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Fair Internet traffic integration: 
network flow models and analysis 

Peter  KEY*,  Laurent  MASSOULII~* ,  Alan  BAIN** ,  Frank K E L L Y * *  

Abstract 

We use riow-level models to study the integration of two types of lnternet traffic, elastic 

file transfers and streaming traffic. Previous studies have concentrated on just one type of 

traffic, such as the flow level models of lnternet congestion control, where network capacity 

is dynamically shared between elastic file transfers, with a randomly varying number of such 

flows. We consider the addition of streaming traffic in two cases, under a fairness assumption 

that includes Tce-friendliness as a special case, and under certain admission control 

schemes. We establish sufficient conditions for stability, using a riuid model of the system. We 

also assess the impact of each traffic type on the other." file transfers are seen by streaming 

traffic as reducing the available capacity, whereas for file transfers the presence of strea- 

ming traffic amounts to replacing sharp capacity constraints by relaxed constraints. Simula- 

tion results suggest that the integration of streaming traffic and file transfers has a stabilizing 

effect on the variabili~ of the number of riows present in the system. 

Key words: Teletraffic, Heterogeneous traffic, Internet, Quality of Serice, Elastic traffic, Real time, Modeling, 
File transfer, Fairness. 

INTI~GRATION I~QUITABLE DU TRAFIC DANS L'INTERNET : 

MODI~LES FLUIDES DE FLOTS ET LEUR ANALYSE 

R6sum6 

Nous proposons des modkles de riots reprYsentant l'intYgration de deux types de trafic 

Internet: les transferts de fichiers, ou trafic Ylastique, et le trafic en temps r~el. Les travaux 

antYrieurs ont principalement traitY un seul type de trafic, comme les modkles de riots pour la 

rYgulation de l'encombrement dans l'Internet, of~ la capacity du rYseau est partag~e dynami- 

quement entre les transferts de fichiers en cours, dont le hombre ~volue dans le temps. Nous 

considYrons deux scYnarios d'int~gration, l'un reposant sur une hypothkse d'~quit( gYnYrale, 

dont un cas particulier est la compatibilitg avec TCP (ou ~ TCl'-friendliness ~), et l'autre repo- 

sant sur une politique de contr6le d'admission des riots temps-r~eL Nous consid~rons une 

renormalisation des processus dYcrivant l'Ytat du rYseau. Nous donnons des conditions suffi- 

santes de stability pour ces processus renormalisYs. Nous ~valuons aussi l'impact qu'a 

chaque type de trafic sur l'autre: le trafic (lastique a pour seul effet de rYduire la capacity 

offerte au trafic temps-rYel, alors que l' effet du trafic temps-r~el sur le trafic Ylastique est de 
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changer des contraintes strictes de capacitg en des contraintes pgnalisges. Des rgsultats de 

simulation suggbrent que l'intggration des deux types de trafic rgduit la variabilitd du nombre 

de flots prgsents dans le systbme. 

Mots  cl~s : Trlrtrafic, Trafic h6trrog~ne, Internet, Qualit6 service, Trafic 61astique, Temps rrel, Modrlisation, 
Transfert fichiers, l~quitr. 
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I. INTRODUCTION 

The motivation for this paper arises from the need to understand and model the integra- 
tion of different types of traffÉc within the Internet. At the transport layer, the current Internet 
is dominated by flows which use TCP. The percentage of TCP traffic is variable, and may 
depend on time of day and the particular route chosen; however typical measurements on a 
backbone [17] show that upwards of 70% of flows use xcP, rising to over 90% by volume, 
with UDP the main alternative protocol (up to 20% of packets, or 10% of bytes). Prevailing 
applications can change rapidly: whereas Web traffic used to be the dominant application 
type for TCP traffic, at the time of writing file-sharing applications can dominate and may 
account for 40% of the traffic on backbone links The current volume of streaming traffic car- 
ried by UDP is small (less than 10%), but the rapid increase in peer-to-peer traffic illustrates 
how quickly the status-quo can change, and we would like to predict behaviour in different 
scenarios. 

How TCP and UDP should co-exist is a vexed question, and many regard UDP-related traffic 
as inherently problematic. Some authors have proposed that streaming traffic should be TCP- 
friendly, so that it can share network resources fairly with the dominant form of existing traf- 
fic [11]. Indeed some streaming applications use TCP as the transport protocol. Applications 
that use UDe often need some form of quality of service to function adequately, which has led 
some researchers to consider distributed or end-point admission control [14, 6, 3, 16]. 

The need to model such situations requires modelling the heterogeneous traffic streams, 
with their different characteristics. Previous work in this area has focused on analysing occu- 
pancy distributions of single resource systems, via either exact or approximate techniques, 
see e.g. [2, 1, 21] and [23]. In contrast we look at arbitrary network topologies. We consider 
two types of traffic, which we label "file transfers" and "streaming" traffic. A flow carrying a 
file transfer must transfer a given volume: the volume may be random, but is independent of 
the level of congestion experienced. An admitted flow carrying streaming traffic remains pre- 
sent for a holding time: the holding time may be random, but is independent of the level of 
congestion experienced. 
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Our analysis is a flow-level analysis, that generalises the flow level model of Internet 
congestion control of Massouli6 and Roberts [18] by incorporating streaming traffic. They 
considered a network where a randomly varying number of flows is present, and capacity is 
dynamically shared between elastic file transfers using different sharing mechanisms. 

The analysis of streaming traffic on its own gives rise to a product-form solution under 
certain reasonable assumptions, a form which is preserved under certain types of call admis- 
sion control [14]. Moreover the limiting behaviour as the size of the system grows leads natu- 
rally to a non-degenerate limit for the (scaled) number of connections. In contrast, a similar 
scaling applied to just file transfer traffic results in numbers of competing flows either increa- 
sing to infinity or decreasing to zero; it has been suggested [8] that such a model is flawed, 
lacking any self-limiting behaviour. We shall see that this criticism is avoided when the two 
types of traffic are mixed, and that the presence of even a small amount of streaming traffic 
has a stabilising effect. 

The organization of this paper is as follows. In Section II we describe the sharing policy 
between flows where we assume a generalized form of xcp-friendliness for the streaming 
traffic. The generalisation is based on the so-called a-fair allocations [20]. In Section III we 
describe the flow level stochastic model of a network, a generalization of [18]. File transfers 
are characterized by a random Poisson arrival process, with exponentially distributed file 
sizes, whereas streaming traffic has Poisson arrival rates but an exponentially distributed hol- 
ding time. In Section IV we establish appropriate stability conditions, for a fluid model of the 
system, through the construction of an appropriate Lyapunov function. We also characterize 
and interpret the network state in equilibrium. In Section V we consider extensions where we 
relax the sharing assumptions between the two types of traffic. In particular, we discuss 
admission control strategies for the case where the streaming traffic enters at a fixed rate, 
and show how a particular admission control strategy previously considered in [13] can be 
considered Tcp-fair. In Section VI we discuss simulations of the flow level model for a star 
network, and explore the impact of streaming traffic on the variability of flow alloctions. We 
conclude in Section VII. 

II. FAIRNESS ASSUMPTIONS 

Consider a network with resources labelled by j ~ J. Let a route r identify a non-empty 
subset of J (interpreted as the set of resources used by a flow on route r). Write R for the set 
of possible routes. Set A)r = 1 if resource j lies on route r (i.e. j e r), and set Air = 0 otherwise. 
We assume positive finite capacities (Cj, j ~ J). 

Let N,. be the number of flows on route r. Given a fixed parameter c~ c (0, oo) and strictly 
positive weights (w r, r ~ R), we suppose that the bandwidth allocation to each of the N r flows 
on route r is x r, where x = (x r, r ~ R) is a solution to the following optimization problem: 

x l - C ~  
r (1) maximize -.,~" wrNr 1 - a  

r ~ R  

(2) subject to Z Aj, NrXr<Cj ' j  ~ J 
r 

(3) o v e r  Xr>--O, r ~ R 
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Call the resulting allocation a weighted c~-fair allocation [20]. 

The form of  a solution to the problem (1-3) can be given in terms of  Lagrange multipliers 
(pj, j ~ J), one for each of the capacity constraints (2), as 

(4) Xr= ( wrA )~/a 

Z jP j  jr 

(5) 

The strict concavity of  the objective function (1) as a function of  (Xr, r : N r > 0) ensures 

that the component x r is unique i fN  r is positive. When w r = 1, r E R, the cases a---> 0, ct---> 1 
and a--+ ~ correspond respectively to an allocation which achieves maximum throughput, is 

proportionally fair or is max-minfair [5, 20]. Weighted or-fair allocations provide a tractable 
theoretical abstraction of  decentralized packet-based congestion control algorithms such as 
TCP. 

If  a = 2 and w is the reciprocal of  the square of  the round trip time on route r, then the 

formula (4) is a version of the inverse square root law familiar from studies of  the throughput 

of  Tee connections [10, 19, 22]. A flow carrying streaming traffic is termed TcP-friendly if, 
inter alia, it adapts its rate to correspond with the steady-state rate of  a TOP connection, 
usually characterized in terms of  a version of  the inverse square root law [11]. 

The relations (2-5), and more refined versions of  these relations, can be solved to give 

predictions of  throughput, given the numbers of  flows N present [7, 12, 25]. Given N, net- 
work performance along different routes can be predicted. But what determines the beha- 

viour of  N? One aim of  this paper is to better understand how the behaviour of  N is 
influenced by the mix of  traffic types present. 

III. FLOW LEVEL STOCHASTIC MODEL 

We now describe our model of  how flows arrive and depart. Our aim is to generalize the 
stochastic model for file transfers introduced in [18] to include streaming flows. 

Let N r be the number of  document transfers on route r, and let M r be the number of strea- 

ming flows on route r. Define the indicator function I [ r  = s] = 1 if r = s, I [r = s] = 0 other- 

wise. Let TsN = (N r + I[r = s], r ~ R), with inverse Ts-IN = (N r - I[r = s], r ~ R). We suppose 

that (N, M) = (N r, r ~ R; M r, r ~ R) is a Markov process, with state space ZR+ × 7/R and non- 

trivial transition rates 

q((N, 3/1), (TrN, M)) = v r, q((N, M), (T-1N, M)) = I.trN rX,.(N + M), r ~ R 

q((N, M), (N, TrM)) = ~, q((N, M), (N, Tr-IM) ) = Mr0 r, r ~ R 

for (N, M) ~ 7/R+ × 2~ R,+ where x(N) is a solution to the optimization problem (1-3). This 
corre-sponds to a model where new file transfers arrive on route r as a Poisson process of  rate 
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Vr, n e w  streaming flows arrive on route r as a Poisson process of  rate ~ ,  and Xr(N + )1/1) is the 
bandwidth allocated to each flow on route r, whether it is a file transfer or streaming flow. 
A file transfer on route r transfers a file whose size is exponentially distributed with parame- 
ter fir' and a streaming flow on route r has an exponentially distributed holding time with 
parameter r/r. 

I f  ~ = 0, r • R, then this model reduces to the model introduced by Massouli6 and 
Roberts [18], in which there are no streaming flows, only file transfers. For this case, De 
Veciana, Lee and Konstantopoulos [9] and Bonald and Massouli6 [5] have shown that a suf- 
ficient condition for the Markov chain (N(t), t>O) to be positive recurrent is that 

(6) EAjrPr<  Cj, j • J, 
F 

where Pr = VJlZr; this condition is also necessary [15]. The condition is natural: Pr is the load 
on route r, and we can identify the ratio of  the two sides of  the inequality (6) as the traffic 

intensity at resourcej.  Kelly and Williams [15] have explored the behaviour of  a fluid model 
for this case in heavy traffic, when the inequalities (6) are close to being tight, which is a key 
step towards proving state space collapse. The papers [5, 9, 15] all make use of  a fluid model 
of  the Markov process, an approach which we shall use for our analysis of  the extended 
model. 

We shall henceforth assume that #Or > 0, r • R, and that condition (6) is satisfied. Define 
the reduced capacities 

(7) ~. = C j -  EAjrPr ,  j • J. 
r 

Thus the reduced capacity Cj on resource j is just the amount by which inequality (6) 
fails to be tight. The reduced capacities will determine the capacity available to streaming 
flows in a sense that will be made precise in the next section. 

IV. STABILITY OF FLUID MODELS 

Next we describe a fluid model, which can be thought of  as a formal law of large numbers 
approximation under the scaling 

(n, m) (t) = , c ~ 0% 

where (N c(t), Mc(t)) is the model of  the previous Section but with Cj, j e J, and v r, ~ ,  r • R, 

replaced by cCj, j • J, and cvr, C#Cr, r • R, respectively. The fluid model is an approximation 
appropriate for the case where Cj, j • J, and v r, t¢ r, r • R, are all large, an important case in 
applications. 

The fluid model for the Markov process of  the last Section takes the form 

d 
(8) dt  nr ( l )  = vr  - ] ' l rnr( t )Xr (n(t) + m(t)), r • R 

d 
(9) dt  mr(t) = ~r-  rlTnr(t), r • R 
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Note that our assumption that ~¢r > 0, r ~ R, implies that mr(t ) > O,r ~ R, t > O. 

Proposition 1. Provided the condition (6) is satisfied, the differential equations (8,9) have 

a unique invariant point, (h e thr). It takes the form th r = tc/rlr and 

^ V r ( 2 J ~ J p j A j r )  l/a, r ~ R ,  
(10) nr = ~ r  -W"-~r ] 

for some p ~ R J. At the invariant point the bandwidth allocation to each flow on route r is 

(11) x r ~, i~iair" ] . 

=(  Wr I l/a 

The pair (x, p) forms a solution of equation (11) and the conditions 

A ^ 

and together these relations determine x uniquely. 

Proof. At an invariant point mr(t ) = r~ r from equation (9). Further, 

(13) nrXr(~l + n'l) = ]Or, 

from equation (8). Now at any time t, 

where 

W r ) l/a, 
X r(n(t) + re(t)) = \ ~JPJ (t)Ajr 

pj(t)>O, p j ( t ) ( C J -  ~rAjr(nr( t )+ mr(t)Xr(nr(t)+ mr(t)) = 0  j E  J, 

from the characterization of x as a solution to an optimization problem of the form (1-3). 
Thus, at an invariant point, 

/ ~ ~ ^ / W r \ lla\ 
pj>O, p j l C j - ~ _ ~ r m , . { ,  ~ ] | =0  j ~ J ,  

\ r \ L j p j A j r  ] ] 

using equation (13) and the definition (7). Thus x, given by (11), is the unique optimum to a 
problem of the form (1-3), with C replaced by C and N replaced bym. 

Equation (10) describes the vector h, of dimension I R I, in terms of p, a vector which 
may have a much smaller dimension, I J I, a phenomenon first noted in the balanced fluid 
model of [15]. 
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Remark 2. The invariant point can be interpreted as follows. File transfers place an irre- 

ducible load Z AjrPr on resource j for each j ~ J. The reduced capacities (Cj, j ~ J) that 

remain after thi~ load is satisfied are available to be shared amongst streaming traffic, and 

determine the bandwidth allocation to flows on route r for both types of traffic. 

When ~ = 0, r e R, the unique invariant point of the fluid model is h = 0 [9, 5]. It is 
notable that the inclusion of streaming traffic within the fluid model forces the components of 
h to be positive. 

We now discuss convergence to the equilibrium point of the above dynamics. In order to 
do so, it is convenient to introduce a modification for the dynamics of file transfers. This is 
naturally described in terms of the quantities 2,r,which represent the total capacity allocated 
to type r file transfers, and thus with the previous notation, 2` = net r. Let the function ~2,) be 
a penalty function. Then the modified dynamics are as follows: 

d 
(14) dt nr(t) = vr-/'/r2,r(n(t))' r C R 

where the vector 2, of service rates 2,r is defined as the solution to the optimisation problem 

2,1-  

(15) maximize ~(2,) := ~ Wrnarr--z---- + gt(2,) 
r e R  1 - - a  

(16) subjectto ~ aj 2,r < C j, j ~ J 
r 

(17) over 2,r>_O, r e  R. 

In the case where ~ is identically zero, this reduces to the previous dynamics for the file 
transfers in the absence of streaming traffic. The function N is assumed to be concave and 
strictly monotonic decreasing in each coordinate on the domain of the optimisation problem. 
This latter condition implies that the rate ~goes  to zero as n r goes to zero, and hence the tra- 
jectories n r stay away from the boundary of the orthant N+n. Let us prove stability of the 
above dynamics. 

Theorem 3. Under the stability conditions (6), the function L (n) defined by 

1+o ) 
(18) L ( n ) = ~  1 w nr +n tIlt'r(p) , 

r (1 + a)p~r 

where Ilt~(p) stands for the r-th partial derivative - ~  evaluated at the vector of loads Pe is a 
- r 

Lyapunov function for the dynamics (14-17). Hence these dynamics converge to the unique 

minimiser of L on the orthant ~ ,  that is 

(19) 
^ _ ( -  ~ p ~  
nr ,rl  • 
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Proof Under the condition (6), the vector p = (pr, r e R) lies in the interior of the domain 
(16-17) of the optimisation problem defining the vector &. The function ~ is strictly concave 
on this domain, since both terms in its definition (15) are concave, with strict concavity of the 
first term. 

Hence 

2 ~P~(P)(Pr- ~r )<-0' 
r 

and this inequality is strict unless ~ = p. The left-hand side also reads 

nr la  + Ilt'r (p)} (Pr - }l'r)' 

and is thus equal to 

3L d d 
~n r (n(t)) ~ nr(t) = dt  L(n(t)). 

Thus the value of L(n) decreases strictly along the trajectories of the system, except at the 
equilibrium point specified by (19), which is the only point for which the corresponding rate 
vector/], equals the load vector p. 

Remark 4. I f  the concave function vt fails to be differentiable at p, by adapting the above 

proof it can be shown that the dynamics (14-17) converge to the set of points h satisfying 

(19), where the vector ( -  I1/r (p), r ~ R) spans the set of sub-gradients of the convex function 

- IV at p. We refer the reader to [241, p. 214for a definition and basic properties of sub- 

gradients of convex functions. 

We now apply this result to establish stability of the dynamics (8-9). 

Corollary 5. Under the stability condition (6), the dynamics (8-9) are asymptotically 

stable. 

Proof We shall only treat the special case where the m r have already converged to their 
equilibrium values, ?n r. As the convergence of re(t) t on  does not depend on the evolution of 
n(t), the general case can be deduced by continuity arguments. We now show that the 7/r 
evolve according to (14-17) for some suitable choice of a penalty function. Indeed, (14) 
holds, with the service rates Z r solving 

maximize . _  

~('~, ~) .-- 2 Wr n r +m r 
r~R L 1--a 

subject to 2Ajr(~r+ ~r)<-Cj, j~  J 
r 

over Zr, 7r 20, r c R. 
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Performing the optimisation over the ~r first, this is of the form (15-17), with 

:_-so.[ ':-°1 
r ~ ' 

over 7E S(~) := { yERR+' 2Ajr~/r<-Cj- 2Ajr r J ~ J}" 

It is readily seen that Nis decreasing in each coordinate: given ~, &', such that ~r<&r for 

all r, the inequality being strict for some r, any vector ),in S(~) is such that ~" : = (~r + )~r - 

2, r) is in S(&), so that N,~) < ~&'). Concavity of gt also holds: given X, ~' and e in [0, 1], 
denote by ~and 7' the maximising vectors in the definition of ~A,), ~)t ' )  respectively. Then 

e)'+ (1 - e)7' lies in S(e)~ + (1 - e)2'), and hence 

I / / (E~  + ( 1  - -  E),~t)>_ZWr~la r (~tr+ (1 -- E ) ) t ; )  1 -a>Ei]/(~,) + (1 - E) I/~X'), 
r 1 - - a  

where concavity of the function maximised in the definition of vgives the second inequality. 

Remark 6. Under the particular choice (20) of penalty function, and comparing equa- 

tions (10) and (19), we deduce that 2 j  ~ j pjAjr = - g/r(P)" Notice the identification between 

the sensitivity of  the penalty function lit with respect to the load Pr and the sum of  the 

Lagrange multipliers along route r. 

V. EXTENSIONS: PACKET MODELS AND ADMISSION CONTROL 

V.1. Constraint relaxation 

The formulation (14-17) is also useful to model situations where the hard capacity 
constraints described by the intersection of half-spaces (2) are relaxed. If the optimization 
problem (1-3) is replaced by 

xl-ar ~j. Cj(~rA j ' maximize ~'WrNr-~_ ~ rNrX r 
r 

over x 20 

where Cj (.), j E J, are convex, strictly increasing, differentiable functions, then an optimum 
is again given by equation (4), but where now pj, j c J, satisfy 

pj--f'i(2AirgrXrl. 
S \ r a  ] 
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This formulation arises naturally from packet level models, with x r the mean rate of a 
stochastic packet generation process. For example, if the resources j correspond to output 
ports of routers, then there is a limited amount of buffering available, and packets will be 
dropped if the capacity is exceeded, or more generally marked according to some active 
queue management technique. We may interpret pj (yj) as the probability of dropping (or 
marking) a packet at resource j when the load on the resource is yj. 

Stability of the corresponding fluid model can be deduced from the formulation (14-17), 
by setting 

I]l('~,)=-~jfJ(~rAjr/],r ). 

V.2. Admission controlled traffic 

Streaming may need some minimal non-zero rate for the application to function adequa- 

tely. For example in the case of streaming multimedia, even with adaptive codecs, some 

minimal transmission rate is often required for acceptable performance. Suppose that type r 

streaming traffic only enters if Xr>Xmin: then in both the flow level stochastic model and in 

the fluid limit, ~r is replaced by tCrI Ix r >Xrm'n]. At an invariant point, either m r > 0 and 
Xr>--X7 in o r  mr = 0 .  The condition in Xr >_ Xrmin i s  equivalent to 

W r 
(21) ~ p j A j  (Xrmin)a, r e  R. 

If the parameters pj, j ~ J, satisfy the linear constraints (21) with strict inequality, then the 
fluid model predicts there will be no call admission blocking. 

A more extreme case is when real-time streaming traffic cannot adapt its rate at all. We 
now describe a sharing model relevant for such a scenario, according to which streaming 
flows either proceed at their target rate, or are rejected, in such a way that the equilibrium 
points are the same as for the previous model (at least in a situation of interest). 

More specifically, type r streaming flows have a target rate ~r r. At a given time t, they 
measure the current TfP-friendly rate they would get under the previous sharing model, say 
Ar; they then proceed at full target rate ~z r with probability min(1, AJ~zr), and are rejected 
with the complementary probability. Once started, they no longer adapt to the network state. 
Such an approach has been proposed by Karlsson [13]. 

Keeping the same notations as in the previous sections, the fluid equations describing the 
evolution of the numbers of flows are now 

d 
(22) --~ rt r = 12 r - ~lrnrX r (/It; C - Anm), r ~ R 

(23) d ( Xr(n;C-A~'m) ) 
- - m  = ~ m i n  1, -0,m,., r ~  R. 
dt r ~r 
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In the above we denote by Xr(n , C) the solution to the optimisation problem (1-3), where 
we have made explicit both the numbers of flows n and the capacity constraints C. Note that 
the capacity allocations are now defined based on the numbers of file transfers n, and the 
reduced capacities C - Azcm, where A is the link-flow incidence matrix (as before), Jr is the 
diagonal matrix with diagonal entries ~r' and m = (mr). We now characterize the equilibrium 
points under these dynamics. 

Proposition 7. Provided the condition (6) is satisfied, any invariant point (h r, ~nr) of  the 

differential equations (22, 23) takes the form Pn,. = ~/rlr min(1, xr/~), h r = (Vr/#r)X71, where 

x r satisfies (11), for some for some p ~ ~J, and is the equilibrium bandwidth allocation to 

each flow on route r. The pair (x, p) forms a solution of  equation (11) and the conditions 

( 2 4 ,  pj>O, pj(fj-~_Ajrl~lrfl2r) =0 j e f f ,  

The quantities Yr := min (to r, x r) solve the optimisation problem 

~c r yl,- a 
(25) maximize ~ w r 

r e R  TIr 1 - a  

(26) subjectto ~r Ajr~rYr<Cj,  j e  J, yr<_~r , r e  R, 

(27) over Yr 20, r ~ R, 

and the pj's constitute a set of  Lagrange multipliers associated with the capaci~ constraint 

r Cj in the above. The Yr s a e thus uniquely determined. The Xr'S are not necessarily uniquely 

determined. 

Proof The expressions of the quantities of interest at any invariant point are obtained 
exactly as in the proof of Proposition 1. Rewriting (24) as 

pj>O, p j (C j -~A j r~rmin (J r r ,  Xr) ) =0  j ~ J ,  

we can readily interpret the quantities Yr := min Urr, x r) as the solutions to the optimisation 
problem (25-27). By strict concavity of the function (25) being maximised, y is indeed uni- 
quely defined. That x is in general not uniquely defined can be seen on the following counter- 
example: Consider a network with two links {1, 2} of equal capacities C, and three routes 
{ 1 }, {2), { 1, 2 }. Routes { 1 } and {2 } carry traffic with exactly the same characteristics. It is 
then easy to select parameters such that streaming traffic along route {1, 2} experiences 
admission control, while streaming traffic along the two other routes is always accepted. In 
that case, only the sum of multipliers p l+ P2 is determined, not the individual multipliers. As 
a result the corresponding rates x{1 ), x{2 ) are not uniquely defined either. 
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We can again provide an interpretation for invariant points, in particular when for all r it 
holds that yr < 7r r. This is the case where admission control is active along each route. Note 
that in this specific situation, x is now uniquely determined and coincides with y. 

Remark  7. In the case the admission control is active along each route, i.e. for all r it 

holds that Yr < I~r' the equilibrium allocation x is the same under the present admission 

control mechanism as under the previous rate adaptation scheme, the invariant numbers of 

file transfers ~l r a r e  also unchanged, and the load used up by streaming traffic, herePn r, ~r r is 

also unchanged. In this sense, the present admission control mechanism may be deemed 

"rce-fair" at the level of detail captured by the present fluid flow models. 

Remark  8. Consider the following modified admission rule. instead of choosing to pro- 

ceed with probability min(1, X r/rCr), type r streaming flows will instead chose to proceed with 

probability min(1, EXr/~r,), where e > 0 is some fixed parameter. Denote by ~,  mer and pf  the 

corresponding equilibrium variables. It is readily seen that a valid solution is provided by 

chosing Ex r ~ -- Xr,1 m re__ m~, and pf  = eap 1. The interpretation is as follows. By basing their 

admission decision on the scaled down Tee-friendly rate fx rather than x r, the real-time 

flows ensure that the rate obtained by file transfers in equilibrium is scaled up by 8-1, but this 

comes at no cost for them, as they have the same admission probability in equilibrium. 

This stems from the fact that in the current model, file transfers contribute an incompres- 

sible load on the system, independent of their performance. If we were to consider an Engset- 

like model for file transfers, this property would no longer hold. 

We expect the dynamical system (22-23) to be stable under the stability condition (6), 
however we have not proven this yet. 

VI. EXAMPLE: A STAR NETWORK 

As a concrete example, consider a star network of 10 links connected to a core. This 
example is motivated by the current Internet, where the back-bone is relatively uncongested, 
and congestion occurs mainly on the access links. Flows use two links, with traffic spread 
randomly across links. 

For the example, J = {1, 2 ..... 10}, R = {(i,j) : i <j, i , j  c J}. The capacity of each link Cj 

was chosen equivalent to a T3 link (45 Mbit/s), for j ~ J. The mean holding time of strea- 
ming traffic (1~Or, r ~ R) was taken to be 200 seconds, corresponding to voice traffic, with 
the mean file size (1/I.tr, r ~ R) taken to be 600 kB. The arrival rates for the two types of traf- 
fic (v r, and ~)  were chosen to be identical, giving a file-transfer traffic intensity of 0.5 on 
each link, and such that in equilibrium each flow has rate 25kbit/s (Xr). Under this regime the 
equilibrium number of flows of each type is 100 (Pn r = nr = 100) per route r, giving 900 flows 
of each type on each link j. 

Figure l(a)shows the evolution of the number of each type ~,r Ajrnr and Z r  Ajrmr o n  a 

typical link, obtained by simulation of the Markov chain of Section III. Note that the two 

curves look very similar and have a mean of 900. The number of streaming flows in progress 
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FIG. 1 - Impact of streaming traffic on file transfers. The substantial amount of streaming traffic present in 
mix (a) relative to mix (b) has a stabilizing effect on the number of flows in progress. 

Impact du trafic temps-r6el sur les transferts de fichiers. La quantitd importante de trafic temps-r~el dans 

(a) relativement & (b) a un effet stabilisant sur le nombre de flots en cours. 

has a standard deviation of 30, while the number of file transfers has a slightly higher stan- 

dard deviation of just over 40. 
We now alter the offered load of each type of traffic, to keep the nominal quality (xr) seen 

by the flows fixed while significantly altering the proportions of  the two types of  traffic. We 
make the file-transfer traffic intensity 0.995 on each link, with a very small amount of strea- 
ming traffic. The load was such that the equilibrium of the fluid model has h r = 199, &r = 1. 
(With so little streaming traffic we do not expect our fluid model to be a good approximation; 
as the amount of  streaming traffic decreases to zero, we expect the behaviour of the system to 
be better described by the Brownian model of  [15].) In Figure l(b) we plot the behaviour of  
~ , rA j r r l r  on tWO typical links: observe the different vertical scale in this figure, and the mar- 
ked variability of  the number of  flows in progress. Comparing the two figures, we see that the 
substantial proportion of streaming traffic present, in Figure 1 (a), has the effect of  reducing 
the variability of  the number of  flows in progress. Of  course Figure 1 (b) concerns a fairly 
extreme case where there is a very small amount of  streaming traffic. More generally, the 
larger the proportion of streaming traffic (for a given nominal quality) the lower the variabi- 
lity of  the number of  flows in progress, and hence the lower the variability of the bandwidth 

received by flows. 

VI I .  C O N C L U S I O N  

We have studied a flow level model of  Intemet congestion control, that represents the ran- 
domly varying number of  flows present in a network. Bandwidth was assumed to be dynami- 
cally shared between file transfers and streaming traffic, according to a fairness criterion that 
includes TCP friendliness as a special case. Through the construction of an appropriate Lya- 
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punov function we have established stability, under conditions, for a fluid model of the sys- 

tem. The presence of fairsharing streaming traffic results in a non-degenerate fluid model. 

Analysis of the model suggests that file transfers are seen by streaming traffic as reducing the 

available capacity, whereas for file transfers the presence of streaming traffic amounts to 

replacing sharp capacity constraints by relaxed constraints. Simulations show that the inte- 

gration of streaming traffic and file transfers has a stabilizing effect on the variability of the 

number of flows present in the system. 
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