to be a sublist of any other list, including itself. The sublist x[ is
proper if and only if x_' / x. It is evident Üiat a list is fej-free if and only
if it admits no sublist of the type [e; . . . ; e].

2.2. Basic opérations on lists

We define two opérations on lists, namely list merge and list catenation,

and their closures, starting from merge. In this section we shall make use of
two lists x = [xi; x2 ; . . . ; xm] and y = [y i ; y2i . . . ; ï/n], with m, n > 1,
over some alphabet E.

DÉFINITION 2.1 (List Merge): || : E'*] x E'*! —> E1*' w a binary opération

on lists, named list merge, acting through the mapping:

[ x i ; x 2 ; . . . ; x m ] | ] [ ï / i ; Ï / 2 ; •••; Vn]

H ^ [ x i y i - X2 V2] -. • ; x m y m ; y r a + i ï . . . ; yn] r a < n

[xi; x2 ; . . . ; x

^ (ffi 2/i ; x2 y2; • • • ; xm ym] m^n

[xi; X2] ; xm]||f2/i; t/2; . . . ; yn]

H-> [xi yn X2 y2; . . . ; xn yn\ yn+i; ... ; x m ] m > n

and posing [ ]||x = x]|f ] = x.

Merge is always written in infix notation. From now on, we shall call
list merge simply as merge, as there is no danger of making confusion with

Informatique théorique et Applications/Theoretical Informaties and Applications



FAÏR EXPRESSIONS AND REGULAR LANGU AGES OVER LISTS 1 9

strings. Note that merge is associative. Moreover, it holds x_\\[e] = [^]\\x = x,
for any list | / [ ], and x\\x ~ x_ whenever the list x — [x\\ X2\ - . . ; xn]

is such that xi — e for every 1 < i < n.

A merge is associative, it is possible to defme its closure;

DÉFINITION 2.2 (List Merge Closure): II* : E^ ' -» p(S '* ' ) is a unary

opération on lists, the closure of list merge, s.t. rçll* = I J S o ^"*' w n e r e

• • ]!#> for i > 1, and posing x}\° ~ [ ].

i times

Note that [ ]H* = {•[ ]} and that merge closure is idempotent, Le.

(̂ 11*)H* = xll*, for any list x € E'*'. The superscript H+ dénotes the [ ]-free
closure of list merge.

DÉFINITION 23 (List Catenation): • : S"l*l x S w -> E'*' ij a binary
opération on lists, named list catenation, acting through the mapping:

[x\\ x-2] . . . ; xm] • [t/i; y2; •. • ; yn] •-> [ai; ^2; • . . ; x m ; yi; î/2; • • • ; 2/n]

and posing { ] • ^ = x • [ ] = x.

Catenation is always written in infix notation. A separator (;) is always
inserted between the two lists, but if one is the null list [ ]. Note that list
catenation is associative and that in gênerai [e] • x_ / x • [e] ^ x as, for
instance, [e]»[a; 6; c] = [e; a; 6; c] = [; a; 6; c] and (a; 6; c]«[£] — [a; 6; c; e] —
[a; 6; c;]. Briefly, the list [e] is not a neutral element for catenation.

A list catenation is associative, it is possible to define its closure:

DÉFINITION 2A (List Catenation Closure: * : E'*' -> p(S '* ' ) is a unary
opération on lists, the closure of list catenation, s.t. x* — U ^ o ^» wnere

xl = x • x • . . . • x, /or i > 1, ano? posing go° = [ ].

z times

Note that ;[ ]* = {[ ]}, that [e]* = {[e]k\k > 0} D {[e]} and that
catenation closure is idempotent, Le. {x*)* = x*, for any list x G S'*'. The
superscript + dénotes the [ ]-free closure of list catenation.

List catenation closure and [ ]-free list catenation closure are denoted
through the superscript * and + , like the Kleene star and cross for strings,
whereupon merge closure and [ ]-free merge closure are denoted through the
new superscripts H* and H+, which are mnemonic for the merge operator.

From now on, list catenation will be no longer explicitly indicated by •
(we use the traditional multiplicative notation), but in some exceptional case.

vol. 31, n° 1, 1997



2 0 L. BREVEGLIERI

We shall refer to list catenation simply as catenation; from the context the
type of arguments (list or string) of catenation will always be clear.

Note that neither merge is distributive w.r.t. catenation nor catenation is
distributive w.r.t. merge, in gênerai. Merge, catenation and their closures
extend to sets of lists in the natural way. Clearly, in this extended sense both
merge and catenation are distributive w.r.t. union.

2.3. Auxiliary opérations on lists

Lists are similar to strings, yet some opérations which are natural on
strings are not well-defined or have multiple distinct interprétations on lists,
such as for instance permutation, reflection, substitution, etc. Moreover, the
traditional families of languages are deflned over strings, hence comparisons
with list families are not immédiate. We introducé a flattening function to
allow for this comparison:

DÉFINITION 2.5 (Flattening): The function \\ : E'*' —» E* on lists onto
strings is acting through the mapping:

\[xi; X2] . . . ; xn]\ i-> x\ x2 . . . xn for x € S w

where x— [x\\ x% . . . ; xn] for n > 1, andposing \[ ] \ = e.

Flattening is always denoted by enclosing in backslashes. An example is:
\[a; bc; s; d; e}\ — abcd. The inverse of flattening is called free segmentation
operator, as it makes lists out of strings by freely segmenting them into
components, Le. \rc\~1, where x E E* is a string, is the set of all the lists
x_ E Et*' having as flattened image precisely the string x.

In subséquent sections it will be necessary to preserve the separator (;)
also in the strings. Define an alphabet extended with the new character (;)
as Es = £ © {;}, where E is any ordinary alphabet; the index 5 stays for
"separator", Le. the character (; ). It is convenient to introducé the following
two conversion functions:

DÉFINITION 2.6 (Conversion): Define the following conversion functions:

list : E J —> E W list (xi\X2i... ; xn) •-> [x\\X2\... ; xn] list (e) H^ [e]

string : S ' ^ i-> E J string ([xi] x<i\ . . . ; xn}) 1—• x\\ X2] - . . ; xn

string ([e]) 1—» e

where x% G E*, for any n and % with 1 < i < n.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 2 1

The two functions list and string transform a string into a list and a list
into a string, respectively, preserving the structure induced by the présence
of the separator (;). Examples are: list{a\ bc; ; d\ ) = [a; bc; e; d; e] and
string ([e; abc; e; d]) =; abc; ; d, respectively.

Note that flattening, instead, removes the list substructure from its list
argument. Given the set of lists (resp. words) L Ç |]W (resp. L Ç S^), the
set string (L) (resp. list (L)) is the word (resp. list) image associated with
the list (resp. word) set L(resp. L). It is fairly evident that the conversion
functions list and string are one-to-one.

We shall refer to the functions list and string as the segmentation of a
string into a list and the compaction of a list into a string, respectively.
Note that it is impossible to obtain the null list [ ] by segmenting a string:
in fact, segmenting a non-empty string x 7̂  e clearly cannot yield the null
list [ ] and segmenting the empty string e yields the list [e], which also
differs from the null list [ ]. Therefore the functions list and string are left
undefined as for the null list [ 1.

STATEMENT 2.1 (Dependence): Given the natural projection TV : E£ —> S :

cancelling the separator (; ), the following functional relationships hold:

(string o list) (x) = x (list o string) (x) — x_

(TT O string) (x) — \x\ (list o TT"1) (X) = \x\-1

• *

for any string x E £* and any list x_ E 2

Proof: It follows from that the functions list and string are one-to-one and
both flattening and the projection TT cancel the separator (; ). G

The statement implies that flattening (\\), segmentation (list), compaction
(string) and free-segmentation (W"1) are not functionally independent.

3. LIST LANGUAGES

A list language is any subset of the universal list language £'*'; a list
family is a set of list languages. A list language not containing the null list
[ ] is said to be [ ]-free; a family of [ ]-free list languages is also said to
be [ ]-free; similarly for [e]-freedom.

3.1. Fair expressions

We define a finitary generative model for some list languages, which
extends the well-known finitary generative model of regular expressions,

vol 31, n° 1, 1997



2 2 L. BREVEGLIERI

by using finite lists as generators and allowing merge and catenation, plus
their closures and union, as basic operators; this new model is named fair
expression.

DÉFINITION 3.1 (Fair Expression): A Fair Expression, briefiy a FE, over the
alphabet E is one of the following:

(1) Any finite list x_ (including the null list [ ]) over the alphabet E is a FE.

(2) If ƒ, / i and f2 are FE's over the alphabet E, then:

(a) h U h is a FE.

(b) ƒ1 IJ ƒ2 is a FE.

(c) /H* w a FE (and also /H+).

(d) ƒ1 • ƒ2 is a FE (also written multiplicatively, f\ ƒ2).

(e) ƒ* is a FE (and also f+).

Nothing else is a fair expression, but what is obtained by a finite number
of recursive applications of the rule (1) and rules (2).

The finite lists appearing inside a FE are its generators. A FE is said to
be [e]-free if and only if its generators are [ej-free lists. The property of
[e]-freedom of a FE is obviously decidable.

STATEMENT 3.1 (Comparison): Fair expressions contain two restrictions
which are isomorphic to reguïar expressions, namely:

• Fair expressions restricted to contain union, merge and merge closure
(but not catenation and its closure), and with one-component generators, i.e.
of the type [x], for some string x E E*.

• Fair expressions restricted to contain union, catenation and catenation
closure (but not merge and its closure), and with generators containing
one-letter non-ernpty components, i.e. of the type [x\\ . . . ; xn\ for some
characters x% G E with 1 < i < n.

The isomorphism is given by the flattening function (see définition 2.5).

Proof: It suffices to check that in the two cases the opérations are preserved

Informatique théorique et Applieations/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 23

by flattening and that flattening is one-to-one.

\ W \ = \ M \ => x = y => [x] = [y]

\[xi] . . . ; rcm] • [yi; . . . ; yn]\ = \[a?i; . . . ; x m ; y i ; . . . ; yn]\

- x i . . . a:m yi . . . y n - \[a;i ; . . . ; a r m ] \ • \ [yi ; . . . ; j / n ] \

\ [ x i ; . . . ; xm]\ - \[yi] . . . ; yn]\ => m = n

and z i = yi . . . a;n = yn => [ai ; . • • ; x m ] = [y\ ; . . . ; y n ]

for the strings x, y G E>!t and the characters x%, yj € S , with 1 < i, i < m ,

n. This shows préservation and injectivity; the surjectivity of flattening is

evident, whence bijectivity. O

3.2. Fair languages

Any FE defines, in the obvious way, a possibly infinité set of finite lists.
The notation L (ƒ) indicates the list language generated by the FE ƒ. In
order to simplify the parenthetizations, we shall assume that the closures
take precedence over any other operator and that both merge and cateriation
take precedence over union. The precedence between merge and catenation
must be indicated explicitly by means of parentheses.

DÉFINITION 3.2 (Fair List Language): A list language L is a Fair List
Language - denoted as FLL - if and only if it is generated by some FE ƒ,
i.e. iff L = L(f). A word language L is a flattened Fair List Language -
denoted as fFLL - if and only if it is the flattening of a Fair List Language,
i.e. iff L = \L(f)\.

Flattening is not a basic opération of the FE model; it is only applied at
the end, when we want to pass from a FLL to a fFLL, which is directly
comparable to a word language. A FLL is said to be [e]-free if and only if
it contains only [ej-free lists and is said to be [ ]-free if and only if it does
not contain the null list [ ]. It is immédiate to see that the properties of
[e] and [ ]-freedom are independent in FLL; examples of the four possible
cases are easy to construct.

Note than an [e]-free FE générâtes an [e]-free FLL, but a non-[e]-free
FE may well generate an [e]-free FLL. For instance, the non [ej-free FE
ƒ = Ja; e]\\[e] b] générâtes the (finite) FLL L(f) = {[a: 6]}, which is
[e]-free.

vol. 31, n° 1, 1997



2 4 L. BREVEGLIERI

3.3. Regular list languages

In order to perform a more systematic comparison of FLL and fFLL with
traditonal families (e.g. the Chomsky hierarchy) and to set up some tools
for transforming at least the simplest FE's and FLL's, it is useful to have
a notion of regularity in FLL.

Simple tricks, such as saying that regular list languages are defined by
FE's only using catenation or merge, prove immediately to be too naive.
In the former case, they coincide with the regular languages over the free
monoid E* (here is the simplicity), yet the list components would consist of
strings of fixed length (here is the naiveness). In the latter case they coincide
with the regular languages over the finite direct product of free monoids
E* [Brs79] (here again is the simplicity), yet the lists would have an upper
bounded number of components (here again is the naiveness). It is clear that
in both cases the separators (;) are placed in a trivial way. Moreover, the
null list [ ] is somewhat disturbing.

In the following a more gênerai proposai of regular list language, based
on the notion of flattening, is exposed. Assume that E is an alphabet and that
S5 = EU {; } is the same alphabet as S, but extended with the separator (; ).

DÉFINITION 3.3 (Regular List Language): A [ ]-free list language R Ç S'
is a Regular List Language - denoted as RLL - if and only if there exists a
regular language R Ç £ J s.t. R — list(R).

The above définition states that a RLL is a list language that is obtained
from a string language by segmenting its strings into list components in some
"regular" way, a natural extension to the list domain of the classical notion
of regular language. Therefore RLL's are always assumed to be [ ]-free (see
also section 2.3); however, RLL's may well contain non-[^]-free lists.

There exists a smaller, but important, subfamily of RLL, based on the
notion of free segmentation of strings:

DÉFINITION 3.4 (simple Regular List Language): A [ \-free list language
R Ç £l+] is a simple Regular List Language -denoted as sRLL - if and only
if there exists a regular language R Ç E* sJ. R = \ i2\~1 - {[ ]}•

Note that sRLL = (list o ir'1) (Tl) or TT"1 (Tl) = string(sRLL), where
7T : E£ —> E* is the natural projection cancelling the separator (; ) and 71
is the family of regular (word) languages. A sRLL differs from a RLL in
that the lists of a sRLL exhibit a free distribution of separators (; ); also the
sRLL's are always [ ]-free, but may contain non-[e]-free lists. In the sequel

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 25

we shall shorten the writing \It\~1 - {[ ]} into \R\~l, understanding that
sRLL is always [ ]-free. In section 7.2 sRLL will be used for pro ving some
non-trivial results.

4. SIMPLE EXAMPLES OF LIST LANGUAGES

To study the various families of list languages introduced in section 3, the
following notation is generally adopted:

Families of List Languages

FLL, RLL, sRLL Fair, Regular, simple Regular List Languages

Families of Word Languages

fFLL flattened Fair List Languages

Recall that a FLL is any list language generated by a fair expression, a RLL
is any list language such that its word image still containing the separator
(; ) is regular and a sRLL is any list language obtained by saturating some
regular language with respect to the introduction of the separator (; ).

We start by investigating the families FLL and fFLL. Some examples will
help in showing the generative power of FE. Sometimes we number the
parentheses nests in the displayed FE's (on the right side), as a visual aide
to find the matching between the FE's and the proposed instances thereof.

Example AA {{an bn cn})\ The language L = {an bn cn\n > 0} is a fFLL.
In f act, L = \L\, where L is a FLL generated by the [e]-free FE f\\

h = [a; 6; e]"*

where the alphabet is E = {a, 6, c} and the unique generator is [a: b; c].
The example generalizes easily to any alphabet cardinality. •

One has, for instance:

aH^c5 = \ [ a 3 ; b5; c 3 ] \ = \ [ o ; b; c]\\[a; b; c]\\[a; b; c]\ G \ L ( / i ) \

Example 4.2 (Commutation): The closures * and H* do not commute.
Given the two [e]-free FE's f2 and ƒ3, it holds:

h = ([a; 6; c]*f*

= { [ o n i ; 6 n i ; c n i ; an a ; 6 n ï ; c"2; . . ]\m > nl+l > 0 for i > 1} U

ƒ3 = ([a; 6; c]»*)*

= {[a'11; bni; c7H; a"2; 6"2; c"2; . . .]\m > 0 for i > 1} U {[]}

vol. 31, n° 1, 1997



2 6 L. BREVEGLIERI

where the alphabet is S = {a,. 6, c} and in both cases the unique generator
is [a; b; c]. The example generalizes easily to any alphabet cardinality. D

Clearly one has L(f-2) Ç L(f$), since:

[a2; b2; c2; a; 6; c] - ([a; 6; cl(a; 6; c])||[a; 6; c] e I ( / 2 )

[a2; b2: c2; a; 6; c] = ([a; 6; c]|| [a; 6; cj) [a; 6; c] 6 L( / 3 )

However, it is easy to see that:

[o; 6; c; a2; 62; c2] = [a; 6; c] ( [a; 6; c]||[a; 6; c]) G L(/ 3 ) - L( / 2 )
because any instance of ƒ2 first concatenates the generators [a; 6; c] and
merges the obtained strings only later, which implies that in no list of L (ƒ2)
the sublist [dm; . . . ; dn], with m < n and d = a, 6, c, can occur. Hence
one proves L(/2) C L(f$), Le. strict inclusion.

Example 4.3 (Anagram): The language of the anagrams of {a'? 6rt cn|n >
1}, from now on denoted Anagrams of {an bn cn\n > 1}, is a fFLL, generated
by the non- [ej-free FE's ƒ4 or ƒ5:

ƒ4 = (([e]* [a])2|l([£]* [6])3||([£]* [c])4)ï+

all the permutations of a, 6, c that Ie ave the e's fixe d

where the alphabet is E = {a, 6, c} and in both cases the generators are [e],
[a], [6] and [c]. The FE's ƒ4 and ƒ5 generalize immediately to any alphabet
cardinality. •

Consider, for instance, how the following string is generated using ƒ4 or
ƒ5, respectively:

abbcaacccbba = \[a; b\ b\ c; a; a; c; c; c; 6; 6; a]\

IK([e]5W)2|K[e]*[ft])3||([er[cl)4)i||

abbcaacccbba — \[a; &; &•; c; a; a; c; c; c; 6; fr; a ] \

= \([a][6][e][c])|K[eï
2[6][el[a][e][c])||

\\([ef[a}[e}[c}{e}[b})\\([e}8[c}[e}7[b}[a})\

e \L(iB)\

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 27

The FE ƒ4 générâtes the final list by producing intermediate lists having
only a single non-empty one-letter component placed rightmost, then merging
the intermediate list three by three - so that in any group of three the letters
a, b and c occur in some order - and fmally Computing the merge closure of
the groups. The FE ƒ5 générâtes the final list by merging intermediate lists,
each one containing exactly three letters a, b and c - possibly permuted -
placed in distinct components; the remaining components are empty strings.
Such lists are computed by reading the string left to right, collecting all the
triples of distinct letters. The e-components cause the letters to be freely
shifted rightwards. Note that both génération mechanisms are heavily non-
deterministic. By using the closure H* instead of "+ the language Anagrams
of {{anbncn\n > 0}) is obtained.

Example AA (Universal): The universal list language E'*', over the alphabet
S = {ay 6},. is a FLL, generated by the non-[e]-free FE's /e or ƒ7:

/ 6 = (([e] U [a] U [6])|*)î or f7 = (([s] U [a] U [b])*2t

where in both cases the generators are [e], [a] and [b]. The FE's fy and
ƒ7 generalize immediately to any alphabet cardinality. Using the [ ]-free
closures the universal [ ]-free list language is obtained. D

One has, for instance, using the FE's f& and ƒ7:

eL(f7)

Note that ({[a], [è]}!'*)* is not the universal list language, as it contains ail
and only [e]-free lists.

This example also shows that in some cases the closures * and H* may
commute.

Example 4.5 (Pattern Language); The Pattern Languages of Angluin [An80]
are in fFLL. For instance, given the pattern p — aX bY cX dY - containing
the variables X, Y and the constants a, b, c - the Pattern Language generated
by p, substituting to the variables X and Y strings over the alphabet {e, ƒ}, is:

p(e, ƒ) = {aubvcudv\u, v E {e, ƒ}*}

vol, 31, n° 1, 1997



2 8 L. BREVEGLIERI

and is generaled by the fiattened FE:
/s = [a; e: b\ e; c; e; d; e]\\

||([e; e; e; e; 5; e; e; e; ] U.[e; ƒ; e; e; e; ƒ; S] e]U

U [e; e; e; e; e; e; e; e] U [e; e; e; ƒ; e; e; e; ƒ])'!*

where the alphabet is S - {a, 6, c, d, e, ƒ} and the generators are
[a; e; 6; e; c; e; d; e], [e; e; e; e; e; e; e; e; ] , . . . , [e; e; e; ƒ; e; e; e; ƒ]. D

One has, for instance, using the FE f$:

aeffbfefceffdfef = \[a; e / / ; 6; / e / ; c; e / / ; d; / e / ] \

= [a; e; 6; e; c; e; d; e]||([e; e; e; e; e; e; e; e]| |

||[e; ƒ; e; e; e; ƒ; e; e]||[e; ƒ; e; e; e; ƒ; e; e]||

II[e; e; e; ƒ; e; e; e; /]||[e; e; e; e; e; e; e; e]||

The construction here shown for finding the FE equivalent to a given pattern
is gênerai with respect to E and p. The inclusion of Pattern Languages in
fFLL is strict; Pattern Languages are closed with respect to the intersection
with regular languages [Ang80], whereas it will be proved in statement 7.6
that the family fFLL is not.

In gênerai, also the rational closure of the family of Pattern Languages is
(strictly) included in the family of fFLL; for instance, the closure language
p.(e, ƒ)* is generated by the flattened FE ƒ§.

These five examples have hopefully given the reader some intuitive
understanding of the inner structure of FLL, though not yet in a systematic
way. None of them is RLL, but example 4.4, which actually is sRLL (in the
[ ]-free version), and hence also RLL, because its associated word language
is the free monoid E* with words saturated with respect to the introduction
of the separator (; ). As for a direct example of a sRLL with a non-trivial
word image and of a RLL which is not sRLL, consider the following FE's:

Example 4.6 (Regular List Language): The following FE's generate a
sRLL and a RLL, respectively:

h = (W ( M l l + U ([a]||([£]* H"*)4)3 W m\\{W [a6]"*)6)5)2 [e]*tf
G sRLL

ƒ10 - {W Ml l l + H*) + G RLL

where in both cases the alphabet is S = {a, 6}, the generators of ƒ9 are [e],
[a], [6], [aö] and [6a], and the generators of ƒ10 are [e] and [ab]. D

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 29

Both the list languages L (ƒ9) and L (ƒ10) have the same flattened image,
which is the (non-trivial) regular word language (ab)+. The list languages
generated by such FE's differ as follows, respectively:

[51; 52; . . . ; sn] e L(fg) si e eö(ab)+ Ua(ab)* U6(a6)* 1 < i < n

•[$1; 52; . . . ; sn] G L(fio) st e eU(ab)+ 1 < i < n

The list language L (ƒ9) is sRLL because it is the saturation of the regular
word language (a&)+ with respect to the introduction of the separator (; ).
The FE ƒ9 first générâtes in all possible ways intermediate lists with an
arbitrary number of components, but where either one or two components
are non-empty. If only one component is non-empty, then it is (a&)+,
otherwise the two non-empty components (which can be separated by empty
components) are orderly a {ba)* and b(ab)*. The intermediate lists are then
concatenated freely once or more times. For instance:

[e; ab] a\ e; ba; e; b]

Clearly the final lists have an arbitrary number of components, which can be
the empty string e or any substring of (a&)+, but the concaténation of the
non-empty components (at least one) always yields a string of the type (ab)+.

The list language L ( ƒ10 ) is RLL because its word image
string (L (f 10)) = (; )* (ab)+ (; (ab)*)* is regular..The FE ƒ10 générâtes
intermediate lists with an arbitrary number of components, but where exactly
one component is non-empty, and is (a6)+. The intermediate lists are then
concatenated freely once or more times. For instance:

[e; ab; e; e; abab; e] = ([e] [ab] [ ]) ([e]2 [abf [e])

Clearly the final lists have an arbitrary number of components, but each
non-empty component (at least one) is always of the type (a&)+. The list
language L(fio) is not sRLL, because the word language string (L (f10))
is not the saturation of the regular word language (a6)+ with respect to the
introduction of the separator (;).

5. A MORE COMPLEX EXAMPLE

The next example is important and requires a more extensive treatment.
This example will be reused later to prove a significant non-closure

vol. 31, n° 1, 1997



3 0 L. BREVEGLIERI

property. It is concerned with the so-called AntiDyck language by Franchi
Zannettacci-Vauquelin [Fra80] and Brandenburg [Bra88].

DÉFINITION 5.1 (AntiDyck Equivalence): Let E be an alphabet, called
natural alphabet, let E be a disjoint copy of E, called barred alphabet, and
pose A — E U E. Define the binary relation EQ C A2 over the strings so that:

x Eoy <$- x — auâv and y = uv

where x, y G A*, u G E* and v G A*

Let the binary équivalence relation over the strings E — (EQ U EQ1)* Ç A2

be defined as the reflexive, symmetrie and transitive closure of the binary
relation EQ. The binary relation E is called the AntiDyck équivalence.

For instance, it holds abâb =# auâv —Ebb, where u = b and v — 6, but
abbâ ^Ebb, because the réduction of abbâ to bb would require that u — bb,
but u g E*.

DEHNITÏON 5.2 (AntiDyck Language): The AntiDyck language [Fra80], over
the alphabet A ~ S U S, is defined as the set o f all the strings of A* that are
equivalent to the empty string e through the AntiDyck équivalence relation
E. The language is denoted AntiDyck (S) Ç A M f is a représentative queue
language (Franchi Zannettacci-Vauquelin [Fra80], and is also called FIFO
language (Brandenburg [Bra88]j.

Hère are some AntiDyck strings, for the natural alphabet E = {a, b}

£, aâ, abâb, abaâbbâb, abâbbbbabâ^ ...

They are all equivalent to the empty string e through the AntiDyck
équivalence =# .

To show the procedure to check the validity of an AntiDyck string, consider
the following successful réduction to e of the AntiDyck string abâbbbbabâ:

xuxv —E^IV u G S* VGA* and x, x G E, Ê

a.bâ.bbbbaBâ —Ebbbbbdkia u — b v = bbbbabâ

hbbbbabâ —Ebbbabâ u — bb v = baba

hbbabâ —Ebablï u — b v = ab~â

baba =£;aâ u = a v = u

aâ —E^ u — e v — e

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 31

AntiDyck could also be defined as the set of all the strings of completely
unnested bracket pairs; the natural (resp. barred) characters of S (resp. E)
are the "open" (resp. "closed") brackets [Bre93, Bre94, Fri94]. Figure la
shows the parentheses structure of the above sample string; all the AntiDyck
strings shown above are of this type. Finally, AntiDyck could be defined as
the set of the activity traces of a FIFO job shop: imagine that the characters
of E are requests sent by clients to the job shop and that the characters of
E are the services dispatched by the job shop in response to the requests;
the time of arrivai of the requests is free and each request deserves exactly
one service, spécifie for that request. The job shop is FIFO if and only if the
services are dispatched after and in the same order as the requests [Bre91].
Figure lb shows the scheduling of the above sample string; all the AntiDyck
strings shown above are of this type.

°P e n

t
ba

closed
t

b b b b a b

request service time
t : 4 - ^ ~—^
b a b b b b a b a /fc

bracket pair service trace

Figure 1. - Parentheses (a) and trace (b) interprétations of the AntiDyck language.

Example 5.1 (AntiDyck): AntiDyck is a fFLL obtained as the flattening
of the FLL generated by the FE fu:

/ i l = ([e]* [a;ö]U[e]* [6; 6])»* and AntiDyck^) = \ L ( / n ) \ C A*

where E = {a, 6}, A = {a, 6, â, b} and the generators are [e], [a; a\ and
[6; &]. The FE / n generalizes immediately to any alphabet cardinality. We
shall dénote the list language L ( / n ) as AntiDyck(T>) C AJ*' and call it
the list AntiDyck language. D

We justify the correctness of the FE fu by working out a significant case.
Referring to the valid AntiDyck string whose réduction to e has been shown
above, an example of expansion of fu is the following:

ababbbbaba — \[ab\ âbbb] bab: a\\

= \([a; â])||([£; b; b])\\{[e; e; a; a])| |([e ; 6; 6])||([6; b])\

e \AntiDyck({a, b})\

vol. 31, n° 1, 1997



3 2 L. BREVEGLIERI

In gênerai, to prove that the flattened image of any list generated by the FE
ƒ11 is a valid AntiDyck string, observe that ƒ11 works by freely merging lists
of the type: [e; . . . ; e; a; â] and [e; . . . ; e; b\ b\\ we shall call them generating

lists. The flattened images of the generating lists are the trivial AntiDyck
strings aâ and bb. The generating lists are obtained by shifting to the right the
generators [a; a\ and [b; b] of ƒ11 for an arbitrary number of e-components.
The merging of an arbitrary number of generating lists always yields a list
whose flattened image is a valid AntiDyck string. In fact, the merging of the
generating lists ensures that the following properties are preserved:

• A natural character, say a, is always followed by its barred copy â in
the next list component, Le. [ . . . ; . . . a . . . ; . . . ~â . . . ; . . . ] .

• If two natural characters occur in some order in the same component
(but not necessarily adjacent), say a . . . 6, then their barred copies occur in
the same order in the next list component, Le. a ... b.

Therefore the FE ƒ11 only générâtes hsts whose flattened images are valid
AntiDyck strings.

Conversely, to show that every AntiDyck string is a flattened image of
some list generated by the FE ƒ11, we must first show how to segment an
AntiDyck string into a list and then that such a list is really generated by ƒ11.

As for the segmentation step, proceed as follows. The AntiDyck string is
scanned one-way from left to right by a read/write head, which reads the
characters of the string and may insert, from time to time, the separator (; ),
in the following way:

• A separator (;) is inserted immediately to the left of the first barred
character found (which certainly exists, unless the AntiDyck string is empty,
which is a trivial case).

• Whenever the projection - over the barred alphabet E - of the string
factor delimited bet ween the last inserted separator (; ) (the rightmost one)
and the current position of the read/write read coincides with the projection
- over the natural alphabet E - of the string factor delimited between the
last two inserted separators (; ) (the two rightmost ones), or between the left
end of the string and the last inserted separator (; ) (the rightmost one) if
the string still contains only one separator (;), then the next separator (: )
is inserted immediately to the right of the current position of the read/write
head, unless the head has reached the right end of the string.

The whole process is deterministic, so the resuit (an AntiDyck string
segmented by separators (;)) is unique. The segmented AntiDyck string
is then converted into a list (AntiDyck list) in the obvious way (use the

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 33

function list). The following table shows the segmentation process, applied
to the same valid AntiDyck string as above.

Segmentation of the AntiDyck string

AntiDyck string:

Pass 1

Pass 2

Pass 3

Pass 4

Segmented string:

AntiDyck list:

a

a

a

a

b

b;

b;

&;

[ab:

a

â

ü

b

b

b

b

b

b

b

5;

; •

b]

âbbb;

b

b

h

a

a

a

b

b\

b

bab;

a

â

â

After obtaining the AntiDyck list, we must extract from it the generating
lists. This task is easy, as it suffices to scan the AntiDyck list one-way from
left to right and collect the letters pairs; . . . a . . . ; . . . â . . . , etc., which
correspond naturally to the generators of / n , e.g. [a; â], etc., and then build
the generating lists by prepending to them as many e-components as it is
required by their position in the AntiDyck list. The following table shows
the extraction process

Extraction of the generating lists

Components:

AntiDyck list:

Gen. list 1:

Gen. list 2:

Gen. list 3:

Gen. list 4:

Gen. list 5:

1

K

[a;

[*;

[e;

Ie;

te

2

âbbb;

ü]

b]

t>;

b;

6't

3

bob;

b)

b)

o;

4

S]

â]

Finally, the correct order to merge the generating list must be computed.
Given the succession of the generating lists, start from the topmost generating
list (gen. list 1), then attempt to compute a partial AntiDyck string
that progressively reproduces the full AntiDyck string, by identifying and

vol. 31, n° 1, 1997



34 L. BREVEGLIERI

extracting from the residual succession of the generating lists the topmost
list that merges properly with the partial AntiDyck string computed so far,
and so on until no generating list is left. The following table shows this
permutation process.

Reordering of the generating lists

Full AntiDyck list:

Permuted gen. lists

' Gen. list 1

Gen. list 3

Gen. list 5

Gen. list 4

Gen. list 2

Components

1

[a:

[e;

[*;

[*!

[*!

2

a]

b;

e;

b;

b]

3

b]

a;

b]

4

â]

[ab; abbb\ bab\ a]

Partial AntiDyck lists

Initial list: [ ]

[a; a]

[a; âb; b]

[a; âb; ba; a\

[a; 'abb; bab; a]

[ab; âbbb; bob; a\

The whole process converges to the solution. This also shows that the
AntiDyck language provides an unexpected link between very different
formalisms.

6. HIERARCHY OF LIST LANGUAGES

The three families of list languages FLL, RLL and sRLL form a proper
hierarchy. This section is entirely dedicated to prove such a fact. As a
technical detail, we assume in the following that, given an alphabet S,
the set S5 = E U {; } is the same alphabet as S, but extended with the
separator (;), and that n : £ J —> E* is the natural projection cancelling
the separator (;).

STATEMENT 6.1 (Image): Any RLL and any sRLL has a regular flattened
image.

Proof: Given a RLL L Ç s '+ l , its flattened image is \L\ =
ft (string) (L)) Ç E* (see statement 2.1). Since the language string (L)
is regular by the définition of RLL and TV is a projection, also the flattened
image of L is regular. If L is sRLL then the flattened image of L is precisely
the regular language whose free segmentation is L,

Informatique théorique et Applications/Theoreticat Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS "35

The next statement gives a décomposition property of RLL, useful for
comparing RLL with FLL.

STATEMENT 6.2 (Décomposition): Every non-void RLL R Ç s M kas a
word image string (R) Ç E^ that can be decomposed as follows:

string (R) = L(rexpr (Rf, . . . , Rf, . . . , iff, (; )))
generators f (1)

where Rf Ç S* for 1 < i <n

where rexpr is a regular expression hoving as generators the non-void

regular languages Rf and the separator (;).

Proof: The statement is proven by showing a construction for the regular
expression rexpr and the generators Rf.

Notationaï premise. Dénote a deterministic FSA as follows: A =
(Q, E, q~, F, 8), where Q is the set of states, E is the input alphabet, q~ E Q
is the initial state, F Ç Q is the set of final states and 6 : E x Q —> Q
is the transition fonction.

Définition of relationship (1). Consider that since R is a non-void RLL there
exists a non-void regular language R$ Ç S | such that R$ = string (R)
(définition 3.3).

Take the deterministic FSA A = (Q\ E, q~, F, 8)\ acting over an
input alphabet without separator and recognizing a regular language
R — L(A) Ç E*.. A free eut automaton of A, of type (p, q) (where p,
q E Q), is the maximal subautomaton Alhq — (Q, E, p, {g}, 6) of A, where
the maximality is taken over the transitions; there exist at most \Q\2 such free
eut automata. Briefly, APi q consists of all the paths in A from state p to state
q. Dénote as Rp^q = L(A2^q) C E* the regular language recognized by the
free eut automaton Ap>q, called free eut language of type (p, q), and dénote
as C — {RÏXq\pr q E Q} Ç p (E*) the (finite) faniily of free eut languages.

Take the deterministic FSA As, = (QY S5, q~\ F, 6), acting over an
alphabet extended with the separator (; ) and recognizing the regular language
Rs = L (As) Ç EJ. A bounded eut language Rp^q Ç E* is defined as the
regular language Rf, q = (Rp_q n (; S*))/(; ) (the slash "/" indicates the left
quotient), where R^q E EJ is a free eut language of the automaton As
(note that Rf)q does not contain the separator (;), while Rp,q may contain
it). Briefly, a bounded eut language Rf q consists of all the paths sharing the
same initial and final state p and q, respectively, starting in p with a separator

vol. 31, n° 1, 1997



3 6 L. BREVEGLIERI

(;), which is cancelled, continuing after q with a separator (;), but not
containing any separator (; ) in the middle. Dénote as G$ — {Rp^q\p, q E Q
and Rpq ^ 0} Ç p(E*) the (finite) family of non-void bounded eut
languages.

The following local constraints tie the bounded eut languages:

string (R) = (Cs U {; })* - P (; CST - (Cs ;)* S - (Cs ; )* M(; C 5)*
P = U ^* 5 = U *£* M = U Rlv Rr,s (2)

Define C5 as alphabet, whose éléments are the "names" of the bounded eut
languages R^iQ. After relationship (2), the regular language Rs is a 2-definite
language, where the alphabet is Cs plus the separator (; ). Therefore Rs is
generated by a regular expression rexpr, definable as follows:

string (R) - L (rexpr ( i ^ , . . . , i £ ^ , . . . , Rs
p^qn, (; ))) (3)

having as generators the éléments of Cs and the separator (;). We claim
that relationship (3) is the relationship (1) whose existence is affirmed by
the thesis of the statement.

Computation of the relationship (1): The computation of Rf is implicit
in its définition, that of rexpr can be found for instance in [Brs79], and
consists in passing from a set of local constraints to the corresponding local
regular language.

Proof of the correctness of relationship (1): Relationship (2) expresses
the local constraints that guarantee the bounded eut languages Rf are
concatenated together correctly to reconstruct the strings of Rs. In detail,
the various terms of (2) have the following interprétations:

• P (; Cs)*: the first bounded eut language starts at the initial state of As-

• (Cs ; )* S: the last bounded eut languages end at some final state of As-

• (Cs ;)* M (; Cs)*'- the ending and starting states of two consécutive
bounded eut languages are connected by a transition reading the separator
(; ) in the input of A5.

Hence relationship (2) shows immediately that Rs is a regular 2-definite
language over the alphabet Cs U {;}, containing the names Rf of the
bounded eut languages and the separator (;).

As the above list shows, the local constraints contained in relationship
(2) are such that;

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LÏSTS 37

• The bounded eut languages Rf are concatenated in such a way that only
strings of the language Rs are obtained.

• Any string of the language Rs is obtained by concatenating the bounded
eut languages Rf in a way allowed by the regular expression rexpr.

Therefore relationship (3) has the properties claimed for relationship (1),
and is formally equivalent to relationship (1) through a simple renaming
of some indices. D

The following statement proves the existence of a proper hierarchy of
regular list languages inside the family FLL.

STATEMENT 6.3 (Hierarchy): It holds sRLL C RLL C FLL, i.e. simple
regular, regular and fair list languages form a proper hierarchy

Proof: The proof is organized by considering the two inclusions separately.

Inclusion sRLL C RLL: it follows directly from the définitions of
sRLL and RLL. In fact, if Tl is the family of regular languages, then
TT"1 (Tl) Ç Tl, due to that regular languages are closed w.r.t. back-projection,
hence sRLL — list(7r~1 (71)) Ç list (Tl) — RLL, because list is a one-to-
one mapping (see statement 2.1). Moreover, there exists no regular language
R Ç E* s.t. TT"1 (R) = E* (; E*; E*)*, that is, the strings of the back-
projection TT"1 of R contain an even number of separators (;), including
none. In fact, the back-projection TT"1 (R) would unavoidably saturate the
strings of R with respect to the introduction of the separator (; ).

Inclusion RLL C FLL: it is necessary to show that given any regular
language Rs Ç SJ, the RLL R = list {Rs) Ç S '+ ' is generated by some FE.

Définition of the FE: it is defined by composing two different types of
fair expressions, one not containing merge and the other not containing
catenation; to this purpose, we use statement 6.2. The word image
string (R) = Rs of the RLL R can be decomposed according to relationship
(1):

string (R) = L (rexpr (Rf, . . . , R?, . . . , Rs
n, (; )))

where the regular languages Rf Ç E* are the bounded eut languages, for
any 1 < i < n. Dénote as cutf (a^, . . . , aïm) the regular expressions that
generate the Rf 's, with generators aZl, . . . , alm G S U {e} (in the following
we shall omit the generator, for brevity), respectively, Le. Rf = L (cutf).

By statement 6.2 the projected regular language -K (RS) Ç E*, whose
strings are those of Rs but with all separators (;) cancelled, is generated

vol. 31, n° 1, 1997



38 L. BREVEGLIERI

by the following regular expression:

...,Hf, , RS
n))

= L (paste (Rf, , R?, ..., i£ , )) (4)

where paste — TT (rexpr) is a regular expression.
Tb obtain the FE that générâtes R, we transform the compound regular

expression (4) into a FE, by using the two mappings p, and z/, as follows:

/x : reg.expr. —> fairexpr. v : reg.expr. —»- fairexpr.

generator \—> [^en.er<iior] generator H-»- [# era erator]

5i • 52 >̂ /* (5i)[|/i (52) ri • r2 A /y ( n ) • zv (r2)

where s-, 5i and 52 are regular expressions over the alphabet E, i.£.
generator E E U {s}, and r, n and r2 are regular expressions over the
alphabet C$, Le. generator E C$.

We dénote paste = v (paste) and çutf — \i (cutf). The image FE's cutf
have as generators one-component one-letter lists of the type [a] and [e]

with a G S; the image FE j?as£e has as generators one-component one-letter
lists of the type [Rf] with Rf G Cs- The image FE's cutf generate one-
component lists, Le. [w] with w E £*; the image FE paste générâtes lists
with components consisting of one letter, ie. [Rf ; . . . ; Rf ] with Rf G C5.
We claim that the FE:

Q 'Q Q

ƒ = paste (cuti, . . . , ç^î: , . . . , çutn) (5)
générâtes R, Le. R — L(f).

Computation of the FE (5): it is necessary to compute the FE's cutf
and paste.

The regular expressions cutf are computed by first cutting away the
subautomaton Af from the whole automaton As, by intersecting it with
(; S*), by Computing its equivalent regular expression and finally by

Informatique théorique et Appïications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 39

quotienting away on the left the generator (; ). The FE's çutf are computed
by applying the mapping /i.

The regular expression paste is computed by projecting through TT the
regular expression rexpr of relationship (1); obviously paste does not contain
the generator (; ) an y longer. The FE paste is computed by applying the
mapping v.

Proof of the correctness of the FE (5): we must prove that the FE ƒ
générâtes R. To this purpose, we analyze the behaviour of the subexpressions
çutf and paste; statement .3.1 is used.

\çutf\ = \/x {cutf)\ = L (cutf) - Rf (6)
The dérivation (6) holds because: flattening is an isomorphism between FE
restricted to union, merge, merge closure and one-component generators,
and regular expressions (see statement 3.1 for the proof); and flattening and
the mapping \x are each other's inverse, since flattening is here one-to-one,
see statement 3.1, whence /x is here one-to-one, and flattening and n revert
each other's opérations. Symbolically, we can rewrite relationship (6) as
L(çwtf) = [E?].

\paste(cut )\ — \pa$te(çutf, . . . , çutf, . . . , cutf)\

= \paste[Rs
1},...AR?,...,[RSn))\

= L(paste(\[Rf}\, ..., \{Rf)\, ..., \ [ i $ \ ) )
= L (paste (\gutf\, ..., \çutf\, ..., \çv£\)) (7)

The dérivation (7) holds because: flattening is an isomorphism between
FE restricted to union, catenation, catenation closure and generators with
one-letter components, and regular expressions (see statement 3.1 for the
proof); and flattening and the mapping v are each other's inverse, since
flattening is here one-to-one, see statement .3.1, whence v is here one-to-one,
and flattening and v revert each other's opérations.

\A = \paste (çutf, .. -, cwtf, • • •, «rf£)\

= L (paste (\auti \ , •••, \ « r f f \ , • • • , \ Ê M ^ \ ) )

= L (paste (Rf, ..., R?, . . . , i £ ) )
(8)

vol. 31, n° 1, 1997



40 L. BREVEGLIERI

The final dérivation (8) holds because of: relationship (7); relationship (6);
and relationship (4). So we have that \R\ — \ / \ ; but since flattening is
one-to-one on expressions of the types eut and paste, whence also on
expressions of type ƒ, it immediately follows that R — L(f).

The strictness of inclusion RLL C FLL follows by observing that, for
instance, the language AntiDyckÇE) of example 5.1 is a FLL but not a
RLL, as its flattened image is not a regular language. D

Statement 6.3 admits a weaker version, that works for sRLL instead of
RLL. If the regular language R is recognized by an automaton A, acting over
an alphabet E without separator, then it suffiees to replaee systematieally the
bounded eut languages with the free eut languages and to omit the separator
(;) in the relationship (2).

We want to show an example of the construction involved in statement
6.3. As it is fairly complex, mainly due to the computation of the regular
expressions generating the bounded eut languages, we turn to show the
simpler case for sRLL, which still embeds all of it essence. With the help of
intuition, the involved regular expressions can be inferred through a quick
look at the state diagram of the automaton A

Example 6.1 (sRLL): Take the deterministic FSA A =
({a, &}, {gi, q2}, <7i, {&}] <5) represented in Figure 2. Clearly one
has R — L{A) = a*6S*, where E = {a, b] is the input alphabet of A.
There exist four free eut automata, represented in Figure 3 (they are neither
reduced nor minimized). They are obtained from A by simply reassigning
the initial state (dangling arrow) and final states (shading); it is immédiate
to compute their equivalent regular expressions. The eut regular expressions
and their FE's are easily seen to be, posing E = {[a}1 [&}}:

R1A =L(Alil) =

=R

çut 2l = 0

o = [e]U#

F S A A
Figure 2. - Deterministic FSA to be freely segmented.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 41

a, b
CUt A2,2

Figure 3. - Free eut automata obtained from the deterministic FSA A

The regular expression paste and the FE paste are (we minimize relationship
(2) for paste, observing that i?2,i = 0):

R =

Finally, the FE ƒ that générâtes the sRLL \R\~X is:

ƒ = ([e]U[a]«*)Ï (([e]U[a]ll*)3||[6]||([e]UEll*)4)2 (

For instance, the expansion forlists of type [a*; am 6a";
is:

[a*;amban;e; ... ; e]

m times n times

E = {[a], [6]}

e] (m, n > 0)

The two FE's ƒ9 and ƒ10 of example 4.6 are derived by applying the above
construction, with some final simplification.

vol. 31, n° 1, 1997



4 2 L. BREVEGLIERI

7. PROPERTIES OF LIST LANGUAGES

In this section, the language-theoretic properties of the various families
of list languages are investigated, including semilinearity, closure and
decidability. As a technicaï detail, we assume that E is the alphabet, Es is
the same alphabet as S, but extended with a separator (; ), and TT : S'J —> E*
is the natural projection eancelling the separator (;).

7.1. Semilinearity

The family fFLL inherits the semilinearity property [Gin75] from regular
languages.

STATEMENT 7.1 (Semilinearity): Let ̂  : E* —• JV'Ei be the Parikh fonction
of strings [Har78, Sal73J. Then the image space of the family fFLL through
ty is semilïnear,

Proof: Observe that FLL is letter-equivalent to a regular language, dropping
the separators (;}.. In fact, it suffices to take a FE, drop the separators (; )
and map both merge and list catenation onto string catenation. This produces
a regular expressions generating strings that are letter-equivalent to the lists
generated by the FE, although the letters are more or less permuted. Letter-
equivaleiït languages have the same Parikh image and regular languages are
semilinear. Q

The Parildi image is definable also for FLL, and coincides with that of
fFLLr but not including the separator (;).

7.2. Closure properties

Now we can prove the main closure properties of FLL, fFLL, RLL and
sRLL. As usual S5 dénotes the alphabet E extended with the separator (;•}.

7.2.1 Homomorphism

Direct and reverse homomorphisms for lists are defined similarly to strings.

DÉFINITION 7.1 (List Homomorphism): Thefunction ip = Ê *'- —> A'*' is a
list homomorphism on lists, over the alphabet E,, to lists, over the alphabet
A, if and only if, f or any lists x_, y E E'*\ the following holds:

<p (x\\y) = <p (x)\\(p (y) y (xy) = <p(x)<p(y) <p ( [ ]) = [ ]
Reverse hst homomorphism y?"1 is defined in the obvious way, Le.
(p~l (x) — {y\ip(y) — x}. It is easy to see that if ip : E* —> A* is a

Informatique théorique et Applications/Theoretieal Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 43

word homomorphism and the function xp : S ^ —> A'*) is defined through
the following mapping:

\ x 2 \ . . . ; xn]) = [<p(x!)\ (p(x2); . . . ; <p(xn)]

Xi e S* for 1 < i < n

and moreover posing ip([ ]) = [ ], then tp is a list homomorphism.
It is said that the list homomorphism ip is associated with the word
homomorphism <p. A similar association holds for reverse homomorphism,
Le. ( ^ ( [ x i ; x2\ . . . ; xn]) = {[yi; y2; . ..;2/n]|ï/i € y~l (x i ) , 2/2 G
V9"1 (#2)> • • • ) 2/ra ^ V7"1 (^n)}- List homomorphisms always come in
association with word homomorphisms.

STATEMENT 7.2 (Association): Direct and reverse list homomorphisms

are one-to-one associated with direct and reverse word homomorphisms,

respectively.

Proof: A word homomorphism always induces a list homomorphism,
by relationship (9). Conversely, let <p be a generic list homomorphism.
Take any two one-component lists [x], [y], where x, y E E* are two generic
strings, then it holds: ^([4 | | [y]) = cp([x])\\ip([y]) and <p([x]\\[y]) = <p([xy]).

Therefore cp works on one-component lists like a string homomorphism.
Take now any multiple-component list [xi; x<i\ . . . ; xn], where the Xi e E*
are generic strings for 1 < i < n, then it holds (p ([xi; . . . ; xn]) —

^_([xi] [x2] . . . [x„]) = <£_([#i]) 9P_([#2]) • • • ¥_([xn}). Since (p_ works like
a string homomorphism on one-component lists, is must work on multiple-
components lists as specified by relationship (9). The same reasoning
applies to reverse homomorphism. Association is clearly a one-to-one
correspondence. •

A conséquence of statement 7.2 is that, given any list x € S'*l, the number
of components of <p_(x) is the same as that of x; hence if tp (x) = { } it
follows that x — [ ].

A generic list homomorphism is said to be arbitmry. A list homomorphism
is said to be alphabetic if and only if it maps characters onto characters, Le.

iff (£_ ([a]) = [b], where a, b e S. A list homomorphism is said to be erasing

if and only if it can map some character to e, Le. iff <p ([a]) = [e], for some
a G E. It is easy to see that list homomorphisms are alphabetic (resp. erasing)
if and only if they are associated with alphabetic (resp. erasing) word
homomorphisms. A reverse list homomorphism is said to be arbitrary (resp.
alphabetic, erasing) if and only if the corresponding direct list homomorphism
is arbitrary (resp. alphabetic, erasing).

vol. 31, n° 1, 1997



44 L. BREVEGLIERI

STATEMENT 7.3 (Commutation): Arbitrary direct and alphabetic reverse
homomorphisms commute with flattening, i.e.:

V (x)\ = y> (\x\) and \ir' (x)\ = rX (\x\)

where x is a list, (p and ij; are arbitrary direct and alphabetic reverse
list homomorphisms, respectively, and </?, ip^1 are their associated arbitrary
direct and alphabetic reverse word homomorphisms, respectively.

Proof: Statement 7.2 implies that:

\<p(x)\ = \ [ < ^ O i ) ; {f{x2)\ . . . ; <p(xn)]\ =

= ip(xiX2 . . . £ „ ) = <£ (\x\)

' (x)\ =

For the passage I/J^1 (xi) /ip~1 (#2) . • - ̂ ~X (xn) — ̂ ~1 (xi ^2 • - • xn) it is
essential that reverse homomorphism is alphabetic. D

By a standard proof [Brs79], arbitrary direct and alphabetic reverse list
homomorphisms commute also with catenation and merge, and hence also
with their closures. Now we can prove the homomorphism closure properties
in detail.

STATEMENT 7.4 (Homomorphism): The families FLL and fFLL are closed
w.r.t. arbitrary direct homomorphism and alphabetic reverse homomorphism.
The families RLL (resp. sRLL) are closed w.r.t arbitrary (resp. alphabetic)
direct and arbitrary (resp. alphabetic) reserve homomorphism.

Proof: For a generic FLL L observe that the closure w.r.t. any arbitrary
direct list homomorphism or alphabetic reverse list homomorphism (p or
ip~1, respectively, holds because it suffices to apply y> or ip~1, respectively,
to the generators of the FE that générâtes the language L\ for the construction
to work correctly it is essential that the reverse list homomorphism tp~1 is
alphabetic [Brs79], ~~

For fFLL statement 7.3 ensures that arbitrary direct and alphabetic reverse
homomorphisms commute with flattening, so the closure follows from that
of FLL.

The proof for RLL and sRLL is the following. Let (p : E£ —> A*s

be an arbitrary word homomorphism that preserves the separator (;), Le.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 45

y?(;) — (;), and let tp : El'*' —> Aj*' be its associated arbitrary list
homomorphism. Let now R C ££ be a regular language over the alphabet
E extended with the separator (;). Then one has:

" 1 (list (R)) = Zzs£ O " 1tp (list (R)) = list (tp (R)) and c^"1 (list (R)) = Zzs£ O

because /wf is one-to-one and <p is associated with cp. Let now 7? Ç S* be a
regular language and let ip be alphabetic. Then one has:

1 1 and ^ 1 1 1

because f ree segmentation W"1 preserves characters and y? is alphabetic and
associated with tp. These relationships prove the homomorphism closures
of RLL and sRLL. D

The family sRLL is clearly not closed w.r.t. direct and reverse arbitrary
homomorphism.

7.2.2. Boolean closures

Boolean closures are defined as usual; only note that, since RLL and sRLL
are [ ]-free, complement must be taken with respect to the [ ]-free universal
list language. The next statement extends to list languages the important
Franchi Zannettacci-Vauquelin theorem [Fra80] on the AntiDyck language.

STATEMENT 7.5 (Generalized Franchi Zannettacci-Vauquelin Th.): A word
language is recursively enumerable if and only if it is the flattened image
of a homomorphic image of the intersection of the list AntiDyck language
AntiDyck (see example 5.1) with a sRLL, i.e.:

E = \(p AntiDyck n R)\

where E Ç S* is a recursively enumerable language, tp : A'*' —» S'*' is

an arbitrary list homomorphism, AntiDyck (E) Ç A'*' is the list AntiDyck

language and R Ç A_M is a sRLL.

Proof: The proof is an extension to list languages of the well-known
Franchi Zannettacci-Vauquelin theorem on the AntiDyck language [Fra80]:
"a language is recursively enumerable if and only if it is a homomorphic
image of the intersection of the AntiDyck language (see définitions 5.1
and 5.2) with a regular language'7. In symbols, given an alphabet S
and posing A = E U E where E is a disjoint copy of E, let E1 Ç E*
represent a recursively enumerable language, ip : A* —> S* an arbitrary

vol. 31, n° 1, 1997



4 6 L. BREVEGLIERI

homomorphism, AntiDyck (E) Ç A* the AntiDyck language and R Ç A*
a regular language, then the following is an identity:

E — (p (AntiDyck-.(E) DR) (Franchi Zannettacci VauqueMn [Fra80])
(10)

We ean now ex tend relationship (10) to list languages, searching a list
language E_ whose flattened image will be E. Construct the new list language
E as follows: E_ = p (AnUDyck (E) n R) Ç E K Of the objects appearing
in the formula, the list language R Ç A'+ ' is a sRLL defined as ^ = \ i2\~1

and the arbitrary list homomorphism cp : A ^ —• Ê *' is that associated with
the arbitrary word homomorphism <p. The list language E_ is the searched
one, since the equality E — \E\ holds, because:

\E\ = \<p (AnUDyck (E) nf2)\ (11)

= y? (\AntiDyck (E) n £ \ ) (12)

= y? (TF (s*rmsr (AnUDyck (E) nE) ) ) (13)

= y? (TT (string (AnUDyck (E)) n string (R))) (14)

= cp (TT (^ri?if (AntiDyck (E)) n TT"1 (i?))) (15)

= ^ (TT (string (AnUDyck (E))) n J?) (16)

i?) (17)

= <p (AnUDyck (S) n iü), = £? (18)

The passages in the equality are orderly based on: (11) the commutativity
between flattening and arbitrary direct homomorphism (statement 7.3), (12)
the functional identïty \ \ — irostring (statement 2.1), (13) the commutativity
between the compaction fonction string and intersection holding since
string is one-to-one, (14) the language identity string (R) — 7r~l (R)

holding since R is a sRLL (définition 3.4), (15) the functional identity
a(U n-a~1 (V)) = a(U) nV where a is a fonction and U, V are two
sets proved in [Brs79] (in the present case the role of a is played by
the projection TT), (16) again the same functional identity TT O string = \ \
as in (12), (17) the language equality AntiDyck (E) — \AntiDyck (E)\
(example 5.1), and eventually (18) relationship (10) which is the Franchi
Zannettacci-Vauquelin theorem of [Fra80]. D

The Franchi Zannettacci-Vauquelin theorem and hence statement 7.5 hold
even if the homomorphism is alphabetic and the regular language is local
2-definite [Fra-80]-.

Informatique théorique et Applrcations/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGÜAGES OVER LISTS; 47

STATEMENT 7.6 (Intersection with Reg. List Lang.): The famïly FLL is not
closedw.rj. the intersection with the famïly sRLL and the family fFLL is not
closed w.r.t the intersection with regular languages.

Proof: We prove the statement by réfutation. Assume that FLL is closed
w.r.t. the intersection with sRLL. But by statement 7.5 every rêcursively
enumerable language is the flattened image of the homomorphic image of
the intersection of the list AntiDyck language with a sRLL. We know by
statement 7.4 that FLL is cïosed wvr.t. arbitrary homomorphism and by
example 5.1 that the list AntiDyck language is FLL. Were FLL closed
w.r.t. the intersection with sRLL, by statement 7.5 it would follow that every
rêcursively enumerable word language should beFLL. By statement 7.1 every
FLL is semilinear, hence also such a word language should be semilinear.
This is the contradiction disproving the initial assumption, since rêcursively
enumerable languages are not semilinear, in gênerai. The family fFLL is not
closed w.r.t. the intersection with regular languages since fFLL and regular
languages are the flattened images of FLL and sRLL, respectively. •

The above proof is compact, but it does not produce an explicit example.
The following construction shows a simple one, ïnstancing the proof of
statement 7.5.

Example IA (COPY^): We shall show how to construct the language:

E ~ {ut ui ..-. un\u\ é S + m = Ui-i for 2 < i < n} Ç S +

The language E is also called the COPYQQ language in the literatüre [Bra88],
as it is the free replication of any string in S + ; it is not semilinear because
the number of replieations n > 2 is unbounded, and hence it cannot be
fFLL. The language E is intefesting as, in some sensé, it lies ât the border
between semilinearity and non-semilinearity; in fact, were the number n of
itérations of the prefix u\ upper bounded, then the language E would be
semilinear. We shall instance the construction of statement 7.5 by gïving the
regular language R and the homomorphism cp.

Tàke a (natural) alphabet E and let £5 = £ü{_L} be the (natural) alphabet
5 extended with the separator _L Let £ and £5 be their barred copies (so
1 G £5 and T e £5). Let also be A = £ U S and As = £5 U £5 , and let
6 : A*s —> £* be the natural projection; 9 cancels all the barred characters
(including X and also the separator J_). Take the AntiDyck language over
the alphabet A5, Le: AntiDyck (Y,s) Ç AJ.- Define the regular language:

R - £+ ( J .T + X) + X £ + I Ç A +

vol. 31, n° 1, 1997



48 L. BREVEGLIERI

where T is a finite set of two-letter strings:

T = {cc\c G £} ç A2

We claim that E — 0 (AntiDyck (S5) nR) — {u\U2 . . . ura|ui € S + u% =
u%„x for 2 < i < n} Ç £+. D

In fact, the strings of the regular language R are formeel by segments,
over the alphabet A, separated by two-letter factors of the type _L J_ (but
the leftmost separator _l_ and its rightmost barred copy J_, that may occur
isolated). Recall the interprétation of the AntiDyck language in terms of
parentheses (open in E5 and closed in £5). Then one has that the intersection
with R imposes to AntiDyck the following additional structure:

1. AntiDyck strings u G A£ are segmented as follows:

u = u\ _Lu2-L-LiA3-L± . . . ±JLtin_i ±J-Un _L±nn+i _L

for some integer n > 2.
2. The segment u\ G S + , hence it is a string made only of open

parentheses.
3. The segment un+i 6 S , hence it is a string made only of closed

parentheses.
4. The segments U2: •.., un € T + with n > 2, hence they are strings

made both of open and closed parentheses, but must exhibit a structure of
the type:

ui = cll ctl Ci2 Ci2 . . . Cin cln c^ G S 2 <i <n

where the natural character c is the copy of the barred character c. So the
segments ui are formed by barred characters alternated to natural ones, and
each barred character is always followed by its natural copy.

Constraints (1), (2), (3) and (4) impose to the internai segments of the
AntiDyck strings a structure of the type cedd ..., Le. the order of the open
parentheses must replicate that of the closed ones they follow. Conversely,
AntiDyck itself implies that the order of the closed parentheses must replicate
that of the open ones they are paired to. Intersection conjuncts both sets of
constraints. The structure of the initial segment u\ is totally free; any initial
ordering of open parentheses is allowed. The structure of the following
segments is determined by the initial one. The final resuit is such that,
by delecting all the closed parentheses and the separator _L (through the
projection 0), what remains are strings consisting of the replication of the
initial segment u\ for n > 2 times (note the similarity with the segmentation
procedure explained in section 5).

Informatique théorique et Appîications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 49

For instance, ab A.âbab ±1. bal. is filtered away by R, as it contains
the substring âb (of type cd with c ^ d), ab-Lâaab±J_ôâ± is filtered
away by R, as it contains the substring âaa (of type cdv with v E S + ) ,
whereupon ab±aabb_LJ_a6± is accepted by i?; note that deleting all the
barred characters and the separator _L yields abab, ie. the replication of ab.

STATEMENT 7.7 (Boolean): The families FLL and fFLL are closed w.r.t.
union, but are not closed w.r.t. intersection and complement. The families
RLL and sRLL are Boolean algebrae.

Proof: The closure of FLL and of fFLL w.r.t. union is a conséquence ,of
the définition of FE and of that flattening commutes with union.

The families FLL and fFLL are not close w.r.t. intersection with sRLL
and regular languages, respectively, by statement 7.6. Obviously such a
closure fails also w.r.t. RLL, since sRLL c RLL by statement 6.3. As
s RLL c FLL and hence regular languages are contained in fFLL, FLL
and fFLL are not intersection closed. But FLL and fFLL are union closed.
Were FLL and fFLL complement closed, De Morgan law would imply a
contradiction with intersection non-closure, hence FLL and fFLL are not
complement closed.

As for the Boolean closures for RLL, let R, R\, R<i Ç D^ be any regular
languages over an alphabet S, extended with the separator (; ); then it holds:

list (JRI) U list (R2) = list {Ri U R2) and list (R) = list (R)

Union and complement commute with the one-to-one mapping list.
Intersection follows from union, complement and De Morgan laws.

As for the Boolean closures of sRLL, let R, R\, i?2 Ç S* be any regular
languages:

\Ri\~1 U \R2\~1 - \Ri U R2\~
1 and \R\^ - \~R\-1

Union and complement commute with the inverse function W"1 . Intersection
follows from union, complement and De Morgan laws. D

7.2.3. Other closures

We consider here some other closure properties of the families of list
languages.

STATEMENT 7.8 (Catenation): The families FLL and fFLL are closed w.r.t.
catenation and catenation closure. The family RLL is closed w.r.t catenation

vol. 31, n° 1, 1997



50 L. BREVEGLIERI

and [ ] ~free catenation closure. Thefamily sRLL is not closed w.r. t. catenation
and [ ]-free catenation closure,

Proof: For FLL the statement follows from the définition of FE. For
fFLL the statement follows from the catenation closure of FLL and by
observing that flattening commutes with catenation and catenation closure,
Le. \LX • L2\ = \Li\-\Lz\ and \L*\ = \L\*. For RLL, let R, Rx and
R2 be any regular languages over the alphabet £5 containing a separator.
Then one easily has:

list(Ri)mlist(R2) = list(Ri\R2) and list(R)+ = list(R(] R)*)

These relationships prove the statement for RLL, as regular languages are
closed under catenation and Kleene star.

As for sRLL, let R\ — {a} and R2 = {b} be finite languages, hence
regular, then one has:

which is generated by the FE ƒ1,2 = W\* l°] [e]* [b] [e]** Assume now there
exists a regular language R% s.t. \Rs\~1 = \Ri\~l • \fi2\~1- But then
R3 = \(\R&\-1)\ = \ ( \ ^ A " a • \ ^ 2 \ ~ a ) \ - {a6}, since we can always
assume that flattening is surjective, which implies \ ( \ \ ~ 1 ) \ = id, whence
\ ^ 3 \ ~ 1 = {[; . . . ; a; . . . ; 6; . . . ; ] , [ ; . . . ; 06; . . . ; ] } , which is generated
by the FE ƒ3 = [e]* ([ab] U [a] [e]* [6]) [e]* But L (/1;2) ^ L (ƒ3), because
L(fy) contains the list [ab] $. L(fi^), which is a contradiction. Clearly
the same argument works also for catenation closure, because one sees
immediately that the proof does not require that Ri ^ R2, i-e, it works even
if JRI = R2 — {[o]}; we omit the detailed proof. •

It is possible to extend the concept of rational transduction to lists. Let
r : SW —» P ( A M ) be a rational list transduction, acting through the
mapping r (x) »—» tp{ip~l (x) fl R), for any list x G S'+ ' , where R is a
RLL; a simple rational list transduction is defined as r, but R is a RLL. The
adopted définition extends Ni vat theorem to lists [Brs79]. From statements
7.7 and 7.4 it follows that RLL and sRLL are closed under rational and
simple rational list transduction, respectively. This can also be rephrased by
saying that RLL and sRLL are rational list cones; moreover, both are list
semi-AFL's since from statement 7.7 RLL and sRLL are union closed. It is
also easy to see that both RLL and sRLL are principal cones and principal

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 5 1

semi-AFL's, as regular languages are a prineipal cone and a prineipal semi-
AFL (any infinité regular language is a generator) and rational transduction,
hence list rational transduction, preserves principality.

Classical language theory deals with abstract families of languages: an
AFL is a family of languages that is closed under union, catenation closure,
intersection with regular languages, direct and reverse homomorphism, and
hence also under catenation [Gin75]. We can define an abstract family of list
languages as a family of list languages which is a rational list cone and is
closed w.r.t. union, list catenation and its closure. From statement 7.8 and the
above observations, RLL is an abstract family of list languages (its possible
principality is still an open minor problem). Since sRLL is not catenation
closed, by statement 7.8, it is not an abstract family of list languages.

Note that fiattening maps all the opérations: union, list homomorphism
and inverse list homomorphism, intersection with regular list languages, list
catenation and its closure, onto the corresponding ones in the string domain.
Hence the flattened image of a (prineipal) abstract family of list languages
is necessarily a (prineipal) AFL. This also means that to any rational list
transduction r there corresponds a rational transduction r s.t. for any list
language L one has \z(D\ — r (\L\). The word transduction r is one-to-
one associated with the list transduction r in the obvious way, Le. through
the correspondence ip o (ftp~1 D R) =• <p o (^~1 n \R\)> if tp~l = ^~l,
R = list(R) and </? = </?.

We extend list merge to the strings of ££ in the obvious way, e.g.
(ab] c)\\(d] e/; g) — abd\ cef\g\ its closure is defined accordingly. String
merge is associative and admits a neutral element, namely e, hence its (e-
free) closure is well-defined. String merge can be extended to languages
in the obvious way. It would be easy to show that the family of regular
languages is closed w.r.t. string merge, by modifying the classical proof of
shuffle closure [Eil74].

STATEMENT 7.9 (Merge): The family FLL is closed w.rJ. merge and merge
closure. The family RLL is closed w.r.t. merge, but is not closed w.r.t. [ ]-
free merge closure. The family sRLL is not closed w.r.t. merge and [ \-free
merge closure.

Proof: For FLL the statement follows from the définition of FE. For RLL,
let R\ and R2 be any regular languages over the alphabet £5 . Then one
sees immediately that:

list(Ri)\\list(R2) = list(Ri\\R2)

vol. 31, n° 1, 1997



52 L. BREVEGLIERÏ

because the function list is one-to-one, hence the merge closure is proved as
regular languages are closed w.r.t. string merge.

The family RLL clearly contains finite list languages, which are the
languages in list (ƒ*), where T is the family of finite languages. Now, take
the finite list language L = {[a; 6]}, which therefore is also a RLL. lts [ ]-free
merge closure is LH + = {[an; bn]\n > 1}. But \ L H + \ = {[anbn)\n > 1}
is not regular, in contradiction with the fact that every RLL has a regular
flattened image, from statement 6.1.

As for sRLL and merge, take as a counterexample the regular languages
i2i = a* and R2 = b\ One has \Ri\~1 = {[a*; . . . ; a*]} and
\ f l2 \ - 1 = {[6*; ."..; 6*]}, hence V R i ^ H W 1 = {[a*&*; : . . ; a*b*]}.
Suppose there exists a regular language R% s.t. \ i?3\~x = \R\\~1 \WR2\~1.
Since flattening can be always assumed to be a surjective function, one has
\ ( \ \~ 1 ) = id, hence:

1 l 1

Therefore, by taking the segmented image of i?3 it follows:

so we have \ U 3 \ - 1 = X i ï i X " 1 ) ^ ^ ^ 1 by assumption and \jR3\~1 /
\ i2i\~1 | | \ i?2\~1 as a conséquence, which is a contradiction. For instance,
the list [abab] ab] e \(a* &*)*\~1, yet such list obviously does not belong
to \R1\-

1\\\R2\-
1.

As for sRLL and merge closure, take the finite language R =
{ab, ba}, which then is regular. lts free segmentation L = \R-\~1 —
[e]* [a] [e]* [b] [e]* U [e]* [b] [e]* [a] [e]* is a sRLL. Now, it is fairly evident
that \ L " + \ = Anagrams of (an bn\n > 1); see for instance example 4.3.
Were sRLL closed under merge closure, L)\+ should have a regular flattened
image, from statement 6.1, which is not the case, because Anagrams of
{an bn\n > 1} is evidently not regular (though it is context-free). D

We end the analysis of closures considering mirror, as the traditional
families of languages are all mirror closed.

DÉFINITION 7.2 (List Mirror): R : sM —> E'*' is a unary opération on lists
onto lists, acting through the mapping:

[Xl, J/2) • • - ) ^nj " ^ [xn 1 -^n—l-i • • * J ^1 J I o r i t: ^J

where x_ — \x\\ x% . . . ; arn] /
ö r ^ > 1, andposing [ ]R = [ ].

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 53

Equivalently mirror can be defined as gç_R i—• list (string (oç)R). Note that
(xR)R = x and \ x ^ \ = \x\R, for any list x e X *̂1.

STATEMENT 7.10 (Mirror): The families sRLL and RLL are closed with
respect to mirror.

Proof: The statement follows for sRLL and RLL noting that (\7?i\~1)^ =
VRf \ " 1 and that list (R2)11 = list(Rf), for any regular languages R1 G £*
and R2 e ££. •

7.2.4. Summary of closure properties

Table 1 shows a summary of the above closure properties of list languages,
listing the références of the proofs. Homomorphisms work on lists or strings
depending on whether they are applied to list or word languages; list
homomorphisms are always associated with word homomorphisms. The
symbol TL represents the family of regular languages.

TABLE I
Closure properties of sRLL, RLL, FLLandfFLL.

Closure Properties of List Languages

la

lb

2a

2b

3

4a

4b

4c

5

6

7

8

9

10

11

Opération

Hom (alphabetic)

Hom (arbitrary)

Inv. Hom. (alphabetic)

Inv. Hom. (arbitrary)

Union

Intersection with 71

Intersection with sRLL

Intersection with RLL

Intersection

Complement

Catenation

Catenation Closure

Merge

Merge Closure

Mirror

sRLL

closed (7.4)

open (7.4)

closed (7.4)

closed (7.4)

closed (7.7)

undefined

closed (6.3, 7.7)

open (6.3, 7.7)

closed (7.7)

closed (7.7)

open (7.8)

open (7.80

open (7.9)

open (7.9)

closed (7.10)

RLL

closed (7.4)

closed (7.4)

closed (7.4)

closed (7.4)

closed (7.7)

undefined

closed (7.7)

closed (7.7)

closed (7.7)

closed (7.7)

closed (7.8)

closed (7.8)

closed (7.9)

open (7.9)

closed (7.10)

FLL

closed (7.4)

closed (7.4)

closed (7.4)

fFLL

closed (7.4)

closed (7.4)

closed (7.4)

both are open (see above)

closed (7.7)

undefined

open (7.6)

open (7.6)

open (7.7)

open (7.7)

closed (7.8)

closed (7.8)

closed (7.9)

closed (7.9)

closed (7.7)

open (7.6)

undefined

undefined

open (7.7)

open (7.7)

closed (7.8)

closed {7.8)

undefined

undefined

?

vol. 31, n° 1, 1997



54 L. BREVEGLÏERI

Closure (2b) faits for FFL and fFLL. In fact, as fFLL contains finite Hst
languages, is union closed, is closed w.r.t. arbitrary direct homomorphism
and is catenation closed, were it hypothetically closed also w.r.t. arbitrary
reverse homomorphism (this is closure (2b)) by a standard proof [Gin75] it
would also be closed w.r.t. the intersection with regular languages; but sinee
such a closure fails to be true (statement 7.6), the hypothesis (closure (2b))
fails, too. The same argument applies also to FLL, with the différence that
homomorphisms and catenation apply to lists and that the role of regular
languages is played instead by RLL, because the proof contained in [Gin75]
dépends only on the formai properties of such opérations and languages,
which are the same for lists and strings; therefore closure (2b) fails also for
FLL. Clösure (4a) does not make sènse for sRLL, RLL and FLL; closures
(9) ând (10) do not make sense fof fFLL. Mirror closure (11) is stilt an open
problem for FLL, hence also for fFLL.

7.3. Decidability properties

We consider now söme of the classical décision pröblems for language
families, applied to list languages, examining their solvability. Start by
observing that [ ]-freedom and [ej-freedom are clearly decidable for FLL,
hence also for RLL and sRLL (statement 6.3).

STATEMENT 7.11 (Membership): The membershïp pröblems of the families
FLL, fFLL, RLL and sRLL are decidable.

Proof: The proof rests on the construction of an enumeration of the lists
generated by the FE in non-deereâsing size Order. A list x contains more
letters than a list y if and only if | ( \ ^ \ ) | > |(\ï/\)|. There exists an algorithm
to list the lists of any FLL, and consequently the strings of any fFLL, in
order of increasing number of coritained letters and consequently of length,
respêctively. In f act, it suffices to compute the closure operators iii the FE in
order of increasing exponents. Let ƒ be a FE, and let fi = ai ( ƒ ), with i > 0,
be the infinité enumerable séquence of FE's obtained by the application of
the mappings a% : FE —> FE, recürsively defiried as follows:

a% (x) = x x.e S1*1'

ui (Li U>2) = a% (r.i) U ai (r2)

<Xi{£ï\\ïL2)= <*i (Li)\\<*i (L2)

Informatique théorique et Applications/rhëörëtical ïntematics and ÂppliGations



FAÏR EXPRESSIONS ANÏ> REGULAR LANGUAGES OVER LISTS 55

i (rll*) = (J ai (r)^ ai (r«+) = (J a
j=0 ƒ=!

i

? i

<*i (£*) - IJ ai (r)' a, (r+) = (j a% (r)'

where r, r^ and r2 are FE's. Clearly one has that L (fi-i) Ç £ (fi), for any
i > 1, hence L (ƒ) = |JSo ^ (/0- N o w n o t e t h a t any F L L ^ (fi) i s finite' a s

it does not contain closures any longer, for any i > 0, and that any string of
L(fi-i) does not contain more letters than any string in L(fi) — L(fi-i)
does, for any i > 1 ; * this happens as both ƒ,;_! and ft emulate part of the
generative power of ƒ and all the lists generated by /2_i are also generated
by fi, but fi-i itérâtes fewer times, hence the lists generated by fi, but
not by ƒ;_!, do not contain fewer letters than the ones generated by f^i
alone. Then some standard enumeration procedure of an enumerable family
of finite disjoint sets allows to linearly order the lists of L (f) in increasing
order of contained letters, allowing to décide the membership problem.

As flattening preserves the number of letters, the same algorithm works
alsö for fFLL. Due to the hierarchy statement 6.3, the membership problem
is decidable also for the families RLL and sRLL.

STATEMENT 7.12 (Finiteness and Emptiness): The emptiness and the
finiteness problems are decidable for the families FLL, fFLL, RLL and sRLL.

Proof: The two problems are simple: a FLL or a fFLL is finite or void
if and only if the generating FE does not contain any closure operator or
any generator, respectively. Due to the hierarchy statement 6.3 the same
problems are decidable for RLL and sRLL. D

STATEMENT 7.13 (Comparison): The following three comparison problems

are undecidable for the families FLL and fFLL, but are decidable for the

families RLL and sRLL:

• Language équivalence,

• Language containment.

• Language intersection emptiness:

Proof: It is shown that these problems for FLL and fFLL encode the same
for rational transductions, which are all known tö be undecidable [Brs79].

In [Brs79] the following proposition is proved: r : E* -*•> p(S*) is a
rational transduction on the free monoid to the family of the subsets of the

vol. 31, n° 1, 1997



56 L. BREVEGLIERI

free monoid if and only if the set 5 = {(x, y)\tix, y E £* y G r (x)} is a
regular subset of the direct product E* x E* of free monoids.

Now, lists of two components can be viewed as éléments of the direct
product of two free monoids E* x E* and their natural piecewise catenation
is merge. Hence the above mentioned set 5 is isomorphic to a FLL, generated
by a FE with two-component generators and only using merge. Due to the
above proposition, the équivalence, containment and intersection emptiness
problems for two such sets are decidable if and only if they are decidable
also for some rational transduction. But these problems are known to be
undecidable for rational transductions [Brs79], hence also for FLL.

Concerning fFLL, take the FE f\ that générâtes S_ — {[x\ y]\i x, y (x: y) E
S} and build a new FE ƒ2 = f\ ||[_L; ], where ± f£ E; ƒ2 still uses only merge
and two-component generators. The fFLL generated by ƒ2 is {x J_ y\ix, y e
E* y E T (x)}; ones sees immediately that [x\ y] 6 FLL ü i l i / G fFLL.
Although the separator (;) has been removed by the flattening, it is still
encoded in the strings as JL Hence \L(f2)\ is isomorphic to S and still
encodes the above mentioned undecidable problems of rational transductions.

As for RLL and sRLL, taken any RLL or sRLL R, its word image
string (R) is regular, by définition, and the compaction function string is
one-to-one (see section 2.3). Hence the above comparisons problems (1),
(2) and (3) map onto the same problems for regular languages, where all
of them are decidable. D

TABLE II
Décision problems for FLL, fFLL, RLL and sRLL.

Décision problems of list languages

Problem

Membership (7.11)

Emptiness, Finiteness (7.12)

Equivalence (7.13)

Inclusion (7.13)

Intersection emptiness (7.13)

fFLL

yes

yes

no

no

no

FLL

yes

yes

nô"

no

no

RLL

yes

yes

yes

yes

yes

sRLL

yes

yes

yes

yes

yes

8. COMPARISON WITH THE CHOMSKY HIERARCHY AND AFL

Fair expressions are compared with the Chomsky hierarchy, in order
to characterize their power; moreover, some other relations with classical
families of languages are proved.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 57

When comparing with word languages, only flattened list languages are
considered.

STATEMENT 8.1 (Chomsky Hierarchy): Thefamily of flattened fair languages
(fFLL) is related to the Chomsky hierarchy as follows:

• The family fFLL strictly includes regular languages,

• The subfamily of the fFLL's generated by [e]-free FE's is incomparable
with context-free languages.

•The family fFLL is strictly included in context-sensitive languages.

Proof: The strict inclusion of the family 1Z of regular languages in fFLL,
Le. Tl C fFLL, follows from RLL c FLL, proved in statement 6.3, noting
that regular languages are the flattened image of RLL; again, the strictness
of inclusion follows by the considération of example 4.1.

Example 4.1 gives a fFLL that is generated by an [e]-free FE but
notoriously is not a context-free language. The language of non-deterministic
palindromes P — {uuR\u E £*}, over some alphabet |E| > 2, is a well-
known context-free language. In [Bre93, Fri94] a construction is given
for building a one-queue automaton (see Cherubini et alii in [Che91] for a
review of queue automata and Manna in [Man74] for a related argument, Post
machines) that recognizes a given fFLL\L\. If the flattened FE generating L
is [ej-free then the obtained one-queue automaton is quasi-real-time (QRT).
But in [Bra88] it is proved that P cannot be recognized by QRT one-queue
automata; whence it follows that P is not generated by an [e]-free FE.

In [Bre93, Fri94] it is proved that any fFLL is recognized by a queue
automaton with a single queue tape. A quick inspection of the construction
shows that the obtained queue automaton can always be emulated by a linear
space bounded Turing machine. The strictness of the inclusion follows from
that fFLL's are semilinear, whereas context-sensitive languages are known
not to be. D

Notice that the comparisons are made only for flattened list languages,
because we have no notion of either a list context-free or a list context-
sensitive language.

We conclude this section by listing some partial results that give some
insight of the internai structure of the families FLL and fFLL. We start this
exploration by examining some simplified types of FE.

STATEMENT 8.2 (One-letter FLL): Any one-letter fFLL fi.e. the alphabet
contains only one letter) is a regular language.

vol. 31, n° 1, 1997



5 8 L. BREVEGLIERI

Proof: We have already observed in statement 7.1 that the Parikh image
of fFLL coïncides with the Parikh image of regular languages. If the FE
is one-letter, this identity holds also between fFLL and one-letter regular
languages, because both are commutative. Q

To proceed we need some classification of simplified FE's, which will
be used to define interesting subfamilies of FLL and fFLL: a FE not using
catenation closure is said to be catenation-free; a FE not using merge closure
is said to be merge-free.

STATEMENT 8.3 (Catenation-free Subfamily): The family of the regular
languages over a finite direct product of free monoids is a homomorphic image
of the subfamily of FLL generaled by catenation-free FE. The corresponding
subfamily offlattened languages coïncides with thefamily of the homomorphic
replications of regular languages [Gin71].

Proof: A catenation-free FE admits as a homomorphic image a regular
expresson over the finite direct product x]!=1E* of free monoids S*, for
some n > 1. In [Brs79] it is proved that the regular languages over the finite
direct products of free monoids are isomorphic to the images of multi-tape
rational transductions, which in turn by Nivat theorem are isomorphic to the
homomorphic replications of regular languages [Brs79, Gin75].

STATEMENT 8.4 (Merge-free Subfamily): Thefamily of regular languages is
a homomorphic image of the subfamily of FLL generaled by merge-free FE;
the homomorphism is flattening. The corresponding subfamilly of flattened
languages coincides with the family of regular languages.

Proof: Just observe that \x*y\ = \ x \ - \ y \ and \x*\ = \#\*, for any lists
£> y £ S > which proves that flattening is the searched homomorphism.
Moreover, flattening is a surjective function ha ving as image the whole
family of regular languages. O

Recall that FLL also contains a merge-free subfamilly that is isomorphic
to regular languages, as already observed in section 3.1: it is the subfamilly
of all the FLL's generated by merge-free FE's having generators with only
one-letter components.

Given a FE ƒ and two operator instances oj>\ and op2 contained in ƒ, it is
saïd that the instance of opi occurs at a lower level (in the context of the FE
ƒ) than the instance of op2 if and only if the instance of op\ appears in an
argument of the instance of op2- Clearly the level relation is an irreflexive
partial order of operator instances; op\ occurs at a higher level than op2

Informatique théorique et Appîications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 59

if and only if op% occurs at a lower level than op\. From statement 8.3 it
follows immediately a less obvious result.

STATEMENT 8.5 (AFL Hierarchy): The family of flattened list languages
generated by a FE, in which no instance of the merge operator closure
occurs at a higher level than any instance of the catenation operator
closure, coïncides with the rational closure of the family of the homomorphic
replications of regular languages.

Proof: In [Gin71] it is proved that the family of the homomorphic
replications of regular languages is a rational cone, hence its rational closure
is a well-defined family and is an AFL; such AFL is precisely obtained by
taking rational expressions over the generating rational cone. By statement
8.3 a flattened catenation-free FE générâtes a homomorphic replication of
some regular language. String catenation is homomorphic to list catenation
and flattening is precisely this homomorphism, hence a FE where no instance
of the merge operator closure occurs at a higher level than any instance of the
catenation operator closure générâtes, when flattened, a rational expansion
of homomorphic replications of regular languages. The converse is proved
in the same way [Brs79]. O

Hence, we have found a non-trivial AFL contained in fFLL. The
subfamilies of fFLL listed in statements 8.2, 8.3 and 8.4 are subfamilies
of this AFL. Note however that fFLL does not coincide with the rational
closure of the homomorphic replications of regular languages, as fFLL is
not an AFL. Going back to example 5.1, one sees that the list AntiDyck
language AntiDyck is generated by a FE where catenation closure occurs at
a lower level than merge closure. The language AntiDyck is precisely the
responsible of the non-closure of fFLL w.r.t. the intersection with regular
languages.

We conclude this section by showing inclusion diagrams for the studied
families of languages. Figure 4 is an inclusion diagram for the families of
regular list languages. Family HRRL is the Homomorphic Replication of
Regular Languages and RatHRLL is its Rahonal closure (see Ginsburg in
[Gin71]). Families HRRL and RatYtRRL are here intended as non-flattened,
Le. those subfamilies of FLL s.t. their flattened images are HRRL and
RatHRRL, respectively. Figure 5 is an inclusion diagram showing most
known facts about the relations of fFLL with other families of (word)
languages. Family f HRRL is the Homomorphic Replication of Regular
Languages and RatfHRRL is its itarional closure, here considered as flattened

vol. 31, n° 1, 1997



60 L. BREVEGLIERI

families. Palindromes seem unlikely to be fFLL's (certainly palindromes
cannot be flattened images of an [e]-free fFLL, as they are not QRT one-
queue languages; see Brandenburg in [Bra88]). The séquences of sample
languages L^ for i = 0, 1, 2, 3, 4 and L?;, for i — 0, 1, 2, 3, 4, 5, give
some insight of the inner structure of FLL and fFLL, respectively. Such
languages can be found in sections 4 and 5, and are also used in section 7.

L0={[a], [b]}[*] sRLL

Li = [ab]* RLL

La-ra-bi"* HRRL
L J (Hom. replications of regutar lang.)

L3-(ra;bi"T RatHRRL
v L J ' (Rat. closure of hom. replications of regular lang.)

L4 = Anagrams of ([a;b]H7 FLL

Figure 4. - Inclusion diagram of some subfamilies of FLL.

palindromes?

Lo= a*b* regular

Li = anbn context-free

L2=anbncn fHRRL
(Hom. replications of regular lang.)

La-raVcV RatfHRRL
l i (Rat. closure of the hom. replications of reg. lang.)

L4-Anagrams of {anbncn} and AntiDyck fFLL

Ls= {un | u e z+ n > 2} = COPY^ context-sensitive

Figure 5. - Inclusion diagram of the family fFLL with related families of languages.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 6 1

9. ALGEBRAIC RETROSPECTIVES

In this section some connections between fair expressions and other
algebraic Systems are described, that may enlighten the structure of FE.

9.1. List length

The separator (;) appearing in the lists obeys to rules which are rather

different from the ones folio wed by the lists components.

DÉFINITION 9.1 (List Length): The following function on lists onto the

non-negative integers:

{ \x\ = |[a;i; x% . . . ; xn]\ •-» n for ^

and n > 1

]| = 0

is named the length of the list x_.

The length of a list clearly coincides with the number of its components.

STATEMENT 9.1 (Length Hornomorphism): The length function is a

homomorphism on the structure (£'*', ||, • , [ ]) to the "tropical semiring"

R = {N U {0}, max, + , 0).

Proof: In fact, by the définition of length function, one has:

\{x\\y)\ = max (1^1, |y|) and \xmy\ = |^| + \y\

for any lists x_, y E S'*', and moreover |[ ]| = 0. D

This homomorphism shows that the number of separators (;) in a list
follows algebraic rules rather different from those governing the number of
letters in the list components.

9.2. List shift

The structure of lists presented in this section can be more algebraically
defined as follows: let x ^ E * be the infinité direct product of free monoids
equipped with its natural piecewise catenation operator • and a neutral
element 1 (which is the element (e, e, . . . ) ) . Let M be its subset formed
by all and only the infinité tuples having only a finite number of non-empty
components, Le. different from the empty string e, and let also 1 E M ,
behaving as a neutral element. Then (M, v l ) is clearly a monoid.

vol. 31, n° 1, 1997



6 2 L. BREVEGLIERI

From now on we identify the tuples of M with finite lists of E'*', by
dropping the maximal empty infinité suffix of the tuples of M. Now we can
introducé into the monoid M a new operator:

DÉFINITION 9.2 (List Shift): The unary operator of list shift is defined as
follows:

, A 5 ( ( ^ i ; X2> • • •> %n)) 0 , # i , ^ 2 , - . . , x n ) if n >
5 : M —> M <

The closure of list shift is defined as follows:

a ' ( x ) = « ( * ( . . . s(x) . . . ) ) if * > 1

?" times

Any FE expressible in (M, -, s, 1) is clearly translatable in (S'*', ]|, •, [ ]),
due to the présence in E *̂' of the list [e], that behaves as the shift operator
5, Le. s(x) — [e] • x_. The converse does not hold, unless one uses a logic
language of the second order. In fact, list catenation can only be expressed
in terms of shift as follows:

ZL • y — £ •
s
 (y)

and the operator s^ cannot be expressed in first order logic language.
For instance, s'-l (y) = x is a 2nd order binary predicate; for it is

equivalent to asking whether there exist lists x and y such that by shifting
y for a number of times equal to the length \x\ of x_ makes y_ itself equal
to x; since the latter equality (predicate) dépends on the former equality
(predicate), it defines a 2nd order (binary) predicate.

However, the structure M looks like more natural, from an algebraic point
of view, than E'*I and, due to the above observations, any congruence that
holds in M is translatable in £'*' ; equivalently, any congruence that holds
in S'*' is a refinement of a congruence in M. Thus, the algebraic study of
M may reveal details concerning E ^ (this observation is entirely due to
Jorge Almeida, of the Universidade de Porto).

Expressions can be defined over the algebraic structure (M, -, 5, 1) in the
same way as FE. To show an example of the utility of this new algebraic
structure, consider the following statement:

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 63

STATEMENT 9.2 (AntiDyck) 1: The list AntiDyck language AntïDyck (E) Ç
A'*] (see section 5) is the free language in the algebraic system (M, -, 5, 1)
with two-component generators of the type (c, c) as follows:

AntiDyck (E) = . . , (5* ({(c, c)|.c € E}))* ""

Proof: The FE ƒ11 of example 5.1 generales the list AntiDyck language,
and can easily be translated as follows, for E — {a, b}:

=> (s* ((a, â)) U 5* ((&, 6)))* = (s* ({a, S), {6, 6)}))*

Conversely, note that given a generator (c, c) its free shift 5* yields éléments
of the type (e , . . . ,£ ,c ,c) which are the so-called generating lists of example
5.1; then the same considérations as those done in exemple 5.1 apply, and
the conclusion is that free combinations of shift and product yield in M ail
and only AntiDyck lists. D

So there exists a characteristic fair list language AntiDyck that admits a
very simple and natural generative model in the algebraic System (M, -, s, 1).

10. CONCLUSION

We do not know of any closely related formai work on list languages. A
référence to an algebraic approach to lists is in Turner [Tur91]. Some vague
similarity exists between our model and work on parallel models, in particular
Pétri nets. The study on concurrent regular expressions by Garg and Ragunath
[Gar92] also extends regular expressions with four operators: interleaving,
interleaving closure, synchronous composition and renaming (it appears
that these four operators are ail reducible to compositions of the classical
regular ones, plus shuffle and its closure). Concurrent regular expressions
are equivalent to Pétri nets. Their interleaving or shuffle operator générâtes
any interleaving of two séquences, in contrast to our merge operator which
opérâtes on lists instead of strings and orderly interleaves the components
of the two lists. Other well-known models of communicating and concurrent
Systems, in particular Milner CCS [MilSO] and Bergstra 'Trocess Algebra"
[Brg85], have used similar operators for interleaving.

The généralisation of the notion of regularity of the list languages is based
on the notion of rationality (ie. of fair expressions). We have no notion of
recognizability inside FLL, due to the lack of some sort of finite state device
for recognizing lists. There also arises the natural question of generalizing
the notions of context-freedom, context-sensitivity, etc, to list languages.

vol. 31, n° 1, 1997



6 4 L. BREVEGLIERI

On the notion of regular list language we conjecture that any FLL, which
is not a RLL, cannot have a flattened image that is a regular language.
If proved, this conjecture would state that the family RLL is the largest
"regular" subfamily of FLL. We also conjecture that the Parikh function of
FLL, also counting the separator (; ), is semilinear. If proved, this conjecture
would strengthen semilinearity for FLL, showing that the length of the lists
of a FLL does not "hide" a non-semilinear behaviour. Another conjecture
is that a maximum AFL contained in fFLL exists and is precisely the
rational closure of the family of the homomorphic replications of regular
languages. If proved, this conjecture would show that the largest "AFL" part
of fFLL, Le. the one that enjoys all the traditional closures properties of the
commonest language families (e.g. Chomsky type-O, 1,2,3 languages, which
are all AFL's), is a very simple one, namely the rational closure of HRRL
(also an AFL, as proved by Ginsburg in [Gin71]).

Other aspects to be investigated are periodical or "pumping" properties of
FLL or fFLL; similar properties have already been proved for a variety of
families of queue languages (see below), see for instance Cherubini et al.
in [Che9].

An area to be more fully understood concerns automata as recognizers of
FLL and fFLL. In [Bre93, Fri94] a proof is shown that the family of flattened
fair languages generated by [ej-free fair expressions is strictly included in
the family of languages accepted by deterministic one-queue automata; this
is still far, however, from having a complete characterization of récognition
for FLL.

Fair expressions do not include flattening as an operator; flattening is just
allowed to convert a FLL into a traditional language, whose éléments are
strings instead of lists. An interesting question is to study the properties of
the FE model, enhanced by allowing the use of the flattening operator, with
respect to other generative models. In terms of the équivalence of FE with
parallel programme schemes [Bre93, Bre94, Fri94], this enhancement can
be interpreted as the introduction of modularity in the parallel programme
schemes. As for the relations of FE with QRT queue automata [Bre93, Fri94],
this enhancement might require passing from one-queue to multiple-queue
automata.

A study of generative grammars would complete the picture: how to define
generative grammars over lists and to characterize the associated families
of languages.

Informatique théorique et Applications/Theoretical Informaties and Applications



FAIR EXPRESSIONS AND REGULAR LANGUAGES OVER LISTS 65

11. ACKNOWLEDGEMENTS

The participation of Alessandra Cherubini and Stefano Crespi Reghizzi to
most phases of this research and their help, advices and encouragements are
gratefully acknowledged. We express our gratitude also to Jorge Almeida
for contributing to and critically revising the algebraic aspects of the work.
An anonymous referee has suggested to generalize the Franchi Zannettacci-
Vauquelin theorem on the AntiDyck language [Fra80] from word languages
to list languages (statement 7.5), and several other improvements as well as
has corrected some errors.

REFERENCES

[Ang80] D. ANGLUIN, Finding Patterns common to a Set of Strings, in Journal
of Computer and Systems Sciences, 1980, 21, pp. 63-86.

[Brg85] J. A. BERGSTRA and J. W, KLOP, Algebra of communicating Process with
Abstraction, in Theoretical Computer Science, 1985, 37, pp. 72-121.

[Bra88] F. BRANDENBURG, On the Intersections of Stacks and Queues, in
Theoretical Computer Science, 1988, 58, pp. 69-80.

[Brs79] J. BERSTEL, Transduction and Context-free Languages, Teubner Studi-
enbücher, Stuttgart, 1979.

[Bre94] L. BREVEGLIERI , A. CHERUBINI and S. CRESPI REGHIZZI, Fair List
Languages and parallel Programme Schemes, in Developments in
Formai Language Theory, G. ROZENBERG and A. SALOMAA Eds., World
Scientific Publishing, 1994, pp. 389-418.

[Bre93] L. BREVEGLIERI, A. CHERUBINI, C. CITRINI and S. CRESPI REGHIZZI,

Fair Expressions, Round Robin Concurrency and Queue Automata,
Internai Report n° 93-046, Dipartimento di Electronica e Informazione,
Politecnico di Milano, Milano, 1993.

[Bre91] L. BREVEGLIERI, A. CHERUBINI and S. CRESPI REGHIZZI, Quasi-Real-Time

Scheduling by Queue Automata, in Lecture Notes in Computer Science,
J. VvTOPiLEd., Springer-Verlag, 1991, 571, pp. 131-147.

[Che91] A. CHERUBINI, C. CITRINI, S. CRESPI REGHIZZI and D. MANDRIOLI, QRT FIFO

Automata, Breadth-first Grammars and their Relations, in Theoretical
Computer Science, 1991, 85, pp. 171-203.

[Eil74] S. EILENBERG, Automata, Languages and Machines, vol. A, Academie
Press, 1974.

[Fra80] P. FRANCHI ZANNETTACCI and B. VAUQUELIN, Automates à File, in French,
Queue Automata, in Theoretical Computer Science, 1980, 11, pp. 221-
225.

[Fri94] M. FRIGERIO, Espressioni Fair, Processi paralleli e Automi a Coda,
in Italian, Fair Expressions, parallel Processes and Queue Automata,
Thesis, Université degli Studi di Milano, Faculty of Information
Sciences, Milano, Italy, 1994-1995.

[Gar92] V. K. GARG and M. T. RAGUNATH, Concurrent regular Expressions and
their Relationship to Pétri Nets, in Theoretical Computer Science, 1992,
96, pp. 285-304vol. 31, n° 1, 1997



66 L. BREVEGLIERI

[Gin75] S. GINSBURC, Algebraic and Automata-theoretic Properties of formai
Languages, North Holland, 1975.

[Gin71] S. GINSBURC and E. H. SPANIER, A F L ' S with the semilinear Property, in
Journal of Computer and Systems Sciences, 1971, 5, pp. 365-369.

[Har78] M. HARRISON, Introduction to formai Languages, Addison Wesley, 1978.
[Man74] Z. Manna, The mathematicaï Theory of Computation, McGraw Hill,

1974.
[MÎ180] G. J. MILNER, A Calculus of communicating Systems; in Lecture Notes

in Computer Science, Springer-Verlag, 1980, 92.
[Sal73] A. SALOMAA, Formai Languages, Advanced Computing Machines

Monograph Series, Academie Press, 1973.
[Tur91] D. TURNER, Duality and De Morgan Laws for the Algebra of Lists, in

Bulletin of the European Association of Theoretical Computer Science,
1991, 45, pp. 229-237.

Informatique théorique et Applieations/Theoreticai Informaties and Applications


