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Abstract

A multi-party contract signing protocol allows a set of participants to exchange
messages with each other with a view to arriving in a state in which each of them
has a pre-agreed contract text signed by all the others. Garay and Mackenzie (GM)
proposed such protocol based on private contract signatures, but it was later shown
to be flawed by Chadha, Kremer and Scedrov (CKS); the authors CKS also provided
a fix to the GM protocol by revising one of its sub-protocols.

We show an attack on the revised GM protocol for any number n > 4 of signers.
Furthermore, we argue that our attack shows that the message exchange structure
of GM’s main protocol is flawed: whatever the trusted party does will result in
unfairness for some signer. This means that it is impossible to define a trusted
party protocol for Garay and MacKenzie’s main protocol; we call this “resolve-
impossibility”.

We propose a new optimistic multi-party contract signing protocol, also based on
private contract signatures. We present a proof that our protocol satisfies fairness
as well as its formal analysis in NuSMV model checker for the case of five signers.
The protocol requires n(n − 1)(dn/2e + 1) messages to be sent in the optimistic
execution, which is about half the number of messages required by the state-of-the-
art Baum-Waidner and Waidner protocol, and in contrast with Baum-Waidner and
Waidner, it does not use a non-standard notion of a signed contract.

1 Introduction

A contract signing protocol allows a set of participants to exchange messages
with each other with a view to arriving in a state in which each of them has
a pre-agreed contract text signed by all the others. An important property
of contract signing protocols is fairness : no participant should be left in the
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position of having sent another participant his signature on the contract, but
not having received signatures from the other participants.

One way in which this can be achieved is by employing a trusted party T . All
the signers of the contract send their signatures to T . When T has them all, he
sends them out to each of the signers. It would be desirable to have a protocol
which does not require a trusted party, but this is known to be impossible
for deterministic protocols [9]. This has led to the invention of “optimistic
protocols”, which employ a trusted party only in the case that something goes
wrong. If all the signers are honest and there are no adverse network delays
which prevent the protocol from completing, the trusted party is not needed.
But if a participant of the protocol has sent messages which commit him to
the contract and has not received corresponding commitment from the other
participants, he can contact the trusted party who will intervene.

As well as fairness, there are other desired properties of contract signing proto-
cols. Timeliness ensures that every signer has some recourse to prevent endless
waiting. A third property called abuse-freeness [10] guarantees that a signer
is not able to prove to an external observer that she is in a position to choose
between successfully completing the protocol and aborting it. This property
is desirable because being in such a position would give the signer an unfair
advantage.

Optimistic contract signing protocols have been first described for synchronous
networks in [2,3,19]. Two-party protocols for asynchronous networks (where
messages may be delayed arbitrarily) have been proposed in [4,10,19]. Later,
two protocols for the n-party case were proposed: one by Garay and MacKenzie
[11] and the other one by Baum-Waidner andWaidner [6]. Both of them consist
of a main (“optimistic”) part which does not involve the trusted party, together
with subprotocols involving a trusted party used in the case that the signers
do not receive expected messages.

Garay and MacKenzie’s protocol (which we call GM) allows an arbitrary num-
ber n ≥ 2 of signers to exchange signed contracts. A feature of GM is its use
of private contract signatures to guarantee abuse-freeness. GM was shown by
Chadha, Kremer and Scedrov [7] to fail the fairness property for the case
n ≥ 4. Those authors presented a revised version of the trusted party sub-
protocol. They verified the original main protocol together with the revised
trusted party subprotocol for n ≤ 4.

Baum-Waidner and Waidner’s protocol (BW) was also analysed in [7], and was
not found to be flawed. It requires (n+1)n(n−1) messages in the “optimistic”
execution, where n is the number signers and the number of dishonest signers
can be up to n− 1. However, their protocol is based on a non-standard notion
of a signed contract: a contract on a text m signed by an agent A is defined to



be a tuple (m,n + 1) digitally signed by A. Any other digitally signed (m, i)
with i < n + 1 is not considered to be a signed contract; it is merely A’s
promise to sign the contract. Such a notion has undesirable side-effects. The
validity of the contract produced by Baum-Waidner and Waidners’s protocol
depends on the integer it is tupled with. Hence, when a party is presented
with such contract it must be able to reliably establish n+1 (which could, for
instance, be embedded in the body of the contract m) and compare with the
integer that the contract is tupled with.

Baum-Waidner[5] further reduced the complexity of the previous scheme. This
was achieved by adjusting trusted party T ’s protocol with an assumption that
T knows in advance the number of dishonest signers (and sets the parameters
of its protocol accordingly) and fairness is guaranteed provided all honest
signers continue the protocol (i.e. if some honest signer decides to quit, when
the protocol requires it to participate, fairness can not be guaranteed for other
honest signers).

Our contribution. We show that the revised GM protocol presented in [7]
also fails the fairness property, for the cases n ≥ 5. Furthermore, we argue that
our attack shows that the protocol can not guarantee fairness for any n ≥ 5
whatever the trusted authority T does, i.e. we show that no trusted party
protocol is possible in order to fix the unfairness and the very idea behind
Garay and MacKenzie’s main protocol is flawed. A preliminary version of this
work has been published as [17].

Next, we propose a new optimistic multi-party contract signing protocol based
on private contract signatures that employs the ideas of Chadha, Kremer and
Scedrov for the trusted party. In contrast with the state-of-art Baum Waidner
and Waidner protocol, our protocol does not use a non-standard notion of a
signed contract and achieves improvement in the message complexity of the
optimistic execution without assuming that T or any signer know the total
number of dishonest signers. Our scheme requires n(n−1)dn/2e+1 messages,
which is about half the complexity of the previous protocol by Baum-Waidner
and Waidner [6]. For example, if n = 6 our protocol requires 120 messages
to “optimistically” sign a contract, whereas the previous scheme requires 210.
We also present a proof that our protocol satisfies fairness, and give its formal
analysis in NuSMV model checker for the case of five signers. An early version
of some of this work was presented in [16].

Outline. Section 2 introduces the basic notions and assumptions about con-
tract signing. In the following two sections we describe the revised GM pro-
tocol, and our analysis of it, including the impossibility of providing a resolve
protocol. Next, in section 5, we describe our protocol followed by a proof that



our protocol satisfies fairness in section 6 and its formal analysis in NuSMV
model checker for the case of five signers in section 7. We conclude in section 8.

2 Preliminaries

Let P1, . . . , Pn denote signers, who want to sign a contract m and T a trusted
third party. Signers may adhere to the protocol, or they may be dishonest,
i.e. deviate from the protocol. We assume that up to n− 1 of signers may be
dishonest and are coordinated by a single party, an adversary. We assume that
signers and their public keys are fixed in advance, all contracts are distinct and
include the ordered list of all signers. SPi

(x) denotes Pi’s universally-verifiable
signature on x.

We shall say that Pi has a valid contract m from Pj if it receives Pj’s signature
on m or on (m, i) for some integer i. When Pi runs a contract signing protocol
and acquires a valid contract m, we say “Pi decides signed”. Otherwise, if it
quits or receives an abort token from T , we say “Pi decides failed”.

We consider an asynchronous communication model with no global clocks,
where messages can be arbitrarily delayed. However, the communication chan-
nels between signers and the trusted party T are assumed to be resilient, viz.
the messages are guaranteed to be delivered eventually. The adversary is al-
lowed to schedule and insert its own messages into the network.

An optimistic contract signing protocol consists of two protocols, one executed
by signer (Main), and another by trusted party T (Abort or Resolve). Usually
signers try to achieve the exchange by executing Main. They contact T using
Abort or Resolve only if something goes amiss in Main. Once a participant
contacts T , it no longer takes part in Main. A request to T via Abort or
Resolve can result in T sending back an abort token or a signed contract.
The decision of whether to reply with an abort token or a signed contract
is taken by T on the basis of the evidence included in the request, and also
the previous requests that have been made by other participants. T has the
property that if it decides to send back a signed contract, it sticks to that
decision when answering further requests from other participants. However, if
it issues an abort, it may later overturn that abort and reply with a signed
contract in order to maintain fairness. Lastly, once a signer receives a reply
from T to its abort or resolve request, it quits the protocol. Therefore, a fair
protocol must guarantee that an honest participant (namely, one who adheres
to the protocol) will not receive an abort and later have it overturned.

An optimistic contract signing protocol is expected to guarantee fairness. It
is also desirable for the protocol to guarantee abuse-freeness and timeliness:



Definition 1 An optimistic contract signing protocol is said to be fair for an
honest signer Pi if whenever some signer Pj obtains a valid contract from Pi,
then Pi can obtain a valid contract from Pk for all 1 ≤ k ≤ n.

Definition 2 An optimistic contract signing protocol is said to be abuse-free
if it is impossible for any set of signers at any point in the protocol to be
able to prove to an outside party that they have the full power to terminate or
successfully complete the contract signing.

Definition 3 An optimistic contract signing protocol is said to satisfy timeli-
ness if each signer has a recourse to stop endless waiting for expected messages.

PCS promises.

The protocols in this paper employ a cryptographic primitive known as private
contract signature [10]. A private contract signature by Pi for Pj on text m
with respect to trusted party T , denoted PCSPi

(m,Pj, T ), is a cryptographic
object with the following properties:

(1) PCSPi
(m,Pj, T ) can be created by Pi, and also by Pj.

(2) Each of Pi, Pj and T (but no-one else) can tell the difference between the
versions created by Pi or Pj.

(3) PCSPi
(m,Pj, T ) can be converted into a universally-verifiable signature

SPi
(m) by Pi, and by T ; and by no-one else.

The idea is that PCSPi
(m,Pj, T ) acts as a promise by Pi to Pj to sign m.

But Pj cannot prove to anyone except T that he has this promise, since he
can create it himself and only T can tell the difference between one created
by Pi and one created by Pj. The trusted party T has the power to convert a
promise by some P to sign m to a proper signature by P on m.

A PCS promise may be trusted party invisible, where it is impossible for any
recipient of SPi

(m) to distinguish whether it was converted from PCSPi
(m,Pj, T )

by Pi or by the trusted party T ; it may also be trusted party accountable where
such distinguishability is possible.

3 GM Protocol revised by [7]

The protocol is an optimistic protocol, and therefore consists of two subpro-
tocols, called Main and Abort/Resolve. Usually signers try to achieve the
exchange by executing Main.



Main protocol. The main protocol for n participants is divided into n
levels. For each level, a different strength of promise is used. An i-level promise
from A to B is implemented as PCSA((m, i), B, T ). Intuitively, the higher i
is, the more A is committed to signing m, and hence, the stronger the promise
is. We use SP (m) to denote the message m signed by P . The protocol for Pi

(1 ≤ i ≤ n) is described in Table 1.

(Revised) Abort and Resolve protocols. The original Abort and Re-
solve protocols [11] were shown to be flawed by Chadha, Kremer and Sce-
drov[7]. Those authors also proposed revised versions of the Abort and Re-
solve protocols, which they analysed and showed to be error-free for values of
n ≤ 4. We recall their revised versions here.

When Pi requests resolve from T , it sends evidence to T which consists of
promises at various levels from the other participants. This evidence is de-
signed so that T can infer the promises that an honest participant would
have sent when it launched the resolve protocol (note that a participant may
have dishonestly sent other promises). When Pi requests resolve, it sends the
message

SPi
({PCSPj

((m, τj), Pi, T )}j∈{1,...,n}\{i}, SPi
((m, 1)))

where τj is computed as following:

(1) If Pi runs the resolve protocol in step 5 of the main protocol (see table
1), then τj = 1 for j > i and τj = i− 1 for j < i.

(2) In step 6.2 of the main protocol, τj = a− 1 for 1 ≤ j ≤ a− 1, j 6= i and
τj = 1 for j > a− 1.

(3) In step 6.4 of the main protocol, τj = a− 1 for j < i, τj = a for i < j ≤ a
and τj = 1 for j > a.

(4) In step 7 of the main protocol, τj = n for all j.
(5) In step 9 of the main protocol, τj = n for all j < i and τj = n+ 1 for all

j > i.

T maintains the set S(m) of indices of participants that contacted T in the
past and received an abort token. For each participant Pi in the set S(m),
T also maintains two integer variables hi(m) and li(m) that it calculates on
the basis of the promises that Pi provides in its resolve request. Intuitively, hi

corresponds to the highest level promise an honest Pi could have sent to any
higher indexed participant before it contacted T . li corresponds the highest
level promise an honest Pi could have sent to a lower indexed participant
before it contacted T . The protocol for T works as follows:

• If T ever replies with a signed contract for m, then T responds with the
contract for any further request from any participant.



Table 1 GM multi-party contract-signing protocol—Main for Pi

Wait for all higher recursive levels to start

1. Pj → Pi: PCSPj
((m, 1), Pi, T ) (n ≥ j > i)

If Pi does not receive 1-level promises from Pn . . . Pi+1 in a timely manner, then Pi simply quits.

Start recursive level i

2. Pi → Pj : PCSPi
((m, 1), Pj , T ) (i > j ≥ 1)

Wait for recursive level i-1 to finish

3. Pj → Pi: PCSPj
((m, i− 1), Pi, T ) (i > j ≥ 1)

If Pi does not receive (i-1)-level promises from Pi−1 . . . P1 in a timely manner, then Pi requests abort.

Send i-level promises to all lower-numbered signers

4. Pi → Pj : PCSPi
((m, i), Pj , T ) (i > j ≥ 1)

Finish recursive level i when i-level promises are received

5. Pj → Pi: PCSPj
((m, i), Pi, T ) (i > j ≥ 1)

If Pi does not receive i-level promises from Pi−1 . . . P1 in a timely manner, then Pi requests resolve.

Complete all higher recursive levels

For a = i + 1 to n, Pi does the following:

6.1. Pi → Pa: PCSPi
((m, a− 1), Pa, T )

6.2. Pj → Pi: PCSPj
((m, a), Pi, T ) (a ≥ j > i)

If Pi does not receive a-level promises from Pa . . . Pi+1 in a timely manner, then

Pi requests resolve.

6.3. Pi → Pj : PCSPi
((m, a), Pj , T ) (i > j ≥ 1)

6.4. Pj → Pi: PCSPj
((m, a), Pi, T ) (i > j ≥ 1)

If Pi does not receive a-level promises from Pi−1 . . . P1 in a timely manner, then

Pi requests resolve.

6.5. Pi → Pj : PCSPi
((m, a), Pj , T ) (a ≥ j > i)

Wait for signatures and (n+1)-level promises from higher-numbered signers

7. Pj → Pi: PCSPj
((m,n + 1), Pi, T ), SPj

(m, 1) (n ≥ j > i)

If Pi does not receive signatures and (n+1)-level promises from Pn . . . Pi+1 in a timely manner, then Pi

requests resolve.

Send signatures and (n+1)-level promises to signers

8. Pi → Pj : PCSPi
((m,n + 1), Pj , T ), SPi

(m, 1) (j 6= i)

Wait for signatures from lower-numbered signers

9. Pj → Pi: PCSPj
((m,n + 1), Pi, T ), SPj

(m, 1) (i > j ≥ 1)

If Pi does not receive signatures and (n+1)-level promises from Pi−1 . . . P1 in a timely manner, then Pi

requests resolve.

• If the first request to T is a resolve request, then T sends back a signed
contract.

• If the first request is an abort request, then T aborts the contract. T may
overturn this decision in the future if it can deduce that all the participants
in S(m) have behaved dishonestly. T deduces that a participant Pi in S(m)



is dishonest when contacted by Pj if
(1) j > i and Pj presents to T a k-level promise from Pi such that k > hi(m),

or
(2) j < i and Pj presents to T a k-level promise from Pi such that k > li(m).

Abort and Resolve are described in detail in tables 2 and 3.

Table 2 Revised GM multi-party contract-signing protocol—Abort for Pi

The first time T is contacted for contract m (either abort or resolve), T initialises S(m) to ∅ and validated(m)
to false.

1. Pi → T: SPi
(m,Pi, (P1, . . . , Pn), abort)

if not validated(m) then

if S(m) = ∅ then T stores ST (SPi
(m,Pi, (P1, . . . , Pn), abort))

S(m) = S(m) ∪ {i}

li = 1

2. T→Pi: ST (SPj
(m,Pj , (P1, . . . , Pn), abort))

else (validated(m)=true)

3. T→Pi: {SPi
((m, τi))}j∈{1,...,n}\{i}

where τj is the level of the promise from Pj that was converted to a

universally-verifiable signature during the resolve protocol.

4 Analysis

Notation. PCSτ
i,j is a shorthand for PCSτ

i , PCSτ
j . These are τth level

promises (i.e. private contract signatures) on m issued by agents Pi and Pj

to an agent whose identity is clear from the context. For example, when we
say “P1’s request contains PCS4

2,3”, we mean that P1’s request contains 4th
level promises issued by agents P2 and P3 to P1. Of course, upon reception of
a resolve request from Pi, T must check that all promises in it were issued
to Pi.

4.1 An attack on fairness against the Revised GM protocol

We demonstrate an attack against fairness on the revised version of the pro-
tocol that involves five participants. Later, we generalise it to show that the
protocol can not guarantee fairness for any n ≥ 5 whatever the trusted au-
thority T does. This shows that there is no Resolve sub-protocol for T that
would fix the flaw, and thus, the structure of the message exchange in GM’s



Table 3 Revised GM multi-party contract-signing protocol—Resolve

The first time T is contacted for contract m (either abort or resolve), T initialises S(m) to ∅ and validated(m)
to false.

1. Pi → T : SPi
({PCSPj

((m, τj), Pi, T )}j∈{1,...,n}\{i}, SPi
((m, 1)))

T checks that the format of this message is one of the five permitted formats mentioned in the text.

if i ∈ S(m) then

T ignores the message

else if validated(m) then

2. T → Pi: {SPj
((m, τj))}j∈{1,...,n}\{i}

where τj is the level of the promise from Pj that was converted to a

universally-verifiable signature.

else if S(m) = ∅ then

validated(m):=true

3. T → Pi: {SPj
((m, τj))}j∈{1,...,n}\{i}

else (validated(m)=false ∧ S(m) 6= ∅)

a) If there is some p < i in S(m) such that τp ≤ hp(m), or if there is some p > i

in S(m) such that τp ≤ lp(m), then T sends back the stored abort

ST (SPj
(m,Pj , (P1, . . . , Pn), abort)) to Pi. T adds i to S(m), and computes

hi(m) and li(m) as follows

(hi(m), li(m))= (τi+1, 0), if i = 1 (intuitively, P1 has contacted T in either step 6.2 of
the main protocol with a = τi+1 + 1 or in step 7 of the main
protocol),

= (0, i), if 1 < i and τi−1 = i − 1 (intuitively, Pi has contacted T in
step 5 of the main protocol),

= (τi−1, τi−1), if 1 < i < n, i ≤ τi−1 < n and τi+1 ≤ τi−1 (intuitively, Pi has
contacted T in step 6.2 of the main protocol with a = τi−1+1),

= (τi−1, τi−1 + 1),if 1 < i < n, i ≤ τi−1 < n and τi+1 > τi−1 (intuitively, Pi has
contacted T in step 6.4 of the main protocol with a = τi−1+1),

= (n, n), if 1 < i < n and τi−1 = τi+1 = n. (intuitively, Pi has con-
tacted T in step 7 of the main protocol).

= (n + 1, n + 1), if 1 < i < n, τi−1 = n and τi+1 = n + 1. (intuitively, Pi has
contacted T in step 9 of the protocol).

= (0, n + 1), if i = n and τi−1 = n. (intuitively, Pn has contacted T in step
9 of the main protocol).

b) Otherwise, T sends {SPj
((m, τj))}j∈{1,...,n}\{i} to Pi, stores all the

signatures, and sets validated(m) to true.

Main protocol is flawed. We call it a resolve-impossibility result for T and it
is applicable to both the original and the revised versions of the protocol.

Suppose that agents P1, . . . , P5 decide to sign a contract m using the Revised
GM protocol. They optimistically execute the Main sub-protocol up to a point,
where P4 sends its signature and 6th-level promise on m to all participants
(step 9 in Table 1). Now suppose P1 and P3 do not send their signatures on m
to P4. Hence, according to the protocol P4 sends a resolve request to T , but
we suppose that it is delayed by the intruder long enough, until the following



sequence of events is completed:

• P5 requests abort from T . Abort is granted as no other request was made
to T regarding m (i.e. S(m) = ∅), which results in l5 = 1;

• P1 requests resolve from T with a message that contains PCS4
2,3,4, PCS1

5 .
As P5 was previously granted abort (i.e. S(m) = {P5}) and τ5 = l5 = 1, T
does not overturn its previous abort decision, but sends abort to P1 and
sets h1 = 4 (T presumes that P1 requested resolve at the step 6.2 of the
main sub-protocol).

• P3 requests resolve from T with a message containing PCS4
1,2, PCS5

4,5 that
also results in an abort reply, as τ1 = h1 = 4 and S(m) = {P5, P1}. T sets
l3 = 5 (thinking that P3 is at the step 6.4).

• P2 sends a resolve request to T that has PCS5
1,3,4,5. However, once more,

T replies with abort since τ3 = l3 = 5 and P3 ∈ S(m), and sets h2 = 5 (T
presumes that P2 is in step 7).
Note that although P2 received an abort from T , he is not in an unfair

state, since he did not send his signature on m to any signatory.

Now P4’s resolve request containing PCS5
1,2,3, PCS6

5 reaches T , but it results
in an abort reply, since τ2 = h2 = 5 and P2 ∈ S(m). Recall that P4 has
already sent his signature on m to all participants and P1 and P3 in particular.
Therefore, this is an attack on fairness: P1, P3 and P2 have P4’s signature on
the contract m, whereas P4 doesn’t have any of theirs.

We describe our attack as abort propagation, since the attack is based on
a legitimate abort being carried through a number of participants until it
becomes an unfair abort. Although P2 is dishonest in our attack, it is possible
to re-order the events so that the same attack takes place but P2 is honest.
T receives evidence of the dishonesty only of P5, P1 and P3 during the attack,
but not of P2. The resolve request of P2 is justified because P3 and P5 would
not send their signature and 6th level promises to P2. The attack sequence
could have happened before P4 sent out his signature and 6th level promises
to other signatories.

There are other instantiations of this idea. For example, for the five signers
case P3 could be left in unfair state if P1, P4 and P5 group up together and
act dishonestly in the similar way as in our attack.

4.2 Resolve-impossibility for T

We call the attack on fairness that we described above abort chaining : intu-
itively, malefactors group together to propagate T ’s abort decision. When an
honest signatory sends out his signature on a contract, but does not receive



signed contracts back, and then asks T to resolve, he receives an abort de-
cision. This is not due to a fault in T ’s abort or resolve protocols – a closer
examination of the attack reveals that T could not have overturned any previ-
ous abort decision when presented with the resolve requests, since the most
recent agent he sent the abort to could have been honest. The following is a
more rigorous explanation of this intuition.

4.2.1 Generalising the attack

We show that one can derive an attack against the protocol involving any
n ≥ 5 number of signers using the same pattern of attack as was shown for
the five signers case. For example, if we have n ≥ 5 signers, where P1, P3 and
Pn are dishonest ones, and P4 is the victim, then an attack can proceed in a
similar way. The signers optimistically execute the main sub-protocol up to
a point, where P4 sends its signature and (n+ 1)th-level promise on m to all
participants. Again, we suppose that P1 and P3 do not send their signatures on
m to P4, and therefore P4 sends a resolve request to T . As before, we suppose
this is delayed by the intruder long enough so that the following sequence is
completed:

(1) Pn requests abort from T . Abort is granted as S(m) = ∅, and T sets
ln = 1.

(2) P1 requests resolve from T with PCSn−1
2,...,n−1, PCS1

n. Since S(m) = {Pn}
and τn = ln = 1, T sends abort to P1 and sets h1 = n− 1.

(3) P3 requests resolve from T with PCSn−1
1,2 , PCSn

4,...,n that also results in
an abort reply, as τ1 = h1 = n− 1 and S(m) = {P5, P1}. T sets l3 = n.

(4) P2 sends a resolve request to T that has PCSn
1,...,n. Once more, T replies

with abort since τ3 = l3 = n and P3 ∈ S(m), and sets h2 = n.

Now P4’s resolve request with PCSn
1,2,3, PCSn+1

5,... n reaches T , but it results in
an abort reply, since τ2 = h2 = n and P2 ∈ S(m). As before, this is an attack
on fairness: P1, P3 and P2 have P4’s signature on the contract m, whereas P4

doesn’t have any of theirs. As before, a similar attack in which P2 is honest
can also be constructed.

4.2.2 Resolve impossibility

We show that there is no way to adapt the Abort and Resolve protocols to
fix this problem. More formally, we prove that for all protocols for the trusted
party T , there exists an execution for the attacker which makes the protocol
unfair for an honest participant.

The proof proceeds as follows. Suppose T is running according to a protocol.
Suppose as before that P1, P3 and Pn are dishonest and controlled by the



attacker, and P4 is honest. The attacker’s strategy is the one described above.
We show that, no matter what T does, it is unfair to someone who could be
honest at the time of T ’s action.

Consider Pn’s request for abort from T . Since Pn could have not received (n−1)
level promises from some of the signers P1, . . . , Pn−1, T must determine that
this request is legitimate, and grant the abort. Next, P1 requests resolve from
T with PCSn−1

2,...,n−1, PCS1
n. T determines that this request is valid, as P1 might

not have received the nth level promises from some of the signers P2, . . . , Pn.

• If T resolves, thereby overturning its previous abort decision, this is unfair
to Pn, since T has no evidence of any dishonesty of Pn, who could have
halted after its abort request to T .

• If T aborts, then we suppose that P3 requests resolve from T with PCSn−1
1,2 ,

PCSn
4,...,n. T determines that this request is valid, since P3 may not have

received nth level promise from P1 or P2 (or both). (At this point T has
evidence that Pn dishonestly continued the protocol after requesting abort.)
· If T resolves, thereby overturning its two previous abort decisions, this is
unfair to P1, since T has no evidence of any dishonesty of P1.
· If T aborts, then we suppose P2 sends a resolve request to T that has
PCSn

1,...,n. T determines that this is a valid request, as P3 and Pn might
not have sent their signature and (n + 1)-level promises to P2. (Now T
has evidence that P1 dishonestly continued the protocol after requesting
abort.)
- If T resolves, thereby overturning its three previous abort decisions,
this is unfair to P3, since T has no evidence of any dishonesty of P3.

- If T aborts, then we suppose that the intruder allows P4’s resolve
request to arrive at T .
+ If T resolves, thereby overturning its four previous abort deci-
sions, this is unfair to P2, since T has no evidence of any dis-
honesty of P2.

+ If T aborts, this is unfair to P4, who has honestly sent out his
signature.

Thus, no matter what T does, it is unfair to someone who could be honest at
the time T takes the decision. The flaw lies in the main protocol and there is
no resolve protocol for T that would fix it.

5 Our protocol

In this section we introduce a new protocol, also based on PCs. It also consists
of three sub-protocols. The Main protocol, consists of dn/2e + 1 rounds. In
each round a signer Pi waits for promises from lower numbered signers (below),



sends its promise to higher numbered signers (above), waits for promises from
signers above and then send its promise to signers below. In the last round
signers exchange actual signatures, together with their promises. If a signer
does not receive some of the messages, it either quits the protocol or asks T
to intervene.

5.1 Main protocol for signer Pi

Our main protocol has a cascading structure for exchanging promises among
signers. Intuitively, that allows to commit signers to certain stages of the
protocol depending on the promises they send out. For example, for the case
of five signers (see Figure 1), when signer P3 sends out his 2-level promises
to signers P4, P5, that would imply that P3 must have received promises from
P1, P2 in round 2 and promises from P4, P5 in round 1. If the trusted party T
is requested to restore fairness, it uses such information to deduce dishonest
signers who deviated from the protocol. Also, the total number of rounds in
the main protocol dn/2e + 1 is chosen such that even if all but one signers
are dishonest and collude, they will not be able to propagate abort decision
into the last round of the protocol when signatures are released. That is, the
total number of rounds outnumbers the total number of requests a coalition of
n− 1 dishonest signers can make in order to propagate trusted party’s abort
decision.

The protocol begins with each signer waiting for 1-level promises from the
signers below. On receipt of these, it sends its 1-level promises to the signers
above it. Then it waits for 1-level promises from above, and on receipt, sends
1-level promises below. This sequence is repeated for r-level promises, for r
ranging from 2 to dn/2e, as shown in Figure 5.1. Finally, in the last round,
dn/2e+1-level promises and signatures are exchanged. The protocol is defined
formally in Table 4.

If expected messages are not received, a participant Pi may simply quit the
protocol, or request abort or resolve from T , depending on where Pi is in the
main protocol.

When Pi requests abort it sends to T the message

SPi
((m,Pi, (P1, . . . , Pn), abort))

For the resolve requests Pi sends

SPi
({PCSPj

((m, τj), Pi, T )}j∈{1,...,n}\{i}, SPi
(m, 0))

to T , where for j > i, τj is the maximum level of promises received from all
signers Pj′ with j ′ > i, and for i > j, τj is the maximum level of promises



received from all signers Pj′ with i > j ′:

τj =











max{τ | ∀j ′ > i, Pi has received PCSPj′
((m, τ), Pi, T )} if j > i

max{τ | ∀j ′ < i, Pi has received PCSPj′
((m, τ), Pi, T )} if j < i

(For example, if the maximum level promises P4 receives from P1 and P2 is 3,
and from P3 it is 2, then P4 would send 2-level promises for signers below.)
The resolve request that Pi sends to T includes SPi

(m, 0) instead of SPi
(m) to

simplify a clause in Table 6.

The format of the resolve requests is chosen in such a way that the requesting
signer Pi can attest its position in a run of the protocol to the trusted party,
as well as provide evidence to T of how far other signers are engaged in the
protocol’s run. Also, if T replies with an abort token to Pi’s resolve request, T
infers (and stores) the highest levels of promises that (honest) Pi could have
sent to signers below and above from the promises in Pi’s resolve request.

Remarks. In our protocol it is possible for any recipient of a signed con-
tract to deduce from its structure whether it was produced by a signer or
it was enforced by T . When it is undesirable for an “outsider” to know
whether the signed contract was produced optimistically or with the help
of the trusted party, the following simple changes can be introduced in our
protocol: use trusted party invisible PCS promises; replace the signatures
SPi
(m) exchanged in the last round of the Main protocol with SPi

(m, 1); and,
add 1-level promises from all signers to all of Pi’s resolve requests, so that if T
decides to enforce m, it replies with {SPi

(m, 1)}j∈{1,...,n}. With those changes,
it is impossible for any party not involved in the protocol to tell whether
SPi
(m, 1) was produced optimistically or with the help of the trusted party.

5.2 Protocol for T

For each contract m with signers P1, . . . , Pn, when T learns about the contract
(through abort or resolve request) it sets up a variable validated initiated to
false, which indicates if T decided to enforce the contract and has a full set
of signatures (some converted by T from promises). T must reliably know the
position of each signer in the run of the protocol, which can be deduced from
the list of signers included in the contract text m. T also maintains a set
S(m) of indexes of parties that contacted it in the past and received an abort
token. This set is used when T considers whether to overturn its previous abort

decision. For each signer Pi such that i ∈ S(m), T also maintains two integer
variables hi(m) and li(m). T sets the values for those variables according to
the levels of promises Pi supplies in his request: the promises in Pi’s request



Table 4 Our Main protocol for signer Pi

Round 1
(1) For each j < i, wait for promise PCSPj

((m, 1), Pi, T ) from Pj.
If any of them is not received in a timely manner, then quit.

(2) For each j > i, send promise PCSPi
((m, 1), Pj, T ) to Pj.

(3) For each j > i, wait for promise PCSPj
((m, 1), Pi, T ) from Pj.

If any of them is not received in a timely manner, then request abort.
(4) For each j < i, send promise PCSPi

((m, 1), Pj, T ) to Pj.

For r = 2 to dn/2e: Round r
5. For each j < i, wait for promise PCSPj

((m, r), Pi, T ) from Pj.
If any of them is not received in a timely manner, then request resolve.

6. For each j > i, send promise PCSPi
((m, r), Pj, T ) to Pj.

7. For each j > i, wait for promise PCSPj
((m, r), Pi, T ) from Pj.

If any of them is not received in a timely manner, then request resolve.
8. For each j < i, send promise PCSPi

((m, r), Pj, T ) to Pj.

Round dn/2e+ 1
9. For each j < i, wait for promise PCSPj

((m, dn/2e+ 1), Pi, T ) and signa-
ture SPj

(m) from Pj.
If any of them is not received in a timely manner, then request resolve.

10. For each j 6= i, send promise PCSPi
((m, dn/2e+1), Pj, T ) and signature

SPi
(m) to Pj.

11. For each j > i, wait for promise PCSPj
((m, dn/2e+ 1), Pi, T ) and signa-

ture SPj
(m) from Pj.

If any of them is not received in a timely manner, then request resolve.

attest to T how far Pi was involved in a run of the protocol, and from that
information T notes the highest levels of promises that honest Pi could have
sent to other signers when it stopped executing the Main protocol. Intuitively,
hi(m) is the highest level promise Pi could have sent to any signer above, and
similarly, li(m) is the highest level of promise Pi could have sent to a signer
below. This construction was inspired by the paper of Chadha, Kremer and
Scedrov [7], even though it does not work for the protocol they consider [17].

Depending on the request T executes either Abort or Resolve protocol.

5.2.1 Abort protocol

When T receives an abort message from Pi, it adds i to the set S(m). Then
if the protocol has already been successfully resolved it sends back a signed
contract; otherwise, it sends back an abort token (see table 5).



5.2.2 Resolve protocol

The resolve messages that T receives are designed so that T can infer what
promises an honest signer could have sent and whether all the previous re-
quests were made by dishonest signers. The protocol works is as follows:

(1) T checks that all promises and signatures are valid, and promises from
above and below are consistent (for details, see Table 6. If any of the
checks fail, T ignores the request.

(2) If there has been no previous query to T on m, i.e. validated is false,
it derives a signed contract by converting all the promises contained in
the resolve request to universally-verifiable signatures. T puts the signed
contract in its database, sends it back in reply to the request, and sets
validated to true.

(3) If there has been a positive resolution before, i.e. validated is true, T
sends back the stored signed contract.

P1 P2 P3 P4 P5

1

1

2

2

3

3
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Fig. 1. Messages in our Main protocol when n = 5. In order to reduce clutter, each
line in the figure represents a set of messages broadcast by a single signer to a set
of signers. For example, the first line stands for 1-level promises sent by P1 to all
other signers.



(4) If there has been an abort, T replies with an abort token or overturns
its previous abort decision if it deduces that all the previous requests
were made by dishonest signers. T deduces that Pj is dishonest from Pi’s
resolve request if: Pi presents to T a promise made by Pj such which
shows that Pj continued the protocol after making a request to T .

The protocol is defined formally in Table 6.

Table 5 Our Abort protocol for T

The first time T is contacted for contract m (either abort or resolve), T ini-
tialises S(m) to ∅ and validated to false.
If the abort message SPi

(m,Pi, (P1, . . . , Pn), abort) is received from Pi

Check that the signature is valid

if not validated then
if S(m) = ∅ then store ST (SPi

(m,Pi, (P1, . . . , Pn), abort))
S(m) = S(m) ∪ {i}
hi(m) := 1; li(m) = 0
Send ST (SPj

(m,Pj, (P1, . . . , Pn), abort)) to Pi

else
Send {SPj

((m, τj))}j∈{1,...,n}\{i} to Pi

where τj is the level of the promise from Pj that was converted to a
universally-verifiable signature during the resolve protocol.

6 Properties of our protocol

Our protocol respects timeliness, since all signers can choose to stop wait-
ing (quit, request abort or resolve) at any time they are waiting to receive a
message. In order to prove fairness, we need the following lemma.

Lemma 1 If a resolve request in round r > 1 results in an abort decision,
then:

(1) for all r′ such that 1 < r′ < r there are two resolve requests in round r′

that resulted in an abort decision.
(2) there is an abort request in round 1.

Proof: 1. We define the following predicates:

A(r): there exists a resolve request in round r from some signer Pi that results
in an abort decision. Pi’s request has r − 1 level promises from all other
signers. We call such requests “type A”.



Table 6 Our Resolve protocol for T

The first time T is contacted for contract m (either abort or resolve), T ini-
tialises S(m) to ∅ and validated to false.
If the resolve message SPi

({PCSPj
((m, τj), Pi, T )}j∈{1,...,n}\{i}, SPi

(m, 0)) is received
Check that promises and signature are valid, and promises from above and below
are consistent, i.e.:
for all j < i, check that τj = τi−1

for all j > i, check that τj = τi+1

check that τi−1 = τi+1 or τi−1 = τi+1 + 1

if i ∈ S(m) or one of the above checks failed then
ignore the message

else if S(m) = ∅ then
validated := true
Send {SPj

(m, τj)}j∈{1,...,n}\{i} to Pi

else if validated then
Send {SPj

(m, τj)}j∈{1,...,n}\{i} to Pi

where τj is the level of the promise from Pj that was converted to a
universally-verifiable signature.

else // note that validated=false ∧ S(m) 6= ∅
if ∃p ∈ S(m) ((p < i ∧ τp ≤ hp(m)) ∨ (p > i ∧ τp ≤ lp(m))) then
Send the stored abort token ST (SPj

(m,Pj, (P1, . . . , Pn), abort)) to Pi

S(m) := S(m) ∪ {i}
Compute hi(m) and li(m) as follows:
if i = 1
// P1 has contacted T in some step 7 or 11 of the main protocol
(hi(m), li(m)) = (τ2 + 1, 0)

else if i = n
// Pn has contacted T in some step 5 or 9 of the main protocol
(hi(m), li(m)) = (0, τn−1)

else if 1 < i < n and τi+1 = τi−1

// Pi has contacted T in some step 5 or 9 of the main protocol
(hi(m), li(m)) = (τi+1, τi+1)

else if 1 < i < n and τi−1 > τi+1

// Pi has contacted T in some step 7 or 11 of the main protocol
(hi(m), li(m)) = (τi+1 + 1, τi+1)

else
Convert the promises into signatures {SPj

(m, τj)}j∈{1,...,n}\{i}
Store the signatures
Send the signatures to Pi

validated := true



B(r): there exists a resolve request in round r from some signer Pi that results
in an abort decision. Pi’s request has r level promises from signers Pj, where
j < i and r − 1 level promises from Pj where j > i. We call such requests
“type B”.

Point 1 of the lemma states that if r > 1 then A(r) ∨ B(r) → ∀r′.(1 < r′ <
r → A(r′)∧B(r′)). We show this by proving the following: (a) A(r)∧r > 2→
B(r − 1); (b) B(r) ∧ r > 1→ A(r).

To show (a): Suppose A(r)∧ r > 2. Let Pi be the signer whose request results
in abort. Pi’s request has r − 1 level promises from all other signers. So,
there has been a resolve request made by some signer Pk in round r − 1
(otherwise according to T ’s protocol any previous abort would be overturned).
Moreover, k can be chosen to be less than i, since according to T ’s protocol, if
all such k were greater than i, than Pi’s request would have resulted in resolve.
Therefore, Pk’s resolve request contains r − 1 level promises from below and
r − 2 level promises from above, since if it had only r − 2 level promises then
Pi’s request would overturn the abort received by Pk. Therefore, Pk’s request
shows B(r − 1).

For (b): Suppose B(r) and r− 1. Let Pi be the signer whose request results in
abort. Pi’s request has r-level promises from below and r − 1-level promises
from above. Since Pi’s request results in abort, there has been a resolve request
made by some other signer in round r′ ≤ r. To see this, suppose that the
highest r′ for which there is a resolve request by a signer Pk other than Pi

resulting in abort is less than r.

• if Pk’s request is type B, then T sets hk(m) = r − 1, lk(m) = r − 2.
· if k < i, then Pi’s request has an r-level promise from Pk, contradicting
hk(m) = r − 1. So T overturns Pk’s abort.
· if k > i, then Pi’s request has an r−1-level promise from Pk, contradicting
lk(m) = r − 2. Again, T overturns Pk’s abort.

• if Pk’s request is type A, then T sets hk(m) = lk(m) = r − 2. Pi’s request
has an r − 1-level promise from Pk contradicting hk(m) or lk(m) as above.
So T overturns Pk’s abort.

Thus, in all cases, the assumption r′ < r leads to contradiction; and therefore
r′ = r. Pk’s request proves A(r).

2. If there is no abort in round 1, then according to T ’s protocol, any request
by any participant in a later round will result in resolve.

ut

Lemma 2 If T issues abort to Pi in a round r > 1 and then later resolve to
Pj, then Pi is dishonest.



Proof: Suppose Pi gets abort at round r > 1. The variables hi and li are
set according to T ’s Resolve protocol. We verify that hi is the highest level
promise Pi could have sent to any signer above, and similarly, li(m) is the
highest level of promise Pi could have sent to a signer below. There are four
cases to consider:

• i = 1. Then hi = τ2+1 = · · · = τn+1 since P1 sends out τ+1-level promises
after receiving all τ -level promises, and li = 0 because P1 doesn’t send any
promises to below.

• i = n. Then hi = 0 since Pn doesn’t send any promises to above, and
li = τn−1 = · · · = τ1 since Pn has received τ -level promises from everyone
before he sends out any τ -level promises.

• 1 < i < n and all the τk’s are equal. Pi has requested resolve while waiting
for promises from below, and the evidence it sends are the promises it got in
the previous round, which is now complete and it has sent out its promises
in that round too. Therefore hi = li = τk for all k.

• 1 < i < n and τ1 = · · · = τi−1 6= τi+1 = · · · = τn. Here, Pi’s request for
resolve is while waiting for promises from above, and its evidence consists
of promises it received in two different rounds. The promises it has sent to
signers above are τi+1 + 1-level promises, and to below they are τi+1-level
promises, so hi and li are set accordingly.

Now Pj asks for resolve with a request that contains PCSPi
((m, τ ′i), Pj, T ).

Since this request does not result in abort, the conditions for abort (which
begin “∃p” in Table 6) must fail. Therefore, for all p, (p < j → τ ′p > hp)∨ (p >
j → τ ′p > lp). Take p = i and we obtain i < j ∧ τ ′i > hi or i > j ∧ τ ′i > li;
each case includes evidence that Pi continued the protocol since its request to
T and is therefore dishonest. ut

Theorem 1 The optimistic multi-party contract signing protocol above is fair.

Proof: Assume Pi is an honest signer participating in the protocol to sign a
contract m. Suppose Pi executed the protocol and decided failed, and some
signer Pj decided signed. Then Pj has Pi’s signature on m, because either:
(1) Pi sent it in the last round of the main protocol; or, (2) T converted Pi’s
promise to Pj into a signed contract for Pj. We consider the two cases in turn.

(1) Suppose Pi executed the last round of the protocol and sent out its sig-
nature on m. Then i < n since Pn does not send out his signature until
he has received everyone else’s. Thus, Pi requested resolve from T in the
last round with the request

SPi
({PCSPj

((m, dn/2e+ 1), Pi, T )}j∈{1,...,i−1},

{PCSPj
((m, dn/2e), Pi, T )}j∈{i+1,...,n}, SPi

(m))

and received abort. Since i < n and Pi gets abort in the last round, T



has evidence to overturn any abort issued in any previous round. Since
T does not overturn all previous aborts, there is an abort given to Pk

with k > i in the last round. Thus Pi and Pk got abort in the final
round (dn/2e+1). By lemma 1, rounds 2 to dn/2e have two failed resolve
requests and round 1 has an abort request. The total number of requests
is thus 2 + (dn/2e − 1)× 2 + 1 = 2dn/2e + 1. This is at least n+ 1, but
there are only n signers and each signer can make at most one request: a
contradiction.

(2) Suppose T returned a signed contract in response to a resolve request
from Pj. There are three cases to consider:
• If Pi quit the protocol in round 1, T could not have returned a signed
contract, since Pi did not release any promises.

• If Pi requested abort in round 1 from T , then it could have sent 1-level
promises to signers above. Hence, T sets hi(m) = 1 and, since Pi is hon-
est, it does not release further promises. According to T ’s protocol, T
could not have returned a signed contract, since any subsequent resolve

request would only have PCSPi
((m, 1), Pk, T ), where k > i.

• If Pi received an abort decision for its resolve request in some round
1 < r ≤ dn/2e + 1, and then Pi’s promise to Pj got converted to a
signature, then by lemma 2 Pi is dishonest.
In all three cases we reach a contradiction.

ut

Abuse-freeness. Intuitively, the protocol is abuse-free, because of the use
of private-contract signatures. No party has publicly verifiable information
about Pi’s commitment to the contract until a point from which Pi has the
power to acquire a signed contract from all the other participants. (In future
work, we intend to investigate our protocol in terms of formal definitions of
abuse-freeness, such as that of [13]).

Timeliness. Our protocol also satisfies timeliness, since a participant can
give up waiting for a message at any time and take recourse with the trusted
party.

Remarks

Our protocol above works for up to n−1 dishonest signers. It can be optimised
in the same way as it was done by Baum-Waidner and Waidner [6]: if the
number of dishonest signers t is less and is known advance to all honest signers,



then we can reduce the number of messages for the Main protocol. For Baum-
Waidner, it results in (t+2)n(n− 1) messages; in our case it is (d(t+1)/2e+
1)n(n− 1).

The number of messages of the “optimistic” execution can also be reduced if
we allow signers to forward other signers’ messages. In particular, a signer Pi

instead of broadcasting its promise to all signers above, can now send those
messages to Pi+1, who will then send Pi’s promises intended for other signers
(together with his) to Pi+2, and so on. Similarly, the same changes are applied
when Pi sends promises to signers below. As a result, the number of messages
sent in the “optimistic” execution is now (dn/2e+ 1)2(n− 1).

Garay and MacKenzie [11] state that any complete and fair optimistic contract-
signing protocol with n participants requires at least n rounds in an optimistic
run. Our result appears to contradict that statement, but it is not clear since
they did not define what a round is. Different protocols group messages into
rounds in different ways, so the only meaningful comparison is by number of
messages in the optimistic execution.

7 Analysis using NuSMV

As an extra check, we have modelled our protocol using the NuSMV model
checker [8] for the case of five signers, and proved fairness in that case. Our
NuSMV model abstracts away from details of the cryptographic primitives
and the Dolev-Yao attacker. Its purpose is to check for situations in which
the trusted party fails to respond fairly to honest participants. This includes
checking for abort-propagation attacks of the kind described in section 4.1.
First, we model a situation in which all five signers have completed rounds
1, 2, 3 of the Main protocol – i.e. they have exchanged all 1, 2 and 3-level
promises, but they have not yet sent out any 4-level promises or signatures
(see Figure 5.1). No abort should be possible if all signers have got to this
point, because the signers are about to release their signatures. In the previous
protocol it was possible at this stage for P1, P2, P3 and P5 to gang up on P4,
by releasing a well-chosen sequence of requests to T and forcing T to issue an
abort to P4, resulting in unfairness. We show that such attacks are impossible
in the new protocol. Next, we consider the situation in which an honest signer
receives abort, and discontinues the protocol. We show that such aborts will
not be overturned.

The NuSMV code models T ’s behaviour in response to a non-deterministically
chosen sequence of requests. A request is modelled by the following parameters:

• requester, which may be any of the participants {1, 2, 3, 4, 5};



• reqType, which may be abort or resolve;
• reqTauLeft, the values of τj for j < requester;
• reqTauSame, a boolean indicating whether the values of τj for j > requester

are equal to or one less than reqTauLeft.

We derive reqTauRight from these parameters (it is either reqTauLeft or
reqTauLeft−1, according to the value of reqTauSame). Note that if reqType=abort
then the values of reqTauLeft and reqTauRight are irrelevant and are ig-
nored, and if requester=1 (resp. requester=5) then reqTauLeft (resp.
reqTauRight) is irrelevant and ignored.

T reacts to these queries by updating its state, which is modelled by variables
as follows:

• Booleans requestedi, for i ∈ {1, 2, 3, 4, 5}, indicating whether Pi has made
a request in the past. The protocol stipulates that each Pi may make only
one request, and repeat requests are ignored.

• A boolean validated, as required in the protocol.
• Booleans S1, S2, S3, S4, S5, which model the set S required in the protocol.
The boolean Si indicates whether i ∈ S.

• Integers hi and li, for i ∈ {1, 2, 3, 4, 5}, as required by the protocol.

NuSMV models these variables synchronously; that is, there is a global clock,
and each tick of the clock causes all of the variables to be updated. In our
model, a tick of the clock corresponds to a request being made to T . For each
variable, the code contains a clause of the form

next(variable ) :=

case

condition1 : expression1 ;

condition2 : expression2 ;

. . .

condition n : expression n ;

esac;

This describes how the value of variable in the next state is determined. Each
of the conditions is evaluated in turn until one of them evaluates to true; in
that case, the corresponding expression is evaluated and the result is the next
value of variable. Values 0 and 1 represent booleans false and true respectively.

Two conditions are required repeatedly in the code; they are given in the
DEFINE section. The condition duplicateRequest describes whether the
current request is from a requester who has already made a request, i.e.
whether

∨5
i=1(requester = i ∧ requestedi). If this is true, the request is

ignored, i.e. no variable is updated in response to the request. The condi-
tion confirmPrevAbort denotes the condition ∃p ∈ S(m) ((p < i ∧ τp ≤



hp(m)) ∨ (p > i ∧ τp ≤ lp(m))) present in the resolve protocol. It is relevant
when a resolve request occurs in a situation that an abort has previously been
granted, and it determines whether the previous abort will be confirmed or
overturned.

Consider, for example, the code describing the evolution of h1:

1 next(h1) := case

2 duplicateRequest : h1;

3 !(requester=1) : h1;

4 reqType = abort & !validated : 1;

5 reqType = abort : h1;

6 S1 | S empty | validated : h1;

7 confirmPrevAbort : case

8 requester=1 : reqTauRight + 1;

9 requester=5 : 0;

10 reqTauLeft=reqTauRight : reqTauRight;

11 1 : reqTauRight+1;

12 esac;

13 1: h1;

14 esac;

Line 2 indicates that repeat requests are ignored (i.e. the value of h1 doesn’t
change). Similarly, h1 doesn’t change if the requester is other than P1. By the
time we get to line 4, we know that the request is not a repeat request and
it is from P1. Line 4 says that if the request was an abort and the contract
has not been validated, h1 is set to 1; otherwise (line 5) if the request was
abort, h1 is left unchanged. Line 6 (which is reached only if the request is a
resolve) says that if either S1 holds (i.e. i ∈ S), or S = ∅, or validated is true,
then h1 is not updated. Here, we are literally following the pseudocode for the
trusted party (Tables 5 and 6). In line 7, the condition confirmPrevAbort is
evaluated, and if it is true, then a further case statement indicates how h1 is
to be updated. The full code is given at [15]. It may be noted that the code
is not optimal. For example, in the fragment above, the inner case statement
evaluates requester, even though we know that requester = 1 if we get as
far as that case statement. This apparent inefficiency, due to the mechanical
way the clauses were generated, has no real computational cost for the model
checker because at compile time it reduces all these clauses to a normal form,
called a binary decision diagram, which is independent of this kind of boolean
redundancy.

The queries we put to NuSMV model fairness as two sub-properties:

(1) If an honest signer releases signatures to another signer and later makes
a resolve request, the request will be granted. This property guarantees



that the kind of abort propagation attacks in section 4.1 are impossible
for our protocol.

(2) If an honest signer receives an abort, then that abort will not be over-
turned by later requests.

For the first property, we suppose that a non-repeat resolve request from a
signer in the last stage of the protocol (i.e. with τl = τr = 3) has been made;
this must result in validated becoming true. This is written in Computational
Tree Logic (CTL) as shown below; this formula evaluates to true.

SPEC AG (reqType=resolve & !duplicateRequest &

reqTauLeft=3 & reqTauRight=3 -> AX validated)

For the second property, we consider all the possible circumstances in which
a honest signer makes a request to T and receives an abort response. The fact
that the signer is honest means that it doesn’t continue to release promises
after it contacts T . This means that certain requests to T from other signers
are impossible (they need the later promises from the honest signer).

For example, suppose P4 requests resolve with τl = τr = 2 and gets abort. If
P4 is honest, this means that P1 cannot later request resolve with τr = 3, and
none of P2, P3, P4 can request resolve with τl = τr = 3, and P5 cannot request
resolve with τl = 3. The query for NuSMV is: under these hypotheses, could
P4’s abort be overturned? We represent the query as follows: let p represent
that P4 requests resolve with τl = τr = 2, i.e.

p = requester=4 & !duplicateRequest &

reqType=resolve & reqTauLeft=2 & reqTauRight=2

and let q represent the later requests made impossible by the assumption of
P4’s honesty, i.e.

q = (requester=1 & reqTauRight=3) |

(requester>=2 & requester <=4 &

reqType=resolve & reqTauLeft=3 & reqTauRight=3) |

(requester=5 & reqType=resolve & reqTauLeft=3)

We write v to abbreviate the variable validated. We now model the desired
property as saying: whenever p occurs and results in abort, then if q remains
false then v will remain false. This property is tricky to represent in CTL. In
LTL it is much easier: we may write

G ( p & X !v → !v W q )

where W is weak until. NuSMV can check LTL formulas but it is much more
efficient at checking CTL formulas. Using the techniques explained in Chapter
3 of [12], one can translate this LTL formula into the following equivalent CTL



formula:

AG( p -> AX( !v → !E [ !q U (!q & v) ] ))

This formula evaluates to true. Different circumstances of possible abort over-
turns correspond to different values of p and q. Some examples are shown in
the code available at [15].

8 Conclusion

We have shown that the revised version of Garay and Mackenzie’s protocol
presented in [7] fails the fairness property, for the cases n ≥ 5. We also demon-
strated that our attack shows that the protocol can not guarantee fairness for
any n ≥ 5 whatever the trusted authority T does. This means that no trusted
party protocol is possible in order to fix the unfairness. The flaw lies in the
structure of the message exchange of the Garay and Mackenzie’s main proto-
col.

We also presented a new multi-party contract signing protocol which uses pri-
vate contract signatures, and we proved that it satisfies fairness and formally
analysed in NuSMV model checker for the case of five signers. It also satisfies
informal notions of timeliness and abuse-freeness.

Our scheme improves on the state-of-the-art protocol by Baum-Waidner and
Waidner [6] in two important aspects. Firstly, our scheme requires only half
the number of messages to complete “optimistic” execution. (In contrast with
Baum-Waidner’s improvement reported in [5], we do not require the unrealistic
assumptions that the number of dishonest signers is known in advance to the
trusted party, and that honest signers don’t quit the protocol.) Secondly, our
scheme does not use a non-standard notion of a signed contract.

In future work, we aim to supplement our proof with a formal verification
the protocol in the case of arbitrary n against the claimed properties, using a
framework such as applied pi calculus [1], strand spaces [20] or higher-order
logic [18]. This is a challenging task since state-of-the-art formal analysis meth-
ods do not cope well with open-ended protocols (i.e. those that may involve
arbitrary number of parties in a single run). As our work shows, analysis of
such a protocol for a fixed number of signers may not be enough. We also in-
tend to evaluate our protocol against formal definitions of abuse-freeness such
as [13].
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