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Optimization models related to designing and operating complex systems are mainly focused on some e
ciency metrics such as
response time, queue length, throughput, and cost. However, in systemswhich servemany entities there is also a need for respecting
fairness: each system entity ought to be provided with an adequate share of the system’s services. Still, due to system operations-
dependant constraints, fair treatment of the entities does not directly imply that each of them is assigned equal amount of the
services.	at leads to concepts of fair optimization expressed by the equitable models that represent inequality averse optimization
rather than strict inequality minimization; a particular widely applied example of that concept is the so-called lexicographic
maximin optimization (max-min fairness). 	e fair optimization methodology delivers a variety of techniques to generate fair
and e
cient solutions. 	is paper reviews fair optimization models and methods applied to systems that are based on some kind
of network of connections and dependencies, especially, fair optimization methods for the location problems and for the resource
allocation problems in communication networks.

1. Introduction

System design and optimization o�en lead to diverse alloca-
tion problems where limitedmeansmust be assigned to com-
peting agents or activities so as to achieve the best overall
system performance. Depending on the context, the alloca-
tion decisions may pertain to costs, tasks, goods, or other
resources that can be assigned to one or several agents (actu-
ally most allocation problems can be interpreted as resource
allocation problems). Such problems arise in numerous
applications of considerable complexity with system compo-
nents being users, stakeholders and their coalition systems,
economic and governmental institutions, policy systems,
environmental systems [1, 2], and so forth. Very o�en com-
plex systems that involve resource allocation can essentially
be treated as systems of systems [3, 4].

	e generic resource allocation problemmay be stated as
follows. Each activity is measured by an individual perfor-
mance function that depends on the resource levels assigned

to that activity. A larger function value is considered better,
like in the case when the performance ismeasured in terms of
assigned system capacity, quality of service level, service
amount available, and so forth. In practical applications, one
can distinguish di�erent variants of the general allocation
problem depending on whether the resource is divisible or
not. In particular, one-to-one allocation of indivisible resou-
rces lead to the well-known assignment problem, while
many-to-many allocation problems arise in task scheduling
where a task can be assigned in parallel to several agents with
each agent being potentially in charge of several tasks.

Most approaches to allocation problems are focused on
e
ciency-based objectives. However, the maximization of
either total or average results across all relevant agents may
require compromising individual agents for the good of
others, as long as everyone’s good is taken impartially into
account. 	us, with the increasing awareness of system
inequity resulting from solely pursuing e
ciency, a num-
ber of fairness or equity oriented approaches have been
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developed: a particular example is models of resource allo-
cation that try to achieve some form of fairness in resource
allocation patterns [5]. In general, the models relate to the
optimization of systems which serve many users and the
quality of service provided to every individual user de�nes
the optimization criteria. 	at pattern applies among others
to telecommunication and Internet networks: in those net-
works it is important to allocate network resources, such as
available bandwidth, so as to provide equitable performance
to all services and all origin-destination pairs of nodes [6, 7].
Still, there aremany other pressing examples of systemswhere
fair distribution of resources is required. Problems of e
cient
and fair resource allocation arise in complex systems of sys-
tems when the system combines a number of component sys-
tems such as resource supply systems, utilization systems at
demand sites or users, stakeholders and their coalition
systems, economic and governmental institutions, policy
systems, and environmental systems. Actually, addressing
fairness in particular types of systems of systems has become a
great challenge of the 21 century [8] as fairly dividing limited
natural resources (such as the fossil fuels, the clean water, and
the environments capacity to absorb greenhouse gases) is
perceived as being of utmost importance.

Essentially, fairness is an abstract sociopolitical concept
that implies impartiality, justice and equity. In order to ensure
fairness in a given system, all system entities have to be
equally well provided with the system’s services. For example,
the issue of equity iswidely recognized in the analysis of locat-
ing public services, where the clients of a system are entitled
to fair treatment according to community regulations. In that
context, the decisions o�en concern the placement of service
centers or other facilities at such positions that all users are
treated in an equitable way with respect to certain criteria
[9]. In particular, location of the facilities pertaining to public
services, such as police and �re departments, and emergency
medical facilities, should provide fair response time to all
demand locationswithin ametropolitan area. Similarly, water
resources should be allocated fairly [10].

As far as technical systems are concerned, the importance
of fairness was early recognized with respect to problems of
allocation of bandwidth in telecommunication networks [11,
12] (resulting in many models and methods of fair optimiza-
tion [7]), �ight scheduling [13], and allocation of takeo� and
landing “slots” at airports [14]. In such areas as allocation of
resources in high-tech manufacturing and optimal allocation
of water and energy resources, the context of fair resource
allocation was additionally enriched by considering possible
substitutions among the resources; models with such substi-
tutions are presented in [5, Ch. 4] and [15–17].

In general, complex systems require mathematical pro-
gramming models in order to describe the dependencies and
to enable system optimization. Many such models are based
on some kind of network of connections and dependencies.
In particular, wide range of systemmodels are related to some
kind of network �ows that express realizations of competing
activities [18]. 	is applies to telecommunication systems,
power distribution systems, transportation systems, logistics
systems, and so forth.	e discrete location problems can also
be viewed in terms of such network system [19, 20].

	e general purpose of this paper is to review fair
optimizationmodels and algorithms supporting e
cient and
fair resource allocation in problems related to such network
models. 	e particular focus is on location-allocation prob-
lems and allocation problems related to communication net-
works since in those areas the fair optimization concepts have
been extensively developed and widely applied.

	e paper is organized as follows. In the next section
we present methodological foundations of fair optimization
models. In Section 3, the most important models and meth-
ods of fair optimization in communication networks are
reviewed. Section 4 aims at reviewing applications of fair-
ness optimization in location and allocation problems. 	e
computational complexity issues are addressed in Section 5.
	e paper is concluded by addressing the most important
directions of the development of fair optimization method-
ology for network systems.

2. Fairness, Equity, and Fair Optimization

2.1. E
ciency and Equity. 	e generic allocation problem
deals with a system comprising a set � of� services (activities,
agents) and a given set � of allocation patterns (allocation
decisions). For each service � ∈ �, a function ��(x) of the allo-
cation pattern x ∈ � is de�ned. 	is function measures the
outcome (e�ect) �� = ��(x) of allocation pattern x for service�. In applications we consider this measure that usually
expresses the service quality. In general, outcomes can be
measured (modeled) as service time, service costs, and
service delays as well as in a more subjective way. In typical
formulations a larger value of the outcome means a better
e�ect (higher service quality or client satisfaction). Other-
wise, the outcomes can be replacedwith their complements to
some large number. 	erefore, without loss of generality, we
can assume that each individual outcome �� is to be maxi-
mized which allows us to view the generic resource allocation
problem as a vector maximization model. Consider

max {f (x) : x ∈ �} , (1)

where f(x) is a vector-function that maps the decision space	 = 
� into the criterion space � = 
� and � ⊂ 	 denotes
the feasible set. We consider complex systems represented by
mathematical programming models and speci�cally models
based on some network of connections and dependencies.

An outcome vector y is attainable if it expresses outcomes
of a feasible solution x ∈ � (i.e., y = f(x)). 	e set of all the
attainable outcome vectors is denoted by 
. Note that, in
general, convexity of the feasible set � and concavity of the
outcome function f do not guarantee convexity of the corre-
sponding attainable set 
. Nevertheless, the multiple criteria
maximization model (1) can be rewritten in the equivalent
form

max {y : �� ≤ �� (x) ∀�, x ∈ �} , (2)

where the attainable set 
 is convex whenever � is convex
and functions �� are concave.

Model (1) only speci�es that we are interested in maxi-
mization of all objective functions �� for � ∈ � = {1, 2, . . . , �}.
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In order to make it operational, one needs to assume some
solution concept specifyingwhat itmeans tomaximizemulti-
ple objective functions.	e solution conceptsmay be de�ned
by properties of the corresponding preference model [21].
	e commonly used concept of the Pareto-optimal solutions,
as feasible solutions for which one cannot improve any
criterion without worsening another, depends on the rational
dominance which may be expressed in terms of the vector
inequality.

Simple solution concepts for multiple criteria problems
are de�ned by aggregation (or utility) functions� : � → 
 to
be maximized. 	us, the multiple criteria problem (1) is
replaced with the maximization problem. Consider

max {� (f (x)) : x ∈ �} . (3)

In order to guarantee the consistency of the aggregated
problem (3) with the maximization of all individual objective
functions in the originalmultiple criteria problem (or Pareto-
optimality of the solution), the aggregation function must be
strictly increasing with respect to every coordinate.

	e simplest aggregation functions commonly used for
the multiple criteria problem (1) are de�ned as the total
outcome �(y) = ∑��=1 ��, equivalently as the mean (average)
outcome �(y) = �(y)/� = (1/�)∑��=1 �� or alternatively
as the worst outcome �(y) = min�=1,...,���. 	e mean
(total) outcome maximization is primarily concerned with
the overall system e
ciency. As based on averaging, it o�en
provides a solution where some services are discriminated in
terms of performance. On the other hand, the worst outcome
maximization, that is, the so-called max-min solution con-
cept,

max { min
�=1,...,�

�� (x) : x ∈ �} , (4)

is regarded as maintaining equity. Indeed, in the case of a
simpli�ed resource allocation problem with knapsack con-
straints, the max-min solution,

max{ min
�=1,...,�

�� : �∑
�=1

���� ≤ �} , (5)

takes the form �� = �/∑��=1 �� for all � ∈ �, thus, meeting the
perfect equity requirement�1 = �2 = ⋅ ⋅ ⋅ = ��. In the general
case, with possible more complex feasible set structure, this
property is not ful�lled [22, 23]. Nevertheless, if there exists a
Pareto-optimal vector y ∈ f(�) satisfying the perfect equity
requirement �1 = �2 = ⋅ ⋅ ⋅ = ��, then y is the unique optimal
solution of the max-min problem (4) [24].

Actually, the distribution of outcomesmaymake themax-
min criterion partially passive when one speci�c outcome is
relatively very small for all the solutions. For instance, while
allocating clients to service facilities, such a situation may
be caused by existence of an isolated client located at a
considerable distance from all the facilities. Maximization of
the worst service performances is then reduced to maximiza-
tion of the service performances for that single isolated client
leaving other allocation decisions unoptimized. For instance,
having four outcome vectors (1, 1, 1), (8, 1, 1), (1, 8, 1), and (8,

8, 1) available, they are all optimal in the corresponding max-
min optimization, as the third outcome cannot be better than
1. Maximization of the �rst and the second outcome is then
not supported the max-min solution concept, allowing one
to select (1, 1, 1) as the optimal solution. 	is is a clear case of
ine
cient solution where one may still improve other out-
comes while maintaining fairness by leaving at its best
possible value the worst outcome.	emax-min solutionmay
be then regularized according to the Rawlsian principle of
justice. Rawls [25, 26] considers the problem of ranking
di�erent “social states” which are di�erent ways in which a
society might be organized taking into account the welfare of
each individual in each society, measured on a single numer-
ical scale. Applying the Rawlsian approach, any two states
should be ranked according to the accessibility levels of the
least well-o� individuals in those states; if the comparison
yields a tie, the accessibility levels of the next-least well-o�
individuals should be considered, and so on. Formalization
of this concept leads us to the lexicographic maximin opti-
mization model or the so-called max-min fairness where the
largest feasible performance function value for activities with
the smallest (i.e., worst) performance function value (this is
the maximin solution) are followed by the largest feasible
performance function value for activities with the second
smallest (i.e., second worst) performance function value,
without decreasing the smallest value, and so forth. 	e lexi-
cographic maximin solution is known in the game theory as
the nucleolus of amatrix game. It originates froman idea, pre-
sented by Dresher [27], to select from the optimal (max-min)
strategy set of a player a subset of optimal strategies which
exploit mistakes of the opponent optimally. It has been later
re�ned to the formal nucleolus de�nition [28] and gener-
alized to an arbitrary number of objective functions [29].
	e concept was early considered in the Tschebysche�
approximation [30] as a re�nement taking into account the
second largest deviation, the third one and further to be hier-
archically minimized. Actually, the so-called strict approx-
imation problem on compact ordered sets is resolved by
introducing sequential optimization of the norms on sub-
spaces. Luss and Smith [31] published the �rst paper on lex-
icographic maximin approach for resource allocation prob-
lems with continuous variables and multiple resource con-
straints.Within the communications or network applications
the lexicographic maximin approach has appeared already
in [11, 12] and now under the name max-min fair (MMF)
is treated as one of the standard fairness concepts [7]. 	e
lexicographic maximin has been used for general linear
programming multiple criteria problems [32–34], as well as
for specialized problems related to multiperiod resource
allocation with and without substitutions [5, Ch. 5] and [35–
39].

In discrete optimization it has been considered for various
problems [40, 41] including the location-allocation ones [42].
Luss [43] presented an expository paper on equitable resource
allocations using a lexicographic minimax (or lexicographic
maximin) approach while [44] provides wide discussion of
various models and solution algorithms in connection with
communication networks.	e recent book by Luss [5] brings
together much of the equitable resource allocation research
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from the past thirty years and provides current state of art in
models and algorithm within wide gamut of applications.

Actually, the original introduction of the MMF in net-
working characterized the MMF optimal solution by the lack
of a possibility to increase of any outcome without decreasing
of some smaller outcome [12]. In the case of convex attainable
set (as considered in [12]) such a characterization represents
also lexicographic maximin solution. In nonconvex case as
pointed out in [45] such strictly de�ned MMF solution may
not exist while the lexicographic maximin always exists and
it covers the former if it exists (see [46] for wider discus-
sion). 	erefore, the MMF is commonly identi�ed with the
lexicographic maximin while the classical MMF de�nition is
considered rather as an algorithmic approach which is
applicable only for convex models. We follow this in the
remainder of the paper. Indeed, while for convex problems it
is relatively easy to form sequential algorithms to execute lexi-
cographic maximin by recursive max-min optimization with
�xed smallest outcomes (see [5, 31–33, 43, 44, 46, 47]), for
nonconvex problems the sequential algorithms must be built
with the use of some arti�cial criteria (see [24, 40, 42, 44,
48] and [5, Ch. 7]). Some more discussion is provided in
Section 2.4.

2.2. FromEquity to FairOptimization. 	econcept of fairness
has been studied in various areas beginning from political
economics problems of fair allocation of consumption bun-
dles [25, 49–52] to abstract mathematical formulation [53,
54]. Fairness is, essentially, an abstract sociopolitical concept
of distributive justice that implies impartiality and equity in
distribution of goods. In order to ensure fairness in a system,
all system entities have to be equally well provided with the
system’s services. 	erefore, in systems analysis and oper-
ational research fairness was usually quanti�ed with the
so-called inequality measures to be minimized [55–60] or
fairness indices [61, 62]. Typical inequalitymeasures are some
deviation type dispersion characteristics. 	ey are inequality
relevant which means that they are equal to 0 in the case
of perfectly equal outcomes while taking positive values for
unequal ones. 	e simplest inequality measures are based
on the absolute measurement of the spread of outcomes or
deviations from the mean, like the mean absolute di�erence,
maximum absolute di�erence, standard deviation (variance),
mean absolute deviation, and so forth. Relative inequality
measures are frequently used. For instance, measures are
normalizezd by mean outcome like the Gini coe
cient,
which is the relative mean di�erence.

Complex systems require usuallymathematical program-
ming models in order to describe the dependencies and to
make possible system optimization. Many such models are
based on some network of connections and dependencies. A
wide range of systemsmodels is related to some �owswithin a
network expressing realizations of competing activities [18].
	is applies to communication systems, power distribution
systems, transportation systems, logistics systems, and so
forth. Among others the discrete location problems can be
viewed in terms of such network system [19, 20]. Typically
fairness is considered in relation to division of a given amount

(the cake division problem) imposing a consistency require-
ment, the reference points must sum to the total amount
available to the agents. A methodology capable to model
and solve fair allocation problems in the context of system
optimization must take into account possible increase of
the amount. Unfortunately, direct minimization of typical
inequality measures contradicts the maximization of indi-
vidual outcomes and it may lead to inferior decisions. 	e
max-min fairness represented by lexicographic maximin
optimization meets such needs. 	is speci�c concept may be
generalized to concepts of fairness expressed by the equitable
optimization [9, 24, 43, 63–65] representing inequality averse
optimization rather than inequality minimization. Since the
term equitable optimization or equitable resource allocation
is frequently used as limited to the lexicographic maximin
optimization (see [5]), we use the term fair optimization to
express wider class of equitable approaches.

	e concept of fair optimization is a speci�c re�nement
of the Pareto-optimality taking into account the inequality
minimization according to the Pigou-Dalton approach. First
of all, the fairness requires impartiality of evaluation, thus,
focusing on the distribution of outcome valueswhile ignoring
their ordering.	at means that, in the multiple criteria prob-
lem (1), we are interested in a set of outcome values without
taking into account which outcome is taking a speci�c value.
Hence, we assume that the preference model is impartial
(anonymous, symmetric). In terms of the preference relation
it may be written as the following axiom:

(��(1), ��(2), . . . , ��(�)) ≅ (�1, �2, . . . , ��)
for any permutation # of �, (6)

whichmeans that any permuted outcome vector is indi�erent
in terms of the preference relation. Further, fairness requires
equitability of outcomes which causes that the preference
model should satisfy the (Pigou-Dalton) principle of trans-
fers. 	e principle of transfers states that a transfer of any
small amount from an outcome to any other relatively worse-
o� outcome results in a more preferred outcome vector. As a
property of the preference relation, the principle of transfers
takes the form of the following axiom:

��� > ���� $⇒ y − &e�� + &e��� ≻ y

for 0 < & < ��� − ���� . (7)

	e rational preference relations satisfying additionally
axioms (6) and (7) are called herea�er fair (equitable) rational
preference relations. We say that outcome vector y� fairly
(equitably) dominates y��, if and only if y� is preferred to y�� for
all fair rational preference relations. In other words, y� fairly
dominates y��, if there exists a �nite sequence of vectors

y� (* = 1, 2, . . . , -) such that y1 = y��, y� = y� and y� is
constructed from y�−1 by application of either permutation of
coordinates, equitable transfer, or increase of a coordinate. An
allocation pattern x ∈ � is called fairly (equitably) e
cient or
simply fair if y = f(x) is fairly nondominated. Note that each
fairly e
cient solution is also Pareto-optimal but not vice
verse.
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In order to guarantee fairness of the solution con-
cept (3), additional requirements on aggregation (utility)
functions need to be introduced. 	e aggregation function
must be symmetric, that is, for any permutation # of �,�(��(1), ��(2), . . . , ��(�)) = �(�1, �2, . . . , ��) as well as being
equitable (to satisfy the principle of transfers) �(�1, . . . , ��� −&, . . . , ���� + &, . . . , ��) > �(�1, �2, . . . , ��) for any 0 <& < ��� − ���� . Such functions were referred to as (strictly)
Schur-concave [66]. In the case of a strictly increasing and
strictly Schur-concave function, every optimal solution to
the aggregated optimization problem (3) de�nes some fairly
e
cient solution of allocation problem (1) [64].

Both simplest aggregation functions, the mean and the
minimum, are symmetric although they do not satisfy strictly
the equitability requirement. For any strictly concave and
strictly increasing utility function 3 : 
 → 
, the
aggregation function�(y) = ∑��=1 3(��) is a strictlymonotonic
and equitable, thus, de�ning a family of the fair aggregations
[64]. Consider

max{ �∑
�=1

3 (�� (x)) : x ∈ �} . (8)

Various concave utility functions 3 can be used to de�ne
the fair aggregations (8) and the resulting fair solution
concepts. In the case of the outcomes restricted to positive
values, one may use logarithmic function, thus, resulting
in the proportional fairness (PF) solution concept [67, 68].
Actually, it corresponds to the so-called Nash criterion [69]
whichmaximizes the product of additional utilities compared
to the status quo. Again, in the case of a simpli�ed resource
allocation problem with knapsack constraints, the PF solu-
tion,

max{ �∑
�=1

log (��) : �∑
�=1

���� ≤ �} , (9)

takes the form �� = �/�� for all � ∈ �, thus, allocating the
resource inversely proportional to the consumption of par-
ticular activities.

For positive outcomes a parametric class of utility func-
tions,

3 (��, 4) = {{{{{
�1−	�(1 − 4) , if 4 ̸= 1,

log (��) , if 4 = 1, (10)

may be used to generate various fair solution concepts for4 > 0 [70]. 	e corresponding solution concept (8), called4-fairness, represents the PF approach for 4 = 1, while with4 tending to the in�nity it converges to the MMF. For large
enough 4 one gets generally an approximation to the MMF
while for discrete problems large enough 4 guarantee the
exactMMF solution. Such away to identify theMMF solution
was considered in location problems [40, 42] as well as to
content distribution networking problems [71, 72]. However,
every such approach requires to build (or to guess) a utility
function prior to the analysis and later it gives only one
possible compromise solution. For a common case of upper
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yy
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Figure 1: 	e fair dominance structures ;(y): the set of outcomes
fairly dominated by y and?(y): the set of outcomes fairly dominating
y.

bounded outcomes �� ≤ 3∗ one may maximize power
functions −∑��=1(3∗ −��)� for 1 < @ < ∞which is equivalent
tominimization of the corresponding@-normdistances from
the common upper bound 3∗ [64].

Figure 1 shows the structure of fair dominance for two-
dimensional outcome space. For any outcome vector y,
the fair dominance relation distinguishes set ;(y) of dom-
inated outcomes (obviously worse for all fair rational prefer-
ences) and set?(y) of dominating outcomes (obviously better
for all fair rational preferences). Some outcome vectors
remain neither dominated nor dominating (in white areas)
and they can be di�erently classi�ed by various speci�c fair
solution concepts. 	e lexicographic maximin assigns the
entire interior of the inner white triangle to the set of pre-
ferred outcomes while classifying the interior of the external
open triangles as worse outcomes. Isolines of various utility
functions split the white areas in di�erent ways. For instance,
there is no fair dominance between vectors (1, 100) and(2, 2) and the MMF considers the latter as better while the
proportional fairness points out the former. On the other
hand, vector (2, 99) fairly dominates (1, 100) and all fairness
models (includingMMF and PF) prefer the former. One may
notice that the set ;(y) of directions leading to outcome
vectors being dominated by a given y is, in general, not a cone
and it is not convex. Although, when we consider the set ?(y)
of directions leading to outcome vectors dominating given y
we get a convex set.

Certainly, any fair solution concept usually leads to some
deterioration of the system e
ciency when comparing to the
sole e
ciency optimization. 	is is referred to as the price of
fairness and it was quanti�ed as the relative di�erence with
respect to a fully e
cient solution that maximizes the sum
of all performance functions (total outcome) [73], that is, the
price of fairness concept C on the attainable set 
 is de�ned
as

POF (C, 
) = (∑��=1 ��� − ∑��=1 �
� )∑��=1 ��� , (11)

where y� is the outcome vectormaximizing the total outcome�(y) on 
 while y
 denotes the outcome vector maximizing
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the fair optimization conceptC(y) on
. Formula (11) is appli-
cable only to the problems with a positive total outcome—
this, however, is a common case for attainable sets of models
based on some network of connections and dependencies.
Bertsimas et al. [73] examined the price of fairness for a broad
family of problems, focusing on PF and MMF models. 	ey
shown that for any compact and convex attainable sets
with
equal maximum achievable outcome, which are greater than
0, the price of proportional fairness is bounded by

POF (PF, 
) ≤ 1 − 2√�� , (12)

and the price of max-min fairness is bounded by

POF (MMF, 
) ≤ 1 − 4�
(� + 1)2 . (13)

Moreover, the bound under PF is tight if √� is integer, and
the bound under MMF is tight for all �. Similar analysis
for the 4-fairness [74] shows that the price of 4-fairness is
bounded by

POF (4C, 
) ≤ 1 − min
�∈[1,�]

H1+1/	 + � − H
H1+1/	 + (� − H) H

≅ 1 − I (�−	/(	+1)) .
(14)

	e price of fairness strongly depends on the attainable set
structure. One can easily construct problems where any fair
solution is alsomaximal with respect to the total outcome (no
price of fairness occurs). In [75], the 4-fairness concept for
network �ow problems was analyzed and a class of networks
was generated with the property that a fairer allocation is
always more e
cient. In particular, it implies that max-min
fairness may achieve higher total throughput than propor-
tional fairness.

2.3. Multicriteria Models. 	e relation of fair dominance can
be expressed as a vector inequality on the cumulative ordered
outcomes [63]. 	e latter can be formalized as follows. First,
we introduce the ordering map Θ : 
� → 
� such thatΘ(y) = (K1(y), K2(y), . . . , K�(y)), where K1(y) ≤ K2(y) ≤ ⋅ ⋅ ⋅ ≤K�(y) and there exists a permutation # of set � such thatK�(y) = ��(�) for � = 1, . . . , �. Next, we apply cumulation to
the ordered outcome vectors to get the following quantities:

K� (y) = �∑
�=1

K� (y) for � = 1, . . . , � (15)

expressing, respectively, the worst outcome, the total of
the two worst outcomes, and the total of the three worst
outcomes. Pointwise comparison of the cumulative ordered

outcomes Θ(y) for vectors with equal means was extensively
analyzed within the theory of equity [76] or themathematical
theory of majorization [66], where it is called the relation of
Lorenz dominance or weak majorization, respectively. It
includes the classical results allowing to express an improve-
ment in terms of the Lorenz dominance as a �nite sequence

of Pigou-Dalton equitable transfers. It can be generalized to
vectors with various means, which allows one to justify the

following statement [63, 77]. Outcome vector y� ∈ � fairly

dominates y�� ∈ �, if and only if K�(y�) ≥ K�(y��) for all � ∈ �
where at least one strict inequality holds.

Fair solutions to problem (1) can be expressed as Pareto-
optimal solutions for the multiple criteria problem with

objectives Θ(f(x)). Consider
max {(K1 (f (x)) , K2 (f (x)) , . . . , K� (f (x))) : x ∈ �} . (16)

Hence, the multiple criteria problem (16) may serve as a
source of fair solution concepts. Note that the aggregation
maximizing themean outcome corresponds tomaximization

of the last objective K�(f(x)) in problem (16). Similarly, the
max-min corresponds to maximization of the �rst objectiveK1(f(x)). As limited to a single criterion they do not guarantee
the fairness of the optimal solution. On the other hand, when
applying the lexicographic optimization to problem (16),

lex max {(K1 (f (x)) , K2 (f (x)) , . . . , K� (f (x))) : x ∈ �} ,
(17)

one gets the lexicographic maximin solution concept, that is,
the classical equitable optimization model [5] representing
the MMF.

For modeling various fair preferences one may use some
combinations of the criteria in problem (16). In particular, for

the weighted sum aggregation on gets∑��=1 -�K�(y), which can
be expressed with weights O� = ∑��=� -� (� = 1, . . . , �) allo-
cated to coordinates of the ordered outcome vector, that is,
as the so-called ordered weighted average (OWA) [78, 79]:

max{ �∑
�=1

O�K� (f (x)) : x ∈ �} . (18)

If weights O� are strictly decreasing and positive, that is, O1 >O2 > ⋅ ⋅ ⋅ > O�−1 > O� > 0, then each optimal solution
of the OWA problem (18) is a fairly e
cient solution of
(1). Such OWA aggregations are sometimes called ordered
ordered weighted averages (OOWA) [80]. When looking at
the structure of fair dominance (Figure 1), the piece-wise
linear isolines of the OOWA split the white areas of outcome
vectors remaining neither dominated nor dominating (cf.
Figure 2).

When di�erences between weights tend to in�nity, the
OWA model becomes the lexicographic maximin [81]. On
the other hand, with the di�erences between subsequent
monotonic weights approaching 0, the OWA model tends to
the mean outcome maximization while still preserving fair
optimizations properties (cf. Figure 3).

To the best of our knowledge, the price of fairness related
to the fair OWA models has not been studied till now. 	e
OWA aggregation may model various preferences from the
max to the min. Yager [78] introduced a well appealing
concept of the andness measure to characterize the OWA
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Figure 2: 	e fair dominance structure and the ordered OWA
optimization.

y2 = y1

y2

y1

�2 = �1

�1 ≫ �2

�1 > �2

�1 > �2

Figure 3: Variety of fair OWA aggregations.

operators. 	e degree of andness associated with the OWA
operator is de�ned as

andness (O) = ∑��=1 ((� − �) / (� − 1)) O�∑��=1 O� . (19)

For themin aggregation representing theOWAoperator with
weights O = (1, 0, . . . , 0) one gets andness(O) = 1 while
for the max aggregation representing the OWA operator with
weightsO = (0, . . . , 0, 1) one has andness(O) = 0. For the total
(mean) outcome one gets andness((1/�, 1/�, . . . , 1/�)) =1/2. OWA aggregations with andness greater than 1/2 are
considered fair, and fairer when andness gets closer to 1. A
given andness level does not de�ne a unique set of weights O.
Various monotonic sets of weights with a given andness
measure may be generated (cf., [82, 83] and references
therein).

	ede�nition of quantities K�(y) is complicated as requir-
ing ordering. Nevertheless, the quantities themselves can
be modeled with simple auxiliary variables and linear con-
straints. Although,maximization of the Pth smallest outcome
is a hard (combinatorial) problem. 	e maximization of the
sum of P smallest outcomes is a linear programming (LP)

problem as K�(y) = max�(PQ−∑��=1max{Q−��, 0})where Q is an

unrestricted variable [84, 85]. 	is allows one to implement
the OWA optimization quite e�ectively as an extension of the
original constraints and criteria with simple linear inequali-
ties [86] (without binary variables used in the classical OWA
optimization models [87]) as well as to de�ne sequential
methods for lexicographic maximin optimization of discrete
and nonconvex models [48]. Various fairly e
cient solutions
of (1) may be generated as Pareto-optimal solutions to
multicriteria problem:

max (H1, H2, . . . , H�) (20a)

s.t. x ∈ �, (20b)

H� = PQ� − �∑
�=1

R��,
P = 1, . . . , �,

(20c)

Q� − R�� ≤ �� (x) , R�� ≥ 0,
�, P = 1, . . . , �.

(20d)

Recently, the duality relation between the generalized
Lorenz function and the second order cumulative distribu-
tion function has been shown [88]. 	e latter can also be
presented as mean shortfalls (mean below-target deviations)
to outcome targets S:

T� (y) = 1�
�∑
�=1

(S − ��)+. (21)

It follows from the duality theory [88] that one may com-
pletely characterize the fair dominance by the pointwise
comparison of the mean shortfalls for all possible targets.

Outcome vector y� fairly dominates y��, if and only if T�(y�) ≤T�(y��) for all S ∈ 
 where at least one strict inequality
holds. In other words, the fair dominance is equivalent to the
increasing concave order more commonly known as the
Second Stochastic Dominance (SSD) relation [89].

For �-dimensional outcome vectors we consider, all the
shortfall values are completely de�ned by the shortfalls for
at most� di�erent targets representing values of several out-
comes �� while the remaining shortfall values follow from the
linear interpolation. Nevertheless, these target values are
dependent on speci�c outcome vectors and one cannot de�ne
any universal grid of targets allowing to compare all possible
outcome vectors. In order to take advantages of the multiple
criteria methodology one needs to focus on a �nite set of
target values. Let S1 < S2 < ⋅ ⋅ ⋅ < S� denote the all attainable
outcomes. Fair solutions to problem (1) can be expressed as
Pareto-optimal solutions for the multiple criteria problem
with objectives T��(f(x)). Consider

min {(T�1 (f (x)) , T�2 (f (x)) , . . . , T�� (f (x))) : x ∈ �} .
(22)

Hence, the multiple criteria problem (22) may serve as
a source of fair solution concepts. When applying the
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lexicographic minimization to problem (22) one gets the
lexicographic maximin solution concept, that is, the classical
equitable optimization model [5] representing the MMF.
However, for the lexicographicmaximin solution concept one
simply performs lexicographic minimization of functions
counting outcomes not exceeding several targets [42, 48].

Certainly in many practical resource allocation problems
one cannot consider target values covering all attainable
outcomes. Reducing the number of criteria we restrict oppor-
tunities to generate all possible fair allocations. Nevertheless,
one may still generate reasonable compromise solutions [24].
In order to get a computational procedure one needs either to
aggregate mean shortages for in�nite number of targets or to
focus analysis on arbitrarily preselected �nite grid of targets.
	e former turns out to lead us to the mean utility optimiza-
tion models (8). Indeed, classical results of majorization the-
ory [66] relate themean utility comparison to the comparison
of the weighted mean shortages. Actually, the maximization
of a concave and increasing utility function 3 is equivalent
to minimization of the weighted aggregation with positive
weights U(V) = −3��(V) (due to concavity of 3 the second
derivative is negative).

2.4. Methodologies for Solving Lexicographic Maximin Prob-
lems. Consider the following resource allocation problem:

lexmax
x

Θ (f (x)) = (��1 (W�1) , ��2 (W�2) , . . . , ��� (W��))
(23a)

s.t. ��1 (W�1) ≤ ��2 (W�2) ≤ ⋅ ⋅ ⋅ ≤ ��� (W��) , (23b)

∑
�∈�

���W� ≤ ��, ∀* ∈ X, (23c)

Y� ≤ W� ≤ 3�, ∀� ∈ �, (23d)

where the performance functions are strictly increasing and
continuous, and ��� ≥ 0, for all � and *. 	e lexicographic
maximization objective function, jointly with the ordering
constraints, de�nes the lexicographic maximin objective
function (this is equivalent to de�ning the objective func-
tion using the ordering mapping Θ). Consider Figure 4
which presents a network that serves point-to-point demands
between nodes 1 and 2, nodes 3 and 4, and nodes 3 and 5.
	e numbers on the links are the link capacities, for example,
4 Gbs on links (1, 3). Suppose demand between a node-
pair can be routed only on a single path, where this path is
given as part of the input; for example, the path selected
between nodes 1 and 2 uses links (1, 3) and (3, 2). 	e
problem of �nding the lexicographic maximin solution of
demand throughputs between various node-pairs subject to
link capacity constraints (which serve as the resource con-
straints) can be formulated by (23a)–(23d).

It turns out that for various performance functions,
such as linear functions and exponential functions, the
lexicographic maximin solution of (23a)–(23d) is obtained
by simple algebraicmanipulations of closed-form expressions
and the computational e�ort is polynomial. 	is facilitates
solving very large problems in negligible computing time. For
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Figure 4: A single path for each demand.
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Figure 5: Multiple path for demand between nodes 1 and 2.

other functions, where the solution cannot be derived using
closed-form expressions, somewhat more computations are
required, in particular, function evaluations complemented
by a one-dimensional numerical search are employed (see [5,
Ch. 3] and [31, 90, 91]). Algorithms for problem (23a)–(23d)
serve as building blocks for more complex problems such
as for problems with substitutable resources, for multiperiod
problems, and for content distribution problems (see [5, Chs.
4–6]).

Now, consider the cases of performance functions that
are nonseparable, where each of the functions ��(W�) in (23a)
and (23b) is replaced by ��(x), thus, depending on multiple
decision variables. Consider Figure 5 which shows three
possible paths for the demand between nodes 1 and 2. 	e
throughput between this node-pair is simply the sum of �ows
along these three paths.

Even for linear performance functions (e.g., throughputs
in communication networks) the computational e�ort is
signi�cantly larger as the algorithm for �nding the lexico-
graphic maximin solution requires solving repeatedly linear
programming problems (see [5, Chs. 3.4, and 6.2], [7, Ch. 8],
and [32, 33, 44, 92]).

Next, consider the case of a nonconvex feasible region,
for example, with discrete decision variables. For example,
consider a communication network (as in Figure 5) where
the demand between any node-pair can �ow along multiple
paths, but only one of these paths may be selected (here the
selected path for each demand is a decision variable). 	e
resulting formulation includes 0-1 decision variables [7].
Again, the objective is to �nd the lexicographic maximin
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Figure 6: A network example illustrating fairness issues.

solution of the throughputs where each demand uses only
one path. All the solution methods above do not apply. If the
number of possible distinct outcomes S1 < S2 < ⋅ ⋅ ⋅ < S�
is small, one can construct counting functions, where the Pth
counting function value is the number of times the Pth dis-
tinct worst outcome appears in the solution. 	at means that

one introduces functions ℎ�(y) = ∑��=1 ℎ�(y) with ℎ�(y)
expressing the number of values S� in the outcome vector y.
	e lexicographic maximin optimization problem is then
replaced by lexicographicminimization of the counting func-

tions ℎ�(y) which is solved by repeatedly solving minimiza-
tion problems with discrete variables:

lex min ( �∑
�=1

\1�, �∑
�=1

\2�, . . . , �∑
�=1

\�−1,�) (24a)

subject to x ∈ �, (24b)

S�+1 − �� (x) ≤ �\��, \�� ∈ {0, 1} ,
� ∈ �, P < ^, (24c)

where � is a su
ciently large constant (see [5, Ch. 7.2] and
[44, 48, 93]). Moreover, in general, binary variables may be
eliminated if large numbers of auxiliary continuous variables
and constrains are added leading to the formulation based on
(22) (see [5, Ch. 7.2] and [44, 48, 93, 94]).

When the number of distinct outcomes is large, we
can solve the lexicographic maximin problem by solving
lexicographic maximization problems in the format of prob-
lems (20a)–(20d) (see [5, Ch. 7.3] and [44, 48, 64, 94–96]).
Again, the solution method adds many auxiliary variables
and constraints to the formulation.

3. Fairness in Communication Networks

3.1. Fairness and Tra
c E
ciency. Fairness issues in commu-
nication networks becomemost profound when dealing with
tra
c handling. Roughly speaking, whenever the capacity of
network resources such as links and nodes is not su
cient
to carry the entire o�ered tra
c, a part of the tra
c must be
rejected.	en a natural question arises: how the total carried
tra
c tra
c should be shared between the network users
in a fair way, at the same time assuring acceptable overall
tra
c carrying e
ciency. 	is kind of problems arise, for
example, in the Internet for elastic tra
c sources which, from
mathematical point of view, can be treated as generating
in�nite tra
c. 	us, the total tra
c that can eventually be
carried by the network should be fairly split into the tra
c
�ows assigned to individual demands.	is issue is illustrated
by the following example [7].

Example 1. Consider a simple network composed of two
links in series depicted in Figure 6. 	ere are three nodes

(V1, V2, V3), two links (_1, _2), and three demand pairs (R1 ={V1, V2}, R2 = {V2, V3}, R3 = {V1, V3}). 	e demands
generate elastic tra
c, that is, each of them can consume
any bandwidth assigned to its path. Suppose that the capacity
of the links is the same and equal to 1.5 (a1 = a2 =1.5). Let 	 = (	1, 	2, 	3) be the path-�ows (bandwidth)
assigned to demands R1, R2, R3, respectively. Clearly, such a
�ow assignment is feasible if and only if 	1, 	2, 	3 ≥ 0 and	1+	3 ≤ a1, 	2+	3 ≤ a2. For the three basic tra
c objectives
the solutions are as follows:

(i) max-min fairness (lex max Θ(	1, 	2, 	3)) : 	1 =	2 = 	3 = 0.75 (�(	) = 2.25),
(ii) proportional fairness (max log	1+ log	2+ log	3) :	1 = 	2 = 1, 	3 = 0.5 (�(	) = 2.5), and
(iii) throughput maximization (max	1 +	2 +	3) : 	1 =	2 = 1.5, 	3 = 0 (�(	) = 3).
Above �(	) denotes the throughput, that is, �(	) =	1 + 	2 + 	3. Clearly, the MMF solution is perfectly fair

from the demand viewpoint but at the same the worst in
terms of throughput. 	is is because the “long” demand R3,
consuming bandwidth on both links, gets the same �ow
as the “short” demands R1, R2, each consuming bandwidth
on its direct link. 	e PF solution increase the �ow of
short demands at the expense of the long demand. 	is is
acceptably fair for the demands and increases the throughput.
Finally, the �(	) maximization solution is unfair (the long
demand gets nothing) but, by assumption, maximizes the
throughput.

Note that in this example the price of max-min fairness
calculated according to formula (11) is 1/4 which is equal to
the upper bound (13). Similarly, the price of proportional
fairness 1/6 is close to its upper bound (12). However, the price
of fairness strongly depends on the network topology. In [75],
the authors demonstrate a class of networks such that an 4-
fair allocation with higher 4 is always more e
cient in terms
of total throughput. In particular, this implies that max-min
fairness may achieve higher throughput than proportional
fairness.

In the networking literature related to fairness, the above
MMFandPF objectives are themost popular.	e throughput
maximization objective is rarely used, as totally unfair.
Instead, a reasonable modi�cation consisting in lexicograph-
ical maximization of the two ordered criteria (min(	), �(	))
is used, where min(	) denotes the minimal element of the
demand vector 	.

Considering MMF, besides optimization objectives
directly related to tra
c handling, objectives related to link
loads, are commonly considered in communication network
optimization. In this case, the tra
c volumes of demands to
be realized are �xed. We shall come back to this issue later
on.

3.2. Generic Optimization Models. 	e considered network
is modeled with a graph G(V,E), undirected or directed,
composed of the set of nodesV and the set of links E. 	us,
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each link _ ∈ E represents an unordered pair {V, U} (undi-
rected graphs) or an ordered pair (V, U) (directed graphs) of
nodes V, U ∈ V and is assigned the nonnegative unit capacity
cost V� which is a parameter and the maximum capacity a(_)
which is a given constant (possibly equal to +∞). When
link capacities are subject to optimization, they become
optimization variables denoted by ��, _ ∈ E. 	e cost of the
network is given by the quantity d = ∑�∈E V���. 	e tra
c
demands are represented by the setD. Each demand R ∈ D is
characterized by a directed pair (e(R), Q(R)), composed of the
originating node e(R) and the terminating node Q(R), and a
minimum value ℎ(R) (a parameter, possibly equal to 0) of the
tra
c volume that has to be carried from e(R) to Q(R).
Demand volumes and link capacities are expressed in the
same units.

Each demand R has a speci�ed set of admissible paths
P(R) (called the path-list) composed of selected elementary
paths from e(R) to Q(R) in graphG. (Recall that an elementary
path does not traverse any node more than once). Paths in
P(R), used to realize the demand (tra
c) volumes, are
assigned �ows W�, @ ∈ P(R), which are optimization vari-
ables. Each value W� speci�es the reference capacity
(expressed in the same units as link capacity and demand
volume) reserved on path @ ∈ P(R). 	e set of all admissible
paths is denoted by P := ⋃�∈D P(R). 	e maximum
path-lists, that is, path-lists P(R) containing all elementary

paths from e(R) to Q(R), will be denoted by P̂(R), R ∈ D,

with P̂ := ⋃�∈D P̂(R). 	e set of all paths in P traversin
a simple network composed of two links in series depicted
in Figure 6. 	ere are three nodes (V1, V2, V3), two links
(_1, _2) and three demand pairs (R1 = {V1, V2}, R2 = {V2, V3},R3 = {V1, V3}). 	e demands generate elastic tra
c, that
is, each of them can consume any bandwidth assigned to
its path. Suppose that the capacity of the links is the same
and equal to 1.5 (a1 = a2 = 1.5). Let 	 = (	1, 	2, 	3) be
the path-�ows (bandwidth) assigned to demands R1, R2, R3,
respectively. � a given link _ ∈ E will be denoted by Q(_).
Note that in an undirected graph the links can be traversed
by paths in both directions while in a directed graph—only
in the direction of the link.

Let 	� = ∑�∈P(�) W� denote the total �ow assigned to

demand R ∈ D, that is, tra
c of demand R carried in the
network, and let 	 = (	� : R ∈ D). Besides, let �� =∑�∈Q(�) W� be the link load induced by the path-�ows. 	en,

the generic feasibility set (optimization space) of a tra
c
allocation problem (TAP) can be speci�ed as follows:

∑
�∈P(�)

W� = 	�, R ∈ D, (25a)

	� ≥ ℎ (R) , R ∈ D, (25b)

∑
�∈Q(�)

W� = ��, _ ∈ E, (25c)

�� ≤ a (_) , _ ∈ E, (25d)

W� ∈ X, @ ∈ P. (25e)

	e set X speci�es the domain of a path-�ow variable and
is problem-dependent. Two typical cases are X = R+ and
X = Z+. Note that in the undirected graph the path-�ows
through a link sum up to the link load no matter in which
direction they traverse the link.

	e three cases of TAP considered in Example 1 above can
be now formulated as follows:

(i) TAP/MMF: lex max Θ(	) subject to (25a)–(25e),
(ii) TAP/PF: max h(	) = ∑�∈D log	� subject to (25a)–

(25e), and

(iii) TAP/TM: lex max (�(	) = min�∈D	�, �(	) =∑�∈D 	�) subject to (25a)–(25e).
Observe that the third case above is actually di�erent from
the third case considered in Example 1 as now throughput
maximization is the secondary objective in lexicographical
maximization.

When X = R+, all the three problems are convex and
as such can be approached e�ectively by means of the algo-
rithms described in [7, 44, 46]. For the TAP/PF version see
[67]. In fact, TAP/TM is a two level linear program possibly
combined to a single LP [23], and TAP/MMF can be solved
as a series of linear programs [32, 33, 44, 97]. Optimization
approaches to TAP/PF are presented in [67].

Certainly, the feasible set (25a)–(25e) can be further
constrained to consider more restricted routing strategies.
	e most common restriction is imposed by the single-path
requirement that each 	� is carried entirely on one selected
path. 	en the feasibility set must be augmented by the
following constraints:

∑
�∈P(�)

3� = 1, R ∈ D, (26a)

W� ≤ �3�, @ ∈ P, (26b)

3� ∈ {0, 1} , @ ∈ P. (26c)

In (26a)–(26c), 3�, @ ∈ P are additional binary routing
variables, and � is a “big �” constant. In this setting the
above de�ned TAP problems become essentially mixed-
integer programming problems (FTP/PF a�er a piece-wise
approximation of the logarithmic function), and in the case
ofMMFmust be treated by the general approach described in
Section 2.3 as problem (20a)–(20d) (see also [44, 48, 64, 94–
96] and [5, Ch. 7.3]).

We note that when the routing paths are �xed, that is,
when |P(R)| = 1, R ∈ D, then TAP/MMF becomes
the classical fair allocation (equitable resource allocation)
problem considered in Section 2.4 (see [12, Sec. 6.5.2] and
[5, Ch. 6.1]). 	is version of the problem can be e
ciently
solved in polynomial time by the so called water-�lling
algorithmbased on the bottleneck link characterization of the
problem (see [45] and Section 3.7). In fact, the bottleneck
characterization of this TAP/MMF problem can be directly
formulated as an integer programming problem (with binary
variables) as demonstrated in [92].	emodular �ow version
of the problem is considered in [98].
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An interesting version of the single-path TAP/MMF
problem is considered in [99] that uses the bottleneck formu-
lation of [92]. In that problem, the routes are optimized so to
achieve the maximum tra
c throughput while maintaining
the MMF demand tra
c assignment.

	e above speci�ed problems use the noncompact link-
path formulationwhere the optimization variables are related
to the routing paths. Hence, whenwewish to consider all pos-
sible elementary paths then the number of variables W�, @ ∈
P̂ becomes exponential with the size of the network. In this
case path generation algorithm should be applied (this is easy
in the case of linear programs) or the problems should be
reformulated in the node-link notation using link-�ow vari-
ables instead of the path-�ow variables used in (25a)–(25e).

3.3. Selected Speci�c Models. In this section we will discuss
several speci�c network optimization models related to var-
ious aspects of fairness. An interesting case arise when the
tra
c demands ℎ(R), R ∈ D are considered as given and the
design objective is to balance the load of the links, aiming
at minimizing the average packet delay in the network. 	e
commonly known formulation of such load balancing is as
follows:

min ^ (27a)

∑
�∈P(�)

W� = ℎ (R) , R ∈ D, (27b)

∑
�∈Q(�)

W� ≤ a (_) ^, _ ∈ E, (27c)

^ ∈ R, W� ∈ X, @ ∈ P. (27d)

Using the MMF notion it is easy to de�ne a load balancing
problem, that is stronger than problem (27a)–(27d) which in
fact �nd the maximum element of the MMF vector 
 = ( �̂ :_ ∈ E) expressing the relative link loads:

lex min Θ (
) (28a)

∑
�∈P(�)

W� = ℎ (R) , R ∈ D, (28b)

∑
�∈Q(�)

W� ≤ a (_) �̂, _ ∈ E, (28c)

�̂ ∈ R, _ ∈ E,
W� ∈ X, @ ∈ P. (28d)

Some variants of the problem given by (28a)–(28d) were
studied in [100, 101].

Another version of the MMF load balancing problem

(28a)–(28d) maximizes the unused link capacity � = (�� :_ ∈ E) in a fair way, relevant to circuit switching:

lex max Θ(�) (29a)

∑
�∈P(�)

W� = ℎ (R) , R ∈ D, (29b)

∑
�∈Q(�)

W� = ��, _ ∈ E, (29c)

�� ≤ a (_) , _ ∈ E, (29d)

�� = a (_) − ��, _ ∈ E, (29e)

W� ∈ X, @ ∈ P. (29f)

Above we have considered �ow allocation problems
assuming given link capacity. When the link capacity is sub-
ject to optimization, that is, whenwe simultaneously optimize
path-�ows and link capacities, then we deal with dimension-
ing problems. An example of such a problem (with a budget
constraint) is as follows:

lex max Θ (	) (30a)

∑
�∈P(�)

W� = 	�, R ∈ D, (30b)

∑
�∈Q(�)

W� = ��, _ ∈ E, (30c)

∑
�∈E

V (_) �� ≤ ?, _ ∈ E, (30d)

W� ∈ X, @ ∈ P, (30e)

where ? > 0 is a given budget for the total link cost. Note
that we have skipped constraint (25b) which has established a
lower bound on the demand tra
c allocation in formulation
(25a)–(25e). If no additional constraints are enforced (as
(25b)) then the optimal solution of (30a)–(30e) is trivial. For
each demand R ∈ D, the optimal tra
c 	� = 	∗ is the same

and realized on the cheapest path @(R) ∈ P̂� with respect to
the cost i(R) = ∑�∈�(�) V(_). Clearly

	∗ = ?∑�∈D i (R) . (31)

When the PF objective,

min ∑
�∈D

log 	�, (32)

instead of the MMF objective (30a) is considered, then the
optimal solution is as follows (see [7, 68, 102]):

	∗� = ?i (R) |D| , R ∈ D, (33)

so the total optimal �ow	∗� allocated to demandR is inversely
proportional to the cost of its shortest path (and allocated to
this path).
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More complicated optimization problems including link
dimensioning were treated in [7, Ch. 13] (see also [103, 104]).
For the MMF optimization problems related to wireless
networks (in particular, to Wireless Mesh Networks) the
reader can refer to [105].

3.4. Extended Fairness Objectives. While the MMF and PF
objectives are the most popular in the networking literature
related to fairness, there are also attempts to �nd various
fair solutions taking advantages of the multicriteria fair
optimization models presented in Section 2.3. In particular,
the OWA aggregation (18) was applied to the network
dimensioning problem for elastic tra
c [95] as well as to the
�ow optimization in wireless mesh networks [106].

Example 2. Consider the simple network from Example 1
composed of two links in series depicted in Figure 6. 	ere
are three demand pairs (R1 = {V1, V2}, R2 = {V2, V3}, R3 ={V1, V3}) generating elastic tra
c, where	 = (	1, 	2, 	3) are
the path-�ows (bandwidth) assigned to demands R1, R2, R3,
respectively. Note that the ordered OWA maximization with
decreasing weights O = (0.4, 0.35, 0.25) results in bandwidth
allocation 	1 = 1.5, 	2 = 1.5, 	3 = 0, thus, representing
themaximum throughput.OrderedOWAmaximizationwith
decreasing weights O = (0.6, 0.3, 0.1) results in bandwidth
allocation 	1 = 0.75, 	2 = 0.75, 	3 = 0.75 which is the
MMF solution.

It was demonstrated that allocations representing the
classical fairness concepts (MMF and PF) were easy to
achieve [95]. On the other hand, in order to �nd a larger
variety of new compromise solutions it was necessary to
incorporate some scaling techniques originating from the ref-
erence pointmethodology. Actually it is a common�awof the
weighting approaches that they provide poor controllability
of the preference modeling process and in the case of multi-
criteria problems with discrete (or more general nonconvex)
feasible sets, they may fail to identify several compromise
e
cient solutions. In standard multicriteria optimization,
good controllability can be achieved with the direct use of
the reference point methodology [107] based on reservation
and aspiration levels for each of the activities.	e reservation
levels are the required activity levels, whereas the aspiration
levels are the desired levels, commonly referred to as refer-
ence points. 	e reference point methodology applied to the
cumulated ordered outcomes (16) was tested on the problem
of network dimensioning with elastic tra
c [96, 108]. 	e
tests con�rmed the theoretical advantages of the method.
Various (compromise) fair solutions for both continuous and
modular problems could be easily generated.

Multiple criteria model of the mean shortfalls to all
possible targets (22) when applied to network dimensioning
problem for elastic tra
c results in a model with criteria
that measure actual network throughput for various levels
(targets) of �ows [109]. 	ereby, the criteria can easily be
introduced into the model. Experiments with the reference
point methodology applied to the multiple target throughput
model con�rmed the theoretical advantages of the method.
Various (compromise) fair solutions were easily generated

despite the fact that the single path problem (discrete one)
was analyzed.

Both the multiple criteria models with the lexicographic
optimization of directly de�ned arti�cial criteria introduced
with some auxiliary variables and linear inequalities provides
corresponding implementations for the MMF optimization
independently from the problem structure. 	e approaches
guarantee the exact MMF solution for a complete set of crite-
ria and their applicability is limited to rather small networks.
In [94] there were developed some simpli�ed sequential
approaches with reduced number of criteria, thus, generating
e�ectively approximations to the MMF solutions. Compu-
tational analysis on the MMF single-path network dimen-
sioning problems showed the approximated models allowed
to solve within a minute problems for networks with 30
nodes and 50 links providing very small approximation
errors, thus, suggesting possible usage in many practical
applications.

3.5. Fairness on the Session Level. One of themajor challenges
of the Internet is to provide high performance of data trans-
port. Basically, the problem is how to obtain high utilization
of network resources and to ensure required quality of
communications services. 	ose two goals result in a poten-
tial trade-o� as when the amount of data sent through the
network is too high, links become overloaded and the quality
of service deteriorates.

	e overload occurs when the amount of data loading the
outgoing link of the Internet router is higher than the one that
can actually be carried. When that happens the link’s queue
of packets becomes longer, and potentially the queue’s bu�er
�nally over�ows. 	at causes the increase of packet delay
and delay variations and may also cause packet loss. Both
phenomena are perceived by the pair of communicating
Internet applications as low quality of data transport.

Let S be the set of Internet sessions, which are packet
�ows between pairs of Internet applications. Let functionY : S k→ R+ de�ne the average packet length of the session
expressed in bits, and for each - ∈ S, let variableW� denote the
packet rate of session -. 	en, for each - ∈ S, W�Y(-) is an
average bit-rate of session -.

Let E be the set of network links, and for each - ∈ S, let
E(-) denote the set of links that are used by session -, and for
each _ ∈ E, let S(_) denote the set of sessions that use link_. 	en the load of link _ ∈ E is equal to ∑�∈S(�) W�Y(-). Let
function a : E k→ R+ denote the capacity (the bit-rate) of the
link. 	e following constraint expresses the fact that the total
load of any link cannot be greater than the link’s capacity.
Consider

∑
�∈S(�)

W�Y (-) ≤ a (_) , _ ∈ E. (34)

	e overload of the Internet’s link is a very common situation.
	e links can become overloaded for a number of reasons:
when the amount of tra
c entering the network becomes
signi�cantly larger, when links lose some capacity due to fail-
ures, or when they fail completely and the packet �ows must
be rerouted to some other links that do not have su
cient
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capacity. 	us, solving the trade-o� between utilization and
quality of service requires e�ective mechanisms of handling
overload. 	at is, the place when the concept of fairness is
used.

	e data between a pair of applications in the Internet
can be conveyed using one of two transport protocols, user
datagram protocol (UDP) and transport control protocol
(TCP).While theUDP is a connectionless data transport pro-
tocol, where each data packet is sent individually and there
is no interaction between the sending and the receiving
application, the TCP protocol is connection-oriented, which
means that packets are sent within a connection that must be
organized between the sending and the receiving application
before the data can be sent, and can be torn down only a�er
the last packet has been delivered. Due to the connection-
oriented character of the TCP �ows there is an association
between the two applications which allows them to control
the packet rate.

With the �ow control mechanisms of the TCP protocol
the rate at which packets are sent is adapted to network con-
ditions: if the amount of available bandwidth is large, packet
rate is being increased, and when the links become over-
loaded the rate is decreased, thus, reducing the overload.	e
packet rate of the TCP session increases every time the sender
application receives an acknowledgement that a packet has
reached the destination, and the rate is decreased every
time a packet is lost. While the increase is linear, the decrease
is geometrical, which helps to ease congestion quickly. In a
reactive scenario, the packet is lost when the packet bu�er is
saturated. In the proactive scenario, to avoid uncontrolled
congestion, the random early discard (RED) mechanism of
the router can be activated that discards randomly selected
packets. However, in both cases a random packet is lost and
a randomly selected session is a�ected.

Arguably, the higher the packet rate of a session the higher
the probability that packets of the session will be dropped
and the packet rate of the session will be reduced. 	us, if a
number of sessions have their packet rate reduced due to
congestion of a given link, none of the sessions is supposed to
generate packets at an average rate higher than the other
sessions. For each _ ∈ E, let variable �� denote the maximum
packet rate on link _. Noticeably, there is some maximum
rate at which a particular application can generate packets; let
function ^ : S k→ R+ de�ne the maximum achievable packet
rate of the session. 	us, the packet rate of the session must,
potentially, satisfy the following condition:

W� = min {^ (-) , ��} , _ ∈ E, - ∈ S (_) . (35)

Due to (35) the bandwidth of a single link is shared in a fair
way. If a link is saturated, every session - attains the same
packet rate ��, unless that rate is higher than the maximum
achievable rate ^(-) of that session. 	us, the session cannot
have packet rate higher than any other session unless the
other session’s maximum achievable rate is lower than ��.
And only if a link is not saturated, every session attains its
maximum achievable packet rate. However, since in general
sessions use multiple network links, on a given link a session
can in fact have a lower packet rate than other sessions that

use that particular link. 	at results from the fact that the
packet rate of the session can be reduced even more due to
congestion on some other link. 	us, condition (35) must
actually be replaced with the following one:

W� = min{^ (-) , min
�∈E(�)

��} , - ∈ S. (36)

	at condition can be interpreted as follows. For any session- ∈ S the session’s packet rate W� attempts to approach the
maximum achievable packet rate ^(-). However, on any link_ ∈ E(-), that is, used by session -, the value of W� cannot
exceed the maximal packet rate ��, that is, attained by the
sessions that use that particular link.	us, the session’s packet
rate W� can only attain the minimal of those rates min�∈E(�)��
unless that minimal rate is still higher than ^(-), in that case
the packet rate of - just approaches ^(-).

Considering conditions (34) and (36), it can now be
seen that the �ow control mechanism of the TCP protocol
maximizes the vector of the packet rates of individual sessionsW ≡ (W� : - ∈ S) in a fair way.Consider

lex max Θ (W) , (37a)

W� ≤ ^ (-) , - ∈ S, (37b)

∑
�∈S(�)

W�Y (-) ≤ a (_) , _ ∈ E, (37c)

W� ∈ R+, - ∈ S. (37d)

	e max-min fairness property of the packet rates vector
means that the packet rates of the data sessions are increased
up to their maximum values unless links become overloaded,
and in the case of a link overload, the data sessions on the link
decrease their rate to the common highest feasible value.	is
type of behaviour appears to have far reaching consequences
for solving the problem of packet network design that carry
elastic tra
c when the aim of the design is controlling the
quality of services when the capacity of links changes [110].

3.6. Content DistributionNetworks. Bandwidth allocation for
content distribution through networks composed of multiple
tree topologies with directed links and a server at the root of
each tree is another problemof fair network optimization [111,
112] and [5, Ch. 6]. Content distribution over networks has
become increasingly popular. It may be related, for instance,
to a video-on-demand application where multiple programs
can be broadcasted from each server. Each server broadcasts
along a tree topology, where these trees may share links and
each link has a limited bandwidth capacity. Figure 7 presents
a network with two trees and servers at the root nodes 1 and 2.
	e server at node 1 can broadcast programs 1, 2, and 3 and
the server at node 2 can broadcast programs 4, 5, and 6.
	e numbers adjacent to the links are the link capacities and
the numbers adjacent to the nodes are the programs reque-
sted; for example, links (1, 3) have a capacity of 100Gbs and
programs 2, 3, and 5 are requested at node 7.

	ese models are fundamentally di�erent from multi-
commodity network �owmodels since they do not have �ow
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Figure 7: Content distribution from two servers.

conservation constraints as each link carries at most one
copy of a program. On the other hand, the models have tree-
like ordering constraints for each program as the allocated
bandwidth for a given program cannot be increased when
moving farther away from the broadcasting server. For each
requested program at any node there is associated a perfor-
mance function that represents satisfaction from the video-
on-demand service and depends on the bandwidth available
for that program on the incoming link to the node. Fair opti-
mization with respect to all nodes and programs requested
performance values is needed. In [111] the MMF model is
introduced and a lexicographic max-min algorithm is pre-
sented. As shown in [113] the algorithm can be implemented
in a distributed mode where most of the computations are
done independently and in parallel at all nodes, while some
information is exchanged among the nodes. More complex
content distribution models and corresponding algorithms
are discussed in [114–116].

3.7. Fairness Issues in the IP Tra
c. In its beginnings, the
Internet su�ered from severe de�ciencies due to congestion.
	e answer came from new features added to TCP, namely,
employing control admission and additive increase/multi-
plicative decrease algorithms that led to congestion avoidance
and fair rate allocation.	emain idea behind was putting the
control tra
c mechanisms at the end-nodes and combining
both packet scheduling with admission control which will
lead to fair bandwidth sharing. Plenty of studies have been
done on the behavior of the network when such congestion
avoidance algorithms are employed. 	ey have shown that
this leads to some kind of max-min fair sharing in very
simpli�ed networks [117] and to proportional fairness for
large networks ([67] etc). 	is di�erence is mainly due to
end-to-end delays which can be signi�cantly di�erent in large
scale networks. At this point, an important topic is how to get
close to maximal throughput while keeping a high level of
fairness. In [118] there are investigated the performances of
networks handling elastic �ows (in contrast to stream �ows
they adjust their rate to the available bandwidth). It is

shown that in linear networks under random tra
c pat-
terns, ensuringmax-min fairness results in better throughput
performances comparing to proportional fairness while the
converse holds for persistent �ows. All these works are
situated at the session level and refer to tra
c demand as the
product of the �ow arrival rate with the average �ow size. At
this stage, a more global solution would come by combining
session level decisions (see Section 3.5) with higher level
decisions as routing and load balancing. Hence, relations of
rate adaptation and congestion control in TCP networks with
routing and network design have been the subject of several
works over the last decade. Among them, somework has been
devoted to the static routing case (connections and corre-
sponding routing paths are given) where source rates are
subject to changes. In [12] there is presented the water-�lling
algorithm for achieving a MMF distribution of resources to
connections for the �xed single path routing case (where each
connection is associated with a particular �xed path). 	e
main idea behind the algorithm is to uniformly increase the
individual allocations of connections until one or more link
becomes congested. 	en the connections that cannot be
improved are removed from the network together with the
capacities they occupy; the process continues until all con-
nections are removed. In [119], the problem of MMF
bandwidth-sharing among elastic tra
c connections when
routing is not �xed has been considered in an o�ine context.
	e proposed iterative algorithm can be seen as an extension
of the water-�lling algorithm given in [12] except that the
routing is not �xed and at each iteration a new routing
is computed while the previously saturated links and the
corresponding fair sharing remain �xed until the end of the
algorithm.

Load balancing is in a way a problem dual to MMF
routing (seeTAP/MMF in Section 3.2) as one focuses onmin-
max fair load sharing instead of max-min fair bandwidth
allocation to demands. Achieving load-balancing in a given
network consists in distributing the demand tra
c (load)
fairly among the network links while satisfying a given set of
tra
c constraints. Fair load sharing means that not only
the maximal load among links is minimized, but rather that
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the sorted (in the nonincreasing order) vector of link loads
is minimized lexicographically like in formulation (28a)–
(28d). In contrast to the max-min fair routing problem like
TAP/MMF, the link load-balancing problem assures fairness
in the min-max sense.	e problem arises in communication
networks when the operator needs to de�ne routing with
respect to a given tra
c demandmatrix such that the network
load is fairly distributed among the network links. 	e
problem can be easily modeled and solved by conventional
methods in LP using MMF properties for linear link loads.
	is approach can be applied to more general link load func-
tions (especially nonlinear, frequently used in telecommuni-
cations). In practice the load/delay functions considered by
network operators are usually nonlinear. A well-known
load/delay function, called the Kleinrock function, is given
by ��/(d� − ��). It can be shown that any routing achieving
min-max fairness for the relative load function (i.e., ��/d�)
achieves also min-max fair load for the Kleinrock function.
	is idea is generalized for general link load functions as(4 − 1)−1(1 − ��/d�)1−	 and (4 − 1)−1(�� − d�)1−	, where ��
and d� give, respectively, the �ow and capacity on link _ and4 is a given constant, see [120] for further details.

	e problem of fairness is more complex when dealing
with wireless networks and has been addressed in a number
of papers during the last decade. A range of problems can be
distinguisheddepending on the network characteristics, from
wireless mesh networks, ad-hoc networks, sensor networks,
random-access networks, opportunistic ones, and so forth.
As for conventional wired networks, a fundamental problem
in wireless networks is to estimate their throughput capacity
and then to develop protocols to utilize the network close to
this capacity without causing congestion in the network and
unfairness. 	en the �rst idea that comes in mind to
address the fairness problem in wireless networks is the
classic approach to manage congestion inherited from wired
networks.	en, nodes/�ows will have preassigned fair shares
and applying admission control would allow ensuring fair
sharing. In wireless networks this cannot be applied because
of interference, which constrains the set of links that can
transmit simultaneously, while in ad-hoc networks nodes and
routersmobility renders the problem evenmore complicated.
In WSN (wireless sensor networks) the fairness problem
becomes on one hand closely connected to fair data gather-
ing, that is, serving the sources equitably, and on the other
hand it is connected to ensuring aware energy consuming
because of the reduced energy capacity of nodes in such
networks. 	en the main constraint that one has to deal with
is the so-calledMAC (medium access control) constraint. Let
us recall brie�y what MAC constraint is; we start by its
de�nition. Two basic de�nitions can be distinguished: the
protocol and the physical one. 	e protocol de�nition of
interference assumes that two links, which are less than P
(generally P is taken 2) hops away from each other, interfere
potentially and cannot be scheduled in the same time slot.	e
indicated number of hops refers to the number of hops
between the sender nodes of these links. On the other hand,
the physical de�nition is based on the signal-to-interference
and noise ratio (SINR) constraint where the transmission
links that do not satisfy the SINR constraint cannot be

scheduled simultaneously. Hence, this constraint leads to new
connected problems namely synchronization and scheduling.
Given the above,most of the work related to these strategies is
dedicated to scheduling. 	e basic version of a time slot
allocation problem aims to �nd a slot allocation for all nodes
in the networkwithminimal number of slots such that P hops
neighboring nodes are not allocated to the same time slot.	e
respective optimization problem is the chromatic graph one
which aims to minimize the number of colors for coloring
the nodes such that two neighbor elements do not use the
same color.	e problem becomesmore di
cult if one desires
to achieve fairness between connections or sources. All this
yields the max-min fair scheduling. In [121] the authors con-
sider scheduling policies formax-min fair allocation of band-
width in wireless ad-hoc networks. 	ey formalize the max-
min fair objective under wireless scheduling constraints and
propose a fair scheduling which assigns dynamic weights to
the �ows such that the weights depend on the congestion in
the neighborhood and schedule the �ows which constitute
a maximum weighted matching. While in [122], the authors
propose a quite di�erent alternative.	eir method is inspired
from per-�ow queuing in wired networks and consists of a
probabilistic packet scheduling scheme achieving max-min
fairness without changing the existing IEEE 802.11 medium
access control protocol.When awireless node is ready to send
a packet, the packet scheduler of the node is likely to select the
queue whose number of packets sent in a certain time is the
smallest and when no packet is available, the transmission is
delayed by a �xed duration. In [123] the authors investigate
simple queuing models for random tra
c and discuss their
interest for both wired and wireless transmissions.

With respect toWSN, the rate allocation problem for data
aggregation in wireless sensor networks can be posed with
two objectives: the �rst is maximizing the minimum (max-
min) lifetime of an aggregation cluster and the second achiev-
ing fairness among all data sources.	e two objectives cannot
be maximized simultaneously and an approach would be
to solve recursively �rst the max-min lifetime for the aggre-
gation cluster, and next the fairness problem. In [124] the
authors use this approach and formulate the problem ofmax-
imizing fairness among all data sources under a given max-
min lifetime, as a convex optimization problem. Next, they
compute the optimal rate allocations iteratively by a lexico-
graphic method. In a recent paper [125], the authors address
the problem of scheduling MMF link transmissions in
wireless sensor networks, jointly with transmission power
assignment. Given a set of concurrently transmitting links,
the considered optimization problem seeks for transmission
power levels at the nodes so that the SINR values of active
links satisfy themax-min fairness property. By guaranteeing a
fair transmission medium (in terms of SINR), other network
requirements, such as the scheduling length, the throughput
(directly dependent on the number of concurrent links in a
time slot), and the energy savings (no collisions and retrans-
missions), can be directly controlled.

4. Location and Allocation Problems

4.1. Inequality Measures. 	e spatial distribution of public
goods and services is in�uenced by facility location decisions
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and the issue of equity (or fairness) is important in many
location decisions. In particular, various public facilities (or
public service delivery systems) like schools, libraries, and
health-service centers, require some spatial equity while
making location-allocation decisions [126, 127]

	e generic discrete location problem may be stated as
follows. 	ere is given a set of � clients (service recipients).
Each client is represented by a speci�c point. 	ere is also
given a set of o potential locations for the facilities and the
number (or the maximal number) @ of facilities to be located
is given (@ ≤ o). 	is means discrete location problems or
network location problems with possible locations restricted
to some subsets of the network vertices [128]. 	e main
decisions to be made can be described with the binary
variables W� (* = 1, 2, . . . , o) equal to 1 if location * is to
be used and equal to 0 otherwise. To meet the problem
requirements, the decision variables W� have to satisfy the
following constraints:

�∑
�=1

W� = @, W� ∈ {0, 1} , for * = 1, . . . , o. (38)

where the equation is replaced with the inequality (≤) if@ speci�es the maximal number of facilities to be located.
Further the allocation decisions are represented by the
additional variables W��� (� = 1, 2, . . . , �; * = 1, 2, . . . , o) equal
to 1 if location * is used to service client � and equal to
0 otherwise. 	e allocation variables have to satisfy the
following constraints:

�∑
�=1

W��� = 1, for � = 1, . . . , �.
W��� ≤ W�, for � = 1, . . . , �, * = 1, . . . , o.

W��� ∈ {0, 1} , for � = 1, . . . , �, * = 1, . . . , o.
(39)

In the capacitated location problem the capacities of the
potential facilities are given which implies some additional
constraints.

Let R�� ≥ 0 (� = 1, 2, . . . , �; * = 1, 2, . . . , o) denote the
distance between client � and location * (travel e�ort or other
e�ect of allocation client � to location *). For the standard
uncapacitated location problem it is assumed that all the
potential facilities provide the same type of service and each
client is serviced by the nearest located facility.	e individual
objective functions then can be expressed in the linear form:

�� (x) = �∑
�=1

R��W���, for � = 1, . . . , �. (40)

	ese linear functions of the allocation variables are applica-
ble for the uncapacitated as well as for the capacitated facility
location problems. In the case of location of desirable facilities
a smaller value of the individual objective function means a
better e�ect (smaller distance).	is remains valid for location
of obnoxious facilities if the distance coe
cients are replaced
with their complements to some large number: R��� = R − R��,

where R > R�� for all � = 1, 2, . . . , � and * = 1, 2, . . . , o.
Generally, replacing the distances with their utility values or
so-called proximity measures, for example, 3�� = exp (−qR��)
[129]. 	erefore, we can assume that each function �� is to be
minimized as stated in the multiple criteria problem [130].

Further, some additional client weights U� > 0 are
included into locationmodel to represent the service demand
(or clients importance). Integer weights can be interpreted
as numbers of unweighted clients located at exactly the same
place. 	e normalized client weights U� = U�/∑��=1 U� for � =1, . . . , � rather than the original quantities U�. In the case of
unweighted problem (all U� = 1), all the normalized weights
are given as U� = 1/�.

Note that constraints (38) take a very simple form of the
binary knapsack problem with all the constraint coe
cients
equal to 1 [131]. Indeed, the location problem may be viewed
as a resource allocation problem on network. It may be
considered as capacities allocation to links from an arti�cial
source to potential locations nodes while �ows are routed
from the source to all client nodes through the the potential
location nodes [19, 20].

Equity is usually quanti�ed with the so-called inequality
measures to be minimized. Inequality measures were pri-
marily studied in economics [57, 76]. 	e simplest inequality
measures are based on the absolute measurement of the
spread of outcomes. Variance is the most commonly used
inequality measure of this type and it was also widely
analyzed within various location models [132, 133]. However,
many various measures have been proposed in the literature
to gauge the level of equity in facility location alternatives
[58], like the mean absolute di�erence also called the Gini’s
mean di�erence [9, 59]. Consider

r(y) = 12
�∑
�=1

�∑
�=1

sssss�� − ��sssss U�U�, (41)

or like the mean absolute deviation

MAD (y) = �∑
�=1

ssss�� − � (y)ssss U�. (42)

In economics one usually considers relative inequal-
ity measures normalized by mean outcome. Among many
inequality measures perhaps the most commonly accepted is
the Gini index (Lorenz measure), r(y)/�(y) a relative mea-
sure of themean absolute di�erence, which has been also ana-
lyzed in the location context [134–136]. One can easily notice
that a direct minimization of typical inequality measures
(especially relative ones) contradicts the minimization of
individual outcomes. As noticed by Erkut [134], it is rather a
common�awof all the relative inequalitymeasures that while
moving away from the clients to be serviced one gets better
values of the measure as the relative distances become closer
to one-another. As an extreme, one may consider an uncon-
strained continuous (single-facility) location problem and
�nd that the facility located at (or near) in�nity will provide
(almost) perfectly equal service (in fact, rather lack of service)
to all the clients. Unfortunately, the same applies to all
dispersion type inequality measures, including the upper
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Figure 8: A network location problem for Example 3.

semideviations. 	is can be illustrated by a simple example
of location problem on network.

Example 3. Consider a single facility location on a (triangu-
lar) network of 3 nodes: two nodes V1 and V2 are close one to
the other R12 = 2, and one remote node V3 with R13 = R23 =100 (see Figure 8). Most of the demand is equally distributed
in V1 and V2. 	at means the normalized values of weights
take values U1 = U2 = (1 − &)/2 and U3 = & with a very small
positive value &. While locating facility at node V1 (or V2) one
gets distance 0 for (1 − &)/2 demand, distance 2 for (1 − &)/2
demand, and large distance 100 for only & demand. However,�(V1) = 1 + 99& and MAD(V1) = (1 − &)(1 + 99&) and in
terms of MAD minimization it is beaten by remote location
V3. Indeed, locating facility at node V3 one gets distance 0 for
only & demand while getting large distance 100 for (1 − &)
demand, thus,muchworser than for V1. Nevertheless, �(V3) =100(1−&) andMAD(V3) = 200&(1−&). Hence, for small values
of &: MAD(V3) < MAD(V1). Actually, for su
ciently small
values & (e.g., 0 < & < 1/200) location V3 is a global MAD
minimizer on the entire network (when allowing location on
edges in addition to the nodes).

For typical inequality measures a simpli�ed bicriteria
mean-equity model is computationally very attractive since
both the criteria are well de�ned directly for the weighted
location problem without necessity of its disaggregation but
it may result in solutions which are ine
cient. It turns out
that, under the assumption of bounded trade-o�s, the bicri-
teria mean-equity approaches for selected absolute inequality
measures (maximum upper deviation, mean semideviation
or mean absolute di�erence) comply with the rules of
equitable (fair) optimization [9, 137]. In other words, several
inequality measures can be combined with the mean itself
into the optimization criteria generalizing the concept of the
worst outcome and generating equitably consistent under-
achievement measures. Simple su
cient conditions for
inequality measures to keep this consistency property have
been introduced in [137].

	is applies, in particular, to themean absolute di�erence
(41) generating a proper fair solution concept:

�	� (y) = � (y) + 4r (y)
= (1 − 4) �∑

�=1
��U�

+ 4 �∑
�=1

�∑
�=1

max {��, ��}U�U�,
(43)

for any 0 < 4 ≤ 1. Similar result is valid for themean absolute
deviation (42) but not for the variance [24, 137].

4.2. Lexicographic Minimax and Ordered Medians. Although
minimization of the inequality measures contradicts the
minimization of individual outcomes, the inequality mini-
mization itself can be consistently incorporated into loca-
tional models. 	e notion of equitable multiple criteria
optimization [63] introduces the preference structure that
complies with both the outcomes minimization and with the
inequality minimization rules [57, 76]. 	e equitable opti-
mization is well suited for the locational analysis [9, 137, 138].
	e equitably (fair) e
ciencymodels presented in Section 2.3
apply also to the minimized outcomes, as commonly con-
sidered in location-allocation problems. 	e equitable min-
imization can be modeled with the standard multiple criteria
optimization applied to the cumulative ordered outcomes,
expressing, respectively, the worst outcome, the total of the
two worst outcomes, the total of the three worst outcomes,
and so forth. However, in the case of minimization the worst
outcome means the largest rather than the smallest. Hence,
the corresponding model takes form

min {(K̂1 (f (x)) , K̂2 (f (x)) , . . . , K̂� (f (x))) : x ∈ �} , (44)

where K̂�(y) = ∑��=�−�+1 K�(y). 	e minimax, called the center

solution concept, represents only the �rst criterion, while the
total outcome criterion, called the median solution concept,
is focused on the last criterion. Several cent-dian solution
concepts combining these two criteria have been considered
(see [139] and references therein). For unweighted location
problems, a compromise solution concept was introduced by
Slater [140] as the so-called P-centrumwhere the sum of the P
largest distances is minimized. Consistently with typical dis-
tribution characteristics, 	e P-centrum concept is restricted
to unweighted problems. Although some weights are used to
scale the speci�c distances [141] (which may be considered
as a de�nition of distance dependent outcomes), the demand
weights as de�ning the distribution of clients are not con-
sidered. Ogryczak and Zawadzki [142] introduced a para-
metric generalization of the P-centrum concept applied to
weighted problems by taking into account the portion of
demand related to the largest outcomes (distances) rather
than the speci�c number of worst outcomes. Namely, for a
speci�ed portion q of demand the entire q portion (quantile)
of the largest outcomes is taken into account and their average
is considered as the (worst) conditional q-mean outcome.



18 Journal of Applied Mathematics

According to this de�nition the concept of conditional
median is based on averaging restricted to the portion of the
worst outcomes. For the unweighted location problems andq = P/�, the conditional q-mean represents the average of
the P largest outcomes, thus, modeling the P-centrum solu-
tion concept.

However, in order to guarantee the equitable e
ciency
of a selected location pattern one needs to take into account
all the ordered outcomes (all the criteria in (44). 	e entire
multiple criteria ordered model is rich with various equitably
e
cient solution concepts [64, 142, 143]. For the weighted
sum aggregation one gets the OWA aggregation ∑��=1 O�K�(y)
(18), called the ordered median solution concept [144]. If
the OWA weights are strictly increasing and positive, that is0 < O1 < O2 < ⋅ ⋅ ⋅ < O�−1 < O�, then each optimal
solution of the OWA problem (18) is an equitably (fairly)
e
cient location pattern. Although the cumulated ordered
outcomes can be expressed with linear programming models
[85], these approaches requires the disaggregation of location
problemwith the demandweightswhich usually dramatically
increases the problem size.

When applying the lexicographic optimization to prob-
lem (44),

lex min {(K̂1 (f (x)) , K̂2 (f (x)) , . . . , K̂� (f (x))) : x ∈ �} ,
(45)

one gets the lexicographic minimax solution concept, called
also lexicographic center [42] as a lexicographic re�nement
of the center solution concept. 	e lexicographic minimax
location may be converted to a lexicographic minimization
objective by constructing counting functions that count, for
each possible distinct outcome, the number of occurrences
of the speci�ed outcome. It is quite simple to construct such
counting functions for the discrete location problem (see
[42, 48] or [5, Ch. 7.2]).

	e lexicographic maximin approach can be applied to
various location problems.	e sensor location problem is an
extension of the equitable facility location problem [5, Ch.
7.3] and [145]. Consider a set u of nodes that need to be
monitored as protection against undesired intrusion and a
set � of nodes where sensors can be placed. Let �� be the
subset of nodes in � that can monitor node * ∈ u, and
let v be the number of available sensors that can be placed
among nodes in �. 	e protection level provided to node *
is represented by the number of sensors that monitor node *.
	e sought a�er solution is the lexicographic maximin solu-
tionwith respect to the number of sensors that protects nodes* ∈ u. Figure 9 presents a problem with four locations that
need to be monitored (u = {2, 3, 4, 5}) and four locations
where sensors can be placed (� = {1, 3, 4, 5}). 	e links that
connect the nodes represent subsets ��. Two sensors can be
placed among the nodes in � (v = 2).

1

3

4

5

2

3

4

5

Candidate sensor locations

Sensitive locations

M N
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Figure 9: 	e sensor location problem.

	e formulation of this problem is as follows:

lex max Θ (	) = (	�1 , 	�2 , . . . , 	��) (46a)

s.t. 	�1 ≤ 	�2 ≤ ⋅ ⋅ ⋅ ≤ 	�� , (46b)

	� = ∑
�∈��

W�, ∀* ∈ u,
(46c)

∑
�∈�

W� = v, (46d)

W� ∈ {0, 1} , ∀� ∈ �. (46e)

In Figure 9, a unique optimal solution has sensors at nodes 1
and 5 implying that nodes 2, 3, and 5 are monitored by both
sensors while node 4 is monitored by only one sensor. Note
that, in general, there may be multiple optimal solution. 	is
problem can be solved by constructing counting functions as
described in Section 2.4. However, whereas for the equitable
facility location problem [42] the counting function for each
location * is represented by a single constraint, here the
representation of counting functions adds a large number of
variables and constraints into the problem.Now, suppose that
the probability of detecting an intruder at node * from a
sensor at node � is @�� > 0 for � ∈ ��. 	en the protection
level provided to * is the probability that an intruder will
be detected at node * by at least one sensor from among
those placed in the set ��. Although the formulation of this
case is similar to the formulation above, the number of
possible distinct outcomes can be much larger. As discussed
in Section 2.4, this would necessitate employing a di�erent
solution method that is not based on counting functions (see
[145]).

5. Complexity Issues

Essentially, fair optimization models are based on concave
piecewise linear criteria possibly replacing a linear crite-
rion of the total output maximization. Such criteria, imple-
mentable with auxiliary linear inequalities, in most cases
do not signi�cantly a�ect the complexity of the original
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optimization problems. In particular, problems represented
by linear programming remain linear programs in their fair
optimization versions (single LP problem in the case of
fair OWA aggregations, or a sequence of LP problems for
the MMF models). Certainly, some specialized algorithms
taking into account the structure of the problem in hand
can be more e
cient than the general linear programming
techniques. Consider resource allocation problem (23a)–
(23d) in Section 2.4 which have a lexicographic maximin
objective. For certain performance functions (e.g., linear and
exponential functions) a lexicographic maximin solution is
obtained by manipulations of closed-form expressions in a
polynomial time. As presented in [5, Ch. 3.3], depending on
the algorithm employed, the computational e�ort for solving
(23a)–(23d) is I(�o) or I(�2o) where � is the number of
activities in the set � and o is the number of resources in the
set X. Moreover, the same complexity is achieved for some
content distribution problems in tree networks described
in Section 3.6. With respect to communication networks
applications, a well-known example of such a specialized
algorithm is the already mentioned water-�lling algorithm
(see Section 3.2). Another example is a special case of the sin-
gle source tra
c allocation problem (also see Section 3.2), for
which Megiddo [146] introduced a polynomial-time MMF
algorithm which applies to splittable (fractional) �ows. As
presented in Section 2.4, there exist simple polynomial time
techniques for solving general convex MMF problems. 	us,
when applied to networks problems, the algorithms do not
depend on any speci�c tra
c routing problem formulation
and is su
ciently general to be applied to a broad class of
tra
c routing and capacity allocation problems.

Generally, MMF optimization problems on convex
attainable sets are characterized by polynomial complexity
[92]. Polynomial algorithms may be developed for various
speci�c forms of load balancing problems. For instance, in
[147] a polynomial algorithm to determine theMMF optimal
bandwidth allocation in order to satisfy the communication
needs between two private networks. 	e algorithm is guar-
anteed to converge in �nite number of steps, and for linear
costs its complexity is I(|V|5).

Nonconvex attainable sets usually results in uw-hard
complexity of the corresponding fair optimization problems.
In the network environment this is the case of single-
path �ows (unsplittable �ows). In particular, a single-source
multiple-sink demand MMF optimization of single-path
�ows in a directed network was proven uw-hard in [148].
Nilsson [149] generalized this result showing that general
MMFunsplittable-�ow problems on undirected networks areuw-hard.	is applies to the case when each demandmay use
any path as well as to the case when each demand may use
one path from a prede�ned list. Actually, it is proven there
that in both cases obtaining just the �rst entry of the sorted
allocation vector (the standardmaximin) isuw-hard in itself.
Observe that this shows that all corresponding fairness
optimization models are uw-hard as they must take into
account that criterion. Single-path optimization problems
remain uw-hard also when fairness is implemented as a
constraint rather than a criterion. Amaldi et al. [150] showed
that the Max-	roughput Single-Path Network Routing sub-
ject to MMF �ow allocation is uw-hard even with equal

(unit) capacities for all links. Nilsson [149] has also shown
than nonconvexity introduced by modular �ows (granular)
causes that even splittable tra
c allocation problems becomeuw-hard. 	erefore, there is an emerging need to develop
approximate or heuristic algorithms for such problems. Early
results in this area show that several communication network
problems with PF or OWA fairness criteria can be e�ectively
handled by meta-heuristic approaches [80, 106, 151].

In location and allocation problems the general fair-
ness (equitable) models may be viewed as the so-called
ordered median solution concepts, corresponding to the
OWA criterion with monotonic weights. Such a criterion
may be implementedwith simple auxiliary linear inequalities.
Nevertheless, even standard (median or center) multifacility
location problems on general networks are usually uw-hard
and the same remains valid for the orderedmedian problems.
For tree networks, however, polynomial time algorithms
exist. Dynamic programming algorithm for the ordered
median problem presented in [152] has time complexity ofI(@�8) for the general problem, and just I(@�4) for the
node restricted problem. Polynomial algorithms exist also for
the single facility location ordered median problems [153]

with complexity I(�3log2�) for trees and I(|E|�3log2�)
for general networks.

In this survey we have not discussed in detail fair
optimization in connection to problems which can be related
to abstract networks or analyzed with some networks. An
important wide group of such problems is related to job-shop
scheduling. Most approaches for the job-shop scheduling
problem deal with the makespan criterion, that is, the
maximum completion time of all jobs. Still, there are various
criteria that consider the due dates of jobs, and aim at
minimizing the tardiness of jobs or the fact that jobs are late,
that is, not completed before their due dates. Actually, simple
aggregations of a number of such uniform criteria are com-
monly applied. Each single criterion applies to one scheduling
object like job or a�ected agent, and a need for aggregations
providing fairness arises. Note that any fair aggregation is
strictly increasing, thus, satisfying the condition of the so-
called regular scheduling criterion (i.e., it is an increasing
function of the completion times of the jobs, i.e., it is always
optimal to start and complete jobs as early as possible).
	e job-shop scheduling problems with regular criteria are
well studied. For the nonpreemptive two machine job-shop
scheduling problem with a �xed number of jobs any regular
criterion can be solved in polynomial time [154]. Generally,
the o-job�-machine job-shop problembelongs to the class ofuw-hard problems [155–157] though there are exceptions for
speci�c problems. Nevertheless, generic e
cient approaches
are available for approximate solving the job-shop scheduling
problem with regular criteria [158]. Importance of fairness
issues has been recently recognized in just-in time sequencing
problems [13] in apportionment concepts [76, 159]. Very few
fair optimization approaches have been presented to job-shop
scheduling, although already in 1989 such approaches were
considered in [160]. Speci�cally, a lexicographic minimax
objective was analyzed for the production smoothness of
multiple feeder shops that produce components for custom-
made products assembled at a �nal assembly shop. Finally,
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we mention that the fair dominance rules were used in a
multiobjective method to solve reentrant hybrid �ow shop
scheduling problem [161].

6. Concluding Remarks

In systemswhich servemany entities there is a need to respect
some fairness rules. Extensive progress in fair optimization
methodology, made in the last three decades, resulted in a
variety of techniques enabling to generate fair and e
cient
solutions. In particular, allocation problems related to com-
munication networks and location-allocation problems are
the areas where the fair optimization concepts are extensively
developed and widely applied. Within the networking appli-
cations the lexicographic maximin approach (or the related
max-min fairness approach) is the most widely used. 	e
recent book by Luss [5] exhibits a variety of models with
a lexicographic maximin objective and the corresponding
algorithms in the context of resource allocation. Many of
these models apply to communication network and location
problems. Since this approach may lead to signi�cant losses
in the overall e
ciency (e.g., throughput of the network), the
proportional fairness or other utility based approaches (like4-fairness) are also applied. In location-allocation problems
the fairness understood as equity is usually quanti�ed with
inequality measures to be minimized or treated with mini-
max optimization, called center solution concept.	e latter is
applied especially for emergency facilities location and
recently is considered with a lexicographically regularized
criterion to lexicographic minimax. 	e inequality measures
are scalar indices based on some measurement of the spread
of outcomes. Direct minimization of the inequality measures
contradicts the optimization of individual outcomes, but
several inequality measures can be combined with the mean
outcome into the equitable criteria, thus, allowing to generate
various fair solutions.

Awide variety of fair optimizationmodels and algorithms
supporting e
cient and fair allocation in complex systems
has been introduced and studied in the literature. In most
cases, they can be e�ectively used to generate various fair allo-
cation schemes while taking into account the problem speci-
�cities. Nevertheless, problems with discrete structure lead
to massive computations questioning possibility to achieve
any fair solution in a reasonable time. 	erefore, there is a
need to develop approximate or heuristic algorithms for such
problems.

Frequently, one may be interested in putting into allo-
cation models some additional service importance weights.
	e importance weights are easily incorporated into the
scalar inequality measures [59, 137, 162] or the Jain fairness
index [163] as well as in proportional fairness [7]. 	ere are
also possibilities to introduce importance weights into the
general fair preferences [164] and fair optimizationmodels. In
particular, the OWA aggregations (18) may be extended to
the corresponding Weighted OWA (WOWA) aggregations
[165, 166] which still remain LP computable [167, 168], while
metaheuristic may be also applied [169]. 	e performance

functions in a lexicographic minimax objective functionmay
also include demand weights, cf. [31, 43, 170], and [5, Ch. 1].

Vector fair optimization approaches taking into account
multiattribute outcomes are still underexplored. In resource
allocation context this relates to problems withmultiple types
of resources where the users request di�erent ratios of dif-
ferent resources. A typical example is datacenters processing
jobs with heterogeneous resource requirements on CPU,
memory, network bandwidth, and so forth. Recently pro-
posed (vector) fairness measure [171], called dominant
resource fairness, allocates resources according to max-min
fairness on dominant resource shares. Köppen et al. [172]
have extended the Jain fairness index [61] to the multiat-
tribute case. By means of a leximin procedure, an allocation
can be selected where the smallest among the Jain fairness
indexes takes the largest value. 	is extends the notion of an
allocation where fairness is achieved only for a single alloca-
tion metric. A unifying framework addressing the fairness-
e
ciency tradeo� in the light of multiple types of resources
has been developed in [173].

Another still underexplored area of fair network opti-
mization is related to distributed optimization process and
related models [174]. In some equitable optimization prob-
lems, as shown in [113], the optimization algorithm can
be implemented in a distributed mode where most of the
computations are done independently and in parallel at the
nodes. However, in most cases the distributed approaches to
fairness must be based on game theory rather than on direct
optimization [175–177].
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cient WOWA optimiza-
tion for decision support under risk,” International Journal of
Approximate Reasoning, vol. 50, no. 6, pp. 915–928, 2009.
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