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Abstract
Offering timely support to users in eCoaching systems is a key factor to keep them
engaged. However, coaches usually follow a lot of users, so it is hard for them to
prioritize those with whom they should interact first. Timeliness is especially needed
when health implications might be the consequence of a lack of support. In this paper,
we focus on this last scenario, by considering an eCoaching platform for runners. Our
goal is to provide a coachwith a ranked list of users, according to the support they need.
Moreover, we want to guarantee a fair exposure in the ranking, to make sure that users
of different groups have equal opportunities to get supported. In order to do so, we first
model their performance and running behavior and then present a ranking algorithm
to recommend users to coaches, according to their performance in the last running
session and the quality of the previous ones. We provide measures of fairness that
allow us to assess the exposure of users of different groups in the ranking and propose
a re-ranking algorithm to guarantee a fair exposure. Experiments on data coming from
the previously mentioned platform for runners show the effectiveness of our approach
on standard metrics for ranking quality assessment and its capability to provide a
fair exposure to users. The source code and the preprocessed datasets are available
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at: https://github.com/wiguider/Fair-Performance-based-User-Recommendation-in-
eCoaching-Systems.
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1 Introduction

eCoaching systems support users in achieving their personal goals (Kamphorst 2017).
In the context of health, they assist users in their self-care, sometimes through the
promotion of physical activity routines (Klein et al. 2015). Human coaches have a key
role in keeping users engaged (Boratto et al. 2017). However, keeping users engaged
in the long-term is a challenging task, since a coach usually supports a lot of people.1

In the physical activity domain, this means that after a workout session a coach should
get in touch with the people they support (e.g., via a chat). In this sense, prioritizing
users after their workout is key, in order to get in touch first with those who need more
support (e.g., because they completed a workout with a bad performance). A lack of
prioritization might have consequences that go beyond engagement and might have
direct implications on the health and well-being of users, since those with the worst
performances would have delayed support.

In order to fit our problem in the context of real eCoaching systems that support users
in their physical activity, let us introduce u4fit, the platform considered in this study.
u4fit is an innovative tool for online Personal Training that exploits the knowledge and
the experience to foster users to an active lifestyle.
The u4fit eCoaching platform.

The platform is made up of a web application and amobile client. Themobile appli-
cation uses the devices’ sensors to record training statistics, while the web application
provides athletes with an area where they can manage their workout settings and find
workout session statistics; it also serves as a dashboard for the coaches, so that they
can find all the tools needed to handle requests of tailored workout plans. Figure 1
depicts the typical interaction between an athlete and a coach.

After the athlete chooses a coach and specifies their objectives and current physical
skills, the coach receives the athlete’s data and creates a tailored workout plan and
sends it to the athlete’s app. (See points 1 and 2 in the figure)

When the athlete receives theworkout plan, the virtual personal trainer functionality
of the mobile app guides them to correctly complete the workout, and the mobile app
records training data. (See points 3 and 4 in the figure)

At the end of the workout, the coach receives training statistics and remotely mon-
itors the athlete’s performance, modifies the workout (if needed), and motivates them
by means of the internal messaging system. (See point 5 in the figure).
Our contributions.

In this paper, we propose a recommender system that suggests to a coach the athletes
who performed a workout, according to their performance. User recommendation

1 In the platform considered in this paper, a coach follows on average 21.3 users.
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Fig. 1 User-trainer interaction flow in the u4fit platform

(a.k.a. contact recommendation) is usually intended as the task of suggesting one
user to another, in order for them to connect (Sanz-Cruzado and Castells 2019). In
our domain, an athlete can be recommended to a coach multiple times (even very
frequently, according to the athlete’s training schedule).

Our approach first models athletes according to their workout performance, then
ranks them in ascending order of workout quality, thus suggesting first those with
the worst performances. The choice of introducing a recommender system between
the end of a workout and the support offered by the coach is not only motivated
by the large number of athletes that a coach follows, but also by the complexity of
workout results (aworkout is usually composed by different activities, such as running,
walking, and resting, and each activity is in turn made up of several statistics, like the
speed and covered distance, as illustrated in Fig. 2), which need to be contextualized
with the characteristics of the athletes (e.g., gender, age, and workout objective). With
our proposal, we are offering coaches an initial filtering of the workout results, to
facilitate their work. Hence, in the flow presented in Fig. 1, our solution enriches step
4. Concretely, when the app returns the workout results, it does not only provide the
coach with the fine-grained results of each athlete, but the coach also sees a ranking
of the athletes, thus being able to analyze first the results of those who are supposed
to be more in need. The goal of this recommender system is to spare coaches the
time of analyzing and contextualizing the current workout results with the previous
workout sessions for each athlete and let them directly identify the athletes that need
to be contacted earlier than others (the shrink in the performance of athletes w.r.t. their
usual behavior could be caused by different factors that the coach needs to identify
timely to eventually prevent injuries, over-training, and loss of motivation among
others).
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Fig. 2 Workout results for an athlete. The report is divided into one tab reporting the results of a week. For
each workout session performed in a given week, a summary of it is presented (date, total distance, average
pace, total duration). Then, for each type of activity performed by the athlete, the performance in terms of
distance, pace, and duration is presented

In this work, we model the recommendation problem as a ranking problem, since
our goal is not to predict the quality of a workout with a score (rating), but to provide
the coach with an effective ranking of the athletes to support, in so-called Personalized
Learning to Rank approaches (Amatriain and Basilico 2015). Indeed, predicting the
rating of a workout is not enough to provide a coach with effective information about
the athlete, since the performance in the last workout should be contextualized with
the usual behavior of the athlete, e.g., it would be much more urgent to support an
athlete who does a poor workout but usually does well, than to support an athlete who
performed a poor workout, but always does so (in this second case, a coach expects
that the performance of that athlete would not be optimal). In a nutshell, we model
athletes’ workout performance by contextualizing it to their recent behavior and use
this modeling to provide a personalized ranking of these athletes to the coaches.

As previously mentioned, sensitive attributes of the athletes, such as the gender,
are used by our ranking algorithm. Hence, there might be the risk for the athletes who
belong to a certain gender to receive a disparate treatment, i.e., to receive less timely
support, because of an attribute that should not affect their ranking position. Hence, it
is important that users receive a fair exposure, i.e., that their ranking positions are not
affected by their gender. However, relevance estimation by itself does not guarantee
fairness of exposure (Biega et al. 2018; Singh and Joachims 2018). In order to deal
with this issue, we provide metrics to assess fairness of exposure and an efficient
algorithm to re-rank the unfair lists.

To the best of our knowledge, in the athletic field, no one has ever developed a
system able to support athletes by ranking them in a fair way, helping their human
coaches prioritize who needs the most immediate support.

Although contact recommenders have beenwidely studied in the literature (Guy and
Pizzato 2016; Sanz-Cruzado and Castells 2019), our novelty goes much beyond the
application domain. Indeed, classic contact recommenders are not necessary anymore
after two people connect, while a user connects to a coach through a recommendation
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multiple times (i.e., each time they perform a workout). Later in the paper, we will also
highlight differences at the algorithmic level, which make our problem fundamentally
new.

Specifically, our contributions can be summarized as follows:

– We present an approach to model the performance of the athletes in a running
workout session;

– We introduce an algorithm to rank the athletes according to the support they need
and recommend them to the coach;

– We provide, for the first time in the literature of athletic-related user recommen-
dation, algorithms to provide fairness of exposure in the results;

– We validate our proposal on a real-world dataset collected from an eCoaching
platform on standard metrics to assess ranking quality.

Paper structure. The rest of the paper is structured as follows: Sect. 2 presents related
work. Section 3 presents the preliminaries, to provide foundations to our work. In
Sect. 4, we introduce the dataset and our approach to workout modeling. Section 5
describes the user recommendation algorithm, and in Sect. 6 we present the experi-
mental framework and results. We conclude the paper in Sect. 7.

2 Related work

2.1 Recommender systems for health and wellness

Several studies emphasized the importance of providing users with personalized rec-
ommendations, to support them in having a healthy and active lifestyle, and to design
effective interventions (Smyth 2019; Kroeze et al. 2006; Yom-Tov et al. 2017).

In this context, some studies focused on recommending physical activities tai-
lored to the user profile. Donciu et al. (2011) bring together the social dimension
acquired from a growing community and from expert knowledge defined within an
ontology, to provide users with diet and workout recommendations based on their
profile information, preferences, and declared purpose. In He et al. (2014), He et al.
suggest recommending physical activities to users based on the context (e.g., risk
tolerance, budget, location, weather). Ahire and Khanuja (2015) use semantic web
technology to analyze users’ preferences, build a user profile based on this knowl-
edge, then recommend to users food, and exercise inquiries based on their profile.
Khwaja et al. suggest recommending physical activities to users by considering the
type of personality (Khwaja et al. 2019). Finally, in Nassabi et al. (2014), Nassabi et
al. propose tailoring the recommendations according to the user’s health status, goals,
and preferences.

Other approaches, instead, have focused on making recommendations to users with
specific characteristics. Tseng et al. provide people suffering from chronic diseases
(e.g., metabolic syndrome) with diet and exercise guideline recommendations (Tseng
et al. 2015).Dobrican andZampuniéris (2016) focus on cardiac patientswith the goal of
rehabilitation and, thereby, aims to provide the optimumof both automated andmanual
interventions (McMurray et al. 1787). Santos-Gago et al. suggest making personalized
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recommendations to sportswomen by considering their menstrual cycle (Santos-Gago
et al. 2019). Berndsen et al. (2019), Smyth and Cunningham (2018), Smyth and Cun-
ningham (2018) propose supporting users inmarathon preparation using recommender
systems that suggest to runners a challenging, but achievable goal-time in addition to
a tailored plan based on a pace.

Even though the use of recommender systems for health and wellbeing is an
emerging trend, recent studies put in evidence that having a health care expert-based
intervention is necessary when using these kinds of support (Petsani et al. 2018; Mar-
tin et al. 2016). However, only a few works on technology-based physical activity
promotion have included expert knowledge in their recommendation process.

In our work, we propose recommending athletes to the coaches following them, by
considering athletes’ performance during their last workout sessions and by assessing
the quality of the last workout they have performed. The recommendation process will
be described in detail in Sect. 5.

2.2 Fairness in rankings

Across time, there have beenmany debates on fairness and justice in moral philosophy
that led tomany and different points of view and thus to different definitions of fairness
that are not well-agreed (Binns 2018). Hence, in the Machine Learning field, it is
common to evaluate the fairness of an algorithm using measures that assess howmuch
this algorithm is discriminating against a protected group. Fairness in the field of
Information Retrieval and, more precisely in ranking problems, has been approached
from different perspectives.

Yang and Stoyanovich (2017) suggest assessing fairness in rankings by adopting
measures based on statistical parity, that compute the difference in the distribution of
different groups for different prefixes of the ranking (top-10, top-20, and so on).

Zehlike et al. (2017) face the challenge of generating a trade-off between fairness
and utility in “Top-k ranking” by satisfying two levels of constraints. The first level
consists of making sure that themore relevant items are above less relevant ones within
the same group, while the second consists of a fairness constraint that ensures that
the proportion of protected group items in every prefix of the top-k ranking is above
a minimum threshold.

Several other works proposed different fairness constraints that mainly present par-
ity constraints restricting the fraction of items with each attribute in the ranking (Singh
and Joachims 2018). However, Biega et al. (2018) go beyond such parity constraints
and present a framework that ensures amortized fairness in rankings, based on equity
of attention, by focusing on individual fairness while making exposure proportional
to relevance for all subjects, using an integer linear program to generate a series of
rankings.

In parallel with this work, Singh and Joachims in Singh and Joachims (2018) tackle
the challenge of the fairness of exposure in rankings by suggesting a more generic
framework for finding rankings that maximize the utility for the user while satisfying
a specifiable notion of fairness. The authors propose three fairness constraints:
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1. Demographic Parity enforces that the average exposure of the documents in the
protected and non-protected groups are equal;

2. Disparate Treatment enforces that exposure of the protected and non-protected
groups to be proportional to their average utility;

3. Disparate Impact assures that the click-through rates for the groups as determined
by the exposure and relevance are proportional to their average utility.

As mentioned in Singh and Joachims (2018), there is no single definition of a fair
ranking, but fairness constraints depend on context and application. Indeed, in some
works that presented real-world applications of user recommendation under fairness
constraints, the authors have chosen measures that best fit their domain and context.

In Hutson et al. (2018), Hutson et al. highlighted the issue of bias, discrimination,
and exclusion w.r.t. race during the matchmaking process, in the study and design of
intimate platforms. Also in the people recommendation domain, Geyik et al. (2019)
proposed a framework for ensuring fairness in the hiring domain. More precisely,
they exploited the concepts of equality of opportunity (Hardt et al. 2016) and fairness
through awareness (Dwork et al. 2012) to create fair opportunities for all users seeking a
job in the LinkedIn Talent Search platform. In the context of educational recommender
systems, Marras et al. introduced a novel fairness metric that monitors the equality of
learning opportunity according to a novel set of educational principles and proposed
a re-ranking approach to mitigate unfairness in online educational platforms (Marras
et al. 2021). Algorithmic fairness has also found attention in other domains, such as
speaker verification (Marras et al. 2019; Fenu et al. 2020).

In Sect. 5.4, wewill describe in detail the fairness constraints that best fit the context
of our work.

3 Preliminaries

Here, we present the preliminaries to provide foundations to our work.

3.1 Recommendation scenario

LetU be a set of athletes, and C be a set of coaches, both belonging to the eCoaching
platform. The subscriptions of athletes to the services of the coaches is a binary relation
S ⊆ U×C ; we denote as Sc the athletes that are followed by a coach c ∈ C . Moreover,
we denote as Rw the set of raw features captured by the eCoaching platform during a
workout w ∈ W .

Our first goal is to build a model of each workout, denoted as Mw, which captures
information about the workout performance of an athlete and contextualizes this per-
formance with the previous behavior of the athlete. More formally, we will build a
function f : R → M , which takes the raw features R, to build a new set of features
M . Given the set of workout plans prepared by a coach, which is a binary relation
P ⊆ C × M , we denote as Pc the plans prepared by a coach c ∈ C . Given a coach
c ∈ C our final goal is to build a function, g : Pc × Sc → Sc, which considers the set
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Fig. 3 Ratings distribution in the
dataset. The x axis (Rating)
reports each rating that could be
assigned by a trainer, and y axis
(Count) reports the number of
workout that received that rating

of workouts of the athletes followed by a coach and ranks those athletes according to
their performance. The athletes will be ranked from the best performing to the worst
performing one.

4 Dataset and workout modeling

In this section, we provide the details of the dataset employed in this study, and a first
characterization of the data. Later, we present the pre-processing steps we performed
on the obtained workouts and our approach to model workouts.

Our research is based on a real-world dataset, containing 47,555 activities that
compose 8,486 workouts (our set W ). This means that each workout is composed of
several activities. The workouts were performed by the setU of 412 athletes. Athletes
have a different running experience and the coach is aware of the background of the
athletes they follow.

The coaches in the platform evaluated theseworkouts by assigning a rating (denoted
as rw, where w is the workout who received that rating) ranging between 1 and 5. As
we are dealing with real-world data, we encountered the problem of class imbalance.
Figure 3 represents graphically the distribution of ratings, where “Count” indicates
the number of samples having the corresponding rating. We will deal with these phe-
nomena before the classification process, as described in Sect. 6.1.

Table 1 describes the raw features of each user, workout, and activity in the original
dataset (our set R). While Fig. 4 presents the distribution of activities and workouts.

4.1 Dataset characterization

In this section, we delve into our data, to understand how it is distributed. This charac-
terization also serves as a motivation to our problem, since we provide insights on data
imbalance from multiple perspectives, and conjecture on the possible implications it
can have when ranking workout results.

From the left part of Fig. 4, we can see that almost 70%of the activities in the dataset
compose only the first 3000 workouts (hence, less than one-third of the workouts
comprise 70% of the activities). This means that those workouts are composed of a
lot of activities, which makes it very challenging for coaches to analyze and evaluate
in a short time. For this reason, it would be helpful to provide coaches with a ranking
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Table 1 Description of the raw features

ID Feature Type Description

u1 User ID int ID of the athlete

u2 User Birth
Date

Date Date of birth of the athlete

u3 User Gender string Gender of the athlete (M for male, and F for
female)

u4 User Height int Height of the athlete (in meters)

u5 User Weight int Weight of the athlete (in kg)

w1 Workout ID int ID of the workout

w2 Burnt Calories float Amount of calories burnt during the workout
session

w3 Workout Date date The date when the workout was performed

a1 Activity ID int ID of the activity

a2 Distance
Objective

int The distance goal given by the coach to the
athlete for that activity (in meters)

a3 Covered Dis-
tance

float The distance covered by the athlete when
performing that activity

a4 Speed Objec-
tive

int The speed goal given by the coach to the athlete
for that activity (in km/h)

a5 Average Speed float The average speed performed by the athlete for
that activity (in km/h)

a6 Time Objec-
tive

int The time goal given by the coach to the athlete
for that activity (in seconds)

a7 Time Elapsed float The time performed by the athlete for that
activity (in seconds)

a8 Pace Objective int The pace goal given by the coach to the athlete
for that activity (in min/km)

a9 Average Pace float The average pace performed by the athlete for
that activity (in min/km)

a10 Activity Type string The type of that activity (either walking,
running, or resting)

a11 Activity Label string The label of that activity (either, pace,
distance, time, or unknown, indicating the
type of objective the activity has; the unknown
label is taken by those activities that do not have
an objective)

We use four columns to characterize each feature. Concretely, we report the feature’s ID (the u prefix
denotes a user feature, the w prefix a workout feature, and a an activi t y feature), the feature’s name, the
type with which its values can be represented, and a textual description of it

of users in order to spot immediately the athletes that need timely support. Thus,
by optimizing the coaches’ workload, our system will certainly help increase the
efficiency and effectiveness of eCoaching. Observing the right part of the figure, we
can remark that almost 70% of the workouts in the dataset were performed by the
first 100 users (hence, by around one-fifth of the users). This means that the first 100
users performed a considerable number of workouts, which makes it interesting to
contextualize our modeling also with the workout history of users.
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Fig. 4 Distributions of activities and workouts. Cumulative distribution of activities per workouts (left).
Cumulative distribution of workouts per users (Right)

Fig. 5 Percentage of workouts
performed by each gender. For
each gender of the dataset, we
report the percentage of workout
performed by the users that
recognize themselves as
belonging to that gender

From Fig. 5, instead, we notice that the percentage of workouts performed by male
athletes is mostly twice the percentage of workouts performed by their female coun-
terparts. In line with this, Fig. 6 shows that according to our dataset the male athletes
performed on averagemoreworkouts per personw.r.t. female athletes (21.72workouts
per person for male athletes vs. 17.29 workouts per person for female athletes) which
might have an impact on their support needs. In general, the dataset is composed of
1,936 workouts performed by 112 female athletes and 3,887 workouts performed by
179 male athletes.

Hence, in our dataset, the male users represent the majority group. The difference
in the number of workouts performed by different genders in our dataset may lead
our system to be biased w.r.t. the workouts performed by the users of the gender
that performed more workouts (i.e., males). We would like to remark once again that
gender should not impact the ratings, since the coaches that created the workout plans
and rated the performance of users take into consideration the gender of users, their
experience, and their health conditions.
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Fig. 6 Average number of
workouts per person performed
by each gender. For each gender
of the dataset, we report the
average number of workouts
performed by the users that
recognize themselves as
belonging to that gender

4.2 Data pre-processing and feature extraction

Data Pre-processing. From all the workouts in the dataset, we removed all those that
are not reliable. According to the u4fit coaches, a workout is not reliable when at least
one of the following conditions is met: (i) covered distance > 43, 000 meters, (i i)
workout duration > 5 hours, (i i i) rest time > 1 hour , (iv) average speed >

16 km/h.We also removed theworkouts thatwere not performed under the supervision
of a coach. After removing the irrelevant workouts, the final dataset consists of 5,823
workouts performed by 291 users.
Feature Extraction. Given the raw features available in our dataset and presented in
Table 1, the next goal is to model each workout, by doing some feature engineering.
We regrouped all the activities that belong to each workout and excluded the activities
that have resting as activi t y type (feature a10) since, according to coaches, they are
not considered when evaluating workout quality; for this reason, they should not be
part of our user modeling and recommendation algorithm.

In Table 2, we describe the features we created, and how they are derived from
the original ones. We can observe that some features reflect the phenomena we have
observed in Fig. 4. Specifically, feature f 24 (Days From PreviousWorkout) measures
the number of days from the previousworkouts session and feature f 30 (User Fidelity)
measures the number of workout sessions the user has performed from the first time
they used the platform, thus giving an idea about the workout intensity and frequency
of a certain athlete. According to Fig. 4, a small percentage of users in the dataset
performed more than 50% of the workouts, which means that it is crucial to capture
information about the workout intensity and the workout frequency of athletes. The
feature f 31 (Rating Weighted Sliding Average) captures the temporal evolution of
athletes’ performance by giving more importance to the last workout session without
neglecting the past ones. The choice of giving a 75% weight to the last workout was
made after collecting insights from the u4 f i t coaches on how, in their evaluation
process, the last workout contextualizes with the previous history of the users. Hence,
this engineering of the feature became our way to operationalize these insights.
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Fig. 7 Features’ correlation with the target classes. Each line reports the relative correlation of a feature
with the target classes, in a score between −1 and 1. A positive correlation score implies that the target
class gets higher as the feature grows, while a negative score implies that the target class gets lower when
the feature’s value grows

Figure 7 shows the correlations between the target classes and the features inTable 2.
The features that are highly correlated with the target classes and have a positive
correlation score are the Weighted Sliding Average of the ratings obtained by the
athletes during their previousworkout sessions, CoveredDistance, andBurnt Calories.
The features that are highly correlated with the target classes and have a negative
correlation score are the Distance GapVariance, Distance Gap and TimeGap. Namely,
the highly correlated featureswith the target classes are theones thatmodel the previous
athletes’ performance during the previous workout session, then the ones that model
the effort and adherence to the objectives set by the trainer during the current workout
session.

Figure 8 shows how the features with a positive high correlation score with the
target classes relate to each other and to the target classes. We can observe from this
figure that the athletes that usually achieve a good performance are more likely to get
a high score and vice versa.

5 Fair user recommendation

In this section, we describe the algorithm we implemented to recommend users who
need the support of the coach.
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Fig. 8 The impact of the most correlated features on the target classes and how they relate with each other.
Each point represents a workout in terms of the RatingWeighted SlidingAverage (x axis), CoveredDistance
(y axis), and Burnt Calories (z axis)

5.1 Motivation

Before we go into the detailed steps of our approach, it is important to highlight
why our approach departs from the main classes of recommender systems (collabo-
rative filtering and content-based approaches) and from classic people recommender
systems:

– Classic people recommenders exploit the topology of the social network (“since
you are connected to these users, you might connect to these”); this would not fit
our work, since in this work we are not recommending athletes to coaches that
might suit them, but we recommend to coaches those who need support after a
workout;

– Collaborative-filtering approaches do not consider item features, which are essen-
tial to predict if a user needs support or not (we are basing support on a prediction
of workout quality). Moreover, collaborative filtering approaches consider static
items (e.g., a movie does not change over time), while in our domain there is no
such thing as two identical workouts. Hence, collaborative algorithms would not
fit our approach either;

– Content-based approachesmatch two users based on the content they post. While
training results are a form of content exploited by our algorithm, the matching
between the coach and the athlete is not what triggers our recommendations.

Workout quality and its relation to previous users’ behavior and their objectives are
what drive the recommendation of a user to a coach, thus making our problem new
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from a recommendation point of view. Hence, no direct comparison of our work to
existing people recommenders is possible.

Continuing, we motivate our choice to provide fairness via a re-ranking approach
and how our method departs from the existing ones. Mitigation methods for unfairness
in rankings can be categorized into pre-processing, in-processing, and post-processing
methods:

– Pre-processing methods aim to mitigate disparities in user ranks by intervening at
the level of training data, either before these candidates are processed by a ranking
algorithm or during the ranking process;

– In-processing methods intervene on the ranking algorithm such that it produces a
ranked outcome that meets the specified fairness criteria;

– Post-processing methods intervene on the output ranking in such a way that it
meets the specified fairness criteria.

From the perspective of fairness, we opted for a post-processing method by making
a classic assessment of the exposure given to the different genders in the ranking. Here,
the application domain is new, by providing fairness to users in need of support in
eCoaching platforms.

A re-ranking algorithm is the best option when optimizing ranking-based metrics,
such as visibility and exposure. An in-processing regularization, such as those that
have been presented in Kamishima et al. (2018), Beutel et al. (2019), would not be
possible, since at the prediction stage the algorithm does not predict if and where an
item will be ranked in a recommendation list; hence, no direct comparison with these
approaches is possible. While list-wise approaches might support an in-processing
approach, the applicability of a solution would be limited only to this class of algo-
rithms, thus limiting the transferability of our work. Instead, a re-ranking approach,
like the one we propose in this study, can be applied to any class of ranking algo-
rithms. Re-rankings have been introduced to reduce disparities, both in the context
of non-personalized rankings (Zehlike et al. 2017; Singh and Joachims 2018; Biega
et al. 2018; Celis et al. 2018; Zehlike and Castillo 2020; Patro et al. 2020) and of
recommender systems (Mehrotra et al. 2018; Burke et al. 2018), with approaches such
as Maximal Marginal Relevance (Carbonell and Goldstein 1998).

However, all these algorithms optimize only one property (either utility or expo-
sure). As we will show later in our ablation study, optimizing for one metric is not
enough, so no direct comparison with these approaches is possible.

5.2 Our approach

The user recommendation process is divided into two main steps:

1. Performance-based ranking: we rank the users based on the performance in the
last workout, contextualized to their recent behavior.

2. Fair re-ranking: we assess how fair is the ranking algorithm in terms of exposure
of the users and provide a re-ranking algorithm for the cases in which users of a
given gender are affected by disparate exposure.

The steps are now described in detail.
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5.3 Performance-based ranking

The intuition behind this algorithm is that predicting the quality of a workout is a
central element in order to provide a recommendation to a coach. For this reason,
we initially predict the rating that the coach would assign to a given workout. The
input received by the classifier is the workout model composed of the 30 features we
engineered in Sect. 4.2. Different classes of classification algorithms can be employed
for the purpose of predicting workout quality, from ordinal to multi-class approaches.
Aswewill show in Sect. 6.2, the chosen class of algorithms implies treating the ground
truth as a continuous or disjoint set of classes (ordinal and multi-class classification,
respectively); in our evaluation, we explore the effectiveness of the two classification
strategies in our context. The output of a classifier is a predicted rating, denoted as r̂w.

Finally, we rank the users based on the predicted rating r̂w. The “urgency” with
which they will get support mostly depends on their performance during their previous
workout sessions. In general, a high r̂w leads to a high rank. Instead, if r̂w is low, the
user will get more timely support.

A recommendation listR for a coach is represented by the list of users followed by
them, ranked by ascending r̂w.

Since coaches and athletes have a continuous relationship, we simulate the rec-
ommendation scenario of the real-world application. Under this scenario, we assume
that the coach will check who might need support by checking the u4fit application
at regular intervals. To simulate these intervals, we start by ranking the users that
performed the first 5 workouts for each coach, then we update the ranking for each
coach whenever the athletes followed by this coach perform 5 new workouts.

5.4 Fair re-ranking

Every output generated by the previous step is a list of users to be recommended to a
coach, based on their likelihood of needing support, according to their performance.

The classification algorithm uses the gender of the users as a feature used in the
classification process (feature f 24). For this reason, systematically under-exposing
the users of a given gender would mean that the ranking is affected by the so-called
disparate treatment. Disparate treatment means that users belonging to a given gender
might be ranked lower w.r.t. to their counterpart, even though they might need the
same (or more) support.

Hence, the first step is to assess how fair is the ranking, in terms of the exposure
given to the users (Singh and Joachims 2018). The exposure that a user gets in a
ranking is given by:

Exposure (u|R) = 1

log(1 + j)
(1)

where j is the position the user covers in R.
In order to measure how “deserving” is that user to cover position j in the ranking,

we measure their utility according to:
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Utility (u|R) = 2rel(u) − 1

log(1 + j)
(2)

where rel(u) = max(rw) − r̂w.
It should be trivial to note that the utility of a user corresponds to their DCG, which

is a common practice in the literature (Singh and Joachims 2018).
Let Gi denote the subgroup of users having the same gender. The Exposure and

Utility for that group are calculated as follows:

Exposure (Gi |R) = 1

|Gi |
∑

u∈Gi

Exposure(u) (3)

and

Utility (Gi |R) = 1

|Gi |
∑

u∈Gi

Utility(u) . (4)

We first assume a recommendation list (ranking) to be fair if the two groups get the
same Exposure, defined as follows:

Exposure (G0|R) = Exposure (G1|R) . (5)

In order to assess if a recommendation list is fair, we measure Demographic Parity
Ratio (DPR) as follows:

DPR (G0,G1|R) = Exposure (G0|R)
Exposure (G1|R) (6)

A DPR equal to 1 indicates the users of a given gender get a fair exposure, while a
value lower or greater than 1 tells uswhich group is disadvantaged in terms of disparate
exposure.

The DPR metric only accounts for the position in which users are ranked, without
accounting for their utility, in demographic parity fashion. To account also for the
Utili t y of the users of a given group, we introduce another constraint that considers
it, to balance Exposure of the two groups while preserving ranking quality:

Exposure (G0|R)
Utility (G0|R) = Exposure (G1|R)

Utility (G1|R) . (7)

In order to assess if a recommendation list is fair, we measure Disparate Treatment
Ratio (DTR) as follows:

DTR (G0,G1|R) = Exposure (G0|R) /Utility (G0|R)
Exposure (G1|R) /Utility (G1|R) (8)

A DT R equal to 1 indicates fair exposure for the users, while a value lower or
greater than 1 tells us which group is disadvantaged in terms of disparate exposure.
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In case our two metrics, DPR and DT R, report scores different from 1, we devel-
oped a re-ranking approach to generate a fair exposure. The intuition behind our
algorithm is that each pair of users that have different gender and appear consequently
in a ranking is a candidate for a swap, so that the disadvantaged gender can be given
more exposure. Our approach is summarized in Algorithm 1.

Algorithm 1: Order-Based Re-ranking
input : X : users sorted by rank, D: fairness metric (either DT R or DPR)
output: R: ranked list of users that respects group fairness constraints

1 d ← empty dictionary;
2 s ← empty dictionary;
3 d[X ] ← D;
4 s[X ] ← getAllSwappableRows(X);
5 while s[X ] is not empty do
6 p ← get Next Pair(s[X ]);
7 remove p from s[X ];
8 X_temp ← swapPair(X , p);
9 D_temp ← calculateD(X_temp);

10 if D_Has Improved(D, D_temp) then
11 X ← X_temp;
12 D ← D_temp;
13 d[X ] ← D;
14 s[X ] ← getAllSwappableRows(X);
15 end
16 end
17 R ← the ranking in d that have the best D value;
18 return R;

The algorithm takes as input the list of users in a ranking update and a metric D
that measures either Disparate Treatment Ratio (DT R) or Demographic Parity Ratio
(DPR). First, the algorithm creates two empty dictionaries; in the first, we save the
rankings as keys, with the metric D associated with that ranking stored as value and,
in the second, we save the ranking as key and the list of possible pairs of users to swap
as value. In line 3, we save in the first dictionary (d) the original ranking as key and the
respective D as value. Then, in line 4, the function getAllSwappableUsers looks for
the disadvantaged gender (if D < 1, then G0 is disadvantaged, while if D > 1, then
G1 is disadvantaged) and returns a list containing the pairs of indexes of the users that
could be swapped, ordered by their occurrence, such that the disadvantaged gender
may get more attention. Then, we save the ranking and the users to swap, respectively,
as key, value in the second dictionary (s).

In line 6, we take the first pair of users to swap and check if D has improved (i.e.,
abs(1 − D) > abs(1 − D_temp)). If this is the case, we save the new ranking and
the respective D to d, update the users to swap given this new ranking, and repeat this
process until we make sure there are now users that we can swap and that can improve
the value of D for the ranking (lines 5-16). Finally, from d we take the ranking that
has the best D value.
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6 Experimental framework

This section describes the experiments performed to validate our proposal.

6.1 Experimental setup

The experimental framework exploits the Python scikit-learn 0.19.1 library. The exper-
iments were executed on a computer equipped with a 3.1 GHz Intel Core i7 processor
and 16 GB of RAM.

The learning phase and consequently the prediction of most Machine Learning
classifiers may be biased toward the occurrences that are frequently present in the
dataset (Rathore and Kumar 2017; Klement et al. 2009).

Researchers have suggested two main approaches to deal with data imbalance:
the first approach consists of tuning the data by performing a sampling, and the
other is to tweak the learning algorithm (Klement et al. 2009). Due to its effec-
tiveness in our data, we employed the first approach. More specifically, we have
considered the oversampling approach, since it is more effective for small dimen-
sion datasets (Sáez et al. 2016). We opted for Synthetic Minority Over-sampling
Technique Tomek (SMOTETomek), since it creates completely new samples and elim-
inates only examples belonging to the majority class instead of replicating the existing
ones, which offers more examples to the classifier to learn from. This means that the
minority class examples are over-sampled, whereas the majority class examples are
under-sampled (Chawla et al. 2002; Batista et al. 2004).

In our framework, we applied SMOTETomek using imbalanced-learn, which is
a package that provides a set of sampling approaches used in datasets showing high
class imbalance (Lemaître et al. 2017).

6.2 Evaluation strategy

In this section, we present our strategy to evaluate our proposal.

6.2.1 Workout quality prediction

In order to rank the users that need timely support, we first predict the quality of their
performance during the last workout that the coach assigned to them. To this end, we
compare two kinds of classification, the first is Ordinal classification (which takes into
account the order of ratings) and the second is multi-class classification (which does
not take into account the order of ratings). The comparison of these two classification
strategies will allow us to assess if the classification process should follow the same
process a coach uses to rate a workout (i.e., by considering that additional points in the
rating mean a better workout, in ordinal fashion) or if workouts follow given patterns
and a rating should be treated as a class, in multi-class fashion.
Ordinal Classification.

In this study, we compared four ordinal classifiers, which consider as classes the
ordered set of ratings.
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1. Ordinal Ridge (OR). This classifier overwrites the Ridge classifier in scikit-learn,
so that it uses the (minus) absolute error as a score function. Ridge regression
provides biased estimates and is the best-known penalization approach (Brooks
and Dulá 2013). Ridge regression approximates parameter estimates to zero value
without making them completely zero (Landschoot et al. 2013);

2. Least Absolute Deviation (LAD) is a statistical optimization technique that mini-
mizes the sum of the absolute values of the residuals. LAD can be classified as a
nonlinear optimization problem. This provides a robust estimator. However, LAD
regression is not robust when the data has outliers in the illustrative variables (Gao
and Feng 2018);

3. Logistic Immediate-Threshold (LIT). This classifier implements the ordinal logis-
tic model, considering the Immediate-Threshold variant. If the threshold values
defined for each class are violated, a penalty is imposed. However, the immediate
threshold method does not guarantee that the threshold values will be consecu-
tive (Rennie 2005);

4. LogisticAll-Threshold (LAT).This classifier implements the ordinal logisticmodel,
considering the All-Threshold variant. The All-Threshold-based method was
introduced to guarantee that the thresholds will be ordered by imposing more
penalties (Rennie and Srebro 2005). The all-threshold loss corresponds to a total
value of all threshold violation penalties. Therefore, solutions in the All-Threshold
method are desired to have theminimumnumber of crossed thresholds (Topal et al.
2010).

Multi-class Classification. To treat the workout-quality prediction problem as multi-
class classification, we compared four tree-based classifiers, as these perform better
compared to those that are not tree-based when it comes to low-dimensional
data (Rathore and Kumar 2017).

1. Gradient Boosting (GB) is an ensemble algorithm that improves the accuracy of a
predictive function through incremental minimization of the error term. After the
initial base learner (almost always a tree) is grown, each tree in the series is fit to
the so-called “pseudo residuals” of the prediction from the earlier trees with the
purpose of reducing the error (Brown and Mues 2012);

2. Random Forest (RF) is a meta-estimator of the family of the ensemble methods. It
fits a number of decision tree classifiers, such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all
the trees in the forest (Breiman 2001);

3. Extra Trees (ET) is another ensemble method. Similarly to Random Forest, it uses
a random subset of candidate features while splitting a tree node; however, instead
of looking for the most discriminative thresholds, thresholds are drawn at random
for each candidate feature and the best of these randomly-generated thresholds is
picked as the splitting rule (Geurts et al. 2006);

4. Decision Tree (DT) is a non-parametric supervised learning method used for clas-
sification and regression. One of themain advantages of decision trees with respect
to other classifiers is that they are easy to inspect, interpret, and visualize, given
they are less complex than the trees generated by other algorithms addressing
nonlinear needs (Boratto et al. 2018).
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6.2.2 Strategy

To validate our proposal, we performed five sets of experiments:

1. Classifiers comparison. We evaluated the ordinal and multi-class classifiers, by
running them on all the features.We compared the accuracy metrics they obtained,
in order to determine the most effective one;

2. Feature sets importance evaluation. After choosing the most effective ordinal and
multi-class classifiers, we evaluated the importance of the used features by mea-
suring the correlation between the value of each feature and the values predicted
using the best performing classifier, to understand how each feature impacts the
quality of workouts;

3. Ablation study.We took away the least important feature one by one, and evaluated
the classification accuracy, to check how the less relevant features affected the
effectiveness of the classifiers;

4. Re-training simulation. To simulate the real-world scenario, we re-train and mon-
itor the performance of the best ordinal and multi-class classifiers every 100
workouts (i.e., we first train the classifier on the first 100 workouts and evalu-
ate its performance on the following 100 on then we train on the first 200 and
evaluate its performance on the following 100).

5. Ranking Under Fairness Constraints To rank the users, we sort them according
to the rating predicted by the best classifier. Then, we compare the effectiveness
and the fairness of the resulting ranking, before and after applying Algorithm 1
described in Sect. 5.4. To simulate the real-world scenario, we re-rank the users
for each coach every n new workouts.

6.3 Metrics

Workout Quality Prediction. Our approach ranks users based on their workout perfor-
mance. For this reason, the first set of evaluationmetrics should be capable of capturing
how effective is a classification approach at predicting workout quality. Given that the
ground truth is represented by 5-star ratings, we had to choose metrics that are most
suitable for multi-class datasets. Nevertheless, the majority of the performance mea-
sures present in the literature are designed only for two-class problems (Galar et al.
2011).

However, several performancemetrics for two-class problems have been adapted to
multi-class ones. Some measures that fit well our needs, give us relevant information
about the performance of our classifier, and are successfully applied for multi-class
problems are Accuracy, Recall, Precision, F2-score, and Informedness (Galar et al.
2011). In what follows, we present these metrics in detail.

Accuracy is defined as:

Accuracy = T P + T N

P + N
(9)

where P represents positively labeled instances, and N represents negatively
labeled ones. T P represents the true positives (i.e., instances of the positive class

123



864 L. Boratto et al.

that are correctly labeled as positive by a classifier), T N represents the true nega-
tives (i.e., instances of the negative class that are correctly labeled as negative by a
classifier). It represents the fraction of all instances that are correctly classified.

Recall is defined as:

Recall = T P

P
(10)

and it measures the completeness of a classifier.
Precision is defined as:

Precision = T P

T P + FP
(11)

and it measures the exactness of a classifier.
F2-score is defined as:

F2 = 5 · Precision · Recall
4 · Precision + Recall

(12)

and it is a metric that considers both recall and precision.
None of themetrics presented so far takes into account the true negative rate (defined

as T N/N ) and this is an issue when dealing with imbalanced datasets (Powers 2011).
Considering this, we decided to measure Informedness, which is the clearest measure
of the predictive value of a system (Powers 2012). Informedness is defined as:

I n f ormedness = Recall + true_negative_rate − 1 (13)

where true_negative_rate is T N/N . It ranges between -1 and 1, where 1 represents
a perfect prediction, 0 no better than random prediction, and -1 indicates total dis-
agreement between prediction and observation. This metric is particularly effective
for multi-class problems as opposed to the accuracy (Galar et al. 2011).
Ranking Under Fairness Constraints. To evaluate the ranking quality, we compare the
ranking lists generated as output by the model and those given as the ground truth (i.e.,
the user rankings shaped based on the ratings assigned to each coach for the workouts
in the test set). The most suitable metric for this purpose is the Normalized Discounted
Cumulative Gain (NDCG).

We compared our rankings effectiveness using an exponential gain and logarithmic
decay based on the graded relevance judgments. In our case, NDCG at position k is
defined as:

NDCG@k(R) = 1

N

k∑

j=1

2rel(u j) − 1

log( j + 1)
(14)

where N is the maximum possible DCG given the known relevant users, u j is the
uth-ranked user returned by R, and rel

(
u j

)
is the binarized relevance assessment of

this user (Radlinski and Craswell 2010). NDCG values range between 0 and 1; the
higher the value, the better.
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Fig. 9 Ordinal classifiers comparison. Each block of columns reports the results obtained for each metric.
Each column denotes an ordinal classifier. The higher the value, the better is the classifier

6.4 Experimental results

In this section, we present our results.

6.4.1 Classifiers comparison

– Ordinal classification. Figure 9 shows that LIT, LAT, and OR achieved the best
performance, where LAD achieved the worst results. The ordinal classifier that
gets the best scores for all the metrics is OR. It achieves an F2-Score of almost
92% and an Informedness of 0.88, which means that we are correctly predicting
the rating of a workout in 92% or more of the cases. Based on these results, OR is
the ordinal classifier chosen for the subsequent analyses.

– Multi-class classification. Figure 10 shows that almost all the classifiers have a
good performance, but RF is the one that gets the best scores for all the metrics.
Concretely, RF achieves an F2-Score of almost 93% and an Informedness of 0.91,
which means that we are correctly predicting the rating of a workout in 93% or
more of the cases. Based on these results, RF is the multi-class classifier chosen
for the subsequent analyses.

– Ordinal vs. Multi-class classification. The best ordinal classifier and the best
multi-class classifier achieve similar performance for the rating prediction task,
nevertheless, RF performs slightly better than OR for all the metrics. This is true
for all the metrics we consider to evaluate classification quality. This leads us to
our first observation.

Observation 1. The ratings that the coaches use to assess workout quality
are in an ordinal

scale and, conceptually, an ordinal classifier would better suit this task. However,
the multi-class classifiers outperform the ordinal ones. Hence, we conjecture that
coaches might have a more schematic way of evaluating workouts, better captured
by multi-class approaches.
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Fig. 10 Multi-class classifiers comparison. Each block of columns reports the results obtained for each
metric. Each column denotes a multi-class classifier. The higher the value, the better is the classifier

6.4.2 Feature sets importance evaluation

Figure 11 illustrates the impact of each feature on the performance of OR, using a
scale ranging from 0 (no importance) to 100 (very important). We can see that the
features that have more impact on the classification process are mainly those that
model the recent behavior of the users and their adherence to their workout objectives.
The “Rating Weighted Sliding Average” average is the most important feature, and
we assume that this is due to the fact that it represents the decaying average of the
recent ratings achieved by the users, and since users usually tend to change their
behavior gradually their performance is very correlated with their recent ratings. We
can see also that the effort (Burnt Calories), themonthwhen theworkout sessions were
planned, and the percentage of well-performed activities have a significant impact on
the workout quality prediction. However, user characteristics were not very relevant
to the classifier. The “Rating Weighted Sliding Average” is also the feature with the
highest correlation score with the target classes, when the importance of the other
features is captured in a different way. Nevertheless, the features judged to have a high
impact on both classifiers’ prediction reflect the correlations of these features with the
target classes presented at the end of Sect. 4.

Figure 12 illustrates the impact of each feature on the performance of RF, using
a scale ranging from 0 (no importance) to 100 (very important). We can see that the
features that have more impact on the classification process are mainly those that
model the recent behavior of the users and their adherence to their workout objectives.
The rating weighted sliding average is the most important feature also according to
RF.We can see also that the covered distance, average pace, and the week number have
a significant impact on the workout quality prediction. However, user characteristics
and workout characteristics were not very relevant to the classifier.
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Fig. 11 Features’ importance for the OR classifier. Each line reports the relative importance of a feature,
in a score between 0 and 100. The higher is the score, the more important is the feature

Fig. 12 Features’ importance for the RF classifier. Each line reports the relative importance of a feature, in
a score between 0 and 100. The higher is the score, the more important is the feature

6.4.3 Ablation study

During the ablation study, we train the classifier on different feature settings by
removing features one by one, starting from the least important (i.e., for OR, the
first setting runs the classifier without the User BMI, while in the second setting we
removed User BMI and Average Pace, and so on).
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Fig. 13 Results returned by training OR with different sets of features. For each set of features, denoted in
the x axis (Setting), we report the value obtained by each metric

Fig. 14 Results returned by training RF with different sets of features. For each set of features, denoted in
the x axis (Setting), we report the value obtained by each metric

Training OR on fewer features showed that it achieves a better performance using
the feature set 18 (i.e., when we do not consider the first 18 less important features
while training the classifier), as reported in Fig. 13.

Training RF on fewer features showed that it achieves a better performance using
the feature set 14 (i.e., when we do not consider the first 18 less important features
while training the classifier), as reported in Fig. 14.

Table 3 shows the best performance of OR and RF after training them on fewer
features. Both classifiers achieve a very good performance, though RF outperforms
OR for all the metrics we considered.
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Table 3 Performance of OR and
RF when trained on the best
feature sets

Classifier OR RF

Accuracy 0.928 0.945

F2 0.927 0.945

Recall 0.928 0.945

Precision 0.931 0.948

Informedness 0.902 0.930

Each line reports the results of a metric and each column the classi-
fier associated with the reported results (The values that are in bold
represent the best results for each metric)

Fig. 15 Evolution of the performance of OR. The x axis (Batch size) contains a point every 100 workouts,
that is when a classifier gets retrained. The y axis (Metrics) reports the value obtained by each metric with
the associated batch size

Observation 2. Regardless of the users’ characteristics and how a workout
is composed, the workout quality depends above all on how much the runners
stick to their workout objectives and howmuch effort they are putting in during
workouts. Apart from being adherent to the goals set by the coach, the period
of the year when the workouts are planned can also influence the performance
of runners; we conjecture that this last phenomenon means that good weather
positively influences workout quality.

6.4.4 Re-training simulation

In this evaluation, we re-train and assess the effectiveness of the classifiers for every
100 workouts.

Considering ordinal classification, Fig. 15 shows that OR maintains a good per-
formance over time, with the F2-score values ranging between 81% and 99%. A
peculiarity of this classifier is that it can predict effectively even when training on a
subset of workouts. We can also remark that the performance of the model changes
a lot with the variation of the batch size. This change in terms of performance could
be associated with the fact that with the growth of the batch size, some of the data
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Fig. 16 Evolution of the performance of RF. The x axis (Batch size) contains a point every 100 workouts,
that is when a classifier gets retrained. The y axis (Metrics) reports the value obtained by each metric with
the associated batch size

used for the model evaluation could contain workouts performed by new users that
were not present in the training data; since we know very little about those users, this
decreases the performance of the model.

Considering the most effective multi-class classifier, Fig. 16 shows that when train-
ing on fewer workouts (less than 300) the performance of RF is low but, when training
on 300 workouts or more, the classifier maintains a good performance over time (F2-
score ranges between 86% and 99%).

6.4.5 Ranking under fairness constraints

For each coach, we started by ranking the users that performed the first five workouts,
and we updated the rankings for every new five workouts. We do this for the last 50
workouts performed by the users followed by all the coaches. Then, we mitigated
unfairness for each ranking update w.r.t. our disparate treatment metrics, DPR and
DT R.

– Ranking quality. Figure 17 shows the evolution of the average NDCG@10 over
time before and after mitigating unfairness in ordinal and multi-class-based rank-
ings. We notice that before mitigating unfairness, all the rankings achieved an
NDCG@10 of 1 using both multi-class-based and ordinal-based rankings. This
means that the ratings predicted by the classifier reflect both workout performance
and the timeliness with which athletes should be contacted. This is also reflect-
ing the fact that the classifiers are predicting correctly the athletes’ performance
as shown by the results of the previous sections. After mitigating unfairness, we
remark that the values of NDCG@10 get lower as the number of ranking updates
grows. This could be explained by the fact that, while we are mitigating unfairness,
we reorder the users such that they get assisted in a fair way and this influences
the quality of rankings. However, we can see that after mitigating unfairness, the
ordinal-based rankingsmaintain a slightly higher NDCG@10 than themulti-class-
based ones.
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Fig. 17 Ranking accuracy results. The x axis (Ranking update) contains a point every 5 workouts, that is
when a classifier gets retrained. The y axis (Average NDCG@10) reports the NDCG@10 obtained by each
classifier in the associated ranking update. We report these results before and after mitigation (blue and
orange line, respectively), for multi-class and ordinal classifiers (continuous and dashed lines, respectively)

Fig. 18 Fairness in terms of demographic parity. The x axis (Ranking update) contains a point every 5
workouts, that is when a classifier gets retrained. The y axis (Average |DPR − 1|) reports the distance of
each classifier with respect to the expected DPR score in a ranking update. We report these results before
and after mitigation (blue and orange line, respectively), for multi-class and ordinal classifiers (continuous
and dashed lines, respectively)

– Global evolution ofDPRandDTRover time before and aftermitigating unfairness.
Figure 18 illustrates the evolution of the average |DPR−1| (how far is DPR w.r.t.
its perfect value) before and after mitigating unfairness in ordinal and multi-class-
based rankings for each ranking update. From Fig. 18, we see that over time
the average |DPR − 1| gets closer to 0 after applying Algorithm 1 to mitigate
unfairness, but its values get higher as the number of ranking updates grows. The
values of |DPR − 1| for ordinal and multi-class-based rankings are very similar,
though, ordinal-based rankings achieved a slightly better DTR compared to multi-
class-based rankings.
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Fig. 19 Fairness in terms of disparate treatment. The x axis (Ranking update) contains a point every 5
workouts, that is when a classifier gets retrained. The y axis (Average |DT R − 1|) reports the distance of
each classifier with respect to the expected DTR score in a ranking update. We report these results before
and after mitigation (blue and orange line, respectively), for multi-class and ordinal classifiers (continuous
and dashed lines, respectively)

Fig. 20 Demographic parity scores. The x axis (Ranking update) contains a point every five workouts,
that is when a classifier gets retrained. The y axis (Average DPR) reports raw DPR score returned in a
ranking update. We report these results before and after mitigation (blue and orange line, respectively), for
multi-class and ordinal classifiers (continuous and dashed lines, respectively)

Figure 19 illustrates the evolution of the average |DT R − 1| (how far is DTR w.r.t.
its perfect value) before and after mitigating unfairness in ordinal and multi-class-
based rankings for each ranking update. From Fig. 18, we see that, like |DPR − 1|,
over time the average |DT R − 1| gets closer to 0 after applying Algorithm 1 to
mitigate unfairness, but its values get higher as the number of ranking updates grows.
Nevertheless, the values of |DT R − 1| are closer to 0 comparing to the values of
|DPR − 1| before and after mitigating unfairness.

In contrast with what we have seen in Fig. 18, according to DTR, the multi-class-
based strategy is the one that generates more fair rankings.

Figure 20 illustrates the evolution of DPR before and after mitigating unfairness in
ordinal and multi-class-based rankings for each ranking update. From Fig. 20, we see
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Fig. 21 Disparate treatment scores. The x axis (Ranking update) contains a point every five workouts,
that is when a classifier gets retrained. The y axis (Average DTR) reports raw DTR score returned in a
ranking update. We report these results before and after mitigation (blue and orange line, respectively), for
multi-class and ordinal classifiers (continuous and dashed lines, respectively)

that the average DPR mostly ranges between 0.95 and 1.09 for all the ranking updates
in ordinal and multi-class-based rankings. Before mitigating unfairness, the values of
DPR are ranging between 1 and 1.09 and, after unfairness mitigation, the values are
ranging between 0.95 and 1.06. We can deduce that the values of DPR after mitigation
vary more, but are closer to 1.

In addition, we can notice that in the majority of cases the discriminated gender in
terms of demographic parity is the male gender (DPR > 1).

Figure 21 illustrates the evolution of DTR before and after mitigating unfairness in
ordinal and multi-class-based rankings for each ranking update. Figure 21 shows that
the averageDTRvaluesmostly range between 0.97 and 1.05 for all the ranking updates
in ordinal and multi-class-based rankings. Before mitigating unfairness, the values of
DTRare ranging between 0.97 and 1.05;meanwhile, after themitigation, the values are
ranging between 0.98 and 1.04.We can deduce that the values of DTR after mitigation
are less variate compared to the values of DPR and closer to 1. Furthermore, we notice
that for almost all the ranking updates, the ordinal classification-based rankings are
achieving better results compared to multi-class classification-based rankings with
respect to DTR.

Moreover, we notice that, in terms of disparate treatment, the discriminated gender
is the female gender (DT R < 1), unlikewhatwe have observed earlier when assessing
fairness using DPR.

At this point, one may pose the question:Which metric is telling the truth about the
discriminated gender?Bothmetrics are somehow right about the discriminated group,
except that DPR is not considering the performance of athletes whenmeasuring unfair-
ness, while DTR includes also the utility of the rankings instead, and thus considers
also the performance of athletes when assessing unfairness. For this reason, we may
consider that DTR is more suited to our application’s context, especially for the fact
that not considering the utility of rankings when mitigating unfairness could influence
negatively the quality of the users’ experience by attributing athletes an exposure that
is not proportional to their performance during their last workout session.
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Fig. 22 Demographic parity scores, when females are more than males. The x axis (Ranking update)
contains a point every five workouts, that is when a classifier gets retrained. The y axis (Average DPR)
reports raw DPR score returned in a ranking update. We report these results before and after mitigation
(blue and orange line, respectively), for multi-class and ordinal classifiers (continuous and dashed lines,
respectively)

Fig. 23 Disparate treatment scores,when females aremore thanmales. The x axis (Ranking update) contains
a point every five workouts, that is when a classifier gets retrained. The y axis (Average DTR) reports raw
DTR score returned in a ranking update.We report these results before and after mitigation (blue and orange
line, respectively), for multi-class and ordinal classifiers (continuous and dashed lines, respectively)

To explore more in depth this phenomena, we represented graphically the evo-
lution of DPR and DTR before and after mitigating unfairness in all the rankings
where females are more than males and the ones where females are more than males
(Figs. 22, 23, 24, and 25). We analyze our results in our following analysis.

– Evolution of DPR and DTR over time before and after mitigating unfairness when
females are more than males. Figure 22 illustrates the evolution of DPR in the
rankingswhere females aremore thanmales, before and aftermitigating unfairness
in ordinal andmulti-class-based rankings for each ranking update.We observe that
inmost cases the discriminatedgroup is themale group,which is theminority group
in this case, and that the minority group gets ranked in a more unfair way as the
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Fig. 24 Demographic parity scores, when females are less thanmales. The x axis (Ranking update) contains
a point every five workouts, that is when a classifier gets retrained. The y axis (Average DPR) reports raw
DPR score returned in a ranking update.We report these results before and after mitigation (blue and orange
line, respectively), for multi-class and ordinal classifiers (continuous and dashed lines, respectively)

Fig. 25 Disparate treatment scores, when females are less than males. The x axis (Ranking update) contains
a point every five workouts, that is when a classifier gets retrained. The y axis (Average DTR) reports raw
DTR score returned in a ranking update.We report these results before and after mitigation (blue and orange
line, respectively), for multi-class and ordinal classifiers (continuous and dashed lines, respectively)

number of ranking updates increases. This could be explained by the fact that, as
the rankings are updated, the number of ranked users gets larger and more diverse
which makes the original rankings more unfair. After mitigating unfairness, the
average DPR gets closer to its perfect value, and the discriminated group could
change for some ranking updates. Hence,we do not observe any difference in terms
of DPR values when comparing ordinal and multi-class-based ranking strategies.

Figure 23 illustrates the evolution of DTR in the rankings where females are more
than males, before and after mitigating unfairness in ordinal and multi-class-based
rankings for each ranking update.According toDTR, the discriminated group ismostly
the male one, and after the mitigation of unfairness, the average DTR got closer to 1
in all the cases for the ordinal classification-based ranking strategy. Instead, for the
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multi-class classification-based rankings, we can notice that in one case the average
DTR is higher than the average DTR after mitigating unfairness, and this could be
explained by the fact that the values of DTR for that ranking update are more variate
than before mitigating unfairness.

– Evolution of DPR and DTR over time before and after mitigating unfairness when
females are less than males. Figure 24 illustrates the evolution of DPR in the
rankings where females are less than males, before and after mitigating unfairness
in ordinal and multi-class classification-based rankings for each ranking update.
This figure shows that the discriminated group according to DPR beforemitigating
unfairness is the male group, when it appears that after mitigating unfairness the
discriminated group is mostly the female one. Since the values of average DPR
before and after mitigating unfairness are very close for the multi-class and the
ordinal classification-based ranking strategies. Figure 25 illustrates the evolution
of DTR in the rankings where females are less than males, before and after miti-
gating unfairness in ordinal and multi-class classification-based rankings for each
ranking update. According to the average DTR, the discriminated group for both
ranking strategies is mostly the female one of females before and after mitigating
unfairness.

Observation 3. The discriminated gender when assessing fairness usingDTR
coincides with the gender of the minority group. This phenomenon aligns
our work with what is usually observed in the fairness literature, where the
demographic group representing the minority in the training data is the dis-
criminated one (Boratto et al. 2021).

7 Conclusions and future work

In this paper, we proposed and validated an approach to identify and rank athletes
that need timely support due to low performance in workouts and recommend them
to their coaches so that they can be contacted with a higher priority. Furthermore, we
guarantee a fair exposure in the ranking, to make sure that users of different groups
have equal opportunities to get supported. Our approach models the performance and
running behavior of the users, in order to apply a ranking algorithm to recommend
users to coaches, according to their performance in the last running session and the
quality of the previous ones. Then, we presented a re-ranking algorithm to provide
fair exposure to users.

The results show the effectiveness of our ranking algorithm even under fairness
constraints, which allow us to provide unbiased ranking w.r.t. the users’ sensitive
attributes without losing a lot in terms of ranking utility.

The limitations of this work are related to the following perspectives:

– In this study, we only considered one dataset, however, no other works in the
literature studied these phenomena, so no similar dataset exists;

– The available dataset is small but, with our modeling, we managed to achieve very
good results;
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– Our prediction tasks are based on existing classification models. While models
tailored on our domain and prediction taskwould be relevant and their development
is left as future work, this work has allowed us to establish effective and fair user
rankings in this domain.

As future work, we look to introduce explainability and coach-in-the-loop insights
to improve the recommendations. Furthermore, we are currently preparing a live user
evaluation, to see how coaches perceive our ranking and the fairness dimensions we
introduced in this work.
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