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1. THE PROBLEM. Something is rotten in the electoral state of the United States.

Mathematics is involved. Advances in computer technology—hardware and software—

have permitted a great leap “forward” in the fine art of political gerrymandering—“the

practice of dividing a geographical area into electoral districts, often of highly irregu-

lar shape, to give one political party an unfair advantage by diluting the opposition’s

voting strength” (according to Black’s Law Dictionary).

It is generally acknowledged that some four hundred of the 435 seats in the House

of Representatives are “safe,” and many claim that districting determines elections,

not votes. Recent congressional elections (especially those of 2002 and 2004)—

summarized in Table 1—show the shocking impact of gerrymandering. Incumbent

candidates, in tailored districts, are almost certain of reelection (over 98% in 2002 and

2004, over 94% in 2006). If an election is deemed “competitive” when the spread in

votes between the winner and the runner-up is 6% or less, then 5.5% of the elections

were competitive in 2002, 2.3% in 2004 and 9.0% in 2006. Many candidates ran

unopposed by a candidate from one of the two major parties in all three elections. In

Michigan, the Democratic candidates together out-polled the Republican candidates

by some 35,000 votes in 2002, yet elected only six representatives to the Republican’s

nine. In the 2002 Maryland elections, Republican representatives needed an average

of 376,455 votes to be elected, the Democratic representatives only 150,708. In the

2004 Connecticut elections, the Democratic candidates as a group out-polled the Re-

publican candidates by over 156,000 votes; nevertheless, only two were elected to the

Republican’s three. In all three elections Massachusetts elected only Democrats: in

2002 six of the ten were elected without Republican opposition, in 2004 five and in

2006 seven. Ohio elected eleven Republican and seven Democratic representatives in

2006, and yet the Democratic candidates received 211,347 more votes than did the

Table 1. Results of 2002, 2004, and 2006 congressional elections.

2002 2004 2006

Incumbent candidates 386 392 394

Incumbent candidates reelected 380 389 371

Incumbent candidates who lost to outsiders 4 3 23

Elected candidates ahead by ≥20% of votes 356 361 318

Elected candidates ahead by ≥16% of votes 375 384 348

Elected candidates ahead by ≤10% of votes 36 22 56

Elected candidates ahead by ≤6% of votes 24 10 39

Candidates elected without opposition 81 66 59

Republicans elected 228 232 202

Democrats elected 207 203 233

“Without opposition” means without the opposition of a Democrat or a Repub-

lican. “Democrats elected” includes one independent in 2002 and 2004 who

usually voted as a Democrat.
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Republican candidates. California’s last redistricting is particularly comfortable: every

one of its fifty-three districts has returned a candidate of the same party since 2002

(fifty were elected by a margin of at least 20% in 2002, fifty-one by at least that margin

in 2004 and forty-nine in 2006, and only one candidate by less than a margin of 6%

in any of those elections). Gerrymandering is widespread and decidedly ecumenical:

both parties indulge.

The lack of competitiveness makes it very difficult to change the composition of

the House. Compare, for example, the 2002 and 2004 election outcomes. In forty-five

states exactly the same numbers of Republicans and Democrats were elected in both

elections, and in four states there was a difference of exactly one. The one significant

change took place in Texas: the Republicans won six more seats in 2004 than 2002.

Why? Like every other state, Texas redistricted before the 2002 election. But in that

election the Republicans took total control of the state government and redistricted

once again for blatant and avowed partisan interests. Redistricting a second time on the

basis of the same census was challenged in the courts and struck down by the Supreme

Court just before the 2004 elections, too late to revert to the previous districts. In 2006,

a change in the political mood of the nation shifted a mere thirty seats, 6.9% of the size

of the House. Of these thirty, twenty-three were won by margins of less than 10% of

the vote.

How has this situation come about? That is a long and fascinating story culminat-

ing in the Supreme Court’s five-to-four decision (April 28, 2004) that upheld Penn-

sylvania’s actual districting plan [1]. Everyone involved—the attorneys against, the

attorneys for, and the Justices—acknowledged that the plan was a blatant political

gerrymander! In view of the confused and often contradictory precedents of some

forty years, four justices, led by Antonin Scalia, wished to rule the question nonjustic-

iable1 because of the lack of established criteria for deciding whether a plan is fair or

not. . . except for one, clearly stated in 1969:

Since “equal representation for equal numbers of people [is] the fundamental

goal for the House of Representatives,” the “as nearly as practicable” standard

requires that the State make a good-faith effort to achieve precise mathematical

equality. Unless population variances among congressional districts are shown

to have resulted despite such effort, the State must justify each variance, no mat-

ter how small (Kirkpartrick v. Preisler, 394 U.S. 526 (1969), legal references

omitted).

Every one of Pennsylvania’s nineteen districts has a population of either 646,371 or

646,372: by the mathematics—the one criterion accepted by the Court—the plan is

perfect! Indeed, every one of Texas’s thirty-two districts has a population of 651,619

or 651,620.

How is it possible to determine such “perfect” plans? The answer is simple: first, a

fundamental advance in gerrymandering technology has been made; second, a munic-

ipality, township, or village is no longer necessarily within one district. The smallest

“atom” that is never split is a census tract: the average number of inhabitants of a

census tract in Pennsylvania is thirty-eight. Map-makers simply transfer census tracts

from one district to another until they find equality. Pennsylvania’s district plan splits

twenty-nine counties and eighty-one municipalities. Computer programs newly devel-

oped for the redistricting season following the census of 2000 make it easy to create

maps on a screen and to modify them, by transferring a census tract (or other ge-

ographic area) from one district to another, with a simple click of the mouse. With

1Vieth v. Jubelirer 541 U.S. 267 (2004).
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each new map a host of information appears concerning the districts: numbers of in-

habitants, numbers of votes for Bush and for Gore in the 2000 elections, numbers of

African-, Polish-, or Hispanic-Americans, numbers of Catholics and Protestants, dis-

tributions of income levels, . . . , and much, much more is available. Districts in red are

Republican, in blue Democratic. To facilitate “kidnapping”—placing two incumbents

of the opposition party in the same district—small elephants indicate the residency of

Republican incumbents, small donkeys of Democratic incumbents. The programs have

brought about a fundamental change: gerrymandering has become a science instead of

an art. Justice John Harlan was unusually prescient when in a 1969 dissenting opinion

he called for a new system:

The fact of the matter is that the rule of absolute equality is perfectly compatible

with “gerrymandering” of the worst sort. A computer may grind out district lines

which can totally frustrate the popular will on an overwhelming number of crit-

ical issues. The legislature must do more than satisfy one man, one vote; it must

create a structure which will in fact as well as theory be responsive to the senti-

ments of the community. . . Even more than in the past, district lines are likely to

be drawn to maximize the political advantage of the party temporarily dominant

in public affairs (Wells v. Rockefeller 394 U.S. 542 (1969), my emphasis).

The new technology and the lack of criteria by which to evaluate a districting plan—

defined by law or recognized by courts—together pose the problem foreseen by Justice

Harlan: to find a new “structure,” a new method of election.

2. A SOLUTION: FAIR MAJORITY VOTING. The aim of this paper is to pro-

vide an answer to Justice Harlan’s quest: it sets forth a method of election that makes

political gerrymandering impossible. If the approach is to be considered at all as a

practical method of election, it must be amenable to a simple, informal, relatively non-

technical description that may be read and understood by justices, lawyers, historians,

or just plain interested citizens. That is what this section seeks to provide. The formal

mathematical definition of fair majority voting is given in Theorem 2, where the set of

elected candidates is characterized.

By tradition and by law, every member of the House of Representatives represents a

district. But in the view of the electors and of the elected, a member of Congress repre-

sents his or her state as well. Each behaves and votes in the interests of his or her state

as much as in the interests of his or her district. Often the entire delegation of a state

will vote identically (for example, when the issue involves the state’s rights to Federal

funding for one purpose or another). In actual fact, representatives represent their dis-

tricts and their states and their parties. From this perspective, many electors are very

badly represented, as has been observed. Gerrymandering has seriously accentuated

what amounts to a disenfranchisement of voters.

A new method of election—fair majority voting—is responsive to the partisan senti-

ments of the state as a whole and, at the same time, gives to each district its own repre-

sentative [1]. It reconciles the two dominant approaches to representative government:

political parties are allotted representatives in proportion to total votes (“proportional

representation”), and each district has one representative.

Fair majority voting (FMV) is defined as follows. Voters cast ballots in single-

member districts, just as they do today in the United States. However, in voting for

a candidate, each gives a vote to the candidate’s party. Two rules decide which can-

didates are to be elected. (1) The requisite number of representatives each party is

to have is calculated by Jefferson’s method of apportionment on the basis of the total
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party votes (section 4 defines it and argues why it should be chosen); (2) the candidates

elected—exactly one in each district and the requisite number from each party—are

determined through a procedure most easily explained by example (it is described in

general in section 4 and justified in section 5).

Table 2. 2004 Connecticut congressional elections: votes.

District 1st 2nd 3d 4th 5th Total

Republican 73,273 165,558 68,810 149,891 165,440 622,972

Democratic 197,964 139,987 199,652 136,481 105,505 779,589

The electoral system in use today elects in each district the candidate with the most

votes. If these “district-winners” give to each party its requisite number of elected

representatives, then FMV elects them. In the Connecticut 2004 elections (Table 2)

this was not the case, because there were three Republican district-winners and two

Democratic district-winners, whereas the Democrats had 156,617 more votes, so the

Republicans should have elected only two representatives and the Democrats three (by

the method of Jefferson).2

Since each district deserves one representative, the Republicans two and the

Democrats three, in the FMV approach the five Republican candidates compete for

their two seats and the five Democrats for their three seats just as each pair of opposed

candidates compete for one seat in a district: the problem is symmetric. Among the

Republicans the two with the most votes have the strongest claims to seats. Similarly,

among the Democrats the three with the most votes have the strongest claims. If these

five “party-winners” were all in different districts, FMV would elect them. But in the

2004 Connecticut election they were not.

Who, then, should be elected?

FMV can be given two symmetric explanations. The first focuses on districts. It

begins by asking if the candidates with the most votes in each district—the district-

winners—give the correct total number of seats to each party: for the 2004 Connecticut

elections, the answer is no. Why? Because the distribution of votes for the various can-

didates is in some sense “unbalanced”: the Democratic votes do not count as much as

they should relative to those of their Republican opponents.3 They should be adjusted.

But the relative votes among the Democrats (and among the Republicans) must re-

main the same, because they are competing among themselves for three seats (and the

Republicans among themselves for two seats). Therefore, all the Democratic votes

should be scaled up (or all the Republican votes scaled down) until one more of

the Democrats’ justified-votes exceeds that of his or her Republican opponent: this

happens when the scaling factor is 149,892/136,481 ≈ 1.0983 (see Table 3).4 The

district-winners relative to the justified-votes give to the parties their requisite number

of seats: FMV elects them.

The second explanation takes the dual approach. Instead of choosing a district-

winner in each column and scaling the votes in the rows (i.e., of the parties) so that

2In 2006, four Democrats and one Republican were elected, but the Democratic candidates’ 525,673 votes

and the Republican candidates’ 419,895 votes entitled the parties to three and two representatives respectively.
3In 2006 (see footnote 2) the Republican votes did not count as much as they should have with the same

districts, a beautiful example of the perniciousness of the current system.
4In this and the subsequent tables the justified-votes are rational numbers: they are systematically rounded

to the nearest integers.
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Table 3. 2004 Connecticut congressional elections: justified-votes (Democratic candidates’

votes all scaled up, district-winners in bold).

District multiplier 1st 2nd 3d 4th 5th

Republican 1 73,273 165,558 68,810 149,891 165,440

Democratic 1.0983 217,416 153,743 219,270 149,892 115,872

each row (party) has the number of district-winners it deserves—or beginning with the

columns and justifying the votes in the rows—it begins with the rows and justifies the

votes in the columns. In each row (party) choose the number of candidates the party

deserves, taking those who have the most votes: the party-winners. If every column

(district) has exactly one party-winner, they are elected. Again, this is not the outcome

in Connecticut: the second district has two party-winners, the fourth none (see Table

2). Why? For the same reason as before. Here the votes in districts with no winners

should be increased, and/or those in districts with more than one winner decreased.

But the relative votes between the candidates in each district must remain the same.

Therefore, the district votes should be scaled so that the two highest justified-vote

getters among the Republicans and the three highest among the Democrats are all in

different columns or districts. For Connecticut (see Table 4) it suffices to multiply the

votes of the second district by 136,480/139,987 ≈ 0.9749.

The two approaches designate the same set of winners: they always do for two,

three, or any number of parties that are apportioned seats (see Theorem 2).

Table 4. 2004 Connecticut congressional elections: justified-votes (2nd

district’s candidates votes both scaled down, party-winners in bold).

District 1st 2nd 3d 4th 5th

Republican 73,273 161,410 68,810 149,891 165,440

Democratic 197,964 136,480 199,652 136,481 105,505

multiplier 1 0.9749 1 1 1

When there are exactly two parties a very simple rule yields the FMV result (see

Table 5): (i) Compute the percentage of the vote for each of the two candidates in each

district. (ii) Elect for each party the number of candidates it deserves, taking those with

the highest percentages. Clearly, no two can be in a same district.

Table 5. 2004 Connecticut congressional elections: percentage of votes

in districts (FMV winners in bold).

District 1st 2nd 3d 4th 5th

Republican 27.0% 54.2% 25.6% 52.3% 61.1%

Democratic 73.0% 45.8% 74.4% 47.7% 38.9%

The United States has established a strong two-party tradition. Some pretend that

this is due to electing the candidate with a plurality of the votes in single-member

constituencies. It is of course true that this system is extremely efficient in eliminating
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candidates from small parties (in 2002 and 2004 exactly one representative was elected

to Congress who was neither a Republican nor a Democrat, though he usually voted

with the Democrats5). FMV can accomplish exactly the same purpose by denying seats

to any party that has (say) less than 20% or 25% of the total votes in a state (this has

the merit of making it clear to all that small parties are excluded, in contrast with the

situation today when it is true but not stated). Although FMV has been explained in the

context of exactly two parties, it can be used with any number of parties (as is made

clear in sections 4 and 5).

In any case some requirements must be imposed on parties for them to be “eligible”

to elect any representatives at all. Otherwise, it would be possible for a small party

with relatively small numbers of votes in many districts to be apportioned one or more

seats, and FMV might then elect one of that party’s candidates having abnormally little

support.6

FMV is a practical proposal: it is a special case of a more general voting system

that was adopted by the canton and the city of Zürich (in Switzerland) and used for the

first time to elect the parliament of the city on February 12, 2006 [5]. Called “bipropor-

tional” representation, it is the same as fair majority voting except that each “district”

elects a number of representatives that depends upon its population and parties present

lists of candidates in the districts. The system determines how many candidates from

each party-list should be elected in each district, instead of designating the one can-

didate that is elected. (N.B. The idea and axiomatic justification for biproportional

representation was developed in a series of papers [3], [4], [6]. It is discussed in the

context of Mexico in [7] and [8]. The application to Zürich and the account of how

a citizen’s suit against the past system led to its adoption is described in [11]. FMV

was first described informally in [1]; its first formal description, characterization, and

proof is given in this article.)

3. THE PROS AND CONS. Fair majority voting offers many advantages and but

few inconveniences.

First, it eliminates the possibility of defining electoral districts for partisan political

advantage. A vote counts for a party no matter where it is cast.

Second, since parties are allotted seats on the basis of their total vote in all districts,

the necessity of strict equality in the number of inhabitants per district is attenuated.

This permits districting lines to be drawn that respect traditional political, administra-

tive, and natural frontiers, and communities of common interest.

Third, the law has encouraged, and the courts have accepted, the creation of

“minority-majority” districts, in which a nationally underrepresented group consti-

tutes a voter majority sufficient to enable it to elect its own representatives. This

possibility has been used for partisan purposes, for minority populations often have

their own political agendas. FMV permits such districts to be defined without favoring

any party.

Fourth, it is today entirely possible for a minority of the voters in the United States

to elect a majority of the members of the House of Representatives just as it is possible

for a minority to elect the President, as it did in 2000 and could well have done again in

5This was Bernie Sanders, an independent, who had been Vermont’s sole representative since 1991. He was

elected to the Senate in 2006.
6If no requirement were imposed, FMV would have given one seat to the Libertarians of California in

2002, its candidates having received 3.6% of the total vote. The one seat would have gone to its candidate in

the tenth district who had less than 41,000 votes whereas the Democrat’s candidate in the district had over

123,000 votes.
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2004.7 FMV would almost surely prevent a minority of voters from electing a majority

in the House.

Fifth, FMV makes every vote count. It is inconceivable that a major party would not

present a candidate in every district of a state if FMV became the electoral system: even

as little as 10% or 20% of the vote against a very strong entrenched candidate would

help the opposition party to elect one of its candidates in another district. The anomaly

of large numbers of unopposed candidates would therefore disappear. In addition, since

every vote counts, many citizens would vote who do not today (because now their votes

make no difference, simply adding to huge majorities or minute minorities).

Sixth, that a state like Massachusetts has no Republican representatives at all seems

ridiculous. Certainly at least 10% of the potential voters in Massachusetts have prefer-

ences for the Republican party, and should be represented by at least one of the state’s

ten representatives. FMV makes this possible.

Seventh, with FMV every district continues to have one representative, as required

by federal law. The one major drawback is that a district’s representative could have

received fewer votes than his or her opponent in the district (e.g., FMV elects the

Democrat with 136,481 votes in Connecticut’s fourth district when the Republican

candidate receives 149,891 votes; see Table 2). On the other hand, in the 2004 Califor-

nia election a Democrat won (in the twentieth district) with 61,005 votes, whereas a

Democrat lost (in the fourth district) with 117,443 votes; also a Republican lost (in the

10th district) with 95,349 votes. This is every bit as shocking. Furthermore, there is ev-

idence that suggests voters would accept this drawback. The results of the 2006 Zürich

election were accepted without criticism, yet some party-lists were allotted more seats

than other party-lists that had more votes.8 Of course, if the candidate with the most

votes in a district must always be elected, there is no escaping the present system!

Eighth, under FMV every candidate has the incentive to seek as many votes as

possible. Every vote counts for a candidate and for his or her party, but more for the

candidate than for the party, because he or she also competes for a seat among the

party candidates. This is not true in traditional “proportional representation” systems,

where parties present lists of candidates and an elector casts a vote for an entire list. A

candidate at the top of a list of a major party is assured of election, and a candidate at

the bottom of the list is assured of not being elected. Incentives are confused.

Last, and most important, with FMV the House of Representatives might once again

become a “mirror” or “miniature” of the electorate as a whole. Incumbents would no

longer have the overwhelming advantages that they enjoy today. There would be no

safe districts. The courts would be spared the trouble of having to deal with questions

they are not able to adjudicate.

4. THE MATHEMATICS. Consider a state with n representatives (i.e., n districts)

and m parties, where each voter casts one vote for a party-candidate in his or her

district. Let v = (vi j ), where vi j is the vote received by the candidate of party i in

district j , and p = (pi ), where pi =
∑

j vi j is the total vote of party i .

FMV apportions the n seats among the m parties on the basis of the total party votes,

p = (p1, . . . , pm). Let a = (a1, . . . , am), with ai the number of seats apportioned to

party i . Exactly how should this be done? This “vector” apportionment problem has

7A switch of seventy thousand votes from Bush to Kerry (1.3% of the votes in Ohio, 0.06% of the votes of

the nation) would have made Kerry president, though his vote total would have been at least three million less

than Bush’s.
8In one district, a party-list had one seat for 661 votes while another had two seats for 631 votes. A party

had three seats for 1,025 votes in one district, but only two seats for 1,642 votes in another district [5].
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been thoroughly studied (see [9]). The short discussion to follow draws on well-known

results.

The appropriate method to apportion seats to eligible parties—those that obtain

some minimum percentage of the votes—is Jefferson’s. Let ⌊x⌋ be the largest inte-

ger no larger than the real number x , and let ⌊⌊x⌋⌋ = ⌊x⌋ when x is not an integer

and ⌊⌊x⌋⌋ = x or x − 1 when x is an integer. Jefferson’s method (also known as

D’Hondt’s) is to take ai = ⌊⌊λpi⌋⌋, where λ is chosen so that
∑

ai = n. There are

three principal reasons for choosing it [9]. (1) Among all acceptable methods it most

favors the large parties, which tends to help the emergence of a majority party at the

national level. (2) It is the unique acceptable method that guarantees each party at least

its proportional share rounded down. (3) Several states have exactly two representa-

tives. It gives two seats to the party receiving the most votes unless the party second

in the running gets at least one-half the number of votes of the first party. Every other

proportional method gives a seat to the runner-up party when it has less than half of

the vote count of the leading party. More generally, suppose that two parties with the

most votes share n seats. Then when one of them has at least 100k/(n + 1)% of the

total vote of the two, it is allotted at least k seats. This seems reasonable.

Let x = (xi j ), with xi j = 1 if the candidate of party i is elected in district j and

xi j = 0 otherwise. Fair majority voting selects a (0, 1)-valued matrix x that satisfies

the following conditions:

∑

i

xi j = 1 ( j = 1, . . . , n),
∑

j

xi j = ai (i = 1, . . . , m),

vi j = 0 ⇒ xi j = 0.

The first equations guarantee to each of the districts exactly one representative; the

second equations guarantee to each party i exactly ai representatives; finally, the log-

ical limitation makes it impossible for a candidate who receives no votes whatsoever

to be elected. Any such x is feasible. The set of candidates singled out by its 1’s is a

feasible delegation (in a minor abuse of language we frequently refer to x itself as a

feasible delegation).

Does a feasible delegation always exist? The example of Table 6 shows that the

answer is no, so it is necessary to determine the conditions under which a feasible

delegation does exist.

Table 6. Example of votes that allows no feasible delegation.

(+ represents a positive vote, 0 no votes).

1st 2nd 3d 4th 5th 6th 7th seats

Party 1 + + + + + + + 2

Party 2 + + + + + + + 1

Party 3 + + + 0 0 0 0 4

There is no feasible delegation or feasible x in the example of Table 6 because four

districts (the fourth through the seventh) cast all their votes for parties 1 and 2 that

together deserve only three seats. Equivalently, party 3 deserves four seats but receives

all of its votes from only three districts. Clearly, no feasible delegation can exist in

this situation. Practically speaking, the situation is unlikely: the voters for party 3 in

three districts would have to exceed in number all the voters in the other four districts.

In any case, the obligation of candidates to be residents of their districts suggests that
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every candidate will receive at least one vote. . . which is a sufficient condition for the

existence of feasible delegations. The problem nevertheless begs for an answer: the

fact is that there is no feasible delegation only if a situation like that illustrated in

Table 6 obtains for some subset of districts and parties. To describe the general case,

let K be a subset of the districts and a(K ) =
∑

{ai : vi j > 0 for some j ∈ K }.

Theorem 1 (Feasibility conditions). There exists a feasible delegation x if and only

if a(K ) ≥ |K | for every subset K of the districts.

This statement is easily proved (see the end of section 6).

A problem (v, a) defined by an m-by-n matrix of votes v and an apportionment a

satisfying
∑

ai = n is said to be feasible if it has at least one feasible delegation x . For

given row-multipliers λ = (λi ) > 0 and column-multipliers ρ = (ρ j ) > 0 the matrices

λ ◦ v = (λivi j ), v ◦ ρ = (vi jρ j ), and λ ◦ v ◦ ρ = (λivi jρ j ) are the justified-votes of the

candidates of the different parties in the various districts.

A set of candidates elected by fair majority voting is called an FMV-delegation. The

theorem that follows characterizes them:

Theorem 2 (FMV characterized). Suppose that the problem (v, a) is feasible. Then:

(i) There are row-multipliers λ such that electing a set of candidates with the most

justified-votes (λ ◦ v) in each district j—a set of district-winners—gives every

party i the number ai of seats it deserves.

(ii) There are column-multipliers ρ such that electing a set of ai candidates with

the most justified-votes (v ◦ ρ) of each party i—a set of party-winners—gives

every district j exactly one seat.

(iii) There is a set of candidates that is at once a set of district-winners and a set of

party-winners with respect to the justified-votes (λ ◦ v ◦ ρ).

In each case the sets of designated candidates are one and the same, though different

multipliers may be used to find them. These sets are FMV-delegations.

Assertions (i) and (ii) of the theorem have already been illustrated; a simultaneous

application of the row- and column-multipliers obtained there yields (iii) (see Table

7).

Table 7. 2004 Connecticut congressional elections: justified-votes (district-winners and

party-winners in bold).

District multiplier 1st 2nd 3d 4th 5th

Republican 1 73,273 161,410 68,810 149,891 165,440

Democrat 1.0983 217,416 149,891 219,270 149,892 115,872

multiplier 1 0.9749 1 1 1

Multiple solutions are extremely rare, but when they do exist, the same multipliers

yield all solutions (as will become apparent in the proof of Theorem 2, which is given

in section 6).

5. A JUSTIFICATION. Theorem 2 completely defines FMV. Another characteriza-

tion justifies it.
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Figure 1. Feasible delegations differing in two simple cycles, m = 3, n = 6, a = (2, 2, 2).

Observe that the difference between any two feasible matrices x and y of a problem

is a matrix of 0’s, 1’s, and −1’s, every row and column of which sums to 0. In the

example of Figure 1, the nonzero entries break down into two simple cycles, each

cycle consisting of a +1 and a −1 in each of its rows and columns. One cycle is in

the three rows and first three columns, the other is in the last two rows and last two

columns. Two feasible delegations may differ by many such cycles.

Consider two feasible matrices x and y that differ in a single cycle of k rows and

columns, as in Figure 2. The i-indices are all different and the j-indices are all differ-

ent. An x-entry means its x-value is 1 and its y-value is 0, a y-entry that its x-value is

0 and its y-value 1.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

xi(1) j (1) ← yi(1) j (k)

↓

yi(2) j (1) → xi(2) j (2)

↓

yi(3) j (2) → ↑
. . .

xi(k−1) j (k−1)

↓

yi(k) j (k−1) → xi(k) j (k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 2. Feasible delegations x and y that differ in a single simple cycle.

Suppose that for a problem (v̄, a) = (λ ◦ v ◦ ρ, a), where λ > 0 and ρ > 0, the

following holds in the cycle (taking l − 1 and l + 1 modulo k):

v̄i(l) j (l) ≥ v̄i(l+1) j (l), v̄i(l) j (l) ≥ v̄i(l) j (l−1). (1)

That is, in every row and every column of the cycle the candidate designated by the

x-entry equal to 1 has at least as many v̄-votes as the v̄-votes of the candidate desig-

nated by the y-entry equal to 1.

In this case I claim that x should clearly be considered at least as good as y. For

when x designates a candidate different from y that candidate has either more or the

same number of “votes” v̄ than the candidate designated by y in the same district and

also in the same party wherever x and y differ. But each district must be assigned one

representative and each party i must be given ai representatives. So multiplying all the

votes of either a district or a party should change nothing, since all it does is rescale

the votes of a set of competing candidates in a district or in a party. This simply says

that the two problems (v, a) and (λ ◦ v ◦ ρ, a), for λ > 0 and ρ > 0, are equivalent,

so if x is at least as good as y relative to votes v̄ then the same is true relative to votes

v. More particularly, if at least one of the inequalities in (1) is strict, then x should be

considered strictly better than y; and if they are all equations, then x and y should be

considered equally good.
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This defines a binary relation ≻ between feasible delegations x and y that differ in

a single cycle:

x � y when (1) holds, x ≻ y when (1) holds with at least one strict inequality,

and x ≈ y when all the inequalities of (1) are equations.

Let π(x) = �xi j =1vi j for x a feasible delegation.

Lemma 1 (Order between “neighbors”). Suppose x and y are feasible delegations

of a problem (v, a) that differ in a single cycle. Then x ≻ y if and only if π(x) > π(y).

To prove it, suppose x ≻ y. Then inequalities (1) hold with at least one strict, for

some λ > 0 and ρ > 0, so

∏

xi j =1,yi j=0

λivi jρ j >
∏

xi j =0,yi j =1

λivi jρ j ,

or

∏

xi j =1,yi j =0

vi j >
∏

xi j =0,yi j =1

vi j ,

implying, since x and y only differ in that single cycle,

π(x) =
∏

xi j =1

vi j >
∏

yi j =1

vi j = π(y).

Now suppose that π(x) > π(y). The proof of the lemma is completed by showing

that for any positive real N there are multipliers λ and ρ so that the v̄-values of the

equivalent problem satisfy

v̄i(l) j (l) = δ, v̄i(l+1) j (l) = N − δ

for all l, where 0 < δ < N and l + 1 is taken modulo k. A tedious but straightforward

calculation reveals that such multipliers exist and that δ = N/(1 + r k), where

r =
vi(1) j (1)vi(2) j (2) . . . vi(k) j (k)

vi(2) j (1)vi(3) j (2) . . . vi(1) j (k)

=
π(x)

π(y)
.

The number r is positive. π(x) > π(y) implies r > 1, so δ > N − δ and x ≻ y.

Notice that when x ≈ y every candidate in the cycle has exactly the same (rescaled)

vote, meaning that the delegations corresponding to x and y are really equally good

relative to λ ◦ v ◦ ρ, hence with respect to v. Notice also that r depends only on the

cycle and not on x and y (e.g., different pairs of delegations can differ in the same

cycle). Thus when x and y differ by a single cycle, π(x) = rπ(y) for some factor r of

the cycle.

To illustrate what has just been said, consider again the example of Connecticut

(m = 2, n = 5, a = (2, 3), v the votes of Table 2) and feasible matrices x and y that

differ by a single simple cycle (underlined),

x =

(

1 1 0 0 0

0 0 1 1 1

)

, y =

(

1 0 0 1 0

0 1 1 0 1

)

.
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Since 165,558 × 136,481 > 149,891 × 139,987, π(x) > π(y) or x ≻ y. Taking

N = 300,000, the calculation9 gives δ = 152,777 and N − δ = 147,223, so x ≻ y.

Multipliers that give the result are λ = (1, 1.139680) and ρ = (1, 0.922798, 1,

0.982204, 1), so

v̄ = γ ◦ v ◦ ρ =

(

73,273 152,777 68,810 147,223 165,440

225,616 147,223 227,539 152,777 120,242

)

.

Two definitions are necessary.

• A feasible delegation x is best with respect to ≺ if there exists no feasible delegation

y for which x ≺ y.
• A feasible delegation x maximizes π(x) if π(x) ≥ π(y) for every feasible delega-

tion y.

Lemma 2. A feasible delegation x maximizes π(x) if and only if x is best with respect

to ≻.

To see the truth of this lemma, suppose x maximizes π(x) but is not best with

respect to ≻. Then there is a feasible y satisfying x ≺ y, and by Lemma 1 π(x) <

π(y), a contradiction.

For the converse, suppose x is best with respect to ≻ but π(x) is not maximized.

Then there exists a delegation y with π(x) < π(y). x and y may differ in several

cycles. Letting r1, r2, . . . , rm be their respective factors, π(y) = r1r2 · · · rmπ(x). By

hypothesis, r1r2 · · · rm > 1, so ri > 1 for some i . Let z be the feasible delegation that

differs from x only the i th cycle. Then π(z) = riπ(x) with ri > 1, contradicting the

fact that x is best with respect to ≻.

Theorem 3 (Characterization). A feasible delegation is an FMV-delegation if and

only if it is best with respect to ≺.

The idea of building a partial order on feasible delegations from comparisons of

“smallest” possible changes is closely linked to the concept of “coherence” or “con-

sistency” [2].

6. THE PROOFS. The truth of the assertions made about fair majority voting may

be established via (at least) two arguments. One is by appealing to more general results

concerning biproportionality ([3], [4], [6]). The other, which is new, is more direct and

is pursued here.

The natural computational idea that stems from Lemmas 1 and 2 is to pick some fea-

sible delegation, then ask whether a “neighboring” one—differing by a single cycle—

is better with respect to the relation ≻: if yes, then take it, and repeat; if no, then try

to show that a best feasible delegation has been found. The proof shows that linear

programming can be used to implement this idea.

The geometric mean of a set of n numbers is the nth root of the product of the

numbers, so maximizing the geometric mean of the respective votes of a delegation is

equivalent to maximizing π(x). But maximizing π(x) over the feasible delegations is

equivalent to finding an x that solves

max
x

σ(x) =
∑

i, j

xi j log vi j , (2)

9Here the numbers are rounded to the nearest integer.
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when

∑

j

xi j = ai ,
∑

i

xi j = 1, xi j ≥ 0, (i = 1, . . . , m; j = 1, . . . , n) (3)

and vi j = 0 ⇒ xi j = 0. This is a linear program whose feasible solutions are

bounded—more specifically, it is a transportation problem—so it always has a so-

lution at an extreme point of the polytope defined by the equation and inequality

constraints (when nonempty), and the extreme points are precisely the feasible (0, 1)-

valued matrices x , that is, the feasible delegations. Thus if there exists a feasible

delegation the linear program must have a solution. An optimal solution to the linear

program is shown to be an FMV-delegation (as defined in Theorem 2).

The “primal” simplex method implements the natural computational idea men-

tioned earlier. It begins with an arbitrary feasible matrix x , then finds a better neigh-

boring extreme point—a better feasible matrix that differs from x in a single cycle—if

such exists, and repeats. If this process halts at x , then it is an optimal solution to the

problem, that is, a best feasible matrix.

Proof of Theorems 2 and 3. First, suppose that x is best with respect to ≻. Then by

Lemma 2, x maximizes π(x) (equivalently σ(x)).

Duality theory supplies the appropriate multipliers. The dual problem is

min
u,w

∑

i

ai ui +
∑

j

w j

when

ui + w j ≥ log vi j (i = 1, . . . , m; j = 1, . . . , n).

All optimal solutions x and u, w of the respective programs satisfy xi j (ui + w j −

log vi j ) = 0, so xi j = 1 implies ui + w j = log vi j , and ui + w j > log vi j implies

xi j = 0.

Define the multipliers to be λi = e−ui . Then ew j ≥ λivi j for all i and j , and xi j =

1 only if λivi j = maxh λhvh j = ew j , which establishes the first part of Theorem 2.

Symmetrically, taking ρ j = e−w j , the same conditions imply that eui ≥ vi jρ j for all

i and j , and xi j = 1 only if vi jρ j = maxh vihρh = eui , proving the second part of

Theorem 2.

Notice, however, that a stronger conclusion can be drawn: there exist column-

multipliers ρ such that choosing ai candidates with the most justified-votes for each

party i gives every district exactly one representative and the ai candidates all have the

same number of justified-votes. It is easy to adjust the column-multipliers of Theorem

2 to obtain equality. Suppose v∗
i is the lowest justified-vote of party i’s winners: de-

crease the column-multipliers of its other winners so that each has v∗
i justified-votes.

This changes nothing between winners and losers because the losers whose justified-

votes are decreased were already below all the winners from their parties (see Table 8).

Finally, if both λ and ρ are defined as indicated, the duality conditions imply

1 ≥ λivi jρ j for all i and j , and xi j = 1 only if λivi jρ j = maxhk λhvhkρk = 1. This

proves more than the third part of Theorem 2. Namely, there are multipliers so that

the adjusted-votes of winners are all exactly 1 (or any other number c > 0 obtained

by replacing λ by cλ), those of all others lower or equal to 1 (or c). For example,

multiplying Connecticut’s Republican row by 136,481/161,410 ≈ 0.8456 in Table 8
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Table 8. 2004 Connecticut congressional elections: party-winners with the

same justified-votes (compare with Table 4).

District 1st 2nd 3d 4th 5th

Republican 50,516 161,410 47,038 149,891 161,410

Democratic 136,481 136,480 136,481 136,481 102,935

multiplier 0.6894 0.9749 0.6836 1 0.9756

does the trick (here the winners all have c = 136,481 adjusted-votes). This completes

the proof of Theorem 2, and that an x that maximizes π(x) is an FMV-delegation.

For the converse of Theorem 3, suppose that x is an FMV-delegation as defined by

(i) in Theorem 2. Then xi j = 1 implies λivi j ≥ λhvh j for every h. So if y is any feasible

delegation

∏

xi j =1

λivi j ≥
∏

yi j =1

λivi j

implying

π(x) =
∏

xi j =1

vi j ≥
∏

yi j =1

vi j = π(y),

so x maximizes π(x), implying x is best with respect to ≻.

If x is an FMV-delegation as defined by (ii) or (iii) in Theorem 2, a similar deduction

shows x is best with respect to ≻. This completes the proof of Theorem 3.

The values π(x) implicitly assigned by FMV to every feasible matrix x furnish

a complete order. However, there may be pairs of feasible matrices x and y with

π(x) > π(y) for which it is impossible to find a sequence of feasible matrices, be-

ginning with y and ending with x , such that each feasible matrix z in the sequence

is succeeded by another better than or as good as z and differing from it by a single

cycle. So there are reasons for questioning the “validity” of this complete order. On the

other hand, there is no need for a complete order. All that is necessary is to be able to

demonstrate that the solution retained is better than (or at least as good as) any other.

An “unfortunate” consequence of the proof via optimization is that it invites the idea

that it might be preferable to maximize some other function of the votes—although

the function that is maximized is a consequence of accepting the idea that rescaling

the votes of candidates of a party or of a district yields an equivalent problem. For

example, it has been suggested that a feasible delegation should be elected whose total

vote (or average vote of its candidates) is a maximum rather than a feasible set for

which the product of the votes (or geometric mean) is a maximum [10]. This is not

a reasonable idea because of what it implies (and shows, incidentally, the importance

and extreme sensitivity of the choice of function to be optimized, a fact that is often

forgotten).

The proof just presented, when modified so as to maximize the total vote of a fea-

sible delegation (instead of the product) establishes counterparts to Theorem 2. The

counterpart to (i) reads:

When (v, a) is feasible, there are party-addenda (or row-addenda) λ such that

electing a set of candidates with the most justified-votes (λi + vi j ) in each
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district—a set of district-winners—gives every party i the number ai of seats it

deserves.

The analogous statements to (ii) and (iii) of Theorem 2 hold as well. In each case linear

programming duality gives the result when the problem is to maximize
∑

{vi j : xi j =

1} for x = (xi j ) a feasible matrix.

The implication of choosing a feasible delegation that wins the most votes is that

what is significant in the votes between two candidates is their absolute difference

rather than their relative difference. Thus, in particular, when candidate A has 100,100

votes and candidate B has 100,050 votes the “margin of victory” viewpoint equates

this result to A receiving a hundred votes and B receiving fifty votes. That seems

ridiculous, because the first case is a very narrow victory, whereas the second is an

overwhelming victory. Representation is a proportional idea. The appearance of the

geometric mean is a result, not a cause.

On the other hand, the two approaches frequently give identical results (as they do

for Connecticut). In particular, when there are exactly two parties and the total number

of votes in each district is the same, they always give identical results. This is easy

to see, for when there are two parties a very simple rule (analogous to that for FMV)

yields the result: Assign to each candidate the vote margin over his or her opponent

(negative if he or she has fewer votes). For each party choose the number of candidates

it deserves, taking those with the highest margins. No two can be in a same district.

Clearly, when the vote total does not vary from district to district, the two simple rules

agree.

It remains only to establish Theorem 1. It can be proved in many ways, for example

by using the “max-flow, min-cut” theorem of network flows. Perhaps the easiest here

is to rely once again on duality in linear programming: solve

max
x

σ(x) =
∑

(i, j ):vi j>0

xi j

when

∑

j

xi j ≤ ai ,
∑

i

xi j ≤ 1, xi j ≥ 0.

If σ(x) = n a feasible delegation exists; if σ(x) < n none exists.

The dual linear program is

min
u,w

τ(u, w) =
∑

i

ai ui +
∑

j

w j

when

ui ≥ 0, w j ≥ 0, ui + w j ≥

{

0 when vi j = 0,

1 when vi j > 0.

Optimal solutions exist to both programs with all of the variables x, u, and w taking

values equal to 0 or 1, and max σ(x) = min τ(u, w).

Suppose that no feasible delegation exists. Then σ(x) = τ(u, w) < n. The situation

is pictured in Figure 3 (a “⊕” inside the figure means that the corresponding value

of vi j is positive or 0, and a “0” that the corresponding value of vi j is 0). Let K =

{ j : w j = 0} and I = {i : ui = 0}, implying that vi j = 0 for i in I and j in K , so
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. . . w j = 1 . . . . . . w j = 0 . . .
... ⊕ . . . ⊕ ⊕ . . . ⊕

ui = 1
...

...
...

...

... ⊕ . . . ⊕ ⊕ . . . ⊕

... ⊕ . . . ⊕ 0 . . . 0

ui = 0
...

...
...

... I
... ⊕ . . . ⊕ 0 . . . 0

K

Figure 3. Schematic representation of the matrix of votes v.

there are n − |K | of the w j with value 1. Since τ(u, w) = n − |K | +
∑

i ai ui < n, it

must be the case that |K | >
∑

i ai ui . But vi j > 0 and j in K implies that ui = 1, so

|K | >
∑

{ai : vi j > 0 for some j in K }.

For the converse, suppose a feasible delegation does exist. Then σ(x) = τ(u, v) =

n. Let K be any subset of the districts. Take w′
j = 0 if j ∈ K , and w′

j = 1 otherwise;

take u′
i = 1 if vi j > 0 for some j ∈ K , and u′

i = 0 otherwise. Then

τ(u′, w′) =
∑

i

ai u
′
i +

∑

j

w′
j ≥ τ(u, w) = n.

But this simply says that a(K ) + (n − |K |) ≥ n, so a(K ) ≥ |K |, and completes the

proof.
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